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Abstract

Genetics and omics studies of Alzheimer’s disease and other dementia subtypes

enhance our understanding of underlying mechanisms and pathways that can be tar-

geted. We identified key remaining challenges: First, can we enhance genetic studies

to address missing heritability? Can we identify reproducible omics signatures that

differentiate between dementia subtypes? Can high-dimensional omics data identify

improved biomarkers? How can genetics inform our understanding of causal status

of dementia risk factors? And which biological processes are altered by dementia-

related genetic variation? Artificial intelligence (AI) and machine learning approaches

give us powerful new tools in helping us to tackle these challenges, and we review

possible solutions and examples of best practice. However, their limitations also need

to be considered, as well as the need for coordinated multidisciplinary research and

diverse deeply phenotyped cohorts. Ultimately AI approaches improve our ability to

interrogate genetics and omics data for precision dementia medicine.

KEYWORDS

artificial intelligence, biomarkers, pathology, causality, dementia, disease pathways, etiology,
genetics, machine learning, omics, risk factors

Highlights

∙ Wehave identified five key challenges in dementia genetics and omics studies.

∙ AI can enable detection of undiscovered patterns in dementia genetics and omics

data.

∙ Enhanced andmore diverse genetics and omics datasets are still needed.

∙ Multidisciplinary collaborative efforts using AI can boost dementia research.

1 INTRODUCTION

Dementia results from a variety of heterogeneous pathologies, such

as Alzheimer’s disease (AD), Parkinson’s disease dementia (PDD),

dementiawith Lewybodies (DLB), frontotemporal dementia (FTD), and

cerebrovascular disease.1 The number of people living with demen-

tia worldwide is around 45 million and, as life expectancy increases

and populations age, this number is expected to increase.2 Genome-

wide association studies (GWAS) have led to the identification of an

increasing number of genetic loci associatedwith the risk of dementias

and related neurodegenerative diseases in older adults, primarily of

European ancestry.3–10 However, evenwith established bonafide asso-

ciations, the task of characterizing variants and genes in the context of

complex disease molecular pathophysiology, as well as its interacting

genes and pathways, remains a daunting challenge.11

Recent progress in cutting-edge genetic and omics technologies,

such as epigenomics, transcriptomics, proteomics, and metabolomics,

which refer to the comprehensive assessment of a set of specific

mailto:c.bettencourt@ucl.ac.uk
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types of biological molecules, allied with emerging computational

methods, hold promise of faster discoveries. However, because of

the large number of associations investigated in most omics scale

studies, it is necessary to have large sample sizes collected in a con-

sistent manner. Scaling up multidisciplinary dementia studies, such as

those using omics approaches, comes with challenges and implies the

need of coordinated efforts from clinicians, basic and computational

scientists. Appropriate funding and infrastructures capable of deal-

ing with large numbers of biological samples and big data are also

needed.

As the omics field continues to expand in dementia research, artifi-

cial intelligence (AI)-powered technologies, and in particular machine

learning (ML) and deep learning (DL), are well-suited for the detec-

tion of undiscovered patterns in high-dimensional data and advance

dementia research in unprecedented ways (Figure 1). Coronavirus

disease 2019 (COVID-19) demonstrated that progress can rapidly

be made toward tackling a disease when certain scientific practices

are altered.12 Coordinated action across interested parties can result

in extraordinary progress within short periods of time. Significant

progress could be made rapidly in dementia research if interested

parties were able to organize such that we could tackle the sys-

temic problems that hold back the field, some of which are discussed

below.

Here we identify and discuss five unresolved key questions in

dementia research, which could be addressed using omics combined

with advanced AI approaches: (1) How can we enhance genetic

studies to inform our understanding of dementia risk? (2) Can we

find reproducible omics brain signatures that differentiate between

dementia subtypes? (3) Can high-dimensional omics data identify

improved molecular biomarkers for dementia compared to single

marker approaches? (4) How do we use genetics to inform our under-

standing of causal risk factors? And (5) Which biological processes

are altered by genetic risk for dementia-related diseases? Tackling

these questions is crucial to improving our understanding of demen-

tia, and involves coordinating amultitudeof playerswhose expertise go

well beyond omics. It also involves improving the availability of biore-

sources and clinical data as well as developing analytical tools and ML

algorithms to deal with high-dimensional and heterogeneous data. We

note some of the challenges which must be surmounted to answer

these questions within the next decade. In each instance, we highlight

possible solutions and exemplar projects and communities, who have

set good examples that can be used to improve our performance as a

dementia research community.

This review is one of a series of eight articles in a Special Issue

on ‘Artificial Intelligence for Alzheimer’s Disease and Related Dementias’

published in Alzheimer’s & Dementia. Together, this series provides a

comprehensive overview of current applications of AI to dementia, and

futureopportunities for innovation to accelerate research. Each review

focuses on a different area of dementia research, including experimen-

tal models [this issue], drug discovery and trials optimization [this issue],

genetics and omics (this article), biomarkers [this issue], neuroimaging

[this issue], prevention [this issue], appliedmodels and digital health [this

issue], andmethods optimization [this issue].

RESEARCH INCONTEXT

1. Systematic review: Our understanding of dementia eti-

ology, pathology, biomarkers, and risk factors remains

limited. We identified and discussed five key challenges

hampering progress in dementia genetics and omics and

proposed solutions to boost dementia-related discover-

ies.

2. Interpretation: The use of artificial intelligence (AI),

including aspects of machine learning, deep learning, and

advanced AIs, is still in its infancy in dementia genetics

and omics research. Although not a panacea, these pow-

erful analytic approaches have the potential to identify

and relate relevant dementia features at an unprece-

dented speed and depth to transform data into improved

knowledge.

3. Future directions: As a research community, we must

develop more effective multidisciplinary collaborative

efforts to enhance dementia-related datasets, leverag-

ing AI approaches to prioritize drug targets, synthesize

information, and facilitate knowledge transfer to diverse

audiences in addition to simply speeding up the coding

and analytic process.

