
Abstract Large-scale classical dust cycle models, developed more than two decades ago, assume for 
simplicity that the Earth's land surface is devoid of vegetation, reduce dust emission estimates using a 
vegetation cover complement, and calibrate estimates to observed atmospheric dust optical depth (DOD). 
Consequently, these models are expected to be valid for use with dust-climate projections in Earth System 
Models. We reveal little spatial relation between DOD frequency and satellite observed dust emission from 
point sources (DPS) and a difference of up to 2 orders of magnitude. We compared DPS data to an exemplar 
traditional dust emission model (TEM) and the albedo-based dust emission model (AEM) which represents 
aerodynamic roughness over space and time. Both models overestimated dust emission probability but showed 
strong spatial relations to DPS, suitable for calibration. Relative to the AEM calibrated to the DPS, the TEM 
overestimated large dust emission over vast vegetated areas and produced considerable false change in dust 
emission. It is difficult to avoid the conclusion that calibrating dust cycle models to DOD has hidden for 
more than two decades, these TEM modeling weaknesses. The AEM overcomes these weaknesses without 
using masks or vegetation cover data. Considerable potential therefore exists for ESMs driven by prognostic 
albedo, to reveal new insights of aerosol effects on, and responses to, contemporary and environmental change 
projections.

Plain Language Summary Mineral dust influences Earth's systems, and understanding its impacts 
relies on numerical models which include large uncertainties. We compared measurements of dust optical depth 
(DOD) frequency of occurrence (probability) and satellite observed dust emission frequency from point sources 
(DPS) across North America. We found up to 2 orders of magnitude difference between DOD probability 
and DPS probability. Compared with DPS probability, we found an exemplar traditional dust emission model 
(TEM) and the albedo-based dust emission model (AEM) both overestimated dust emission probability by up 
to 1 order of magnitude with statistically significant relations, suitable for calibration. Relative to the AEM 
calibrated to DPS, the exemplar TEM overestimated large dust emission over vast vegetated areas and produced 
considerable false change in dust emission. Tuning dust cycle models to DOD has very likely hidden, for 
more than two decades, these TEM weaknesses with implications for our understanding of Earth's systems. 
Considerable potential exists for new insights of dust-climate in Earth System Models by using AEM with 
prognostic albedo.
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Key Points:
•  Tuning dust models to dust optical 

depth (DOD) hides dust emission 
model weaknesses including 
overestimates and false change in 
vegetated areas

•  New shadow-shelter model calibrated 
to observed dust emission circumvents 
unrealistic model assumptions

•  Two orders of magnitude difference 
between DOD and observed dust 
emission without significant relation
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1. Introduction
Mineral dust is central to many of Earth's systems (Shao et al., 2011). For example, dust can warm or cool regional 
climate, depending on the absorption and spectral properties of dust and background characteristics (Sokolik & 
Toon,  1999). These radiative effects depend on the volume of emitted dust and the mineral composition of 
atmospheric plumes, which differ over geographical source areas because particle size distribution and mineral-
ogy vary spatially and temporally (Kok et al., 2017). Consequently, assessments of dust radiative effects rely on 
numerical models that simulate the emission, atmospheric transport, and deposition of the dust cycle (Mahowald 
et al., 2010) hereafter dust cycle models. Comparisons with atmospheric dust observations indicate that global 
dust cycle models include large uncertainties in simulated dust magnitude and geochemical properties (Huneeus 
et al., 2011). For example, global climate models used in the Fifth Assessment Report of the IPCC (IPCC, 2013) 
failed to reproduce observed North African dust over the second half of the 20th century challenging the validity 
of 21st century dust-climate projections (Evan et al., 2014). Large uncertainties and intermodel diversity remain 
and are larger than previous generations of models implying that modeled dust processes are becoming more 
uncertain as models develop (Zhao et al., 2022). It is common for global dust cycle models to be evaluated against 
atmospheric dust optical depth (DOD) and tuned to fit the observations from regional measurements, typically 
North Africa (Huneeus et al., 2011, p. 7809). However, this calibration approach does not enable an evaluation of 
the separate components of the dust cycle and specifically developments in dust emission modeling. Here, we are 
concerned that the evaluation of dust cycle models against atmospheric DOD has hidden weaknesses in the dust 
emission modeling, that parameterizations which attempt to improve dust emission are being falsely accepted, 
and consequently the approach to model development has become biased toward parsimony rather than achieving 
a balance with fidelity of dust emission processes (Raupach & Lu, 2004).

Dust emission schemes (Joussaume, 1990; Marticorena & Bergametti, 1995; Shao et al., 1996) were developed 
more than two decades ago and the underpinning, inextricably linked magnitude and frequency of sediment 
transport (Wolman & Miller, 1960) has not changed since. The magnitude of sediment transport driven by wind 
friction velocity is adjusted by the frequency of occurrence based on the wind momentum exceeding a critical 
sediment entrainment threshold (Wolman & Miller,  1960) causing highly dynamic, nonlinear responses over 
space and time (Raupach & Lu, 2004). When dust emission models were developed, there were few continuously 
varying global data sets available and simplifying assumptions were made for their implementation. The soil 
surface wind friction velocity to drive sediment transport (in the presence of large, typically vegetation, canopy 
roughness) was not available and instead the above canopy wind friction velocity was used. The partition between 
those drag forces used aerodynamic roughness lengths which were not available everywhere and therefore were 
set static over time and fixed over space to a bare soil surface condition (Zender, Bian, et  al.,  2003). Under 
these bare soil surface conditions, dust emission estimates were maximized and recognized as overestimated in 
the presence of vegetation. Consequently, dust emission schemes reduced estimates using E, the area of bare, 
exposed “erodible” soil surface (Marticorena & Bergametti, 1995). Varying with wind speed, drag was shown to 
be equivalent to shelter (Raupach, 1992), but the drag partition was parameterized using lateral cover, a static, 
geometric two-dimensional representation of canopy sheltering with the caution that mutual, three-dimensional, 
aerodynamic sheltering was not included in lateral cover (Raupach, 1992; Raupach et al., 1993).

For implementation of these approaches in dust emission modeling, researchers assumed for simplicity that 
dryland aerodynamic roughness, including nonphotosynthetic vegetation, was approximated by lateral cover 
from photosynthetic vegetation indices (VIs) readily available from satellite remote sensing (Evans, Ginoux, 
et al., 2016). These approaches using VIs therefore assumed that the sheltering effect of the drag was restricted 
only to that “green” canopy area and that the sheltered area of the soil surface did not vary with wind speed (was 
not aerodynamic). Furthermore, it was assumed for simplicity that the sediment entrainment was at the grain 
scale, static over time and a function of dry, loose and erodible spherical particle diameters discretized across 
sizes (Shao & Lu, 2000) so that soil texture data (typically aggregated over depth) could be used. Similarly, dust 
emission models assumed for simplicity that the soil surface had an infinite supply of dry, loose erodible sedi-
ment, despite soil surfaces, particularly in drylands, being sealed/crusted and/or with loose sediment occurring 
sporadically over space and intermittently over time (Vos et al., 2020; Webb & Strong, 2011).

These simplifying assumptions in dust emission models represent the parsimony of implementation more 
than the fidelity of the dust emission processes. Although necessary for dust emission model implemen-
tation, the parameterizations need to be openly, transparently, and routinely re-evaluated particularly with 
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new technology, measurements, and different thinking. That dust models are becoming more uncertain (Zhao 
et al., 2022) indicates model development and/or its evaluation is not working well. By adjusting the magni-
tude of the dust cycle model estimates to atmospheric DOD, there is no possibility of recognizing weaknesses 
in dust emission modeling and therefore to recognize the need to change the modeling approach to compen-
sate for any errors in the dust emission parameterization. The dust emission models provide no estimate of 
uncertainty, and it is therefore difficult to have confidence that dust emission models developed and evaluated 
in this way, adequately represent the geographical distribution of dust emission magnitude and frequency, 
particularly given the rather critical simplifying assumptions about sediment entrainment and sediment supply. 
This lack of confidence very likely explains the dearth of publications on dust emission model outcomes per 
se (as opposed to dust cycle model outcomes). Given the considerable advances in dust emission modeling 
over the last two decades, it is important to enable dust emission model outcomes to tackle these simplifying 
assumptions about sediment entrainment and sediment supply and the way in which dust emission models are 
evaluated.

Our aim is to show that there is an urgent and important requirement to routinely evaluate dust emission mode-
ling separately and before the routine evaluation of dust cycle modeling against DOD. Our objectives to achieve 
that aim are to: (a) demonstrate that in a commonly implemented dust emission scheme, weaknesses have been 
introduced in its modeling which includes its parameterization and choices of data layers (Raupach & Lu, 2004); 
(b) show that these weaknesses in the dust emission modeling have been hidden in dust cycle models routinely 
calibrated against atmospheric DOD and that dust emission processes are not adequately represented in that 
calibration. Consequently, we expect our findings to support the implication elsewhere (Zhao et al., 2022), and 
our hypothesis that models have to their detriment, drifted from their original process fidelity toward modeled 
parsimony as forewarned (Raupach & Lu, 2004). For clarity, this work is less about which model is best (although 
a comparison is inevitable) and more about how dust emission modeling has been misled (weaknesses hidden) 
by the focus on calibrating dust cycle models to atmospheric DOD. For clarity, we recognize the valuable nature 
of calibrating dust cycle models to DOD.

It is timely that a new dust emission point source (DPS) database for southwestern North America has been 
collated and has been used with the albedo-based dust emission model (AEM) to circumvent the simplifying 
assumptions about sediment entrainment and sediment supply (Hennen et al., 2022, 2023). We follow that estab-
lished approach and evaluate dust emission modeling against dichotomous DPS observations and also compare 
those DPS to the frequency of atmospheric DOD. Given that we are investigating the evolved nature of traditional 
dust emission models (TEMs), and that many of its components are highly interactive, it is unreasonable  to 
disaggregate the model components and/or make a superficial comparison of any one single component. Instead, 
we have produced an exemplar which represents TEMs in the view of the experienced large-scale dust modelers 
contributing to this study. We compare that exemplar TEM with the AEM which by design attempts to over-
come the issues related to the soil surface wind friction velocity in the sediment transport equation (Chappell 
& Webb, 2016), and to redress the balance toward the fidelity of process representation (Raupach & Lu, 2004).

2. Methods and Data
2.1. Dust Emission Modeling

Vegetation attenuates dust emission by extracting momentum from the wind and sheltering a portion of the down-
stream soil. By reducing wind speeds (U) at the soil surface, vegetation makes it more difficult for the wind to 
overcome the entrainment threshold for initiation of streamwise sediment flux (hereafter entrainment threshold) 
and consequent emission of dust particles by saltation bombardment and abrasion. Notably, the influence of vege-
tation sheltering is wind speed dependent (aerodynamic roughness) and both aerodynamic drag and partitioning 
of wind friction velocity between roughness elements and the soil, respond nonlinearly to changes in wind speed 
because of mutual sheltering.

