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Abstract 

The clustered and generalized vehicle routing problem (CGVRP) extends the well-known vehicle 

routing problem by grouping the demand points into multiple distinct zones, and within each zone, 

further separation is made by forming clusters. The objective of the CGVRP is to determine the 

optimal routes for a fleet of vehicles dispatched from a depot, visiting all zones within each cluster. 

This requires making two simultaneous optimization decisions. Firstly, each zone must be visited 

by exactly one node, and secondly, all zones within a cluster must be visited by the same vehicle. 

In this paper, we introduce two mixed-integer linear programming formulations for the CGVRP, 

aimed at solving a joint order batching and picker routing problem with alternative locations 

(JOBPR-AL) in a warehouse environment featuring mixed-shelves configuration. Both 

formulations are tested on three scenarios of randomly generated small- and medium-sized 

instances. Additionally, we propose a general rule approach for calculating a cost matrix in a 

rectangular environment. The results demonstrate the effectiveness of the proposed mathematical 

formulations in efficiently solving problems with up to 120 nodes. 

Keywords: Clustered generalized vehicle routing problem, mixed-integer programming, picker 

routing, order batching. 

1. Introduction 

Among many factors influencing the performance of fulfilling online orders in the business-to-

customer e-commerce market, number of items and product types per each order are two main 

challenges in retrieving Stock Keeping Units (SKUs) operation. The former is small in the sense 

that each order consists of a few quantities per each item, and the latter is large in the variety of 

product types requested. For example, an order can consist of a mixture of items such as grocery 

products, automobile spare parts, digital devices, and more. Indeed, a crucial aspect of these 

challenges is order batching and picker routing problem because items associated with an order 

must be batched and picker needs to be routed to pick up different items of the same order (Boysen 

et al., 2019).  
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In the realm of collection items to order fulfillment, there is a significant overlap in 

terminologies used for the Vehicle Routing Problem (VRP), including cart capacity, optimal routes 

for pickers, and optimal batching. The primary goal of VRP is to optimize the routes taken by 

vehicles as they visit customers' locations while considering practical operational constraints such 

as capacity, distance, time windows, and specific requirements. Applying VRP principles could be 

a practical approach for handling routing and batching operations within a warehouse environment, 

as opposed to a broader geographical area. However, it is important to remember crucial factors 

such as accessibility to items on complex shelves, short distances from item to item, a high rate of 

order varies in different locations with different sizes and characters, and other relevant restrictions. 

Despite these considerations, there are still opportunities to map certain problems in the vehicle 

routing context, as we will demonstrate the joint order batching and picker routing problem 

(JOBPRP) in the following discussion. An insightful discussion on the role of the VRP in real 

world logistic operations is presented by Demir et al. (2022) and (Demir et al., 2019). As a solution 

to the JOBPRP, various technologies are implemented to quickly pick up and fulfill orders in tight 

time frames. Particularly, research on using new technologies such as drones to assist delivery 

services has been wiedly studied as this devices can improve delivery efficiency in coollaboartion 

with vehicles to perform operstions (Kundu et al., 2021). However, these efforts can be still time-

consuming and costly, especially for e-retailers (Masae et al., 2020). 

 Flexible storage strategies, such as a mixed-shelves policy have been used to improve the order 

batching and picker routing problems as a long-term optimization policy. In the mixed-shelves 

environment, products are scattered on shelves in alternative locations throughout a warehouse 

(Weidinger and Boysen, 2018).  This complex operational problem brings us the concept of 

generalized vehicle routing problem (GVRP), which is first presented by Ghiani and Improta 

(2000). The GVRP extends the VRP in which customers’ locations are grouped into zones. 

Generally, the objective is to find minimum-cost routes such that a fleet of vehicles visits a 

particular location associated with a customer zone (Baldacci et al., 2010). This flexibility can be 

an attractive solution for mixed-shelves environments in which alternative locations are available 

for each item, but visiting only one of these locations is sufficient. Krushinsky et al. (2021) 

presented two scenarios in which in one of the customers have flexible location options. This 

scenario is based on the GVRP with time windows where there is more than one possible location 

for each customer to receive delivery services. 

Another related problem to order batching and picker routing is the last mile delivery operations.  

That is, in each route assigned to a vehicle, the courier must consecutively visit a group of customer 

locations (Sevaux and Sörensen, 2008). This type of routing problem is known as clustered vehicle 

routing problem (CluVRP) in the literature, in which demand points are grouped into distinct 

clusters. The aim is to find a set of routes for a fleet of vehicles to visit customers in each of the 

clusters consecutively. The CluVRP can be categorized into two classes: soft-CluVRP and hard-

CluVRP (Hintsch and Irnich, 2020). In the former, a vehicle can visit nodes from different clusters 

in its route, and the vehicle can leave a cluster and serve another cluster. However, all nodes in 

each cluster must be visited by exactly one vehicle. In the latter case, however, all demand points 
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in each cluster must be visited consecutively by one vehicle. In other words, a vehicle cannot leave 

a cluster until all associated nodes have been visited.  

By considering the GVRP and CluVRP concepts together, we reach to the clustered and 

generalized vehicle routing problem in which demand points can be grouped into distinct zones 

and then further the zones are grouped into clusters. This new setting, which is the focus of this 

study and called the clustered generalized vehicle routing problem (CGVRP), simultaneously helps 

decision makers to design a set of optimal routes for serving a set of demand points grouped into a 

zone. We note that it is required to select one node per zone as a serving point. Furthermore, after 

considering specific criteria such as the proximity of zones within a geographic area, the demand 

points are organized into clusters. Each demand point is then associated with a particular zone and 

cluster. Additionally, it is necessary for all zones within a cluster to be serviced by the same vehicle. 

This paper considers the concept of CGVRP to define a new integrated approach for the 

JOBPRP with alternative locations, which is abbreviated as JOBPRP-AL. One may ask how the 

JOBPRP-AL can help decision makers improve operational processes in warehouses. A short 

answer is the benefits of accomplishing order batching and picker routing via one route in an 

optimal way, such as minimizing total traveling distance. In fact, the main motivation for this 

integrated approach can be stated as follows. Suppose a mixed-shelves setting where a wide range 

of product types are scattered in shelves throughout a warehouse, as an order might consist of a 

number of products, then an optimal route, for a picker with a capacitated cart, is a route by which 

all possible locations for each product type are grouped into a zone, and then all these zones are 

grouped into a cluster as a batch corresponding to the order. Hence, based on the capacity constraint 

of each cart, each picker might serve more than one order. It is assumed that each cart has enough 

capacity to serve at least one order completely and there is sufficient inventory to satisfy all orders. 

Therefore, the CGVRP is considered to model and solve the JOBPRP-AL by mapping this 

problem as a variant of the VRP as presented in Table 1 and Figure 1. 

Table 1. Mapping the JOBPRP-AL into the CGVRP context. 