Genetics & Genomics
Epigenomics

Transcriptomics
Proteomics

Metabolomics
Lipidomics

Dementia Patients Healthy Controls

Genetic prediction of  
risk and progression

Molecular 
subtyping

Molecular 
biomarkers

Dysregulated 
pathways

Artificial Intelligence allows learning at different 
levels of data granularity and facilitates 

unprecedented advances in dementia research

Multi-omics data

F IGURE 1 Illustration of multiple aspects of dementia research
that can be enhanced by the use of appropriate genetics and omics
data allied with the implementation of artificial intelligence
approaches.

2 KEY CHALLENGES

2.1 How can we enhance genetic studies to
inform our understanding of dementia risk?

2.1.1 State of the science

The majority of GWAS rely upon logistic or linear regression-based

approaches to test for associations between individual genetic variants



4 BETTENCOURT ET AL.

(single nucleotide polymorphisms; SNPs) and a binary or continuous

outcome.13,14 This process is repeated until an estimate of association

has been generated separately for each genetic variant. Then p-values

are used to gauge whether any of these individual associations are

strong enough to be considered genome-wide significant when cor-

recting for multiple testing (a conventional threshold for ‘hits’ is 5 ×

10−8).15 After a GWAS has been conducted it is often then possible to

construct a polygenic risk score (PRS) by summing the value for each

genetic variant weighted by the effect size from the initial GWAS.16

PRS have important applications as research tools, in clinical trials and

in clinical practice, as they can facilitate causal inference modeling and

genetic risk stratification on an individual level. Despite twin study her-

itability estimates of around 60%–80% for AD,17 recent SNP-based

estimates of common variant heritability of AD from GWAS and PRS

aremuch lower (up to 20%),18 suggesting thatmuch of the genetic con-

tribution to dementia risk remains unexplained. Other approaches are

needed to uncover this missing heritability by integrating multi-omics

or non-linear modeling.

2.1.2 What problems need addressing?

The diagnosis of dementia and its subtypes is imprecise.19 Current

GWAS are based on cases for whom diagnosis of a specific dementia

subtype has been largely made based upon clinical signs and symp-

toms. Thus, although current dementia GWAS are likely to be enriched

for pathology related to the dementia subtype of interest, they will

inevitably also contain other dementia subtypes and pathologies in

their cases. This is problematic since etiology and risk factors are likely

to differ for each dementia subtype, so genetic markers with small

effect sizes that are specific to a single dementia subtypewill be harder

to detect than generalized dementia pathways.

There is currently a marked lack of diversity within dementia

genetics studies, with GWAS discovery being largely confined to the

genetics of AD in non-Hispanic White adults of European ancestry.

Although some small GWAS have been conducted in non-European

samples,20,21–23 have measured non-AD dementias,6,9,10 and incor-

porated dementia-related intermediate quantitative phenotypes or

endophenotypes (such as amyloid-beta and cerebral small vessel

disease),24–26 these studies are largely underpowered. Certain ances-

tries remain understudied, for example, South Asians despite rep-

resenting around a quarter of the total global population. Without

enhancing diversity in GWAS, or developing appropriate reference

panels and genotyping chips, we are unable to construct PRS for all

ancestral groups. This perpetuates ethnic bias in future research and

clinical practice. We need better methods that can leverage diver-

sity when evaluating risk. Not only from the standpoint of genetics,

but integrating multimodal data that may interact with genetic or epi-

genetic factors as part of comprehensive risk assessment and risk

prediction.

The study of both coding and non-coding rare/structural variants

associated with dementia risk needs to be further pursued through

short- and long-read sequencing technologies, which are thought

to be important contributors to missing heritability in dementia.27

Under the hood, long-read sequencing is powered by DL, using GPU-

powered alignment algorithms to better characterize the genome.

Other potential reasons for missing heritability include unmeasured

interactions between genes (epistasis) and failing to account for corre-

lations between genetic variants due to population structure, dynastic

effects, assortative mating or functional relationships.28

2.1.3 Possible solutions

Perhaps the simplest way to enhance future GWAS is to further

increase sample sizes and the diversity of these samples. This has been

the main strategy so far, and has been reasonably successful in iden-

tifying additional genetic variants and, to a lesser degree, improving

the phenotypic variance explained. It is reasonable to assume that

by further increasing sample sizes (essentially more of the same) fur-

ther discoveries will bemade. Increasing sample sizes considerably will

involve enhancing existing research studies or establishing new stud-

ies. It is also important to consider the existence of different dementia

subtypes andhow todistinguish them. Itmaybepossible to take advan-

tage of existing well characterized samples that have not previously

been genotyped due to resource limitations, such as gold standard post

mortem brain bankmaterial with linked clinical data. That said, the cost

of new studieswhich include clinical characterization is likely to remain

high, and the number of existing samples is finite, raising practical

concerns. Although there is no theoretical upper limit, in practice a pre-

dictive accuracy plateau in part limited by heritability is often reached,

beyond which additional training data is not helpful. Given the large

amountofmissingheritability remaining, it is likely that increasing sam-

ple sizes may be needed but will not be sufficient in future GWAS, and

alternative approaches will be required.29

Leveraging population diversity, rather than omitting it, can both

improve statistical power and better detect causal variants. For exam-

ple, a transfer learning approach was used to enhance the findings

from a modestly sized GWAS in a Japanese population using summary

statistics from a larger European ancestry GWAS.21 Conversely, trans-

ancestry cohorts can also be used to improve genetic variant discovery

and localization in European ancestry GWAS. Transfer learning heuris-

tics can also potentially be employed with different rates across global

and local admixture levels in some populations for higher accuracy.