2.1.1. Exemplar Traditional Sediment Transport

Calculation of the streamwise sediment flux density Q (g m −1 s −1) on a smooth soil for a given particle size 
fraction (d) on the particle size distribution (i) requires the above canopy wind friction velocity u* (m s −1) influ-
enced by all scales of roughness at the Earth's surface, the air density ρa (g m −3), the acceleration due to gravity g 
(m s −2), a dimensionless fitting parameter C and the bare, smooth (no roughness elements) entrainment threshold 
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of sediment flux u*ts(d) (m s −1). The original transport equation is typically rewritten in the dust modeling litera-
ture with the typographic correction and reformulated ratios which require a cubic term:

𝑄𝑄(𝑑𝑑) =

⎧⎪⎨⎪⎩

𝐶𝐶
𝜌𝜌𝑎𝑎

𝑔𝑔
𝑢𝑢3∗

(
1 −

𝑢𝑢2
∗𝑡𝑡𝑡𝑡

(𝑑𝑑)

𝑢𝑢2∗

)(
1 +

𝑢𝑢∗𝑡𝑡𝑡𝑡(𝑑𝑑)

𝑢𝑢∗

)
, 𝑢𝑢𝑡𝑡∗ > 𝑢𝑢∗𝑡𝑡𝑡𝑡

0, 𝑢𝑢𝑡𝑡∗ ≤ 𝑢𝑢∗𝑡𝑡𝑡𝑡

. (1)

Earth System Models (ESMs) or reanalysis wind field models over large areas (large pixels), with horizontal reso-
lutions that are typically on the order of >10 km, use modeled wind speed at 10 m (U10) to calculate the available 
above canopy u*. In recognition that vegetation exerts drag on the wind, u* must then be partitioned between the 
roughness elements (typically vegetation), and that available for driving flux at the soil surface (us*). The u*ts is 
adjusted by a function H(w) of soil moisture (w; kg 3 kg −3) (Fécan et al., 1999) and 𝐴𝐴 𝐴𝐴 =

𝑢𝑢𝑠𝑠∗

𝑢𝑢∗
 (Raupach et al., 1993), 

the wind friction velocity ratio representing the roughness-induced drag partition (Marshall,  1971), modifies 
(Darmenova et al., 2009) the previous equation

𝑄𝑄TEM(𝑉𝑉 𝑉𝑉𝑉 𝑉𝑉0𝑉 𝑉𝑉0s𝑉 𝑑𝑑𝑉 𝑑𝑑) =

⎧⎪⎨⎪⎩

𝐸𝐸𝐸𝐸
𝜌𝜌𝑎𝑎

𝑔𝑔
𝑢𝑢3∗

(
1 −

(𝑢𝑢∗𝑡𝑡𝑡𝑡𝐻𝐻∕𝑅𝑅)
2

𝑢𝑢2∗

)(
1 +

𝑢𝑢∗𝑡𝑡𝑡𝑡𝐻𝐻

𝑅𝑅

𝑢𝑢∗

)

0𝑉 𝑢𝑢∗ ≤ 𝑢𝑢∗𝑡𝑡𝑡𝑡𝐻𝐻∕𝑅𝑅

𝑉 𝑢𝑢∗ > 𝑢𝑢∗𝑡𝑡𝑡𝑡𝐻𝐻∕𝑅𝑅 (2)

The us* is required for sediment flux equations where us* ≠ u* in the presence of any roughness canopy. In the 
absence of being able to estimate directly us*, the u*tsH is divided by R for the model implementation to account 
for the drag partition making use of u* (Webb et  al., 2020). Following this approach, this form (Equation 2) 
is incomplete because 𝐴𝐴 𝐴𝐴3∗ should be multiplied by R before it is cubed (Webb et al., 2020). However, values of 
R(z0,z0s) are not known for all pixels and all time steps producing dust.

One of the common approaches to modeling dust emission in ESMs uses globally constant values of aerodynamic 
roughness length (z0) (Tegen et al., 2002; Woodward, 2001; Zender et al., 2003). Here, we focus on the impact 
for large scale models and our exemplar TEM uses the incomplete formulation for QTEM (Equation 2). Fixed 
aerodynamic roughness length for the landscape z0 = 100 μm and the soil z0s = 33.3 μm fixes R(z0) ≈ 0.91 to an 
almost bare land surface condition (see Equation S8 in Supporting Information S1). This approach assumes for 
simplicity that the Earth's land surface is devoid of vegetation roughness everywhere and static over time. With 
R(z0,z0s) fixed, 𝐴𝐴 𝐴𝐴(𝑧𝑧0, 𝑧𝑧0s)𝑢𝑢∗ = 𝑢𝑢𝑠𝑠∗ is assumed, and u* changes only when the wind speed changes (see Equation 
S1 in Supporting Information S1). Consequently, the entrainment threshold u*tsH is not adjusted sufficiently by 
R(z0,z0s) in the presence of vegetation and dust emission is overestimated for a given wind speed. To reduce dust 
emission in these non bare conditions, sediment transport is adjusted using a function E to compensate for the 
fixed R(z0,z0s), hereafter we will drop the dependencies.

The function E was originally defined (Marticorena & Bergametti, 1995) as the ratio of bare exposed “erodible” 
surface area to total surface area. Only after the entrainment threshold is calculated, is the sediment transport and 
dust emission from a bare soil surface reduced by E < 1 typically in the presence of vegetation. However, shelter-
ing is nonlinear over space and time since it depends on the mutual sheltering of the roughness (typically vegeta-
tion) structure, configuration and is aerodynamic i.e., sheltering changes with wind speed (Chappell et al., 2010). 
Nevertheless, it has become acceptable in the dust emission modeling literature to assume for simplicity that 
E ≈ Ev = 1 − Av where Av is the non-aerodynamic planform area covered by vegetation. This Ev is used in some 
ESMs so that leaf area index (LAI) or satellite “greenness” observations e.g., VIs can be used as a surrogate of 
the land surface fraction occupied by green vegetation (Evans, Ginoux, et al., 2016; Galloza et al., 2018; Sellar 
et  al.,  2019; Zender, Bian, et  al.,  2003). This parameterization crudely represents the aerodynamic nature of 
the sheltering (Chappell et al., 2010). Furthermore, the Ev does not represent “brown” roughness, not readily 
evident in VIs caused by non-photosynthetic, dormant or dead vegetation, common in drylands which contain the 
majority of dust sources. The Ev does not represent non-erodible stone-covered surfaces without sediment, also 
common in dryland regions. The inclusion of E in sediment transport models and its implementation using Ev are 
prime examples of emphasizing parsimony over process fidelity (Raupach & Lu, 2004). Here, we will provide 
new insights for the impact of E and its implementation via Ev on dust emission modeling.

A second, more recent approach to the drag partition uses satellite remote sensing to provide spatially heterogene-
ous estimates of z0 (Greeley et al., 1997; Marticorena et al., 2004; Prigent et al., 2005, 2012; Roujean et al., 1997). 
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Later publications in this approach provided practical implementations over large areas. However, these later 
approaches are strictly only valid for nonvegetated regions because of photometric volume scattering assumptions 
(Roujean et al., 1997). These later approaches are also typically fixed over time and therefore do not represent 
roughness change e.g., due to seasonality, land use change, and invasive species. Therefore, these estimates of z0 
do not overcome the challenge of estimating the spatiotemporal variation of the drag partition. Variability in the 
drag partition and us* can be represented stochastically in models using probability distributions, as suggested by 
Raupach and Lu (2004). However, representation of the true heterogeneity (and uncertainty) of the drag parti-
tion has only recently been possible using field monitoring data (Edwards et al., 2022) and the approach is yet 
to be extended to regional or global scales. To retain the original dust emission scheme widely implemented in 
ESMs, and to show the outcome of this original approach, we do not apply these more recent approaches to our 
exemplar  TEM.

In the dust emission modeling literature, there is little recognition of the uncertainty due to the inconsistency in 
model implementation scales. For example, the entrainment threshold (u*ts) is calculated at the grain scale as a 
function of grain diameter, density, and interparticle cohesion (Shao et al., 1996). However, the above canopy u* 
is for an area when measured using a wind velocity profile or when using modeled wind data. Current dust emis-
sion modeling compares u* and u*ts (Equation 2) which assumes they are represented over (the same) area, which 
they are not. The threshold value at the grain (point) scale will not represent the required value over a large area 
(e.g., 11 km pixel) as established for large scale sediment transport modeling (Raupach & Lu, 2004) and recog-
nized in other disciplines (de Vrese & Hagemann, 2016; Kyriakidis & Yoo, 2005; Raupach & Finnigan, 1995; 
Van Looy et al., 2017). For clarity, the inability of the grain (point) scale to represent area is, even assuming 
homogeneity within a pixel, caused by the inability to adequately represent the spatiotemporal variability in 
entrainment characteristics of the sheltered portion of the soil surface. Similarly, modeled wind speed over large 
e.g., 11 km pixels does not adequately represent the subgrid (pixel) scale heterogeneity of the aerodynamic rough-
ness of the land surface.

The substantive remaining issues for TEMs that are currently known or evident from the literature include:

1.  the incomplete form of 𝐴𝐴 𝐴𝐴3∗ in QTEM (Equation 2) widely adopted in TEMs, overestimates sediment transport and 
dust emission, should have u* multiplied by the drag partition R, but the correct values of R are unknown (for 
every pixel and every time step producing dust);

2.  poorly constrained aerodynamic roughness (z0) and drag partition (R), causes R ≈ 0.91, fixed over space and 
time, to represent a bare soil surface which, in regions with any vegetation, underestimates u*ts and overesti-
mates sediment transport and dust emission;

3.  sediment transport in the presence of vegetation uses the “erodible” fraction E, implemented using dynamic 
vegetation cover (at nadir) which causes overestimated sediment transport and dust emission and E does not 
compensate for incorrect R;

4.  the grain (point) scale of u*ts is incompatible with areal transport models which very likely underestimates 
sheltering and combined with the unreasonable assumption for drylands of an infinite supply of sediment, 
causes overestimated sediment transport and dust emission;

5.  areal (e.g., >11 km) pixels of wind speed do not adequately represent the subpixel scale heterogeneity of the 
aerodynamic roughness and soil surface wind friction, which very likely causes underestimated dust emission 
which is scale dependent (different dust emission with different pixel size).

These weaknesses have existed for more than 20 years since dust emission schemes were first published. The first, 
incomplete formulation, only became evident recently by comparison with the albedo-based approach (Webb 
et al., 2020). That finding demonstrates the need for diversity in modeling approaches and provided the impe-
tus for this broader investigation. The enduring influences of these weaknesses on large scale TEMs have been 
hidden for so long we contend, because dust cycle models are routinely evaluated against atmospheric DOD.

2.1.2. Albedo-Based Sediment Transport

In our AEM, the spatiotemporal variation in us* is represented using the concept that aerodynamics of vegeta-
tion is proportional to sheltering (Raupach, 1992) and shadow (1-normalized albedo) (Chappell & Webb, 2016; 
Chappell et al., 2010). This albedo-based approximation of drag and its partition between forces was designed 
to provide an area-weighted value which was scale invariant (Chappell et al., 2018, 2019; Ziegler et al., 2020) 
suitable for tackling nonlinearity of scaling (Raupach & Lu, 2004). This albedo-based approach enables direct 
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calculation of us* given measurements of albedo from satellites (and many other ground to airborne sources), and 
enables the complete formulation for sediment transport and dust emission

𝑄𝑄AEM(𝜔𝜔𝜔 𝜔𝜔𝜔𝜔𝜔) =

⎧⎪⎨⎪⎩

𝐶𝐶
𝜌𝜌𝑎𝑎

𝑔𝑔
𝑢𝑢3𝑠𝑠∗

(
1 −

(𝑢𝑢∗𝑡𝑡𝑠𝑠𝐻𝐻)
2

𝑢𝑢2𝑠𝑠∗

)(
1 +

𝑢𝑢∗𝑡𝑡𝑠𝑠𝐻𝐻

𝑢𝑢𝑠𝑠∗

)
𝜔 𝑢𝑢𝑠𝑠∗ > 𝑢𝑢∗𝑡𝑡𝑠𝑠𝐻𝐻

0𝜔 𝑢𝑢𝑠𝑠∗ ≤ 𝑢𝑢∗𝑡𝑡𝑠𝑠𝐻𝐻

. (3)

This QAEM does not require E (or VI data), R, z0, or z0s and thereby has four primary parameters less than the 
exemplar TEM, and removes their associated sources of uncertainty. Soil moisture w was obtained from the same 
data as used in the TEM and calculated in the same way. The us* is obtained directly from ωns, using shadow 
from the normalized and rescaled albedo which describes the area-weighted land surface aerodynamic structure 
(partitioned between above canopy and soil surface) independent of waveband, making it highly suitable for the 
inclusion of dryland non-photosynthetic material

𝑢𝑢𝑠𝑠∗

𝑈𝑈ℎ

= 0.0311

(
exp

−𝜔𝜔𝑛𝑛𝑠𝑠
1.131

0.016

)
+ 0.007. (4)

The 𝐴𝐴
𝑢𝑢𝑠𝑠∗

𝑈𝑈ℎ

 is a coupled parameter which describes how the soil surface wind friction velocity is dependent on the 
wind speed at a given height (h), where that height is ideally at freestream. This approach enables an AEM 
(see Equations S10–S13 in Supporting Information S1 for a full description of the implementation not limited 
to MODIS albedo products) (Chappell & Webb, 2016; Chappell et al., 2010, 2018; Ziegler et al., 2020). This 
approach assumes that the wind profile is logarithmic with neutral buoyancy, in common with the approach typi-
cally used in large-scale dust emission modeling (Marticorena & Bergametti, 1995).