The element in the JOBPR-AL  The element in the CGVRP 

Locations of items in an order ↔ Nodes 

Orders ↔ Clusters (in the CluVRP) 

Alternative locations for each item ↔ Zones (in the GVRP) 

Carts ↔ Vehicles 

The request for each item is placed in an order ↔ Demands 

Carts depot/Packaging and/or sorting point ↔ Vehicles depot 

The CGVRP concept is illustrated in Figure 1.  
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Figure 1. The CGVRP setting with a feasible solution. 

As Figure 1 shows, the CGVRP is obtained by combining the concepts of the GVRP and 

CluVRP, and the JOBPR-AL is derived from the CGVRP in the mixed-shelves context. To provide 

further clarity, the JOBPR-AL is developed by adapting the terminologies of CGVRP to suit 

warehousing operations that involve mixed-shelves settings. The JOBPR-AL tackles the combined 

challenges of batch formation and routing within a mixed-shelves environment. The term 

‘alternative location’ refers to the different locations related to a particular type of product. As a 

result, to batch and pick items in a specific order, a picker with a cart starts its journey from a 

particular location such as carts depot and visits locations associated with the items in the order in 

such a way that the total travel distance is minimized. Therefore, the picker can complete at least 

an order via the route. If the cart has sufficient capacity to accommodate multiple orders, this 

scenario becomes feasible. Previous studies have not considered cart capacity, multiple-order 

processing capability, and integrated batching and picker routing simultaneously even in a 

traditional warehouse environment. Therefore, this study addresses these gaps by introducing the 

JOBPR-AL. 

The contributions of this paper are threefold. First, as an integrated approach, we present an 

extended version of the CGVRP for modeling and solving the  JOBPR-AL in warehouses with the 

mixed-shelves setting. Applying the JOBPR-AL in mixed-shelves warehouses can handle order 

picking efforts, which corresponds to all items associated with each order by a picker in a tour. 

Second, two mixed-integer linear programming (MILP) formulations are proposed for the JOBPR-

AL. Third, a rule is presented to calculate the cost matrix in rectangular settings where to access to 

items on shelves, pickers must travel through aisles rather than Euclidean distance. This rule uses 

virtual nodes to calculate shortest distances between two points located in different aisles. 

The remainder of the paper is organized as follows. Section 2 presents related works to this 

paper in two categories. Section 3 presents the definition of the problem and assumptions for the 

JOBPR-AL. Section 4 introduces mathematical models and presents a simple valid inequality to 

improve computational solution times for small- and medium-sized instances. Section 5 provides 

a detailed computational procedure to calculate a distance matrix in a rectangular environment with 

vertical and horizontal aisles. In Section 6, we create instances under three scenarios and solve 



5 

 

them using the proposed IBM CPLEX solver (ILOG, 2023). In addition, Section 7 provides 

conclusions and future research directions. 

2. Literature review 

This section reviews the most related works to the JOBPR-AL in three categories. First, we 

review research studies related to the GVRP and its variants. Then, we investigate other 

publications associated with the CluVRP. An finally, we summarize the key studies related to the 

order picking problem in mixed-shelves environments. 

2.1. The GVRP and its variants  

Kara and Bektas (2003) presented an integer programming formulation for the GVRP and 

solved special cases of the problem, such as the generalized MTSP, GTSP, and CVRP. Bektaş et 

al. (2011) proposed mathematical formulations and B&C algorithms for the GVRP. Other 

mathematical models for the GVRP were presented by Pop et al. (2012). The authors also proposed 

new mathematical formulations for special cases, such as the GMTSP and GTSP. In addition, they 

studied the hard-CluVRP and introduced new formulations.  

Regarding the solution approach, the literature in the GVRP is extensive (Hà et al., 2014). For 

exact algorithms, interested readers are referred to (Afsar et al., 2014), who presented a column 

generation approach for the GVRP. Reihaneh and Ghoniem (2017) proposed a B&C algorithm for 

the GVRP, and they used a dynamic programming approach to solve sub-problems. Prins et al. 

(2012) introduced an iterative local search for the GVRP. Pop et al. (2011)) presented heuristics 

algorithms for the same problem. 

2.2. The CluVRP and its variants  

Sevaux and Sörensen (2008) introduced the CluVRP. The basic problem is the hard-CluVRP, 

which does not allow vehicles to leave a cluster until they complete all delivery services. The soft-

CluVRP was presented by Hintsch and Irnich (2020) in which vehicles can leave a cluster and then 

return to it to perform delivery services. Battarra et al. (2014) proposed an exact algorithm for the 

CluVRP, and they introduced a branch-price-and-cut and a B&C algorithm for the problem. Vidal 

et al. (2015) proposed hybrid metaheuristics for the CluVRP in which an iterative local search and 

a hybrid genetic algorithm were presented. In another study, Hintsch and Irnich (2018) proposed a 

large multiple neighborhood search for the CluVRP.  

2.3. The picker routing problem in a mixed-shelves environment 

Picker routing for retrieving or storage assignments is a relevant topic to the VRP. The 

applications of the TSP and VRP models and their extensions in warehousing operations are widely 

studied in the literature. A comprehensive review of routing problems for order picking was 

presented by Masae et al. (2020). The application of the TSP in a rectangular warehouse was 

studied by Ratliff and Rosenthal (1983). Later, (Scholz et al., 2016) addressed a single-picker 
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routing problem in a block layout and proposed a MILP formulation for this problem. Briant et al. 

(2020) proposed a method for the joint order batching and picker routing problem and presented a 

column generation-based heuristic algorithm. Their work is based on the application of the TSP in 

both order batching and order picking in warehousing operations. 

 Weidinger and Boysen (2018) studied the scattered storage strategy. In another study, 

Weidinger et al. (2019) studied picker routing in a mixed-shelves setting for e-commerce retailers 

and presented a MILP formulation. Weidinger (2018) addressed picker routing in a rectangular 

mixed-shelves setting and presented procedures for optimizing warehouse operations. 

This paper focuses on order picking strategies using routing concepts in which order batching 

and picking are handled using the CGVRP concept in a mixed-shelves environment. As far as we 

know, the use of the CGVRP has not been considered in a mixed-shelves setting in the literature. 

In this way, a sort-while-pick routing problem is considered in which multiple pickers, by using 

carts including some bins, pick up items associated with each order from alternative locations and 

sort them in different bins as a batch. Therefore, no subsequence sorting is needed after picking, 

and orders are ready to dispatch to destinations (Boysen et al., 2019).   

In fact, using the CGVRP, parallel order-picking routes can be performed to pick items ordered 

by customers. This strategy in a setting with alternative locations for an item can be easily applied. 

On the other hand, we consider the CluVRP conditions to force the picker to complete picking all 

items of an order integrally for handling order batching. Regarding the use of the CluVRP in the 

setting of order batching and order selection problems, Aerts et al. (2021) applied the CluVRP to 

model the problem and proposed a two-level variable neighborhood search algorithm.  