As an alternative to the standard linear approaches employed in tra-

ditional GWAS, advancedML approaches may offer various benefits30

(Table 1), including the ability to: (1) capture main genetic effects

more accurately; (2) capture multi-scale, non-linear epistatic interac-

tions overlooked when investigating genetic variants individually; (3)

better handle trans-ethnic variation; (4) flexibly integrate multimodal

(e.g., neuroimaging, clinical biomarkers) and/or multi-omics data; and

(5) accurately predict multiple outcomes, such as subtraits, symptoms,

and endophenotypes, at once. For example, a gradient tree boost-

ing method followed by an adaptive iterative genetic variant search

was used to capture complex non-linear epistatic interactions and

select interacting genetic variants with high predictiveness for breast
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TABLE 1 Examples of artificial intelligencemethods to potentially address current challenges in the study of dementia genetics and omics.

Challenge Use of AI/ML/DL

Multi-scale or non-linear epistatic interactions are overlookedwhen

investigating genetic variants individually through GWAS

ML accurately predicts multiple outcomes at a time/

Tree-basedmethods can be used to capture complex non-linear

epistatic interactions and select interacting genetic variants

GWAS are limited by genetic detection of genome-wide hits DLmodels can deal with non-linear associations between the

phenotype and non-genetic covariates to improve GWAS hits

detection

GWAS are limited by European ancestry based research MLmodels in some cases are better to incorporate trans-ethnic

variation and implement transfer learning

Cell-type effects and specific pathologies are difficult to reproducibly

categorize

DL can predict cell-type-specific regulatory effects usingmulti-omics

data integration substantially reducing the false positive rate/

DL and computer vision can be used for generating harmonized

digital pathology datasets

PRS are limited by predictive accuracy and hampered by heritability Novel DL-basedmodel that does not only rely on the addictive effect

of risk SNPs, may outperformmore traditional PRSmodels across a

variety of disease phenotypes

Causal inferences are often underpowered and limited in scope DeepMR125 approaches integrateMLwithMR by usingmulti-task DL

models to learn the relationship between different sets of genomic

marks associatedwith a pathway or phenotype of interest and then

usesMR to examine causal relationships between them

Abbreviations: AI, artificial intelligence; DeepMR, deepMendelian randomization; DL, deep learning; GWAS, genome-wide association studies; ML, machine

learning;MR,Mendelian randomization; PRS, polygenic risk score.

cancer.31 Similarly, improvements have been observed by applying DL

to predict survival in age-related macular degeneration32 and reduce

multiple testing burden.33 The tool DeepWAS34 was used to identify

genetic variants associated with multiple sclerosis and major depres-

sive disorder while simultaneously predicting their cell-type-specific

regulatory effects using multi-omics data integration. DeepNull35 is a

DL-based tool thatmodels non-linear associations between the pheno-

type and non-genetic covariates. This improved GWAS hits detection

by6%andphenotypic predictionby23%onaverageacross10different

UK Biobank traits, while also substantially reducing the false positive

rate. Despite these advances, few attempts have so far been made to

apply these techniques to dementia.While early attempts to applyML-

based methods to improve AD risk variant prediction have yet to find

substantial improvements over traditional GWAS, the cohorts inwhich

these models have been applied are extremely underpowered,36,37

leaving ample opportunities to fully leverage ML-based methods on

large-scale genomic data.38

These ML approaches may provide the key to the development

of PRS with greater predictive accuracy and specificity.39 However,

the degree of improvement offered by ML methods may be partly

dependent on the complexity and inter-individual heterogeneity of the

genetic architecture underlying the disease of interest. For instance,

DeepPRS,40 a novel DL-based model that does not only rely on the

additiveeffect of risk SNPs, outperformedmore traditionalPRSmodels

across a variety of disease phenotypes, including AD. Thus, we antic-

ipate further improvements in these approaches will unlock some of

the unexplained heritability observed in prior GWAS, enhancing future

research, trials, and clinical practice.

2.1.4 Examples of best practice

The Global Parkinson’s Genetics Program (GP2)41 is in the process of

collecting 100,000 European Parkinson’s Disease cases, and a further

50,000 cases from under-represented populations around the world.

They are primarily achieving this through collaborations and partner-

ships with researchers and organizations in other countries across

the world, highlighting that large collaborative efforts are crucial for

success.

Recent work in multi-ancestry PRS is a good first step in the right

direction,42 but with larger sample sizes of participant level data, a ML

approach could performwell. Lake and colleagues leverage genetically

quantified admixture and random effects models in a population with

complex substructures using both random-effects derived risk scores

and a risk heuristic that leverages the rates of genetic admixture to

build a better predictivemodel.22

2.2 Can we find reproducible omics brain
signatures that differentiate between dementia
subtypes?

2.2.1 State of the science

Omics technologies have been increasingly applied to human brain

samples from individuals with dementia and related neurodegenera-

tive conditions.43–46 Similarly to the GWAS described in the previous

section, the largest brain omics studies have focused exclusively onAD.
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For example, a meta-analysis of the AD human brain transcriptome,47

which using gene expression data from over 2000 samples identified

30 coexpression modules as the major source of AD transcriptional

perturbations. Additionally, a meta-analysis of AD epigenome-wide

association studies,48 using deoxyribonucleic acid (DNA) methylation

data from over 2000 individuals identified 334 differentially methy-

lated positions associated with AD neuropathology across cortical

regions. Yet, robust disease-specific omics signatures or signatures

shared across diseases are lacking. Neurodegenerative diseases are

heterogeneous entities and there is extensive clinical, pathological, and

genetic overlap.49 Co-pathologies alongside a dominant condition are

frequent (e.g., presence of Lewy bodies in AD patients).50 Cross dis-

ease/pathology studies are starting to emerge, for example, address-

ing epigenetic changes across neurodegenerative diseases,51,52 and

disentangling amyloid-β and tau-pathology-associated transcriptomic

profiles in AD.53 However, to find distinguishing molecular signatures

we require large well-powered trans-diagnostic cohorts, with a range

of primary co-pathologies, and to develop powerful unsupervised ML

methods to cluster omics data.54 Although the increasing availabil-

ity of single-disease datasets has opened the way to meta-analysis

and multiple-cohort reanalysis,55–60 much more is needed to assess

which mechanisms are conserved across pathologies and which are

disease-specific.