Typically, wind fields over large (e.g., >11 km) pixels (e.g., ERA5-Land) are estimated at a blending height (e.g., 
40-m height) and then use z0 values, assumed homogeneous within few large land cover types, to extrapolate wind 
speed to typically 10-m height (ECMWF Forecast User Guide). Therefore, these modeled 10-m wind speeds do 
not adequately represent the subgrid scale heterogeneity of aerodynamic roughness (z0) which causes wind speeds 
to be underestimated. The albedo-based approach improves constraints on the coupled parameter 𝐴𝐴

𝑢𝑢𝑠𝑠∗

𝑈𝑈ℎ

 and scales 
linearly over space and time. The approach therefore offers considerable potential to make us* estimates over large 
areas (upscaled) or to improve the subgrid scale heterogeneity of z0 and therefore improve the downscaling of 
10-m wind speed. However, improving the aerodynamic scaling of wind speed is beyond the scope of this study.

Notably, the AEM inherits the long-established and poorly constrained entrainment threshold u*ts which at the 
grain (point) scale is inconsistent with the new area-weighted albedo-based approach. The AEM also retains 
the unreasonable assumption in drylands of an infinite supply of sediment. Consequently, we tackle this scaling 
inconsistency and source of uncertainty in the AEM, by removing the frequency distribution of the entrainment 
threshold (right-hand side of Equation 3) and replacing it with the frequency distribution from satellite observed 
DPS data which retains the fidelity of the dust emission process (Section 2.4).

2.1.3. Dust Emission Modeling

The vertical dust mass flux (F; g  m −2  s −1) may be calculated from Q using physically based schemes (Kok 
et al., 2014; Shao et al., 1996). However, one of the common approaches in regional and global applications, 
and that used here for the exemplar TEM and AEM, calculates F as an empirical function of Q (Marticorena & 
Bergametti, 1995) where Q differs between TEM and AEM only because of the sediment transport equations 
above

𝐹𝐹TEM(𝑉𝑉 𝑉𝑉𝑉 𝑉𝑉0𝑉 𝑉𝑉0s𝑉 𝑑𝑑𝑉 𝑑𝑑) =
∑
𝑑𝑑

𝐴𝐴𝑠𝑠𝐴𝐴𝑓𝑓𝑀𝑀𝑀𝑀TEM10
(0.134clay%−6.0) with 0% < clay% < 20%𝑉 (5)

𝐹𝐹AEM(𝜔𝜔𝜔 𝜔𝜔𝜔𝜔𝜔) =
∑
𝜔𝜔

𝐴𝐴𝑠𝑠𝐴𝐴𝑓𝑓𝑀𝑀𝑀𝑀AEM10
(0.134clay%−6.0) with 0% < clay% < 20%. (6)

The dust emission parameterization considers the emission flux to be driven by saltation bombardment, with 
the intensity proportional to Q, and the soil's clay content (clay% typically <2 μm fraction of soil particles at the 
soil). The mass fraction of clay particles in the parent soil was allowed to vary over space, but was fixed over 
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time. In both models, we used the latest, reliable and spatially varying layer of particle size (Dai et al., 2019) and 
restricted clay% to a maximum value of 20% consistent with previous work (Marticorena & Bergametti, 1995) 
which showed reasonable results when applied in a regional model calibrated to DOD (Woodward, 2001). The 
Q, which produces dust, is adjusted by the emitted dust fraction M for a given particle size fraction with diameter 
d which we calculated as 1 < d < 10 μm following Zender, Bian, et al. (2003) by using M = 0.87. When the soil 
is covered by snow it is unable to provide any dust emission. In this situation, it is most effective to use a mask 
which determines whether snow is present or absent (As). Similarly, if the soil is bare but frozen it is unable to 
release sediment almost regardless of how much wind energy is applied. In this situation, it is most effective to 
use a mask which determines whether the soil is frozen or not (Af).

Some models also use geographically preferential dust sources that limit the magnitude of dust emission (Evans, 
Ginoux, et al., 2016; Ginoux et al., 2001; Mahowald et al., 2010; Tegen et al., 2002; Woodward, 2001; Zender, 
Bian, et al., 2003). In our exemplar TEM, we do not use preferential dust sources to make clear in our results the 
cause of differing dust emission magnitude and frequency. Also, the emission in ESMs is typically “tuned” down 
to match observed atmospheric DOD (Zender, Bian, et al., 2003). Here, we do not apply this final global tuning.

2.2. Large-Scale Dust Emission Modeling, Mapping Spatial Variation, and Change Detection

To implement vertical dust emission, we used contemporary (2001–2020) Earth observation data includ-
ing spatially and temporally varying wind speeds (at 10 m height), soil moisture (0–7 cm depth), and soil 
surface temperature (to represent frozen ground which inhibits sediment flux) from the latest ERA5-Land data 
(Muñoz-Sabater et al., 2021) (hourly; 0.1°). The coverage of snow in a given pixel is an areal quantity and there-
fore ranges between 0 and 1. Consequently, we applied the MODIS Normalized Difference Snow Index (Hall 
et al., 2016) (MOD10A1 from Terra, daily at 500 m). We used soil surface temperature available in ERA5-Land 
and set a threshold of 273.15 K above which sediment flux can occur. The use of these data does not imply prior-
ity over any other data. We recognize that there are different qualities to different model data, as evident in their 
wind fields (Fan et al., 2021). Where applicable, we used the same data in both the exemplar TEM and AEM to 
consider the relative differences. We used the exemplar TEM with R(z0, z0s) ≈ 0.91 fixed over space and static 
over time. Following the current practice, we calculated u* from the modeled 10 m height wind velocity using 
the logarithmic layer profile theory and aeolian roughness length (Darmenova et al., 2009) (details are provided 
in the Supporting Information S1). We allowed soil moisture to vary in the same way in both TEM and AEM. 
Only in the exemplar TEM was MODIS Normalized Difference Vegetation Index (NDVI; MOD09GA Collec-
tion 6) data used to calculate the bare soil fraction E. For comparison, we used the AEM with soil surface wind 
friction velocity us*/Uh obtained directly from MODIS albedo (MCD43A3; Collection 6) varying daily, every 
500-m pixel across the study area. MODIS is aboard polar-orbiting satellites which cause incomplete coverage. 
However, the variation in roughness at the daily-weekly scale is so small that we were able to smooth the available 
data to improve the coverage. Soil clay content was represented with a digital soil texture map (Dai et al., 2019) 
and used in both models (see Section 2 and Text S1 and S2 in Supporting Information S1).

All data are available from the catalog of the Google Earth Engine (GEE; Gorelick et  al., 2017) which then 
required no downloading and reformatting. We used the Java script coding environment to calculate daily dust 
emission (kg m −2 yr −1). Given the availability of DPS validation data at sites in southwestern USA, we restricted 
our mapping to North America including dust source regions bordering the USA. This regional focus enabled 
the spatial patterns and changes over time to be readily visualized by contrast to global maps. Testing the code 
and visualizing the results for smaller time periods across the study area was almost instantaneous in the GEE. 
Data processing at 500 m and using daily resolution between 2001 and 2020 across North America took typically 
<12 hr. These data were exported from the GEE for the calibration/validation in a Python coding environment 
and images (TIF) from the GEE were also exported for presentation using ArcGIS Pro.

At the sites and days when dust was observed using DPS, we compared them with the dust emission produced 
by the exemplar TEM, AEM, and atmospheric DOD frequency. For the year 2020 (the most recent year of 
complete data available at the time of the study) and the main dust emission months of March-May (MAM) in 
North America (Hennen et al., 2022), we analyzed the spatial variation of the main controlling variables (wind 
and aerodynamic roughness) and dust emission produced by the exemplar TEM and AEM. The dust emission of 
both models was restricted to wind speeds between 8.5 and 9.5 m s −1 to emphasize the difference in our modeling 
approaches below (Figures 2 and 5), which would otherwise be hidden by taking the average for all wind speeds. 
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Finally, we also map the difference in driving variables during MAM for the year 2001 compared with the year 
2020. This large difference between years provides the greatest opportunity to appreciate the impact on dust 
emission of any change in land surface conditions and which has not been demonstrated previously in dust 
emission modeling applications. The dust emission on dust days was used to obtain the mean difference. That 
mean difference is then tested for significance using the minimum detectable change (MDC) framework (Webb 
et al., 2019; Woodward, 1992) and the results are displayed. The MDC was established using critical values for 
false acceptance and false rejection (α = 0.05; β = 0.05, respectively) and the change in dust emission which did 
not exceed the MDC, was set to 0 (not detectable = white). Details of how the MDC was calculated are described 
in Text S3 in Supporting Information S1.

2.3. DPS and DOD Frequency

Commonly, DOD from ground-based or large area Earth observation data are typically used to evaluate the 
performance and/or calibrate dust cycle model simulations (Meng et  al.,  2021). This approach assumes for 
simplicity that: (a) atmospheric DOD adequately represents the dust emission process and (b) the spatial varia-
tion in magnitude and frequency of dust emission in the dust cycle model is correct. However, we know a priori 
that dust in the atmosphere is only partially related to dust emission because dust concentration is controlled by 
dust emission magnitude and frequency which varies over space and time, by residence time of dust near the 
surface which itself is dependent on wind speed (Textor et al., 2006), and on dust deposition in the dust source 
region, a size dependent process (Mahowald et al., 2014). To understand the extent to which DOD estimates 
the spatial variation in dust emission magnitude and frequency we calculated the probability of dust occurrence 
retrieved from the DOD (DOD > 0.2) using the criteria established previously (Ginoux et al., 2012). We note 
the stated limitations of DOD to be largely restricted to bright land surfaces in the visible wavebands which 
implies reduced performance over areas where vegetation is present (Ginoux et al., 2012). We demonstrated 
below (Text S4 in Supporting Information S1) that there is little impact of the chosen DOD threshold on the 
results presented here. To calculate DOD, we used wavebands available from monthly Moderate Resolution 
Imaging Spectroradiometer (MODIS; MOD08 M3 V6.1 Deep Blue L2 Aerosol Product) at a 1° pixel resolution 
(Platnick et al., 2015). We used this resolution because it was consistent with the largest DPS data of our larger 
study. We also believe that this 1° pixel resolution provides the best opportunity for DOD to be associated with 
dust emission. We note the difference between our use of collection 6.1 and collection 5.1 used by Ginoux 
et al. (2012). We assume that the criteria we used following Ginoux et al. (2012) are applicable to the later 
collection. The DOD was retrieved from those pixels in which dust emission was observed from DPS in space 
and time throughout 2001–2016.

The identification of DPS data is a highly time-consuming and labor-intensive activity (Text S5 in Supporting 
Information  S1). Consequently, there are few (published) studies relative to the large number of global dust 
source regions. Here, we use DPS data collated from several previous studies in North America (Baddock 
et al., 2011; Kandakji et al., 2020; Lee et al., 2012). Those studies identify the point source of dust emissions in 
New Mexico and Texas between 2001–2016 and 2001–2009 and for 2001–2009 in the Chihuahuan Desert and 
New Mexico, collating a single data set of DPS data from North America. The DPS observations were identified 
using MODIS data with visible to thermal infrared wavebands (0.4–14.4 mm; see Text S5 in Supporting Informa-
tion S5). Modeled (AEM and exemplar TEM) and observed frequencies are aggregated by a 1° × 1° grid matrix, 
normalizing the results to the lowest resolution MODIS DOD data (Figure 1).