To the best of our knowledge, the CGVRP has not been considered in the literature. However, 

the TSP version of the problem for automated storage and retrieval systems (ASRS) vehicles is 

presented by Baniasadi et al. (2020), which is known as the Clustered GTSP. Foumani et al. (2018) 

studied this problem for optimizing ASRS robotic routes. They also presented a MILP formulation 

for the CGTSP and solved it using cross-entropy (CE). Similarly, the clustering strategy is 

considered to pick items in an order of magnitude. Baniasadi et al. (2020) also presented a 

transformation technique to the CGTSP. Table 2 shows related and selected works to this paper.  

Table 2. Selected research related to JOBPR-AL. 

Paper JOBPR Mixed-shelves CluVRP CGTSP CGVRP 

Weidinger (2018), Weidinger and Boysen 
(2018), Weidinger et al. (2019)  *    

Aerts et al. (2021) *  *   

Baniasadi et al. (2020) *   *  

This paper * * *  * 
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3. Problem definition 

This section introduces the JOBPR-AL and its features. Given a mixed-shelves environment 

where product types are scattered throughout a warehouse, each product type may be located in a 

number of different shelves in the warehouse. We assume that there is enough stock associated 

with each product type. In addition, there is a set of homogenous carts with capacity limitation. 

These carts are located at a particular location (i.e., packaging point). It is assumed that once routes 

are released to pickers, pickers can access the information instantly. Moreover, carts can carry more 

than one bin to handle simultaneous batching via pickers' routes, if needed. That is, bins, which are 

located in a cart, are considered as batches associated with different orders if the picker have to 

serve more than one order in a route. After receiving a number of orders, each of them is considered 

as a cluster. Then, the locations corresponding to each item in the order are grouped into a zone. If 

there is more than one item in the order, consequently more than one zone will be created. Hence, 

to create an optimal plan for a set of orders, the JOBPR-AL is applied to the related parameters. As 

a result, a set of optimal routes is produced, and each route is assigned to a picker with a cart. As 

mentioned above, each cart has enough capacity to handle at least one order, and each picker might 

perform more than one order. To process an order, pickers visit selected locations from each zone 

(i.e., a product type) in a cluster (i.e., an order). This action must be done sequentially for product 

types in an order. In other words, if there is more than one order assigned to a picker, the picker 

must batch and pick each order one-by-one along the route. The main attributes related to the 

JOBPR-AL are explained as follows.  

As we assume that a company uses a mixed-shelves storage assignment strategy, items are 

scattered throughout a warehouse within shelves. This strategy is related to the GVRP concept of 

considering alternative locations for a product dispersed across shelves. Moreover, orders can be 

picked up by pickers with carts, and all carts are homogenous and located in a particular area called 

cart depot in the warehouse where a picker's route starts and ends. In addition, we assume that all 

products have similar shapes and volumes. For this reason, we focus on routing operations and 

assume that items are always available during the day. The problem is represented in Figure 2. 
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Figure 2. A basic illustration of the JOBPR-AL. 
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Figure 2 shows four shelves in which a picker must pick up an order, including items  ●, ∆, 

and ×. These items are located throughout the warehouse as shown in Figure 2. Moreover, these 

three items are arranged in the nearest cluster to be picked up.  

Due to the capacity restriction and customers' delivery time, orders may need to be divided into 

more than one route to pick up by more than one picker. In addition, pickers can pick up items 

related to more than one order in a route. For handling order batching in a route in which items 

related to an order must be picked up integrally, we consider the concept of the CluVRP for the 

GVRP modeling mixed-shelves settings. Therefore, the JOBPR-AL can be defined as a CGVRP.  

4. Mathematical formulations 

In this section, we present two MILP formulations. The first model is denoted as 𝐹1, and the second 

model is named 𝐹2. As we later show in section 6, while the former can handle situations in which 

ordered items in different orders overlap each other, the latter provides tighter lower bounds when 

there is no overlapping. In addition, model 𝐹2 needs less time to solve the problem optimally and 

provides a smaller gap in the final solution in most cases. Let the JOBPR-AL be defined on an 

undirected graph 𝐺 = 	 (𝑁, 𝐴) in which 𝑁 =	 {0} ∪ {1, … , 𝑘} is associated with a set of nodes 

scattered in an area, which {0} is the carts’ depot, and 𝐴 = 	 {(𝑖, 𝑗)	|𝑖𝜖𝑁, 𝑗𝜖𝑁, 𝑖 ≠ 𝑗} is the set of 

arcs. A (𝑘 + 1) × (𝑘 + 1) matrix represents traveling distance between nodes 𝑖 and 𝑗, which is 

denoted by	𝑒!". Note that in our setting carts are moved by pickers.  

The nodes are grouped into 𝑟 + 1 zones in which the 𝐿 = {0} ∪ {𝐿#, … , 𝐿$} is the zone set. Each 

node 𝑖 has a demand, 𝑑! > 0, 𝑖𝜖{1, … , 𝑘}, 𝑑% = 0 and all nodes grouped in zone 𝐿& (e.g., Ɐ	𝑤, 𝑙	𝜖	𝐿&  

) have the same demand, 𝑑' =	𝑑( . Zones are grouped into 𝑚 + 1 clusters, where 𝐶 = {0} ∪

{𝐶#, … , 𝐶)} is the cluster set. The size of the members (or zones) in cluster 𝐶* is shown by 𝑁𝐶* =

|𝐶*|. We also assume that there is a fleet of homogeneous capacitated carts with 𝑞 number of carts, 

𝑉 = 	 {𝑉#, … , 𝑉+}, located at the depot (i.e.,	𝑖 = {0}).  

The objective is to generate 𝑞 routes with minimum cost. Each zone must be visited only once 

at one of the associated nodes of a zone. All zones in each cluster must also be visited sequentially 

by the same picker with a cart, subject to a set of side constraints. The necessary notations are listed 

in Table 3. 

Table 3. Notations used in the models. 

Notation Description 

Sets  

𝑁 =	 {0, 1… , 𝑘} Set of nodes 

𝑁\	{0} Set of demand points 

𝐴 = {(𝑖, 𝑗) ∶ 	𝑖, 𝑗	𝜖	𝑁	, 𝑖 ≠ 𝑗} Set of arcs 

𝐿 = {0}∪ {𝐿!, … , 𝐿"} Set of zones 

𝐶 = {0}∪ {𝐶!, … , 𝐶#} Set of clusters 

𝑉 =	 {𝑉!, … , 𝑉$}, Set of carts 
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{0}	𝜖	𝑁 The depot of carts 

Parameters  

𝑁𝐶𝑝 The number of zones in cluster 𝐶& 

𝑑𝑖 The demand of the node 𝑖	𝜖𝑁 

𝑄
𝑓
 The capacity of the cart 𝑓	𝜖𝑉 

Decision variables  

𝑥𝑖𝑗𝑓𝜖	{0,1} If the travel path i to j is passed by cart f, it is equal 1 and 0 

𝑤𝑖𝜖	{0,1} If node i in a zone is visited by cart f, it is equal to 1 or 0 

otherwise; 

𝑟𝑐𝑖𝑓 The remaining capacity of the cart f after visiting node i. 