2.2.2 What problems need addressing?

It is yet to be understood how and why selective vulnerability occurs

in different brain regions and cell types across different neurode-

generative diseases. However, findings from omics studies are often

not replicable at the gene/effect level even within a single disease.

How then can replicability be enhanced? Several issues need to be

addressed: First, studies are often undertaken in small cohorts, which

lack statistical power to detect significant molecular changes, and may

reflect sampling bias and disease heterogeneity.59 Availability of brain

tissue, especially for rare diseases and for matched cognitively nor-

mal controls,61 is a limiting factor. Second, phenotype definitions are

not unified. The dominant pathology (e.g., AD or Parkinson’s disease) is

often used as the label, but variable degrees of co-pathologies impact

molecular signatures. Instead, multiple pathologies could be combined

as a quantitative “polypathology score.” Third, hemispheric asymme-

try in neuronal processes is a fundamental feature of the human brain

and drives symptom lateralization (e.g., Parkinson’s disease and FTD),

which is reflectedmolecularly.62,63 This interferes with histopathology

to omics comparisons, mostly investigated in opposite hemispheres.62

Fourth, genetic variability between individuals is often not accounted

for in omics studies. Fifth, there is considerable heterogeneity across

studies including differences in brain regions, brain cell type com-

positions, protocols and platforms to generate the molecular data,

and analytic pipelines used. Sixth, the influence of confounding fac-

tors, such as batch effects, post mortem interval, or ribonucleic acid

(RNA)/DNA quality, can vary substantially between brain banks due to

distinct standard procedures.64–66

2.2.3 Possible solutions

Achieving well-powered cohorts will require an escalation in brain

donations, especially for control brains. With appropriate funding of

brain banks, or through encouraging and funding brain collection in

large-scale population studies, this could be achieved. The adoption

of standardized procedures across brain banks is crucial to ensure

preservation of appropriate and comparable quality tissue for molec-

ular analyses, and allow seamless integration of samples from different

banks. Furthermore, omics studies require deep clinical and pathologi-

cal phenotyping to reduce heterogeneity and to account for covariates

in subsequent data analyses.

The ML paradigm may be useful in multiple ways for the identifi-

cation of reliable and discriminatory brain omics signatures. There is

a clear need to integrate omics data generated for samples both from

different brain regions and different cohorts, thus enabling the latent

space modeling of multimodal brain omics,67 different brain regions,

different cell types,68,69 and different neurodegenerative phenotypes

or diseases. This latent space will allow the uniform treatment of sam-

ples and a seamless creation ofMLmodels for downstream tasks, such

as diagnosis or interpretation.

Multi-omics data in well characterized pathology samples will allow

us to refine dementia subtyping. AI can play a huge role in this. DL and

computer vision can be used for generating harmonized digital pathol-

ogy datasets.70 These datasets and samples can then be input into the

pipeline for omics characterization. Data from such pathology-based

omics studies will be harmonized across sites using a number of unsu-

pervised learningmethods. At its core, single cell resolution using tools

like scVI71 rely onML to annotate and quantify cellular components of

multi-omics datasets which can then be used for multimodal subtyping

at the intersection of genomics and pathology.

2.2.4 Examples of best practice

ML approaches applied to dementia brain omics data, such as epige-

nomics, transcriptomics, and proteomics data, have started to emerge

and illustrate the promise of using such methods to maximize find-

ings from existing data. Huang and colleagues have recently developed

EWASplus, a computational method that uses a supervised ML strat-

egy to extend EWAS coverage to the entire genome,38 and implicates

additional epigenetic loci for AD that are not found using array-based

AD EWASs. Wang and colleagues implemented a DL method that ana-

lyzes RNA-seq data from brain donors to characterize post mortem

brain transcriptome signatures associated with amyloid-β plaques, tau
neurofibrillary tangles and clinical severity in multiple AD and related

dementiapopulations.58 In theproteomics space, Tasaki andcolleagues

applied a deep neural network approach to predict protein abundance

frommRNAexpression, in an attempt to track the early protein drivers

of AD and related dementia subtypes.72 These approaches demon-

strate how such methodologies can be used to identify potential early

protein drivers and possible drug targets for preventing or treating AD

and related dementias.
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2.3 Can high-dimensional omics data identify
improved molecular biomarkers for dementia
compared to single marker approaches?

2.3.1 State of the science

Technological advances and large, shared, international datasets allow

a new approach to understanding diseases including biomarker iden-

tification. Single molecule assays, such as Simoa, allow accurate mea-

surement of plasma proteins.73 Notably, plasma neurofilament light

(NfL) has been comprehensively shown by many research groups to

be substantially increased in a diverse array of neurological brain con-

ditions when compared with age-matched controls, leading to the

proposal of NfL being the first established blood-biomarker for neu-

rological and cognitive decline.74 Targeted biomarkers such as NfL

have begun to be translated into clinical settings but the use of

multi-omics data has so far been limited. However, omics modalities

present opportunities for the identification and application of new

biomarkers. For example, most dementias appear to have a consid-

erable polygenic component, which present potential as multi-assay

risk biomarkers. Genome sequences comprising petabytes of data

can be resolved to common single nucleotide variation, rare vari-

ants, and structural variants all with potential as markers of disease

risk. RNA expression data are currently used in biomarker discovery

though not yet achieving the accuracy of blood proteins in disease

prediction.75,76

DNAmethylation data can provide a route to identify non-recorded

environmental exposures through imputation of these risk factors

from published predictors.77 This strategy could help validate epi-

demiological reports of environmental risk factors and help stratify

patients across diagnostic boundaries, which may provide stimuli

for additional analyses and clinical follow-up.78 Genes where DNA

methylation is altered by specific environmental factors could iden-

tify molecular pathways of relevance across dementias. In addition

to markers of aging, they have also been used as predictors of cog-

nitive function.79 However, before these markers can be translated

to the clinic, they would need to demonstrate stringent accuracy in

independent validation cohorts.

While these multimodal datasets described above can contribute

to biomarker discovery, many diagnostics companies and regulatory

bodies prefer a single readout approach. This is contrary to the basic

concept that multimodal data can more accurately reflect complex

biological systems.