This aggregation is performed to tackle the incompatibility of different scales (Gotway & Young, 2002). At the 
point scale, there is considerable unexplained variance which is likely related to the DPS data location uncer-
tainty of around ±2 km (Kandakji et  al., 2020) due to the phase difference between timing of dust emission 
and availability of the imagery. The unexplained variance and incompatible scales are well-established in the 
geostatistical literature (Gotway & Young, 2002). We reduced the unexplained spatial variance by aggregating the 
DPS data into a 1° grid system, matching the horizontal resolution of the DOD data. A binary value is applied to 
each DPS location for each day during the observation period (length of the DPS study) where 1 = dust observed, 
0 = no dust observed. For comparison, the same process is applied to modeled and DOD data, by spatially inter-
polating raster images at the native resolution of the original outputs (DOD = 1°, AEM/TEM = 0.1). Aggregation 
of daily probability for each grid box frequency provides either 1 or 0 observations per day for all measurements 
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(AEM/TEM/DOD/DPS). For a daily grid cell to record dust (frequency = 1), at least one of the DPS locations 
must record the emission (F > 0)/presence (DOD > 0.2) of dust. Where emission/presence of dust is identified at 
more than one DPS location (within the same grid cell) the grid value remains one—this is the maximum. Finally, 
the sum of these frequencies is divided by the number of years of observation, to provide an annual probability 
of dust emission (as shown in Figure 4). This normalization is necessary due to varying periods of observation 
across the DPS studies.

2.4. Dust Emission Model Evaluation Against DOD and Calibration Against DPS

We compared DPS observed occurrence with modeled dust emission determined by the exemplar TEM and the AEM. 
Similarly, during those same DPS observed occurrences we compared the retrieved estimates of DOD frequency. For 
all of those model estimates of dust frequency (DOD, exemplar TEM, and AEM), separately we fitted log-linear 
regression models which produced regression model parameter coefficients, R 2 correlation and the square root of 
the sum of squared difference (SSE) between DPS and model predictions to form the RMSE = √SSE/(N − df) 
where N number of data are adjusted by the degrees of freedom (df = number of independent dust emission model 
parameters).

We improve the constraints 𝐴𝐴 𝐴𝐴𝑠𝑠∗ > 𝐴𝐴∗𝑡𝑡𝑠𝑠𝐻𝐻 on dust emission model evaluation by calibrating the dust emission magni-
tude according to modeled emissions during those observed occurrences. We follow the established approach 
(Hennen et al., 2022) by using observations of dust emission frequency at dust emission sources during satellite 
observations. We use dichotomous satellite observed DPS data and its probability of occurrence P(DPS > 0) as a 
first-order approximation of the probability of sediment transport P(Q > 0) leading to the proportion of dust (F) 
emission P(F > 0) at those points identified to produce dust

𝑃𝑃 (DPS > 0) ≈ 𝑃𝑃 (𝑄𝑄 > 0) ∝ 𝑃𝑃 (𝐹𝐹 > 0) = 𝑢𝑢𝑠𝑠∗ > 𝑢𝑢∗𝑡𝑡𝑠𝑠𝐻𝐻

⎧⎪⎨⎪⎩

1

0

 (7)

Figure 1. Location and publication source (Baddock et al., 2011; Kandakji et al., 2020; Lee et al., 2012) inventory in New 
Mexico, Texas, Arizona, Colorado, Kansas, Oklahoma, and Northern Mexico between 2001 and 2016 (Kandakji), 2001–2009 
(Lee) and in 2001–2009 in the Chihuahuan Desert and New Mexico (Baddock) using satellite observed dust emission point 
sources set against a background of average wind friction velocity normalized by wind speed (u*/Uh) derived from MODIS 
albedo (500 m).
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Accurate estimates of the magnitude and frequency of FAEM depend on correctly predicting P(F > 0), which 

itself depends on the entrainment threshold and the soil moisture 𝐴𝐴 𝐴𝐴𝑠𝑠∗ > 𝐴𝐴∗𝑡𝑡𝑠𝑠𝐻𝐻

⎧⎪⎨⎪⎩

1

0

 . However, we know a priori 

that there are at least two very weak assumptions in the dust emission modeling: that the soil surface is covered 

homogeneously with an infinite supply of loose erodible material, which when mobilized by sufficient wind fric-
tion, causes dust emission. This approach assumes energy-limited dust emission which is rarely justified in dust 
source regions where the soil surface is rough due to soil aggregates, rocks, or gravel, sealed with biological or 
physical crusts, or loose sediment is simply unavailable (Vos et al., 2020; Webb & Strong, 2011). Consequently, 
we follow the recently established approach (Hennen et al., 2022) and bypass those weak assumptions by using 
observed dust emission frequencies at DPS data locations to parameterize the entrainment threshold frequency 
distribution

𝑄𝑄DPS(𝜔𝜔) = 𝐶𝐶
𝜌𝜌𝑎𝑎

𝑔𝑔
𝑢𝑢3𝑠𝑠∗ 𝑃𝑃 (DPS > 0), (8)

𝐹𝐹DPS(𝜔𝜔) =
∑
𝑑𝑑

𝐴𝐴𝑠𝑠𝐴𝐴𝑓𝑓𝑀𝑀𝑀𝑀DPS10
(0.134clay%−6.0) with 0% < clay% < 20%, (9)

using the established calibration for this region (Hennen et al., 2022)

Log10(AEMcal) = 0.88 Log10(𝐹𝐹DPS) − 2.02, (10)

where AEMcal is the adjustment of modeled FDPS values using the calibration. This approach calibrates our 
large-scale dust emission model to be consistent with DPS. This approach overcomes the currently poor model 
constraint 𝐴𝐴 𝐴𝐴𝑠𝑠∗ > 𝐴𝐴∗𝑡𝑡𝑠𝑠𝐻𝐻 of the sediment transport threshold. The DPS data are likely biased away from the small-
est dust sources which may not appear or are difficult for operators to detect using optical reflectance (Urban 
et al., 2018). Nevertheless, under these conditions, the AEMcal provides precise and accurate maps of seasonal 
dust emission, temporal dynamics, and mean regional dust emission. We applied this calibration only to the AEM 
change over space and time (Section 3.3) to provide valid, calibrated dust emission estimates for comparison with 
the exemplar TEM.

3. Results
3.1. The Impact of “Erodible” Fraction (E) Implementation on Dust Emission Modeling

We simulated dust emission with wind speed varying between 0 and 12.5 m s −1 (Figure 2a). The exemplar TEM 
dust emission is shown with a fixed aerodynamic roughness length for the landscape scale z0 = 100 μm and the 
soil scale z0s = 33.3 μm following several previous studies e.g., (Zender, Bian, et al., 2003), which fixes R ≈ 0.91 
and assumes for simplicity that the land surface is almost devoid of vegetation roughness and static over time. 
With E = 1, sediment transport and dust emission are unadjusted and increases along the upper (large dashed) 
curve as wind speed increases (because wind friction is fixed). When the land surface is partially covered in 
vegetation and E = 0.5 (all other conditions remain the same), sediment transport and dust emission increases 
as wind speed increases but at a consistently reduced rate (solid line). This separate curve and reduced rate are 
caused entirely by using E. The open square is the exemplar TEM at 8 m s −1 and the filled square is the exemplar 
TEM at 9.2 m s −1. Despite E being implemented to reduce sediment transport in the presence of vegetation, the 
(unintended) outcome is very similar dust emission for similar wind speeds (from open square to filled square). 
For clarity, this finding reveals for the first time that the exemplar TEM will emit larger amounts of dust from 
vegetated surfaces than from bare surfaces (for the same erodibility conditions). This is because E does not 
adequately reduce dust emission depending on the interplay between wind and vegetation. Consequently, where 
there are large wind speeds in vegetated regions, the exemplar TEM will incorrectly produce large amounts of 
dust emission.

The AEM (uncalibrated) for a smooth, unvegetated situation (𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ  = 0.035; dotted line) produces larger dust 
emission than the exemplar TEM for the same 8 m s −1 wind speed (open triangle; Figure 2a). However, in a 
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rough, vegetated situation (𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ  = 0.022) dust emission declines to almost zero, along the same curve. Despite 
the larger wind speed of 9.2 m s −1 (closed triangle), the rough surface causes the surface wind friction velocity 
to decrease, barely exceeding the entrainment threshold, and consequently dust emission is considerably reduced. 
The increase in roughness is sufficient to overcome the increase in wind speed and causes dust emission to be 
much smaller. The interplay between wind speed and roughness realistically produces accurate and precise soil 
surface wind friction velocity essential for reliable and consistent dust emission estimates across complex terrain 
including vegetation.

These findings are partially expected based on the theory described above in Section 2. However, the impact 
of E in the exemplar TEM has not previously been recognized and is only evident here as unusual, relative 
to the more physically based AEM. The exemplar TEM is driven by wind speed attenuated by aerodynamic 
roughness, but which is here fixed over space and static over time to a bare soil surface, and dust emission is 
subsequently reduced by E based on vegetation cover. Consequently, wherever and whenever wind speed exceeds 
the entrainment threshold, the exemplar TEM will produce sediment flux and dust emission. To illustrate this 
point, Figure 2b shows change in dust emission with change in soil surface wind friction velocity normalized 
by wind speed (𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ ). In other words, Figure 2b shows how dust emission changes in either space and/or time 
as roughness changes in the AEM or as E changes in the exemplar TEM. Since the influence of wind speed is 
removed on the x-axis (and wind friction is fixed in the model), exemplar TEM produces no change for a given 
wind speed of e.g., 10 m s −1. The cause of change in the TEM for 10 m s −1 (solid red line) is due solely to the 

Figure 2. Dust emission (kg m −2 yr −1) simulations shown with (a) varying soil surface wind friction velocity and (b) with 
varying soil surface wind friction velocity (b) normalized by wind speed at 10-m height (U10) using fixed entrainment 
threshold u*ts = 0.2 m s −1, clay = 10%, soil moisture function H(w) = 1 and the bare soil function E. The exemplar TEM was 
implemented (Equations 2 and 5) with fixed aerodynamic roughness length (z0) and consequently fixed R ≈ 0.91 and fixed 
wind friction. The albedo-based dust emission (AEM uncalibrated) was implemented (Equations 3, 4, and 6) with varying 
wind friction as described in the main text, with details in Text S2 in Supporting Information S1.
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value of E varying. Since E is not aerodynamic (does not change with wind speed) and wind friction is fixed, 
dust emission does not change except when E changes. Under a scenario with the wind speed reduced from 10 to 
8 m s −1, the exemplar TEM F increases monotonically but at a reduced rate; that rate does not change with rough-
ness (𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ ) it changes only with E. Similarly, when the wind speed increases from 10 to 12 m s −1, the exemplar 
TEM F increases monotonically at an increased rate, but that rate does not change with roughness (𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ ).

In contrast, for the wind speed of 10 m s −1, the AEM produced a greater reduction in dust emission than the exem-
plar TEM for the greatest decrease in 𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ (Figure 2b). With the greatest increase in 𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ , the AEM produced 
a larger increase in dust emission than the exemplar TEM. When wind speed is consistently reduced to 8 m s −1, 
the change in dust is smaller than that at 10 m s −1. Notably, there is no change in dust emission between a change 
of −0.01 < 𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ  > 0.01 (Figure 2b). When wind speed is consistently increased to 12 m s −1, the change in dust 
emission produced by the AEM is large, continuous, and evident as 𝐴𝐴 𝐴𝐴𝑠𝑠∗∕𝑈𝑈ℎ changes.

The results of these simulations illustrate how the exemplar TEM does not adequately represent vegetation shel-
tering dynamics and that E compensates by adjusting the magnitude, not the onset of dust emission. The exemplar 
TEM will emit similar amounts of dust from vegetated surfaces as from bare surfaces (for the same conditions). 
These weaknesses in E have not been apparent previously, despite considerable use and application particularly 
in large-scale dust models, because dust emission has not been isolated in previous evaluations. In contrast, the 
AEM provides a direct estimate of 𝐴𝐴 𝐴𝐴𝑠𝑠∗ , which modifies dust emission as roughness and/or wind speed changes. 
Since this direct estimate of 𝐴𝐴 𝐴𝐴𝑠𝑠∗ is available from albedo, from ground measurements, monitored from satellite 
remote sensing, or modeled prognostically in ESMs, it is available over space and/or time without the need for R 
or the bare soil fraction E, thereby reducing uncertainty in the model parameterization. We elaborate the exem-
plar TEM weakness in comparison with the AEM by modeling dust emission change over space and time (see 
Section 3.3).