 

Here, two formulations for the JOBPR-AL are proposed.  

Model 𝐹1 is formulated as follows. 

minB B B 𝑒*+𝑥*+,
,∈.+∈/*∈/

  (1) 

subject to:   

B 𝑤*
*∈0!

= 1 , ∀	𝐿1 ∈ 	𝐿, (2) 

B B 𝑥*+,
,∈.+∈/

= 𝑤* , ∀	𝑖 ∈ 𝑁, 𝑖 ≠ 0, 𝑖 ≠ 𝑗, (3) 

B B 𝑥+*,
,∈.+∈/

= 𝑤* , ∀	𝑖 ∈ 𝑁, 𝑖 ≠ 0, 𝑖 ≠ 𝑗, (4)  

B B 𝑥*+,
,∈.+∈/

−B B 𝑥+*,
,∈.+∈/

= 0 , ∀	𝑖 ∈ 	𝑁, 𝑖 ≠ 𝑗, (5) 

B B B 𝑥*+, = 𝑁𝐶& − 1
,∈.+∈2"*∈2"

 , ∀	𝐶& ∈ 	𝐶, (6) 

B 𝑑* .
*∈/,*45

B 𝑥*+,
+∈/

≤ 𝑄, , ∀	𝑓 ∈ 	𝑉, (7) 

𝑟𝑐*, ≤ 𝑄, + J𝑑* − 𝑄,K. 𝑥5*, , ∀	𝑖 ∈ 	𝑁, 𝑖 ≠ 0, (8) 

𝑟𝑐+, ≥ 𝑟*, + 𝑑+ − 𝑄, + 𝑄, . 𝑥*+, + J𝑄, − 𝑑+ − 𝑑*K. 𝑥+*, , ∀	𝑖, 𝑗 ∈ 	𝑁\{0}, 𝑖 ≠ 𝑗, ; ∀	𝑓 ∈ 	𝑉 (9) 

B 𝑥*5,
*∈/,*45

≤ 1 , ∀	𝑓 ∈ 	𝑉, (10) 

B 𝑥5*,
*∈/,*45

≤ 1 , ∀	𝑓 ∈ 	𝑉, (11) 



10 

 

𝑥*+, ∈ {0,1} , ∀(	𝑖, 𝑗) ∈ 	𝐴, ∀	𝑓 ∈ 	𝑉, (12) 

𝑤* ∈ {0,1} , ∀	𝑖 ∈ 	𝑁, (13) 

𝑟𝑐*, ∈ ℝ6.  (14) 

The objective function (1) minimizes the total travel distance to pick and batch for pickers. 

Constraints (2)-(4) ensure that exactly one node is served in each zone to handle alternative 

locations for each item in an order. In fact, constraints (3)-(4) create intermediate variables, 𝑤", to 

use in constraints (2). Constraints (5) guarantee that for each zone the entering and leaving point 

must be the same. Constraint (6) says that zones grouped in each cluster must be visited 

successively. In other words, these constraints handle order batching via routes, forcing pickers to 

pick items associated with each order consecutively. Constraints (7) ensure that each route's total 

demand cannot exceed the cart's capacity. Constraints (8) and (9) are sub-tour elimination 

constraints in which constraint (8) is active for the remaining capacity of the cart f on node i, which 

must be visited after the carts’ depot, and constraint (9) for others. Constraints (10) and (11) ensure 

that all tours must start at the depot with a minimum number of vehicles. Finally, constraints (12)-

(14) are variables domain constraints.  

Regarding model 𝐹2, we only present differences between F1 and F2 constraints which are 

formulated as follows.  

B B B 𝑥*+,
,∈.+∈0!*∈0!

= 0 , ∀	𝐿1 ∈ 	𝐿, (15) 

B B B 𝑥*+,
,∈.+∈/*∈0!

= 1 , ∀	𝐿1 ∈ 	𝐿, ∀	𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, (16) 

B B B 𝑥+*,
,∈.+∈/*∈0!

= 1 , ∀	𝐿1 ∈ 	𝐿, ∀	𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗. (17) 

 

The objective function (1) and constraints (5)-(14) function of the 𝐹1 are also applied for the 

𝐹2, but constraints (2)-(4) in 𝐹1 are replaced by constraints (15)-(17) in 𝐹2. These new constraints 

(15)-(17) are used to ensure that only one node per zone will be visited by a picker and there is no 

path between nodes in a zone. We mentioned some key differences between models 𝐹1 and 𝐹2  

earlier, but the performance, advantages, and disadvantages of both models are investigated in 

detail in section 6 by solving a wide range of instances. 

We propose an inequality for the presented models. This inequality is based on the sub-tour 

elimination concept by which for	∀(	𝑖, 𝑗)𝜖𝐴, 𝑗 ≠ 𝑖;∀𝑓𝜖𝑉, it is impossible for each vehicle 𝑓 to have 

a loop between vertices 𝑖 and j. Only one path can be available between every two vertices. See 

Equation (18) and Figure 3. 

 

𝑥*+, + 𝑥+*, ≤ 1	                                                  ; ∀(	𝑖, 𝑗)𝜖𝐴, 𝑗 ≠ 𝑖; ∀𝑓𝜖𝑉 (18) 
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(a) (b) (c) 

Figure 3. Forbidden path elimination between every two vertices: 

(a) Forbidden tour (b) Feasible tour from i to j (c) Feasible tour from j to i. 

As Figure 3 shows, case (a) cannot be possible between every two vertices, but at most one of 

cases (b) or (c) may be available in a feasible solution. Despite its simplicity, this valid constraint 

plays a crucial role in significantly reducing processing time. 

5. Computing the distance matrix  

This section presents a detailed warehouse layout and distance matrix computation procedure 

for the JOBPR-AL. 

To ensure efficient picker routing in a warehouse environment with mixed shelves, it is crucial 

to establish a practical procedure for calculating the distance matrix. Additionally, three additional 

requirements must be taken into account for the general adoption of such a warehouse setting. First, 

the locations associated with each item must be categorized into specific zones. Each order should 

have at least one item with a minimum of one location to pick up. Second, all zones associated with 

each order should be clustered together within a single cluster. Therefore, each order is linked to a 

unique cluster. Third, with regards to the distance matrix, it is important to consider that accessing 

shelves in different aisles may require different rules compared to the last mile, where the distances 

between two nodes are calculated using the Euclidean formula. In this regard, we propose a specific 

procedure for warehouses consisting of three primary vertical aisles and one central depot. This 

rule can be extended to the same setting with more than three aisles. Here, we present a calculation 

procedure for generating a distance matrix in a warehouse with three vertical aisles and one  carts 

depot or packaging point. Figure 4 shows a setting for presenting a procedure to calculate a distance 

matrix. 