2.3.2 What problems need addressing?

The development of large harmonized omics datasets is challenging.

The first challenge relates to the issue of data quality: high dimen-

sional omics data are acquired from different sources, in distinct

formats and over multiple sites, and accompanied by patient medical

records. As errors may occur during measurement or processing (i.e.,

batch effects), they risk potentially compromising the reproducibil-

ity and the usability of the generated data. The second challenge is

of a computational nature: the preliminary analyses of multi-omics

data require a data harmonization process and the development of

integration, clustering, functional characterization, and visualization

tools. Beyond this step, one of the goals in the biomarker study is

the inference and the prediction of biological systems.80 The statis-

tical method traditionally deployed in the inference requires explicit

assumptions, which are not necessarily intuitive in the large omics

dataset.81 Finally, given dimensionality constraints posed by inte-

grating large multiple omics datasets, the computational burden and

storage space requirements can be limiting. The last challenge is to

make these datasets sharable and accessible to a large community.82

The development of a large omics dataset therefore requires estab-

lishing standardized protocols for the acquisition, transfer, and analysis

of clinical and omics data that can be used by the scientific research

community.

At its core, the issues with multimodal datasets needed for build-

ing the next generation of complex biomarkers is both a wide data and

sparsity problem. Studies are simply not large enough, similar enough,

or data easily accessible enough to identify better biomarkers which

have clinical relevance.

2.3.3 Possible solutions

Recently, ML approaches have made considerable advances in

genomics, multi-omics, biomedicine, and data-driven therapeutics

discovery.83–85,39 Application of DL approaches on large scale omics

datasets allows researchers to detect new disease relationships with

the data. Translating these discoveries intomulti-panel testswill be key

in applying potential biomarkers. As the costs of omics assays continue

to drop, the standard use of high-throughput DNA, RNA, protein, and

metabolomics biomarkers in the clinic need to become a reality. Large-

scale sequencing initiatives that focus on the genomic underpinnings

of neurodegenerative diseases41,86–90 will aid in the development of

more targeted and cost-effective tests such as PRSs and metabolite

panels.91 Collectively, these initiatives will enable many opportunities

for biomarker identification, validation in both diagnosis and early

disease detection, as well as raise important ethical and technical

challenges.

In its simplest terms, information theory dictates that adding

impactful and independent features to a model should improve

its predictability, although limiting analyses to such features may

be difficult due to wide data issues in genomics. In ML, fac-

ing high dimensionality problems where the number of features

is much greater than the number of samples is relatively fre-

quent. That is, why the problem of feature selection has worsened

in recent decades.92,93 In addition, techniques such as federated

learning94 are likely to be useful in analyzing biomarkers across

datasets that cannot be combined for ethical or practical reasons

safely.
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2.3.4 Examples of best practice

Analyzing datasets from independent cohorts and then combining

them in a meta-analysis can improve statistical power and the abil-

ity to detect significant associations. For example, a meta-analysis of

569 lipidomics speciesmeasured in theAustralian Imaging, Biomarkers

and Lifestyle (AIBL) cohort and the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort identified multiple lipids from several species

predictive of prevalent and incident AD.95 Within cohort integration

of data modalities can also yield novel disease markers, for example,

coexpression networks of metabolite and gene expression data from

the ADNI cohort identified new metabolite candidate markers.96 The

EuropeanMedical InformationFrameworkAlzheimer’sDisease (EMIF-

AD) project (http://www.emif.eu/emif-ad-2/), set up a pan-European

platform for large-scale research on biomarkers and risk factors for

neurodegenerative disorders. The EMIF-AD Multimodal Biomarker

Discovery study harmonized and pooled clinical data from 11 cohort

studies and samples from cerebrospinal fluid (CSF), plasma, DNA,

and magnetic resonance imaging (MRI) scans were centrally ana-

lyzed using different omics techniques (proteomics, metabolomics, and

genomics) and integrated analysis has demonstrated the power of such

approaches. The Accelerating Medicines Partnership—Alzheimer’s

Disease (AMP-AD) (https://www.nia.nih.gov/research/amp-ad) allows

researchers to accessmultiple cohorts via a single platform. It is a part-

nership between government, industry, and nonprofit organizations to

transform the currentmodel for developing new diagnostics and treat-

ments forAD. The sharing ofmulti-omics datasets through this central-

ized data infrastructure, the ADKnowledge Portal, enables integrative

and collaborative analyses to more easily and effectively advance

biomarker identification and replication. Improved standardization

and harmonization ofmulti-omics data across siloswill benefit the field

in the future. In addition, combining multi-omics and clinical data with

wearable or other streaming datamay yield exciting results such as has

been seen in the Parkinson’s disease field by Rune Labs’ AppleWatch

app (https://www.accessdata.fda.gov/cdrh_docs/pdf21/K213519.pdf).

2.4 How do we use genetics to inform our
understanding of causal risk factors?

2.4.1 State of the science

It was recently estimated that reducing modifiable risk factors could

prevent around 40% of all-cause dementia cases.97 However, the

evidence-base for most hypothesized risk factors being causal is weak,

with conflicting findings across studiesdependingon studydesign, time

of risk factor measurement, type of outcome, sample size and study

population.97,98 Many studies are prone to bias by unmeasured or

residual confounding, reverse causation due to dementia’s long latency

period, and survival bias. Traditionally, randomized controlled trials

(RCTs) have been necessary to confirm causal pathways between a risk

factor and an outcome. However, these are notoriously challenging for

dementia research because it would require monitoring participants

over many decades due to the long and ill-defined prodromal period of

dementia. In addition, it would be impractical or unethical to conduct

an RCT of harmful risk factors such as air pollution and traumatic brain

injury. These limitationsmake it difficult to ascertain which risk factors

would be the most useful to target in interventions, and at what point

in life such interventions would bemost efficacious.