3.2. Modeled and Observed Dust Emission Frequency at DPS Locations

We retrieved atmospheric DOD probability P(DOD  >  0.2) at previously identified DPS locations across 
areas of southwestern North America to compare with DPS observed probability P(DPS > 0) (Figure 3). The 
P(DOD > 0.2) showed little resemblance to P(DPS > 0), with a distinctly different spatial pattern and consid-
erably greater probability in some areas. Peak P(DOD > 0.2) occurred across the USA/Mexico border in the 
Chihuahuan Desert, while P(DPS > 0) peaked over the Southern High Plains in eastern New Mexico and western 
Texas. The P(DOD > 0.2) probability increases in areas of reduced vegetation roughness (Figure 1) as difficul-
ties in measuring atmospheric dust over dark surfaces (e.g., vegetation), limit the DOD frequency data to only 
the most arid regions. In areas where the data are comparable (e.g., northern Chihuahuan Desert; 108°–104°W, 
29°–32°N), P(DOD > 0.2) is (at least) an order of magnitude greater than DPS.

Figure 3. Comparison between the probability of observed dust emission point sources (DPS) P(DPS > 0) observations (a) 
and MODIS (b) probability DOD P(DOD > 0.2) during the period of DPS observation (2001–2016). All available MODIS 
DOD frequency data were used. We demonstrate below (Text S4 in Supporting Information S1) that there is little impact of 
the chosen threshold on the results presented here.
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We compared estimated dust emission frequency (AEM and exemplar TEM models with F > 0 or DOD > 0.2) 
with observed DPS frequency (in days per year) at each DPS grid box (see in Figure 1). For each model compar-
ison, the observed DPS frequency remained the same, with differences in the model described on the x-axis 
(Figure  4). At most grid boxes, modeled frequency exceeds observation, consistent with the discrepancies 
between the grain (point) scale of the entrainment threshold, the area-weighted wind friction, and the areal 
(11 km) scale of wind speed. Both AEM and exemplar TEM overestimate dust emission frequency with RMSE 
(Log10) = 0.6 and 0.76 (4 and 5.8 days per year), respectively, relative to the 1:1 line (Figure 4) demonstrating 
slightly improved performance by the AEM. Nevertheless, across all grid box data, the relation between DOD 
frequency and DPS was very large exceeding DPS frequency by nearly 2 orders of magnitude, with RMSE 
(Log10) = 2.09 (123 days per year), considerably larger than the relation between DPS and the dust models. 
Least squares log-linear regression models were fitted to all models, with AEM and exemplar TEM frequencies 
showing statistically significant correlation with DPS observed frequency, producing a regression slope of 0.74 
(AEM), 0.76 (TEM), and R 2 = 0.80 (P << 0.001). The DOD frequency did not show a statistically significant 
correlation with DPS observed frequency, with a regression slope of −0.12 and R 2 = 0.02, (P = 0.35).

3.3. Modeling Dust Emission Change Over Space

The mean albedo-based u*/Uh and full range of U10 for the year 2020 are shown (Figures 5a and 5b). Since the 
exemplar TEM has fixed aerodynamic roughness, its wind friction velocity is fixed and hence varies with wind 
speed and E. For consistency with Figure 2, and to isolate the influence of E, the mean dust emission is shown for 
selected wind speeds (U10 = 8.5–9.5 m s −1) for both AEMcal and exemplar TEM (Figures 5c and 5d). Consistent 
with Figure 2, the spatial distribution of mean dust emission was very different between AEMcal and exemplar 
TEM in both magnitude and spatial extent. According to AEMcal, large dust emissions (0.05–0.12 kg m −2 yr −1) 
occurred in discrete areas across the Southern High Plains (104.5°W, 33.5°N), northern Chihuahuan Desert 
(107.5°W, 32°N), southwest Colorado Plateau (110.5°W, 35°N), and the Great Divide Basin within the Wyoming 

Figure 4. Modeled and observed frequency at known southwestern North American satellite observed dust emission point 
sources (DPS), identified in satellite observations from previous studies (Baddock et al., 2011; Kandakji et al., 2020; Lee 
et al., 2012). For each point, the y-axis represents the observed number of DPS observations (per grid box) per year during 
different observation phases of the DPS data sets within the observation time period (2001–2016). For AEM and exemplar 
TEM, the x-axis describes the number of modeled observations (F > 0) at DPS locations in each grid box per year during the 
same time period (x-axis). The x-axis describes the frequency that DOD > 0.2 per year for the same period. The least squares 
logarithm regression of modeled against DPS observations produced the model parameter coefficients, R 2 correlation and the 
square root of the mean squared difference between DPS, and model predictions (RMSE) adjusted by the degrees of freedom 
(df) using the number of model parameters (df = 9 for AEM; df = 12 for TEM; df = 6 for DOD frequency).
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Basin (108.5°W, 42°N). These areas correspond with small roughness u*/Uh, and large wind speed. Further-
more, large u*/Uh reduces the influence of large winds and restricts dust emission. Although the exemplar TEM 
dust emission occurred with similar maximum magnitude to the AEMcal, the exemplar TEM dust emission was 
distributed over a much larger area, including large parts of New Mexico and Wyoming, while also extending 
through the Great Plains in northwest Texas, Oklahoma, Colorado, and Nebraska (Figure 5d). This pattern of 
exemplar TEM dust emission matches closely the spatial distribution of mean wind speed (Figure 5b) controlled 
by E. However, consistent with the results of Figure 2, these results show that despite the variation in E imple-
mented with dynamic vegetation cover, dust emission remains very large and similar over space, producing 
relatively homogeneous dust emission (dark tones) despite considerable land surface heterogeneity (Figure 5d). 
These results demonstrate that the implementation of E using dynamic vegetation cover, does not compensate 
adequately for poorly constrained, fixed R (which represents bare soil surface with an infinite supply of sediment).

3.4. Modeling Dust Emission Change Over Space and Time

Separate differences in albedo-based roughness (u*/Uh) and wind speed at 10-m height (U10) for the year 2001 
compared with the year 2020 and greater than the MDC significance (P < 0.05), were produced (Figures 6a 
and 6b). Statistically significant change in roughness across North America occurred with a range ±0.01. The 
greatest reduction (<−0.01) in roughness occurred in Canada and was very likely caused by changes in the 
duration of snow coverage. Note that snow is removed from u*/Uh when calculating dust emission. South of the 
USA/Canada border, roughness reduced (−0.01) across large areas of Montana, the Wyoming Basin, and east-
ern parts of the Great Plains (Colorado, Kansas, and Nebraska). Smaller reductions in u*/Uh (−0.01 to −0.005) 

Figure 5. Mean conditions for North America during the year 2020 for peak dust season months March-May, including 
(a) above canopy albedo-based wind friction velocity normalized by wind speed (u*/Uh), (b) wind speed (at 10-m height), 
and modeled dust emission with (c; AEMcal Equation 10) and without (d; exemplar TEM; Equations 2 and 5) varying 
aerodynamic roughness. The dust emission displayed is for wind speeds restricted to between 8.5 and 9.5 m s −1 (for 
comparison with Figure 2). The daily maximum wind speed, described in hourly data from ERA5-Land (Source: ECMWF) 
are used in both models.
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occurred in discrete areas of the Southern High Plains, and northern Chihuahuan Desert. The greatest increase 
in u*/Uh (>+0.01) occurred across the American Mid-West, including Minnesota, Iowa, and South Dakota. In 
dusty areas (Figure 5), the greatest increase in u*/Uh (+0.005 to +0.01) occurred as discrete locations within the 
Chihuahuan and Sonoran Desert, the Great Basin (Nevada), and the southern limit of the Southern High Plains 
(eastern New Mexico and western Texas). Mean U10 changed with a range ±1.6 m s −1, with the largest increase 
(>1.6 m s −1) across southwest USA, including the Great Basin, Mojave and Sonoran Deserts, and the Colorado 
Plateau. Mean U10 reduced (<−0.8 m s −1) in the Mid-West states of Wisconsin and Illinois.

Differences in mean dust emission during the peak dust season (MAM) for the year 2001 compared with the 
year 2020 and greater than the MDC significance (P < 0.05), were produced for both exemplar TEM and AEMcal 
(Figures  6c and  6d). Statistically significant change in dust emission comparing AEMcal and exemplar TEM 
varied across the range ±2 kg m −2 yr −1. The AEMcal produced a significant decrease in dust emission (−1 to 
−2 kg m −2 yr −1) from several areas, including the Southern High Plains (eastern New Mexico and western Texas), 
the Colorado Plateau, and the Sonoran Desert (Figure 6c). The AEMcal showed a significant increase in dust 
emission from the Wyoming Basin, and discrete locations in Montana, and western areas of the Great Plains (west 
Colorado, Nebraska). In contrast, where no change in the AEMcal was detected, the exemplar TEM produced 
a significant decrease of dust emission across large areas of the Great Plains (up to −2 kg m −2 yr −1), the arid 
southwest (−1 to −2 kg m −2 yr −1), including the Mojave, Sonoran, and Chihuahuan Deserts, and the Mid-West 
(−1 to −2 kg m −2 yr −1). Exemplar TEM dust emission increased significantly across the Wyoming Basin (up to 
2 kg m −2 yr −1), the Great Basin and northern Mexico (Figure 6d). The exemplar TEM shows considerable false 
change in dust emission relative to the AEMcal which is calibrated to DPS frequency distributions. These findings 
have considerable implications for the use of the exemplar TEM in large-scale dust climate projections of ESMs.

Figure 6. Difference maps between the year 2001 and the year 2020 for the peak dust season months March-May and only 
dust days (not all days), showing total difference in (a) albedo-based mean wind friction velocity normalized by wind speed 
(u*/Uh) and (b) wind speed (U10). Minimum detectable change (MDC) in dust emission with significance (P > 0.05) with 
AEMcal (Equation 10) varying aerodynamic roughness (c) and with exemplar TEM (Equations 2 and 5) z0 fixed and static 
over time (d). Wind data are from ERA5-Land (Source: ECMWF). See Text S3 in Supporting Information S1 for details on 
the calculation of the MDC.
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4. Discussion
4.1. Overcoming Dust Emission Model Weaknesses Using the Albedo-Based Approach

Dust emission modeling has struggled to replicate observed dust emission magnitude and frequency, indicating 
an inability to adequately represent soil wind friction velocities (Evan et al., 2014). Many of the TEMs assume 
homogenous bare ground, before using the complement of dynamic vegetation cover to reduce emission. Using 
satellite DPS (Figure 1), we have shown the exemplar TEM overestimates dust emission frequency by 0.76 of an 
order of magnitude (RMSE = 0.76 using log10) (Figure 4). Using albedo to describe variability in aerodynamic 
roughness through changes in vegetation structure, the AEM performs theoretically better (Figure 2) at correctly 
estimating the probability of us* exceeding the entrainment threshold, and subsequent changes in dust emission 
timing and magnitude. When compared to observed DPS (Figure  4), AEM performs only moderately better 
than the exemplar TEM, still overestimating dust emission frequency by 0.6 orders of magnitude (RMSE = 0.6 
using log10). However, the AEM does not use z0m, z0s, R, or E, and the monitored normalized shadow is cali-
brated to wind tunnel u*/Uh. In contrast, the exemplar TEM is pre-adjusted to values of z0m and z0s for bare soil 
surfaces in R which are fixed over space and static over time and then adjusted by E. Furthermore, most DPS 
used in this work are from predominantly barren and windy environments, with mean u*/Uh = 0.069 and mean 
U10 = 6.9 m s −1, reducing the potential influence of dynamic vegetation. Nevertheless, the overestimation of 
modeled dust emission relative to the observed frequency, occurs because of one or more of the main priority 
factors described in Table 1. Those factors are elucidated in terms of potential impact on dust emission modeling.