Aisle tags 1↓  2↓ 
∅ = (4,4) 

 3↓  

 
Figure 4. An example warehouse setting for calculating the distance matrix. 
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In this example, we have 24 labeled locations with associated coordinates. There are three aisles 

from left to the right with tags 1, 2 and 3, respectively.  

If two locations are located in the same rack, such as A, B, C, and D, the distance is calculated 

as follows in equation (19): 

𝑖𝑓	O𝑥* − 𝑥+O = 0 → 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = O𝑥* − 𝑥+O + O𝑦* − 𝑦+O	                                                   (19) 

If two locations are located in two different racks, but both of them are located in the same aisle, 

such as K and N, the distance is calculated as follows in equation (20): 

𝑖𝑓	O𝑥* − 𝑥+O = 2 → 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = O𝑥* − 𝑥+O + O𝑦* − 𝑦+O	                                                   (20) 

If two locations are located in two different racks and aisles such as G, and S, the distance is 

calculated as follows in equation (21): 

𝑖𝑓	O𝑥* − 𝑥+O > 2 → 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = min	(	2 + (|𝑥* − 𝑥5| + |𝑦* − 𝑦5|	) + JO𝑥+ − 𝑥5O + O𝑦+ − 𝑦5O	K, 2 +
(|𝑥* − 𝑥∅| + |𝑦* − 𝑦∅|	) + JO𝑥+ − 𝑥∅O + O𝑦+ − 𝑦∅O	K  

(21) 

in which ∅ = (4,4) is a virtual node. In fact, for these locations located in different aisles, we 

need to calculate the minimum traveled distance based on feasible moving paths throughout the 

warehouse with respect to the original and virtual depots, respectively. Also, we need to add a 

"two" value because access to the shelves needs to move with one step. We call this value a 

correction value. The reason of incorporating this value is to account for virtual nodes when 

calculating distances. In fact, in this scenario where the aisles are separate, it is necessary to cross 

a virtual node denoted as ∅=(4,4) and the 𝑐𝑎𝑟𝑡𝑠	𝑑𝑒𝑝𝑜𝑡 = (−1,0) in order to access the shelves.  

If two locations are located in two different racks and aisles but their racks are side by side, such 

as N and R, the distance is calculated as follows in Equation (22): 

𝑖𝑓	O𝑥* − 𝑥+O = 1 → 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = min	(	2 + (|𝑥* − 𝑥5| + |𝑦* − 𝑦5|	) + JO𝑥+ − 𝑥5O + O𝑦+ − 𝑦5O	K,
2 + (|𝑥* − 𝑥∅| + |𝑦* − 𝑦∅|	) + JO𝑥+ − 𝑥∅O + O𝑦+ − 𝑦∅O	K   (22) 

in the case of locations ∅ = (4,4) being a virtual node, it is necessary to calculate the minimum 

traveled distance considering the feasible moving paths throughout the warehouse with respect to 

the original and virtual depots. These locations, located in different aisles, require careful 

consideration. Additionally, a correction value of "two" needs to be added because accessing the 

shelves requires moving with one step. This correction value is necessary to account for the 

presence of virtual nodes in distance calculations. Specifically, in this scenario where the aisles are 

different, it is not possible to reach the shelves without passing through the virtual node ∅ = (4,4) 

and the 𝑐𝑎𝑟𝑡𝑠	𝑑𝑒𝑝𝑜𝑡 = (−1,0), which act as two separate points. 

Therefore, the type of distance matrix used is the primary distinction between implementing 

CGVRP and adapting it to the JOBPR-AL environment. 
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6. Numerical results 

We use the CGVRP instances and solve them on a 64-bit operating system with 16 GB RAM 

and Core i7 configuration. All instances are solved by using CPLEX (ILOG, 2023) as a solver. 

6.1. Model validation 

To validate the proposed mathematical models, we adjusted the benchmark instances proposed by 

Ghiani and Improta (2000). First, we define four clusters in which different zones are grouped into 

specific clusters. For this, we divide the operation area into four segments and then consider each 

segment as a cluster as shown in Figure 5. 

As Figure 5(a) shows, the operation area consist of 24+1 zones and each zone includes at least 

one node. This environment is virtually divided into 4+1 distinct clusters in Figure 5(b). The final 

operational area for the CGVRP model is shown in Figure 5(c). For detailed information on the 

zones and clusters, we refer to Table 4. 

 

 
 

(a) (b) (c)  

Figure 5. A representation of the clusters.   

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 2 Cluster 1 

Cluster 3 Cluster 4 
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Table 4. Detailed information. 

Notation The members of clusters The zones in a cluster The members of zones 

𝐶! 𝐶! = {𝐿!, 𝐿8, 𝐿9, 𝐿:, 𝐿;, 𝐿<} 𝐿!, 𝐿8, 𝐿9, 𝐿:, 𝐿;, 𝐿< 

𝐿! = {22,38}, 𝐿8 = {28,41}, 𝐿9 =
{27}, 𝐿: = {18,49}, 𝐿; = {32}, 𝐿< =
{10,29,45,50}  

𝐶8 𝐶8 = {𝐿=, 𝐿>, 𝐿?, 𝐿!5, 𝐿!!} 𝐿=, 𝐿>, 𝐿?, 𝐿!5, 𝐿!! 
𝐿= = {7,47}, 𝐿> = {26}, 𝐿? =
{40}, 𝐿!5 = {24}, 𝐿!! = {1,3,9}  

𝐶9 𝐶9 = {𝐿!8, 𝐿!9, 𝐿!:, 𝐿!;, 𝐿!<, 𝐿!=, 𝐿!>} 𝐿!8, 𝐿!9, 𝐿!:, 𝐿!;, 𝐿!<, 𝐿!=, 𝐿!> 

𝐿!8 = {21,42,31,39}, 𝐿!9 =
{14}, 𝐿!: = {34}, 𝐿!; = {17}, 𝐿!< =
{16,25}, 𝐿!= = {30,46}, 𝐿!> =
{2,6,37}  

𝐶: 𝐶: = {𝐿!?, 𝐿85, 𝐿8!, 𝐿88, 𝐿89, 𝐿8:} 𝐿!?, 𝐿85, 𝐿8!, 𝐿88, 𝐿89, 𝐿8: 

𝐿!? = {15,36,48}, 𝐿85 =
{11,44}, 𝐿8! = {12,20,33,43}, 𝐿88 =
{5,23,35}, 𝐿89 = {8,13,19}, 𝐿8: =
{4}  

{0} {0} {0} {0} 

Total 4+1 clusters 24+1 zones 50+1 nodes 

 

In the Euclidean matrix setting, the data used in this paper are based on the case proposed by 

Ghiani and Improta (2000). Additionally, we allocate a vehicle capacity of 16 units for the 

transportation process. 