Mendelian randomization (MR) gives us a strong foundation to

interrogate the causal status of risk factors. MR overcomes several

limitations inherent to observational research, while utilizing more

easily accessible cross-sectional rather than prospective data.99 MR

uses genetic variants as instrumental variables (IVs) for risk factors in

what has been dubbed a natural RCT. Because an individual’s genome

is assigned randomly at conception, it is largely independent of con-

founding factors that often cause bias in observational research. The

genome also cannot be modified by subsequent disease, making bias

due to reverse causation unlikely. MR is a widely used method and can

be a useful tool for understanding the etiology of risk factors,100–104

but it also has limitations that should be carefully considered.105,106

Despite the clear advantages of MR studies, few other methods have

been developed that can explore the causal relationships between risk

factors and dementia-related outcomes.

2.4.2 What problems need addressing?

There are several common problems that can impact causal inference

if they are not duly addressed and can lead to unreliable conclu-

sions being made. Power is problematic in manyMR studies examining

causality of risk factors on dementia.100 Confidence intervals are often

wide, someaningful effects in either direction cannot be excluded. This

is often the case for risk factors that are difficult to measure (e.g.,

sleep disturbance and physical inactivity).107,108 Weak instruments

(i.e., those with an F-statistic <10) can introduce bias.109 Examples of

strong instruments that have been used inMR of dementia risk include

plasma glucose,110 educational attainment and intelligence,111 type-2

diabetes mellitus and glycated hemoglobin (HbA1c),112 but these only

represent a small fraction of dementia risk factors.

Collider bias can also be introduced into causal analyses when an

included sample suffers from selection bias, for example, due to differ-

ential patterns of survival associatedwith the risk factor of interest.113

Individuals need to live long enough to obtain a dementia diagnosis so

observed causal effects of any risk factor associated with premature

mortality (e.g., smoking) on dementia risk are likely biased.114 Very few

studies attempt to identify and, if necessary, correct for survival bias,

despite it beingdemonstrated toproduce spurious protective effects in

MR studies of causal risk factors for AD and Parkinson’s disease.115,116

Causal analysesmayalsobebiasedbypopulation effects that confound

the relationship between the genetic instrument and outcome variable

(violating the ‘independence’ MR assumption117). Certain dementia

risk factors, such as educational attainment, have been shown to

be highly influenced by assortative mating (i.e., non-random mat-

ing) within populations,117 but this has not yet been systematically

assessed in studies of dementia risk factors, so we do not know the
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extent to which current causal estimates are being biased by these

population effects.

Confounding due to horizontal pleiotropy is especially problematic

in MR studies that measure the causal association between a complex

risk factor (i.e., a phenotypewhich is highly polygenic) and an outcome.

It is becoming increasingly apparent that many SNPs in the genome

causally influence multiple traits, making the “exclusion restriction”

MR assumption (i.e., that the only path between the genetic instru-

ment and the outcome is via the exposure) less likely to be upheld.

In addition, even though many dementia risk factors are genetically

inter-correlated118 and co-occurrence of multiple risk factors within

an individual increases dementia riskmore than being exposed to a sin-

gle risk factor,119 most studies only measure the causality of one risk

factor on dementia. By only measuring bivariate relationships, we are

likely overlooking synergistic effects or overlapping causal pathways

between dementia risk factors, reducing our ability to identify shared

biological pathways that are especially central in raising dementia risk

and to characterize the patterns of pleiotropic effects between risk

factors. There aremethods to disentangle this such as genomic or tran-

scriptomic structural equation modeling-SEM,120,121 but they require

well-powered GWAS, which are not available for all risk factors.

Aside fromMR, few causal modeling methods have been developed

for use with genetic data. Even in cases where new causal meth-

ods have been proposed, such as Bayesian network analysis (BN),122

latent causal variable analysis (LCV),123 and the multi-SNP mediation

intersection-union test (SMUT),124 these have not yet been applied in

dementia risk factor research and there is a noticeable lack of causal

MLmodeling in the genomics field.

2.4.3 Possible solutions

One of the key ways that AI methods could be harnessed to improve

causal analyses in dementia research is to use ML/DL to strengthen

genetic instruments for MR. Traditionally, instruments are created

from GWAS summary statistics that are measured using logistic

regression and defined p-value thresholds, whereas COMBI28 and

DeepCOMBI33 use Support Vector Machines (SVM) and deep neural

networks, respectively, to identify SNPs related to a phenotype. Partic-

ularly, DeepCOMBI has been shown to replicate known disease loci, as

well as identify novel ones. DeepMR integrates ML with MR by using

multi-task DL models to initially learn the relationship between differ-

ent sets of genomic marks (e.g., chromatin marks) associated with a

pathway or phenotype of interest and then usesMR to examine causal

relationships between them,125 which could help to identify more

functionally relevant SNPs for inclusion in the exposure instrumental

variable.

Existing methods that quantify and correct for known sources

of bias should also be routinely implemented. Automated AI meth-

ods could help support this, for example, MR-MoE (MR-Mixture of

Experts), which is an ML framework that applies random forest learn-

ing algorithms to MR results to identify the method for your analysis

that is, least likely to be biased by horizontal pleiotropy.126

Several of the associations between dementia and its risk factors

are likely non-linear. For example, the association between sleep dura-

tion and dementia is likely to beU-shaped: both too little and toomuch

sleep have been associated with increased dementia risk.97,127,128 In

this instance, sleep duration is a categorical discrete rather than a

truly continuous phenotype, and its genetic instruments are weak in

comparison with other risk factors.110 Non-linear MR accounts for

non-linearity between continuous exposures and outcomes,129 but

it has scarcely been applied to MR studies of dementia risk. One

recent study used non-linear MR to assess the causal influence of

sleep duration on dementia-related cognitive outcomes.130 Thus, to

use MR to understand non-linear relationships between risk factors

and dementia, we should focus future GWAS efforts on improving the

modeling of continuous risk factors in situations where observational

evidence suggests that there is a non-linear causal relationship with

dementia.