We use the latest version of ERA5-Land wind (U at 10-m height; U10) data at a reasonably fine (11  km) 
resolution. It is evident that U10 is overestimated in some global regions (Fan et al., 2021). However, there 
appears to be no systematic bias in the global wind fields that would lead to the systematic overestimation of 
dust emission frequency. The grain scale of u*ts is evidently incompatible with areal dust emission modeling 
and this factor appears to be the most likely cause of the overestimated model dust emission frequency and 
should be a priority for future work. Without resolving the scale of u*ts it is not possible to isolate the impact 
of the assumed infinite supply of loose erodible material (Table 1). However, the scale invariant nature of the 
albedo-based approach (Ziegler et al., 2020) holds considerable potential for tackling these long-standing and 
widely omitted scaling issues in dust emission modeling. It is very likely that these two factors explain the 
first-order differences between the DPS frequency and the dust emission model frequency. Although we have 
reduced uncertainty by using grid boxes for the DPS frequency, there remains uncertainty over the use of DPS 
frequency (Urban et al., 2018). However, by comparison with DOD frequency, the use of DPS frequency is up 
to 2 orders of magnitude smaller indicating that dust emission models should be evaluated against DPS data.

Beyond the observed DPS, vegetation roughness appears influential, constraining dust emission greater than 
0.1 kg m −2 yr −1 to areas where u*/Uh is no greater than 0.06, even during periods of peak (8.5–9.5 m s −1) wind 
speed in our case. In contrast, the exemplar TEM predicts dust emission >0.1 kg m −2 yr −1 in areas where u*/Uh is 
greater than 0.075 (vegetated), including large areas of the vegetated Great Plains. This difference is emphasized 
in parts of western Oklahoma (99.5°W, 35.5°N), where mean u*/Uh > 0.08 prevents dust emission from the AEM, 
despite a mean U10 > 7 m s −1. However, in those areas, exemplar TEM dust emission exceeds 0.2 kg m −2 yr −1. These 
contrasting estimates emphasize exemplar TEM dependency on variability in U10, due to the incomplete modeling 
using 𝐴𝐴 𝐴𝐴3∗ (Webb et al., 2020) and the inability of R adjusted by E, to correctly attenuate wind speeds by aerodynamic 
roughness (Table 1). The proposed solution is simple for contemporary, satellite era analysis, remove E (and the 
need for R, z0, and z0s) and make use of readily available satellite albedo data to directly estimate 𝐴𝐴 𝐴𝐴𝑠𝑠∗ . The limita-
tions of the  approaches and their impacts on dust emission modeling have been hidden for more than two decades 
since  dust  emission models were developed. The limitations have created two further issues, (a) a requirement for 
post-process tuning using dust source maps, which limits the model's ability to predict dust without a priori infor-
mation; (b) large scale uncertainty and scale dependence driven by a large spatial and temporal variability in U10.

Our comparison of dust emission between two time periods (2001 and 2020) emphasizes a previously unrealized 
impact of varying aerodynamic roughness in the temporal variability of dust emission magnitude. Through the calcu-
lation of dynamic us*, the AEM constrains dust emission to relatively small areas, restricting significant variability 
between time steps, to only dust producing areas (e.g., the arid southwest and semiarid parts of the Great Plains; 
Figure 6c). In contrast, the exemplar TEM's dependency on U10 variability shown here, produces significant changes in 
dust emission over vast vegetated areas, including those which are very unlikely to produce dust (e.g., temperate areas 
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of the Great Plains and the grasslands of northern Mexico; Figure 6d). These results demonstrate for the first time, 
that the exemplar TEM using E implemented with VIs and LAI data layers in  dust-climate models, will considerably 
overestimate dust emission in vegetated regions with large wind speeds. Our proposed solution to this previously 
hidden weakness is to make prognostic ESM albedo data available to the dust module coupled to the climate model.

4.2. Overcoming Dust Emission Model Tuning to DOD

Comparing dust cycle models with DOD, indicates large errors in simulated dust magnitude and geochemical 
properties (Evan et al., 2014; Huneeus et al., 2011; IPCC, 2013). Consequently, dust cycle models are calibrated 
typically to DOD, which forces dust emissions to match dust in the atmosphere, at often unknown distances from 
dust sources, which hides the correct magnitude and frequency of emission events at source. We have shown here 
that DOD frequency poorly represents observed dust emission frequency by nearly 2 orders of magnitude, and 
with no spatial correlation in frequency variability. Previous studies have suggested that this inconsistency is due 
to the spatial bias between time of emission and downwind observation in sun-synchronous daily observations 
(Schepanski et al., 2012). While explaining perhaps some of the variability evident in our results, that inconsist-
ency also illustrates the fundamental problem of calibrating dust cycle models to DOD. The inconsistency in 
modeled dust emission from areas unlikely to produce dust, has previously been filtered out where preferential 
dust source maps are used (Ginoux et al., 2012). The probability of dust emission is predefined by the topographic 
setting, constraining emission to drainage basins (Zender, Newman, et al., 2003). These predefined conditions 
limit the ability to simulate the spatiotemporal dynamics of dust emission in these areas, as well as omitting most 
small dust sources in other areas of the basin (Urban et al., 2018).

Using extant DPS (Hennen et al., 2022, 2023), our results demonstrate that DOD frequency is limited to areas 
with highly reflective surfaces e.g., creating a bias over northern areas of the Chihuahuan Desert. The DOD 
frequency hotspots for the period 2001–2016 were located upwind of the DPS locations. These findings severely 
undermine the efficacy of dust cycle model calibration to DOD frequency, especially where dust emission occurs 
in relatively discrete areas surrounded by more densely vegetated areas such as in North America. Overestimation 
of dust emission in these environments very likely alters the magnitude, frequency, and geographical distribution 
of global dust emission, which currently considers continental-scale barren environments (e.g., North Africa) as 
persistently predominant sources of global dust (Engelstaedter et al., 2006).

Factors increasing uncertainty in dust emission modeling (problem). Impact on dust emission modeling and proposed solution.

Poorly constrained aerodynamic roughness (z0) and drag partition (R), uses 
R ≈ 0.91 which represents a bare soil surface, intended for E to reduce dust 
emission in the presence of vegetation, but E functions incorrectly.

In regions with any vegetation, R ≈ 0.91 underestimates u*ts and the inadequate 
adjustment by E causes overestimated dust emission, particularly in vegetated 
regions.

Solution: Remove E, z0, and z0s and use albedo-based 𝐴𝐴 𝐴𝐴𝑠𝑠∗ .

The incomplete form of 𝐴𝐴 𝐴𝐴3∗ in QTEM (Equation 2) widely adopted in TEMs, should 
have u* multiplied by the drag partition R, but the correct values of R are 
unknown (for every pixel and every time step producing dust).

Using 𝐴𝐴 𝐴𝐴3∗ instead of 𝐴𝐴 𝐴𝐴3𝑠𝑠∗ overestimates considerably the magnitude of dust 
emission.

Solution: Use direct, albedo-based us*.

All physically based dust emission modeling currently assumes for simplicity an 
infinite supply of dry, loose erodible material is available once u*ts has been 
exceeded. Modeled u*ts at the grain (point) scale is very likely to be much 
smaller than areal u*ts and incompatible with areal wind speed.

Underestimated u*ts relative to us* will overestimate the frequency of dust 
emission where sediment is unavailable and/or restricted by rocks and 
biogeochemical soil crusts.

Solution: Until a new entrainment parameterization is available, model dust 

emission frequency distribution as 𝐴𝐴 𝐴𝐴 (DPS > 0) =

⎧⎪⎨⎪⎩

𝑢𝑢𝑠𝑠∗ > 𝑢𝑢∗𝑡𝑡𝑠𝑠𝐻𝐻𝐻 1

𝑢𝑢𝑠𝑠∗ ≤ 𝑢𝑢∗𝑡𝑡𝑠𝑠𝐻𝐻𝐻 0

 .

Modeled wind speed over large (e.g., >11 km) pixels does not adequately 
represent the subgrid scale heterogeneity of aerodynamic roughness.

Large areal wind speed fields are incompatible with point scale dust emission 
modeling.

Solution: Either upscale albedo-based us* to wind speed pixels or downscale wind 
speed to represent aerodynamic roughness heterogeneity.

Table 1 
Assessment of the Priority Factors Causing Uncertainty in Dust Emission Modeling, Their Likely Impact on Dust Emission Modeling and Proposed Solutions Based 
on Our Research Findings
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4.3. Implications of Model Weaknesses for Dust Emission Modeling

This study has demonstrated that dust emission modeling can be considerably improved by utilizing a calibrated 
drag partition with the AEM. It contrasts with the exemplar TEM by avoiding pre-conditioning the model to bare 
(devoid of vegetation) z0 and z0s to produce R ≈ 0.91 which overestimates sediment transport before adjustment 
by E the bare “erodible” soil fraction. The TEMs were developed more than two decades ago when dynamic data 
inputs were less available. Many global dust emission studies still use static inputs, such as selective vegetation 
cover thresholds and bare soil fraction in global dust emission modeling (Albani et al., 2014). Preferences for 
which regions emit or how much vegetation to allow before dust emission ceases, have contributed to the inability 
to detect model weaknesses (Zender, Bian, et al., 2003). The ad hoc delineation of source regions and/or tuning of 
dust cycle models to DOD constrains dust emission to areas with large concentrations of dust in the atmosphere 
(Huneeus et al., 2011). In contrast, regional differences in magnitude and frequency of dust emission, wind speed, 
and particle size controlling dust residence times are at best not prioritized and at worst masked out. Furthermore, 
contemporary atmospheric dust loads do not enable unbiased reconstruction of past trends or to project future 
shifts in the location or strength of emissions (Mahowald et al., 2010).

There is also a great risk that major scientific advances made in developing dust emission schemes (Marticorena 
& Bergametti, 1995; Shao et al., 1996) and newly developed data/parameterizations (Prigent et al., 2012) are 
being under-utilized by an over-reliance on parsimonious assumptions about dust source location and erodi-
bility to implement dust emission models. Model tuning in its various guises, particularly to DOD, makes it 
hard to routinely evaluate dust emission model implementation and development. Our findings suggest that it is 
essential to ensure that dust emission modeling is explicitly balanced between the fidelity of the dust emission 
scheme (processes) and the parsimony of its implementation (parameterization influenced by data availability) 
(Raupach & Lu, 2004). As new parameterization schemes are developed and new data sources become available, 
the aeolian research community will benefit from being open to critical re-evaluations and diversifications to 
ensure that model development balances parsimony and fidelity and avoids enduring model weaknesses.

The exemplar TEM, in common with many dust emission models, uses 𝐴𝐴 𝐴𝐴3∗ to calculate the magnitude of sediment 
transport, and predicted unreasonably large dust emission particularly in vegetated regions, because u* should be 
multiplied by R before being cubed and hence is overestimating 𝐴𝐴 𝐴𝐴𝑠𝑠∗ (Webb et al., 2020). Although our exemplar TEM 
dust emission is adjusted by the bare soil fraction E, we have shown that this is not functioning adequately. Imple-
mentations of E using VIs and recent developments with dynamic vegetation in dust emission modeling are flawed 
by this weakness in E. Many of the limitations in dust emission modeling using the exemplar TEM were evident in 
the original dust emission scheme (Marticorena & Bergametti, 1995). However, these limitations have been ignored 
or overlooked to implement global dust emission schemes. The calibration of dust cycle model estimates against 
DOD have hidden these limitations, caused weaknesses to endure and made it difficult for the community to eval-
uate model developments.

Despite its multiple parameters, the exemplar TEM operates like other dust emission models explicitly controlled 
only by wind speed at some height Uf and threshold of Uft (Ginoux et al., 2001) (e.g., GOCART). In our study, 
we did not include these dust emission models based on wind threshold. However, given their similarity with the 
exemplar TEM, our results suggest that both model types are inadequate for representing dust emission across 
Earth's dynamic vegetated drylands and over time. Consequently, the model weaknesses identified here most likely 
explain why, on monthly time scales, the relation between surface wind speed and TEMs could be linearized, and 
why differences between CMIP5 models appear to be due solely to wind field biases (Evan et al., 2016). Perhaps 
most significantly, our results explain to a large extent, how and why the use of exemplar TEM lack validity in 
21st century dust emission projections (Evan et al., 2014). Large uncertainties and inter-model diversity remain in 
CMIP6 models and are larger than previous generations of models (Zhao et al., 2022) implying that modeled dust 
processes are becoming more uncertain as the latest modeling efforts continue to evaluate dust cycle models against 
atmospheric DOD (Klose et al., 2021).