Before presenting the computational results of the JOBPR-AL, we compare our results with the 

results given by Ghiani and Improta (2000) and Kara and Bektas (2003). To this end, we exclude 

constraints (6) associated with grouping zones into clusters. In fact, by ignoring these constraints, 

we obtain the GVRP. Additionally, the capacity is set at 15 units for each  theof vehicles. Our 

results are presented in Table 5 and Figure 6.  The CPU execution time is restricted to a maximum 

of 3,600 seconds. 

Table 5. Detailed results of the GVRP.  

 
 Model 𝐹1 Model 𝐹2 

NVI* 2nd  VI** NVI 2nd  VI* 

MIP Solution 530.65 527.81 531.14 527.81 

Best Bound 450.17 527.81 440.90 527.81 

CPU time (seconds) 3,600 2017 3,600 1252 

Gap% 15.2% 0% 17% 0% 

* NVI: Model without inequality constraints. 

**2nd VI: Model with inequality constraints. 
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(a) (b) (c) 

Figure 6. The results obtained from models F1 and F2 for the adjusted GVRP. (a), (b), and (c) display a 

comparison of the optimal solution and best bound, the gap between them, and the processing time. 

 

As Table 5 and Figure 6 highlight, our results obtained from models 𝐹1 and 𝐹2 are less than the 

best published objective function value presented by Ghiani and Improta (2000), which was 532.73. 

By applying a valid inequality, the 𝐹1 and 𝐹2 models obtain the optimal solution presented by 

Kara and Bektas (2003), which was 527.82. The slight difference 0.01 occurs because of the 

rounding in calculations. Therefore, two models 𝐹1 and 𝐹2 provides optimal solutions, and the 

effect of the valid inequality is significant. The inclusion of the valid inequality aids the solver in 

achieving an optimal MIP value within the time limit of 3,600 seconds. Moreover, the quality of 

the best bound for each model is equivalent to the MIP solution value, indicating a 0% gap.  

In Table 6, the incumbent's progress associated with models 𝐹1 and 𝐹2 is compared together.  

Table 6. The GVRP found incumbent associated with models 𝐹1 and 𝐹2. 

𝐹1 with inequality constraints 𝐹2 with inequality constraints 

Optimal Solution Best Bound GAP% Optimal Solution Best Bound GAP% 

527.81 527.81 0.00 527.81 527.81 0.00 

in 2,017 seconds. in 1,252 seconds. 

 

As in Figure 7. shows, the  performance of model 𝐹2  in reaching the optimal solution and its 

best bound progress is better than the model 𝐹1. It should be noted that for solving all the instances 

associated with the CGVRP and JOBPR-AL in this section, we have applied inequality constraints 

to both models 𝐹1 and 𝐹2. 
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 (b) 
 

 

(a) (b) 

Figure 7. The MIP solutions corresponding to models F1 and F2 for the GVRP. (a) and (b) illustrate the variations 

observed in terms of the optimal solution, best bound, and gap values. 

 

The comparative performance of model F2 in achieving optimal and near-optimal solutions 

surpasses that of model F1, as demonstrated in Tables 7-8 and Figure 8. We note that the objective 

value for the CGVRP is higher than that of the GVRP due to the introduction of constraint (6), 

which imposes an additional restriction on the model. 

Table 7. Detailed results for the CGVRP. 

 
 Model 𝐹1 Model 𝐹2 

NVI 2nd  VI NVI 2nd  VI 

MIP Solution 553.48 553.48 553.48 553.48 

Best Bound 535.26 549.56* 535.66 552.48* 

Process time (seconds) 3,600 3,600 3,600 3,600 

Gap% 3.29% 0.71%* 3.22% 0.18%* 

*The best results within each row are linked to their respective models. 

 

 

Table 8. The MIP solutions associated with models F1 and F2 for the CGVRP. 

Model 𝐹1 with the inequality constraints  Model 𝐹2 with the inequality constraints 

MIP Solution Best Bound GAP% MIP Solution Best Bound GAP% 

553.48 549.56 0.71 553.48 552.48 0.18 

*The CPU running time limit = 3,600 seconds. 
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(a) (b) 

Figure 8. The MIP solutions associated with models 𝐹1 and 𝐹2 for the CGVRP. (a) and (b) represent the changes 

observed in reaching the optimal solution, best bound, and gap, respectively. 

 

6.2. The joint order batching and picker routing instances   

In this section, we generate instances for the JOBPR-AL by presenting three classes under three 

different scenarios. Based on the fact that there are no instances for the joint order batching and 

picker routing in a mixed-shelves environment in the literature, we present an instance generation 

method for our case as follows in Table 9 and Figures 9-10. We consider three scenarios. First, 

eight items are randomly scattered in each rack.  

Table 9.  Scenarios for the JOBPR-AL. 

Mixed shelves setting 
Scenarios 

8 items 12 items 16 items 

Number of vertical aisles 3 3 3 

Number of racks 6 6 6 

Number of shelves 90 90 90 

Area’s dimension 8*16 8*16 8*16 

Number of orders 2 2 2 

Number of items in each order 4 6 8 

Number of depots 1 1 1 

Number of carts (pickers) 2 2 2 

Capacity of each cart (items) 4 6 8 
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(a) (b) 

Figure 9. The mixed shelves instance setting. 
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Figure 10. Three scattered scenarios in a mixed-shelves instance setting. 

Figure 9 (a) shows the dimensions of the warehouse and the labels of shelves from 1 to 90. Also, 

as it depicts, the depot is located at the center bottom of the warehouse area. Figure 9 (b) shows the 

coordinates of each shelf. Based on the procedure explained in Section 5, the distance matrix is 

calculated using four conditions. Figure 10 shows three different scenarios in scattering items in a 

mixed-shelves environment. As it depicts, in case (a), we have eight items and randomly assign 

locations to each item. This procedure for both cases (b) and (c) is equal.  

We apply both models 𝐹1 and 𝐹2, to solve these cases. The computational results are shown in 

Tables 10-11 and Figure 11. 
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Table 10. The details of the orders for scenarios. 

Mixed shelves setting 
Scenarios 

8 items 12 items 16 items 

Order 1 (items) 1-4 1-6 1-8 

Order 2(items) 5-8 7-12 9-16 

Total number of items 8 12 16 

 

Table 11. The MIP solutions associated with models 𝐹1 and 𝐹2 for the JOBPR-AL with 8 items. 

Model 𝐹1 with inequality constraints Model 𝐹2 with inequality constraints 

Optimal Solution Best Bound GAP% Optimal Solution Best Bound GAP% 

36.00* 36.00 0.00 36.00* 36.00 0.00 

*The running time of the CPU < 10 seconds. 