Room for future improvement includes the potential leveraging of

tree-based, boosted, bagged, or other ML algorithms to create inter-

pretable model cascades of causal risk. This could increase the value

of previous MR studies while at the same time addressing their short-

coming of generally focusing on only a single exposure at a time. AI has

the power to model multiple potentially connected causal risk factors

at scale.

2.4.4 Examples of best practice

Recently, a multivariate GWAS was performed using random forest

regression to predict causal SNPs for 56 neuroimaging phenotypes,

which identified the APOE SNP rs429358 as the top locus as well as

additional lead SNPs that mapped to genes relevant to brain disorders,

which were not identified by traditional linear regression methods.131

Another study introduced the MR-based Structure Learning (MRSL)

algorithm, which used graph theory combined with multivariable MR

to uncover causal and mediating pathways between 44 diseases and

26 biomarkers using publicly available GWAS summary statistics.132

Together, these results highlight the potential benefits of utilizing

ML-based multivariate approaches to model the genetics underlying

inter-correlated risk factor traits when performing causal analyses in

dementia research.

Noyce and colleagues previously assessed the impact of survival

bias on estimates of the causal effect of body mass index (BMI) on

Parkinson’s disease.116 They performed simulations to estimate the

likely effect that their MR analysis would show if survival bias was

present, when assuming that BMI was not truly related to Parkinson’s

disease. The objective was to see if the likely magnitude of the survival

bias was large enough to explain the MR results estimated from the

real data. They demonstrated that the seemingly protective effect of

higher BMI on Parkinson’s disease risk was likely due to survival bias

related to increased frailty in people with lower BMI, rather than being

the true causal driver. Since effects from survival bias are likely to be

especially important for causal analysis of risk factors in dementia

research it is crucial that we start to consistently test for this and
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other common forms of bias in future studies to minimize the impact

of spurious findings within our field.

2.5 Which biological processes are altered by
genetic risk for dementia-related diseases?

2.5.1 State of the science

Highly penetrant variants in APP, PSEN1, or PSEN2 have pointed to

a central role of amyloid-β in early-onset AD.133 Separately, GWAS

for late-onset AD identified several biological processes enriched for

genes associatedwithdisease risk, including amyloid-βprocessing, lipid
metabolism, and immune responses.134,135 Although most AD GWAS

associations are non-coding, rare coding variants have implicated key

microglial genes such as TREM2 and PLCG2.135,136 Follow-up exper-

iments in cellular and animal models confirmed the effects of these

genes on microglial activation and lipid processing.137,138 Epigenomic

maps from purified cell populations139 or single cells140 have localized

non-coding AD risk variants to microglia-specific enhancers, regulat-

ing genes including BIN1 and RIN3. An alternative way of linking risk

variants to genes is to identify quantitative trait loci (QTLs) that influ-

ence gene expression, followed by a test for statistical colocalization

with nearby GWAS loci. A variation on the previously discussed topic

of MR called SMR is often used to establish causal inferences for

the function of these QTLs in the context of disease risk on a per

gene level. Recent studies in purified microglia from living141 or post

mortem142,143 donors have nominated some AD and Parkinson’s dis-

ease risk genes, but so far they are underpowered relative to bulk

brain datasets. Thus, while genetic studies of AD indicate a clear role of

microglia,144,135,136,141,145 the roles of specific cell types are still being

discovered in other neurodegenerative conditions, such as Parkinson’s

disease139,146 and amyotrophic lateral sclerosis.147

2.5.2 What problems need addressing?

GWAS for different dementias have so far mainly used a case-control

framework to identify genetic loci associated with a clinical diagnosis.

However, this approach ignores the complexity of neuropathological

changes that occur in patients, which usually predate clinical symp-

toms by years or decades, and which may involve multiple distinct

pathologies.54,148 The decoupling of genetic associations from spe-

cific pathologies makes it difficult to identify the most relevant cellular

model for a given locus. In this absence, most cellular models have

focused on a single cell type, and thereby fail to elucidate the probable

interplay betweendifferent cell types that leads to neurodegeneration.

Furthermore, identifying and validating the causal genes at GWAS loci

continues to remain challenging, due to both the uncertainty in the

specific causal variants and the cell types through which they act.149

Additionally, GWAS loci may arise only in a specific cellular state, such

as response to a pathology, as has been recently shown for theUNC13A

amyotrophic lateral sclerosis/FTD locus.150,151 As a result, the genes

and biological processes that are identified as relevant have depended

largely upon the prior hypotheses of investigators and on the cellu-

lar models and analysis methods that were used. Although the scale

and resolution of single-cell transcriptomic and epigenomic datasets

is increasing, there isn’t yet a robust and reproducible catalog of all

cell types and cell states relevant to brain function and disease pro-

cesses. Additionally, curated resources cataloging genes involved in

many biological processes are often victims of bias due to publication

and funding issues as well as reporting bias.

2.5.3 Possible solutions

New technologies have the potential to improve our understanding

of neurodegenerative diseases, if applied systematically and at scale.

Single-cell technologies are beginning to reveal the cell type diversity

of the human brain,152 and to identify cell type-specific gene expres-

sion changes indisease.140,153 TheGTExproject154 was transformative

in describing gene regulation across human tissues, enabling others to

link these genetic effects to human disease risks. However, its sampling

of bulk tissues limits its use for understanding biological mechanisms.

Single-cell technologies now make it possible to envision a cell type-

specific gene regulatory atlas of the human brain. Such an atlas should

be built in a robust way across multiple labs, and include both healthy

and diseased donors of different ages.

Wemust also seek to recapitulate the spatial dimension of cell type

localization and gene expression. Only by probing gene expression

directly in a tissue section can we reliably establish organ-wide pat-

terns of gene expression, reconstruct cell-cell interactions and assess

how neuropathology affects local gene expression. Mouse models

have highlighted how amyloid plaques influence oligodendrocyte and

microglia gene expression across disease stages.155 Going forward, a

brain-wide, spatially-resolved gene expression atlas, possibly integrat-

ing splicing information,156 would be a rich complement to a standard

gene regulatory atlas.