5. Conclusion
Improving climate change projections requires dust models that are sensitive to, and accurately represent, dust 
emission responses to changing environmental conditions (wind speed, precipitation, evapotranspiration), land 
use and land cover dynamics. Dust cycle models typically calibrated against atmospheric DOD are assumed valid 
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for use with dust-climate projections in ESMs. However, for reasonable and well-established reasons, there is 
little spatial relation between atmospheric DOD frequency and DPS and a difference of up to 2 orders of magni-
tude. The exemplar TEM overestimated large dust emission over vast vegetated areas and produced considerable 
false change over space and time in dust emission relative to the AEM calibrated to DPS data. Using these recent 
developments (AEM and calibration using DPS data), key weaknesses in the TEMs have been identified more 
than two decades since dust emission schemes were developed. It is difficult to avoid the conclusion that calibrat-
ing dust cycle models to DOD has hidden these TEM modeling weaknesses enabling them to endure for so long, 
and that diversity in dust emission modeling and calibration is long overdue.

The AEM overcomes these weaknesses without using masks or vegetation cover data. The AEM can be used 
across timeframes and because it is areal and integrated, albedo scales linearly, and the approach cuts across 
scales offering potential to reconcile point and area data. Aerodynamics can be retrieved from accurate and 
precise albedo from ground measurements using net radiometers, from various airborne and satellite platforms 
most notably MODIS, or prognostic estimates used in ESMs. These varied albedo sources provide considera-
ble opportunity for new modeling approaches across scales. The availability of large-scale prognostic albedo 
provides the opportunity for the albedo-based approach to be readily adopted in energy-driven ESMs more suit-
able for climate projections. We recognize that there is some work to be done to couple prognostic albedo 
between components in some ESMs. However, that work has the additional benefits of improving consistency 
within energetic ESMs and reducing uncertainty and independent tuning of the model components. Coupling 
the albedo-based approach to ESMs is therefore expected to reduce uncertainty in dust emission and transform 
dust-climate change projections.
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Data Availability Statement
The data used are identified in the main text and below using the Google Earth Engine data description and cata-
logue references, link, and DOI.
Code Availability: The code is archived as a text file using Zenodo (where the code will not run without access to 
the Google Earth Engine) using the doi: https://doi.org/10.5281/zenodo.5626825.

Dates used Google Earth Engine data
Google Earth Engine catalog reference, 

link, or DOI

2009 MODIS land cover used to mask land/sea MODIS/051/MCD12Q1/2009_01_01 
(Friedl, 2019)

Static ISRIC clay 
content

Uploaded (Hengl et al., 2017)

2001–2020 MODIS albedo (Band1_iso) MODIS/006/MCD43A1 (Schaaf & 
Wang, 2015)

2001–2020 ECMWF ERA5-Land ECMWF/ERA5_LAND/HOURLY 
(C3S, 2022)u-component_of_wind_10m

volumetric_soil_water_layer_1

soil_temperature_level_1

v-component_of_wind_10m

2001–2020 MODIS Snow Cover MODIS/006/MOD10A1 (Hall 
et al., 2016)

2001–2020 MODIS Normalized Difference Vegetation Index MODIS/MOD09GA_006_NDVI 
(Vermote, 2015)

2001–2016 Monthly MODIS Deep Blue aerosol optical depth 
(derived from L2 Aerosol (04_L2 SDS) Product

MODIS/061/MOD08_M3 (Platnick 
et al., 2015)

 21698996, 2023, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038584 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [20/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.5626825


Journal of Geophysical Research: Atmospheres

CHAPPELL ET AL.

10.1029/2023JD038584

20 of 22

References
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., et al. (2014). Improved dust representation in the commu-

nity atmosphere model. Journal of Advances in Modeling Earth Systems, 6, 541–570. https://doi.org/10.1002/2013MS000279
Baddock, M. C., Gill, T. E., Bullard, J. E., Acosta, M. D., & Rivera Rivera, N. I. (2011). Geomorphology of the Chihuahuan Desert based on 

potential dust emissions. Journal of Maps, 7(1), 249–259. https://doi.org/10.4113/jom.2011.1178
C3S, C. C. C. S. (2022). ERA5-Land hourly data from 1950 to present. C. C. C. S. C. S. C. D. S. (CDS).
Chappell, A., Van Pelt, S., Zobeck, T., & Dong, Z. (2010). Estimating aerodynamic resistance of rough surfaces using angular reflectance. Remote 

Sensing of Environment, 114(7), 1462–1470. https://doi.org/10.1016/j.rse.2010.01.025
Chappell, A., & Webb, N. P. (2016). Using albedo to reform wind erosion modelling, mapping and monitoring. Aeolian Research, 23, 63–78. 

https://doi.org/10.1016/j.aeolia.2016.09.006
Chappell, A., Webb, N. P., Guerschman, J. P., Thomas, D. T., Mata, G., Handcock, R. N., et  al. (2018). Improving ground cover monitor-

ing for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment, 204, 756–768. https://doi.org/10.1016/j.
rse.2017.09.026

Chappell, A., Webb, N. P., Leys, J. F., Waters, C. M., Orgill, S., & Eyres, M. J. (2019). Minimising soil organic carbon erosion by wind is critical 
for land degradation neutrality. Environmental Science & Policy, 93, 43–52. https://doi.org/10.1016/j.envsci.2018.12.020

Dai, Y., Shangguan, W., Wei, N., Xin, Q., Yuan, H., Zhang, S., et al. (2019). A review of the global soil property maps for Earth system models. 
Soil, 5(2), 137–158. https://doi.org/10.5194/soil-5-137-2019

Darmenova, K., Sokolik, I. N., Shao, Y., Marticorena, B., & Bergametti, G. (2009). Development of a physically based dust emission module 
within the Weather Research and Forecasting (WRF) model: Assessment of dust emission parameterizations and input parameters for source 
regions in Central and East Asia. Journal of Geophysical Research, 114, D14201. https://doi.org/10.1029/2008JD011236

de Vrese, P., & Hagemann, S. (2016). Explicit representation of spatial Subgrid-scale heterogeneity in an ESM. Journal of Hydrometeorology, 
17(5), 1357–1371. https://doi.org/10.1175/jhm-d-15-0080.1

Edwards, B. L., Webb, N. P., Galloza, M. S., Van Zee, J. W., Courtright, E. M., Cooper, B. F., et al. (2022). Parameterizing an aeolian erosion 
model for rangelands. Aeolian Research, 54, 100769. https://doi.org/10.1016/j.aeolia.2021.100769

Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79(1), 73–100. https://
doi.org/10.1016/j.earscirev.2006.06.004

Evan, A. T., Flamant, C., Fiedler, S., & Doherty, O. (2014). An analysis of aeolian dust in climate models. Geophysical Research Letters, 41, 
5996–6001. https://doi.org/10.1002/2014GL060545

Evan, A. T., Flamant, C., Gaetani, M., & Guichard, F. (2016). The past, present and future of African dust. Nature, 531(7595), 493–495. https://
doi.org/10.1038/nature17149

Evans, S., Ginoux, P., Malyshev, S., & Shevliakova, E. (2016). Climate-vegetation interaction and amplification of Australian dust variability. 
Geophysical Research Letters, 43, 11823–811830. https://doi.org/10.1002/2016GL071016

Fan, W., Liu, Y., Chappell, A., Dong, L., Xu, R., Ekström, M., et al. (2021). Evaluation of global reanalysis land surface wind speed trends to 
support wind energy development using in situ observations. Journal of Applied Meteorology and Climatology, 60(1), 33–50. https://doi.
org/10.1175/jamc-d-20-0037.1

Fécan, F., Marticorena, B., & Bergametti, G. (1999). Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to 
soil moisture for arid and semi-arid areas. Annales Geophysicae, 17(1), 149–157. https://doi.org/10.1007/s00585-999-0149-7

Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Dataset]. 
NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006

Galloza, M. S., Webb, N. P., Bleiweiss, M. P., Winters, C., Herrick, J. E., & Ayers, E. (2018). Exploring dust emission responses to land cover 
change using an ecological land classification. Aeolian Research, 32, 141–153. https://doi.org/10.1016/j.aeolia.2018.03.001

Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., & Lin, S.-J. (2001). Sources and distributions of dust aerosols simulated 
with the GOCART model. Journal of Geophysical Research, 106(D17), 20255–20273. https://doi.org/10.1029/2000JD000053

Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., & Zhao, M. (2012). Global-scale attribution of anthropogenic and natural dust sources and their 
emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50, RG3005. https://doi.org/10.1029/2012RG000388

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis 
for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632–648. 
https://doi.org/10.1198/016214502760047140

Greeley, R., Blumberg, D. G., McHone, J. F., Dobrovolskis, A., Iversen, J. D., Lancaster, N., et al. (1997). Applications of spaceborne radar labo-
ratory data to the study of aeolian processes. Journal of Geophysical Research, 102(E5), 10971–10983. https://doi.org/10.1029/97JE00518

Hall, D. K., Salomonson, V. V., & Riggs, G. A. (2016). MODIS/Terra snow cover daily L3 global 500m grid. Version 6. NASA National Snow 
and Ice Data Center Distributed Active Archive Center.

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., et al. (2017). SoilGrids250m: Global 
gridded soil information based on machine learning. PLoS One, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748

Hennen, M., Chappell, A., Edwards, B. L., Faist, A. M., Kandakji, T., Baddock, M. C., et al. (2022). A North American dust emission clima-
tology (2001–2020) calibrated to dust point sources from satellite observations. Aeolian Research, 54, 100766. https://doi.org/10.1016/j.
aeolia.2021.100766

Hennen, M., Chappell, A., & Webb, N. P. (2023). Modelled direct causes of dust emission change (2001–2020) in southwestern USA and impli-
cations for management. Aeolian Research, 60, 100852. https://doi.org/10.1016/j.aeolia.2022.100852

Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., et al. (2011). Global dust model intercomparison in AeroCom phase 
I. Atmospheric Chemistry and Physics, 11(15), 7781–7816. https://doi.org/10.5194/acp-11-7781-2011

IPCC. (2013). Climate change 2013: The physical science basis. Contribution of working Group I to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change. Cambridge University Press.

Joussaume, S. (1990). Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model. Journal 
of Geophysical Research, 95(D2), 1909–1941. https://doi.org/10.1029/JD095iD02p01909

Kandakji, T., Gill, T. E., & Lee, J. A. (2020). Identifying and characterizing dust point sources in the southwestern United States using remote 
sensing and GIS. Geomorphology, 353, 107019. https://doi.org/10.1016/j.geomorph.2019.107019

Klose, M., Jorba, O., Gonçalves Ageitos, M., Escribano, J., Dawson, M. L., Obiso, V., et  al. (2021). Mineral dust cycle in the Multiscale 
Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH) version 2.0. Geoscientific Model Development, 14(10), 6403–6444. 
https://doi.org/10.5194/gmd-14-6403-2021

Acknowledgments
The first author is grateful to Google 
for access to, and use of, the Google 
Earth Engine (GEE) and coding support 
from Noel Gorelick and coding advice 
from GEE forum members. We thank 
the following people for their specialist 
advice on earlier drafts of the manu-
script: Beatrice Marticorena and Giles 
Bergametti, LISA; Amato Evan, Scripps 
Institution of Oceanography; Stephanie 
Woodward and Malcolm Brooks, UK 
Met Office; Paul Ginoux, NOAA; Jasper 
Kok, UCLA; Natalie Mahowald, Cornell 
University; Ian Hall and Huw Davies, 
Cardiff University. We thank the follow-
ing organizations for the use of their 
data: National Centers for Environmental 
Prediction (NCEP), NOAA AVHRR 
Surface Reflectance product; NASA 
EOSDIS Land Processes Distributed 
Active Archive Center (LP DAAC), 
USGS/Earth Resources Observation and 
Science (EROS) Center, Sioux Falls, 
South Dakota; ISRIC SoilGrids; The 
work was produced while AC and NPW 
were funded by a joint grant from the 
National Science Foundation (EAR-
1853853) and Natural Environmental 
Research Council (NE/T002263/1, 
NERCDMP-2634).