 

  

(a) (b) 

Figure 11. The MIP solutions associated with models 𝐹1 and 𝐹2 for the JOBPR-AL with 8 items. (a) and (b) represent 

the changes observed in reaching the optimal solution, best bound, and gap values. 

 

As Table 11 shows, for the case with eight items, both models 𝐹1 and 𝐹2 can reach the optimal 

solution without any gap in less than 10 seconds. Figure 11(a) depicts the changes in obtaining 

optimal solutions and the best bound for each MIP solution. In addition, Figure 11(b) shows the 

changes in the gap during processing associated with the difference between the optimal solution 

and the best bound. 

Table 12. The MIP solutions associated with models 𝐹1 and 𝐹2 for the JOBPR-AL with 12 items. 

Model 𝐹1 with inequality constraints Model 𝐹2 with inequality constraints 

Optimal Solution Best Bound GAP% Optimal Solution Best Bound GAP% 

62.00* 51.16 17.47 62.00** 62.00 0.00 

*The running time of the CPU =3,600 seconds. **The running time of the CPU =2,100 seconds. 
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According to Table 12, the performance of model F2 in attaining the optimal solution and 

enhancing the best bound surpasses that of model F1. Model F2 exhibits a 17.47% gap after 3,600 

seconds of processing time, but it can achieve a 0% gap within 2,100 seconds. The MIP solution 

for both models is equivalent to 62.00. 

  

(a) (b) 

Figure 12. The identified MIP solutions associated with models 𝐹1 and 𝐹2 for the JOBPR-AL with 12 items. (a) and (b) 

represent the variations observed in the optimal solution, best bound, and gap values. 

Figure 12(a) shows the changes in reaching MIP solution and the best bound in the models 𝐹1 and 

𝐹2. However, Figure 12 (b) shows the decreasing gap path associated with the difference between 

the optimal solution and the best bound. 

Table 13. The identified MIP solutions associated with models 𝐹1 and 𝐹2 in the context of the JOBPR-AL 

problem with 16 items. 

Model 𝐹1 with the inequality constraints Model 𝐹2 with the inequality constraints 

MIP Solution Best Bound GAP% MIP Solution Best Bound GAP% 

72.00* 60.83 15.51 72.00* 63.00 12.5 

*The running time of the CPU =3,600 seconds. 

 

Table 13 highlights that model F2 outperforms model F1, as it exhibits 12.5% gap for a one-

hour processing time. Notably, both models achieve an MIP solution of 72.00. 
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(a) (b) 

Figure 13. The relationship between the identified MIP solutions and the progression of the best bounds for models 𝐹1 

and 𝐹2 in the context of the JOBPR-AL problem with 16 items. (a) and (b) depict the trends observed in reaching the 

optimal solution, best bound, and gap, respectively. 

 

Figure 13(a) shows the trend in obtaining the optimal solution and best bound in each incumbent 

for models. On the other side, Figure 13(b) depicts the changes in the gap between the optimal 

solution and the best bound in each incumbent. 

The results reveal two findings regarding the JOBPR-AL in a mixed shelves environment with 

three scenarios. First, in all cases, model 𝐹2 has better performance in improving best bound and 

reaching optimal solution without gap in one hour processing time. Second, the scenario with 16 

items needs more processing time than cases with 12 and 8 items. Also, the case with 12 items  

needs more processing time than the case with 8 items. See Appendix A for graphical results related 

to the numerical results in this section. 

6.3. Overlapping in ordered items   

In section 6.2, we presented numerical results for a setting in which items in different orders are 

different. In fact, there is no overlap between items ordered by customers, so we face distinct 

clusters associated with each order. On the other hand, there is a situation in which a client may 

order items that overlap with other orders. Therefore, we consider four scenarios regarding this 

setting in which items in two different orders have details that overlap, as Table 14 shows. To do 

this, we duplicate the nodes corresponding to each location associated with each item, resulting in 

a node count that is twice as large as in the previous section.  To do this, we copy nodes regarding 

each location associated with each item, so the number of nodes is twice that in the previous section. 

All parameters are the same as detailed in Table 9. In this new setting, if a location corresponding 

with an item is selected, this location is no longer available for other orders, and we add equation 

(23) to satisfy this requirement. For example, consider location 𝑖 and its copy which is represented 

with 𝑖,, equation (23) says that if one of these locations selected, another is no longer available. 

For this, we use model 𝐹1, as it can handle this issue. 

𝑤* +𝑤*# ≤ 1,   (23) 
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Table 14.  The JOBPR-AL scenarios with overlapping. 

Density of overlapping 
Scenarios 

8 items 12 items 16 items 

25%  *  * 

33%  *  

50% *  * 

66%  *  

75% *  * 

99%  *  

100% *  * 
 

The numerical results are shown in Table 15. As results show, when the density of overlapping is 

increased, the requisite processing time increases and the quality of solution dramatically 

decreases. Another point is that the number of items per order also has a significant effect on the 

solution process. That is, in scenario with 16 items and 8 items per order, the results are worse than 

the scenario with 12 items, and 8 items per order, and this scenario is worse than the scenario with 

8 items and 4 items per order. Although the number of nodes is the same in all these scenarios, the 

number of clusters is different. Therefore, instances with more clusters and high density 

overlapping take more effort to solve optimally. 

Table 15.  Numerical results with overlapping by using model 𝐹1 with the inequality*. 

Density of 

overlapping 

Scenarios 

8 items 12 items 16 items 

Optimal 

Solution 

Best 

Bound 
GAP% 

Optimal 

Solution 

Best 

Bound 
GAP% 

Optimal 

Solution 

Best 

Bound 
GAP% 

25%  40 40 0 - - - 88 51.91 41 

33% - - - 74 40.65 45.06 - - - 

50% 46 37.33 18.84 - - - 112 42.66 61.9 

66% - - - 98 37.36 61.87 - - - 

75% 52 36.77 29.27 - - - 114 42.14 63.03 

99% - - - 130 41.57 68.1 - - - 

100% 66 37 43.78 - - - No Solution 

*The running time of the CPU =3600 seconds. 

7. Conclusions 

We have studied CGVRP as an integrated approach for joint order batching and picker routing 

with alternative locations (JOBPR-AL). We have proposed two MILP formulations for the 

problem. In addition, we proposed valid inequality constraints for the proposed formulations in 

which eliminating forbidden paths between two nodes are considered. This inequality can improve 

total time to reach an optimal solution and best-bound values. We have adjusted benchmark 
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instances found in the literature to validate our models and generated small and medium instances 

with three scenarios for the joint order batching and picker routing in a mixed-shelf setting.  

Furthermore, the considered JOBPR-AL models, designed for the joint optimization of order 

batching and picker routing, effectively handle both order batching and order picking tasks. In 

settings with mixed-shelves, these models serve as valuable tools for operations with minimal cost. 