To understand themolecularmechanisms of neurodegenerative dis-

ease genetic associations,we need to perturb the function of candidate

genes and measure their effects in relevant cellular models. How-

ever, an ad-hoc approach in the most accessible cell types will not

lead to robust conclusions. With CRISPR-based tools these perturba-

tions can be done at genome-wide scale, in specific cell types derived

from human induced pluripotent stem cells (iPSCs), and with high-

throughput phenotyping assays. As a community,we should coordinate

to systematically investigate a broad set of candidate genes, across

multiple cellular phenotypes and in a range of cellular models. Addi-

tionally, as part of therapeutic development, these perturbed screens

will likely need to be carried out across networks upstream of known

targets.

2.5.4 Examples of best practice

For psychiatric disease, the PsychENCODE project set an example by

collectingmultiple typesof omicdata fromover a thousandpostmortem
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brains across three diseases and three brain regions.157,46,158 Crucially,

integrative analyses need to leverage these multiple omic layers to

generate novel insights, as demonstrated in previous studies of bulk

brain.46,159 Recent studies have used scRNA-seq methods to examine

specific brain regions in disease and control individuals for AD,153,160

amyotrophic lateral sclerosis and FTD,161 revealing cell type-specific

effects of disease pathology. For all of these datasets and analyses to be

most useful, robustMLmethods are needed to integrate distinct omics

modalities and to ensure reproducible results. Promising approaches in

this direction have recently been applied to large-scale single-cell data

frommousemotor cortex,162 and the human immune system.163

As genetic studies of dementias increase in size, so does the

need to identify the causal genes at associated loci. New methods

enable enhanced fine-mapping using functional genomic data (e.g.,

PolyFun164), and better prediction of enhancer-promoter connections

(e.g., activity-by-contact score). One such example is the identifica-

tion of USP6NL as the putative causal gene within the AD GWAS

locus “ECHDC3” by linking a functionally fine-mapped variant within a

microglia enhancerwith theUSP6NL promoter.142 This findingwas fur-

ther supportedby strong colocalizationbetween theGWAS-eQTL. This

methodology has also been applied to Parkinson’s disease.165 DLmod-

els have also shown dramatic improvements in predicting the effects of

genetic variants on splicing, pathogenicity (coding variants), and gene

expression. Along with experimental data, both variant effect predic-

tions and fine-mapping data can be used as input to ML methods that

directly predict themost likely causal genes at GWAS loci.

Beyond cellular maps and genetic associations, a systematic

approach to model systems is needed. A National Institutes of Health

(NIH)-funded project, the iPSC Neurodegenerative Disease Initiative

(iNDI),166 is creatingmore than 100 isogenic iPSC lineswithmutations

associated with dementias. How these are used to model neurodegen-

eration in specific derived cell types will be up to the creativity and

vision of the research community.

Clustered regularly interspaced short palindromic repeats (CRISPR)

based studies and methods such as perturbSeq and CROPseq have

pushed the boundaries of what can be assayed rapidly with edited cell

lines.167 These techniques are already being sought after by biotechs

looking to quantify up and downstream effects of genetic and genomic

therapeutic targets. Enough of this type of data, combined with DL

to recognize patterns of functionally connected genes or graph-based

network models could identify communities of risk factors that are

functionally connected to disease risk.168 These new communities

could serve as less biased pathways derived from the appropriate

tissues and cell types.

3 LIMITATIONS OF AI AND ML IN THE
DEMENTIA OMICS FIELD

High-throughput methods, such the full suite of omics plat-

forms, including genomic, transcriptomic, epigenomic, proteomic,

metabolomic, and related technologies, have inaugurated a new

era of systems biology. This provides abundant and detailed data,

which conventional analytical and statistical approaches are often not

capable of dealing with. AI and ML algorithms, which are designed

to automatically mine data for insights into complex relationships in

these massive datasets, are still at its infancy in dementia genetics

and omics research, and far from being explored at its full capacity.

Despite major strengths and achievements so far, it is worth having

in mind possible caveats of AI models in the omics field, including

the following examples: (1) Interpretation (the black box), as often

the complexity of certain models makes it difficult to understand

the learned patterns and consequently it is challenging to infer the

causal relationship between the data and an outcome; (2) “Curse” of

dimensionality: omics datasets represent a huge number of variables

and often a small number of samples, asmentioned inmultiple sections

of this paper; (3) Imbalanced classes: most models applied to omics data

deal with disease classification problems (e.g., use of major pathology

labels in the presence of co-pathologies, as mentioned in section 2.2);

and (4) Heterogeneity and sparsity: data from omics applications is

often heterogeneous and sparse since it comes from subgroups of

the population (e.g., as highlighted in section 2.1), different platforms

(e.g., multiple array and sequencing based platforms), multiple omics

modalities (e.g., transcriptomics, epigenomics, proteomics) and is often

resource intensive to generate.Manyof these limitations, however, can

be overcomedwith improvements to data generation (e.g., larger more

diverse harmonizable studies) and analysis (e.g., using dimensionality

reduction strategies and interpretableML approaches).

4 CONCLUDING REMARKS

In conclusion, omics technologies, including genomics, epigenomics,

transcriptomics, proteomics, and metabolomics, can provide increas-

ingly comprehensive high-dimensional insights into the biological sys-

tem of each individual when combinedwith AI approaches. This in turn

can contribute immensely to a better understanding of AD and other

forms of dementia, and to the development of personalized medicines.

However, a number of thorny issues hamper the use of omics technolo-

gies and AI in dementia research. These include the need for better

andmore comprehensive and less biased genetics and omics dementia-

related data resources, the development of improved AI algorithms,

and the need for more collaborative multidisciplinary collaboration.

Increased funding, a more coordinated collaborative global effort, and

a greater number of diverse and deeply phenotyped cohorts, together

with innovative AImethods have the potential to overcome these chal-

lenges and to increase thepaceof discovery thatweare able to achieve.

Ultimately, this would have a major impact on our understanding of

the underlying disease processes and help to improve the prevention,

diagnosis, and treatment of dementia.
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