Among the models, model F2 consistently demonstrates superior performance in terms of reaching 

an optimal solution and achieving the best bound across all cases. In mixed-shelves settings, where 

larger items are dispersed in an area, the complexity of the model increases. Furthermore, two 

critical factors that have a notable influence on processing time and solution quality are the number 

of clusters or distinct items per order and the density of overlapping in the ordered items within 

each order. It is crucial to carefully consider these factors in order to achieve optimal results. 

7.1. Managerial insights 

E-commerce companies operate within a complex system where customers expect the 

convenience of placing orders from anywhere and at any time, with a desire for quick delivery. For 

companies that manage their own warehouses, optimizing the order picking process becomes 

crucial in meeting customer expectations, ensuring on-time delivery, and reducing operational time 

and costs. Such optimization efforts can lead to enhanced customer loyalty and long-term benefits 

for the company. 

This paper propose models that address the joint optimization of order batching and picker 

routing problem. By enabling pickers in a warehouse to simultaneously execute order picking and 

order batching operations, separate batching processes can be seamlessly integrated with order 

picking activities. This approach effectively tackles three main challenges typically encountered in 

picking systems within mixed-shelves settings: order assignment to pickers, batch formation 

through picker routes, and selection of pick-up points for items within an order. The JOBPR-AL 

approach presented in this paper offers a comprehensive solution for order picking in mixed-

shelves settings, simultaneously optimizing the aforementioned challenges. This approach can help 

companies to reduce process time and costs while improving the service level of their fulfillment 

operations. Moreover, this approach can also benefit the pickers themselves, as they can efficiently 

complete multiple orders while navigating through the warehouse aisles. 

Implementing the JOBPR-AL approach in mixed-shelves or similar settings, where SKUs have 

alternative locations, can significantly reduce the need for separate batching or packaging 

operations. This is particularly valuable in the current e-commerce landscape, where there is a high 

variety of item types but relatively low demand for each individual item. By streamlining the order 

fulfillment process and increasing operational efficiency, companies can effectively reduce the 

effort required for order processing and enhance overall productivity. 

7.2. Future research 
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In terms of future research directions, an interesting area to explore would be incorporating 

stochastic settings in both last mile delivery and joint order batching and picker routing problems. 

This would provide valuable insights into handling uncertainties and variability in real-world 

scenarios. Furthermore, integrating these models into broader warehousing and last mile operations 

would contribute to a more comprehensive understanding of supply chain management. This 

integration could uncover new opportunities for optimization and efficiency improvements. 

Additionally, an open research area lies in the development of heuristic solution algorithms that 

can effectively tackle large-scale instances of these problems. Designing efficient algorithms 

capable of handling the computational complexity associated with real-world logistics operations 

would be highly valuable. 
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Appendix A 

This appendix presents the graphical results obtained from solving the proposed mathematical 

models for the JOBPR-AL. Figures A1-A3 display the optimal routes for the JOBPR-AL in cases 

with 8, 12, and 16 items, respectively.  

It is important to note that the optimal location for each item are shown by *, as demonstrated in 

the all cases. For instance, picker 1 can pick up the items associated with order 1, i.e., batch 1, in 

the following sequence: 0 >> 33>> 34 >> 35 >> 37 >> 0. The labels on the cells in Figures A1-A3 

correspond to the items' tags are shown by underlined numbers, while the locations' tags associated 

with each cell are presented by bold and italic numbers. For example, location 1 is reserved for 

item 5 as it is shown at the bottom left of the Figure A1. Further discussion and details can be found 

in Section 5. 

 

15 7 

 

1 30 45 7 

 

8 60 75 6 

 

3 90 

14 4 8 29 44 7 1 59 74 8 8 89 

13 3 7 28 43 8 1 58 73 3 3 88 

12 2 5 27 42 6 8 57 72 3 8 87 

11 5 2 26 41 8 5 56 71 1 2 86 

10 3 1 25 40 7 6 55 70 2 4 85 

9 1 4 24 39 7 2 54 69 7 7 84 

8 2 3 23 38 1 7 53 68 4 7 83 

7 1 3 22 37* 4* 6 52 67 4 4 82 

6 6 3 21 36 1 3 51 66* 5* 3 81 

5 5 2 20 35* 2* 3 50 65 4 5 80 

4 8 2 19 34* 3* 1 49 64* 7* 8 79 

3 4 5 18 33* 1* 5 48 63* 8* 4 78 

2 3 6 17 32 7 1 47 62* 6* 2 77 

1 5 8 16 31 5 6 46 61 6 7 76 

0 
 

Order 1(cluster 1) 1 2 3 4 
Order 2(cluster 2) 5 6 7 8 

 

 Route 1* 0→ 33→ 34→ 35→ 37→ 0 

Route 2* 0→ 62→ 63→ 64→ 66→ 0 

Figure A1. An optimal route of the JOBPR-AL with 8 items. 
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2 60 75 5 

 

12 90 

14 11 8 29 44 6 2 59 74 3 10 89 

13 7 1 28 43 4 11 58 73 1 1 88 

12 11 10 27 42 6* 5* 57* 72 12 3 87 

11 1 8 26 41 4 9 56 71* 11* 4 86 

10 4 3 25 40 10 2 55 70 4 9* 85* 

9 3 10 24 39 5 2* 54* 69 12* 8 84 

8 4 5 23 38 4 7 53 68 4 12 83 

7 2 4 22 37 10 1 52 67* 8* 4 82 

6 11 9 21 36 9 9 51 66 4 3 81 

5 10 9 20 35 4* 1* 50* 65 12 2 80 

4 2 10 19 34 8 7 49 64 12 3 79 

3 3 3 18 33 1 3* 48* 63 7 10* 78* 

2 6 9 17 32 8 5 47 62* 7* 9 77 

1 8 10 16 31 12 8 46 61 5 1 76 

       0        

 
  

Order 1(cluster 1) 1 2 3 4 5 6 

Order 2(cluster 2) 7 8 9 10 11 12 
 

Route 1* 0→ 48→ 50→ 54→ 57→ 42→ 35→ 0 

Route 2* 0→ 67→ 69→ 71→ 85→ 78→ 62→ 0 

Figure A2. An optimal route of the JOBPR-AL with 12 items. 
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4 6 12 19 34 4 3* 49* 64 14* 2* 79* 

3 12 4 18 33 9 10 48 63 13* 7* 78* 

2 13 13 17 32 4 4* 47* 62 5* 8* 77* 

1 1 11* 16* 31 5 8 46 61 12* 15* 76* 

 0  
  

Order 1(cluster 1) 1 2 3 4 5 6 7 8 
Order 2(cluster 2) 9 10 11 12 13 14 15 16 

 

Route 1* 0→ 47→ 49→ 78→ 80→ 82→ 79→ 77→ 62→ 0 

Route 2* 0→ 16→ 64→ 66→ 81→ 68→ 63→ 76→ 61→ 0 
 

Figure A3. An optimal route of the JOBPR-AL with 16 items. 

 

 