 21698996, 2023, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038584 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [20/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/2013MS000279
https://doi.org/10.4113/jom.2011.1178
https://doi.org/10.1016/j.rse.2010.01.025
https://doi.org/10.1016/j.aeolia.2016.09.006
https://doi.org/10.1016/j.rse.2017.09.026
https://doi.org/10.1016/j.rse.2017.09.026
https://doi.org/10.1016/j.envsci.2018.12.020
https://doi.org/10.5194/soil-5-137-2019
https://doi.org/10.1029/2008JD011236
https://doi.org/10.1175/jhm-d-15-0080.1
https://doi.org/10.1016/j.aeolia.2021.100769
https://doi.org/10.1016/j.earscirev.2006.06.004
https://doi.org/10.1016/j.earscirev.2006.06.004
https://doi.org/10.1002/2014GL060545
https://doi.org/10.1038/nature17149
https://doi.org/10.1038/nature17149
https://doi.org/10.1002/2016GL071016
https://doi.org/10.1175/jamc-d-20-0037.1
https://doi.org/10.1175/jamc-d-20-0037.1
https://doi.org/10.1007/s00585-999-0149-7
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://doi.org/10.1016/j.aeolia.2018.03.001
https://doi.org/10.1029/2000JD000053
https://doi.org/10.1029/2012RG000388
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1198/016214502760047140
https://doi.org/10.1029/97JE00518
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.aeolia.2021.100766
https://doi.org/10.1016/j.aeolia.2021.100766
https://doi.org/10.1016/j.aeolia.2022.100852
https://doi.org/10.5194/acp-11-7781-2011
https://doi.org/10.1029/JD095iD02p01909
https://doi.org/10.1016/j.geomorph.2019.107019
https://doi.org/10.5194/gmd-14-6403-2021


Journal of Geophysical Research: Atmospheres

CHAPPELL ET AL.

10.1029/2023JD038584

21 of 22

Kok, J. F., Albani, S., Mahowald, N. M., & Ward, D. S. (2014). An improved dust emission model—Part 2: Evaluation in the Community Earth 
System Model, with implications for the use of dust source functions. Atmospheric Chemistry and Physics, 14(23), 13043–13061. https://doi.
org/10.5194/acp-14-13043-2014

Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., et al. (2017). Smaller desert dust cooling effect estimated from analysis 
of dust size and abundance. Nature Geoscience, 10(4), 274–278. https://doi.org/10.1038/ngeo2912

Kyriakidis, P. C., & Yoo, E.-H. (2005). Geostatistical prediction and simulation of point values from areal data. Geographical Analysis, 37(2), 
124–151. https://doi.org/10.1111/j.1538-4632.2005.00633.x

Lee, J. A., Baddock, M. C., Mbuh, M. J., & Gill, T. E. (2012). Geomorphic and land cover characteristics of aeolian dust sources in West Texas 
and eastern New Mexico, USA. Aeolian Research, 3(4), 459–466. https://doi.org/10.1016/j.aeolia.2011.08.001

Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D. S., & Flanner, M. G. (2014). The size distribution of desert dust 
aerosols and its impact on the Earth system. Aeolian Research, 15, 53–71. https://doi.org/10.1016/j.aeolia.2013.09.002

Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., et al. (2010). Observed 20th century desert 
dust variability: Impact on climate and biogeochemistry. Atmospheric Chemistry and Physics, 10(22), 10875–10893. https://doi.org/10.5194/
acp-10-10875-2010

Marshall, J. K. (1971). Drag measurements in roughness arrays of varying density and distribution. Agricultural Meteorology, 8, 269–292. https://
doi.org/10.1016/0002-1571(71)90116-6

Marticorena, B., & Bergametti, G. (1995). Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. Journal of 
Geophysical Research, 100(D8), 16415–16430. https://doi.org/10.1029/95JD00690

Marticorena, B., Chazette, P., Bergametti, G., Dulac, F., & Legrand, M. (2004). Mapping the aerodynamic roughness length of desert surfaces 
from the POLDER/ADEOS bi-directional reflectance product. International Journal of Remote Sensing, 25(3), 603–626. https://doi.
org/10.1080/0143116031000116976

Meng, J., Martin, R. V., Ginoux, P., Hammer, M., Sulprizio, M. P., Ridley, D. A., & van Donkelaar, A. (2021). Grid-independent high-resolution 
dust emissions (v1.0) for chemical transport models: Application to GEOS-Chem (12.5.0). Geoscientific Model Development, 14(7), 4249–
4260. https://doi.org/10.5194/gmd-14-4249-2021

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., et al. (2021). ERA5-Land: A state-of-the-art global 
reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021

Platnick, S., King, M., & Hubanks, P. (2015). MODIS atmosphere L3 monthly product. NASA MODIS Adaptive Processing System. Goddard 
Space Flight Center.

Prigent, C., Jiménez, C., & Catherinot, J. (2012). Comparison of satellite microwave backscattering (ASCAT) and visible/near-infrared reflec-
tances (PARASOL) for the estimation of aeolian aerodynamic roughness length in arid and semi-arid regions. Atmospheric Measurement 
Techniques, 5(11), 2703–2712. https://doi.org/10.5194/amt-5-2703-2012

Prigent, C., Tegen, I., Aires, F., Marticorena, B., & Zribi, M. (2005). Estimation of the aerodynamic roughness length in arid and semi-arid 
regions over the globe with the ERS scatterometer. Journal of Geophysical Research, 110, D09205. https://doi.org/10.1029/2004JD005370

Raupach, M., & Finnigan, J. (1995). Scale issues in boundary-layer meteorology: Surface energy balances in heterogeneous terrain. Hydrological 
Processes, 9(5–6), 589–612. https://doi.org/10.1002/hyp.3360090509

Raupach, M. R. (1992). Drag and drag partition on rough surfaces. Boundary-Layer Meteorology, 60(4), 375–395. https://doi.org/10.1007/
bf00155203

Raupach, M. R., Gillette, D. A., & Leys, J. F. (1993). The effect of roughness elements on wind erosion threshold. Journal of Geophysical 
Research, 98(D2), 3023–3029. https://doi.org/10.1029/92JD01922

Raupach, M. R., & Lu, H. (2004). Representation of land-surface processes in aeolian transport models. Environmental Modelling & Software, 
19(2), 93–112. https://doi.org/10.1016/s1364-8152(03)00113-0

Roujean, J.-L., Tanré, D., Bréon, F.-M., & Deuzé, J.-L. (1997). Retrieval of land surface parameters from airborne POLDER bidirectional reflectance 
distribution function during HAPEX-Sahel. Journal of Geophysical Research, 102(D10), 11201–11218. https://doi.org/10.1029/97JD00341

Schaaf, C., & Wang, Z. (2015). MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global—500m V006 [Dataset]. NASA EOSDIS Land 
Processes DAAC. https://doi.org/10.5067/MODIS/MCD43A3.006

Schepanski, K., Tegen, I., & Macke, A. (2012). Comparison of satellite based observations of Saharan dust source areas. Remote Sensing of 
Environment, 123, 90–97. https://doi.org/10.1016/j.rse.2012.03.019

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., et al. (2019). UKESM1: Description and evaluation of the U.K. Earth 
System Model. Journal of Advances in Modeling Earth Systems, 11, 4513–4558. https://doi.org/10.1029/2019MS001739

Shao, Y., & Lu, H. (2000). A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research, 105(D17), 
22437–22443. https://doi.org/10.1029/2000JD900304

Shao, Y., Raupach, M., & Leys, J. (1996). A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Soil 
Research, 34(3), 309–342. https://doi.org/10.1071/sr9960309

Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., et al. (2011). Dust cycle: An emerging core theme in Earth system 
science. Aeolian Research, 2(4), 181–204. https://doi.org/10.1016/j.aeolia.2011.02.001

Sokolik, I. N., & Toon, O. B. (1999). Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from 
UV to IR wavelengths. Journal of Geophysical Research, 104(D8), 9423–9444. https://doi.org/10.1029/1998JD200048

Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., & Heimann, M. (2002). Impact of vegetation and preferential source areas on 
global dust aerosol: Results from a model study. Journal of Geophysical Research, 107(D21), 4576. https://doi.org/10.1029/2001JD000963

Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., et al. (2006). Analysis and quantification of the diversities of aerosol life 
cycles within AeroCom. Atmospheric Chemistry and Physics, 6(7), 1777–1813. https://doi.org/10.5194/acp-6-1777-2006

Urban, F. E., Goldstein, H. L., Fulton, R., & Reynolds, R. L. (2018). Unseen dust emission and global dust abundance: Documenting dust 
emission from the Mojave desert (USA) by daily remote camera imagery and wind-erosion measurements. Journal of Geophysical Research: 
Atmospheres, 123, 8735–8753. https://doi.org/10.1029/2018JD028466

Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., et al. (2017). Pedotransfer functions in Earth System Science: Chal-
lenges and perspectives. Reviews of Geophysics, 55, 1199–1256. https://doi.org/10.1002/2017RG000581

Vermote, E., & Wolfe, R. (2015). MOD09GA MODIS/Terra surface reflectance daily L2G global 1km and 500m SIN grid V006 [Dataset]. N. E. 
L. P. DAAC. Retrieved from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09GA 

Vos, H. C., Fister, W., Eckardt, F. D., Palmer, A. R., & Kuhn, N. J. (2020). Physical crust formation on sandy soils and their potential to reduce 
dust emissions from croplands. Land, 9(12), 503. https://doi.org/10.3390/land9120503

Webb, N. P., Chappell, A., Edwards, B. L., McCord, S. E., Van Zee, J. W., Cooper, B. F., et al. (2019). Reducing sampling uncertainty in aeolian 
research to improve change detection. Journal of Geophysical Research: Earth Surface, 124, 1366–1377. https://doi.org/10.1029/2019JF005042

 21698996, 2023, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038584 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [20/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5194/acp-14-13043-2014
https://doi.org/10.5194/acp-14-13043-2014
https://doi.org/10.1038/ngeo2912
https://doi.org/10.1111/j.1538-4632.2005.00633.x
https://doi.org/10.1016/j.aeolia.2011.08.001
https://doi.org/10.1016/j.aeolia.2013.09.002
https://doi.org/10.5194/acp-10-10875-2010
https://doi.org/10.5194/acp-10-10875-2010
https://doi.org/10.1016/0002-1571(71)90116-6
https://doi.org/10.1016/0002-1571(71)90116-6
https://doi.org/10.1029/95JD00690
https://doi.org/10.1080/0143116031000116976
https://doi.org/10.1080/0143116031000116976
https://doi.org/10.5194/gmd-14-4249-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/amt-5-2703-2012
https://doi.org/10.1029/2004JD005370
https://doi.org/10.1002/hyp.3360090509
https://doi.org/10.1007/bf00155203
https://doi.org/10.1007/bf00155203
https://doi.org/10.1029/92JD01922
https://doi.org/10.1016/s1364-8152(03)00113-0
https://doi.org/10.1029/97JD00341
https://doi.org/10.5067/MODIS/MCD43A3.006
https://doi.org/10.1016/j.rse.2012.03.019
https://doi.org/10.1029/2019MS001739
https://doi.org/10.1029/2000JD900304
https://doi.org/10.1071/sr9960309
https://doi.org/10.1016/j.aeolia.2011.02.001
https://doi.org/10.1029/1998JD200048
https://doi.org/10.1029/2001JD000963
https://doi.org/10.5194/acp-6-1777-2006
https://doi.org/10.1029/2018JD028466
https://doi.org/10.1002/2017RG000581
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09GA
https://doi.org/10.3390/land9120503
https://doi.org/10.1029/2019JF005042


Journal of Geophysical Research: Atmospheres

CHAPPELL ET AL.

10.1029/2023JD038584

22 of 22

Webb, N. P., Chappell, A., LeGrand, S. L., Ziegler, N. P., & Edwards, B. L. (2020). A note on the use of drag partition in aeolian transport models. 
Aeolian Research, 42, 100560. https://doi.org/10.1016/j.aeolia.2019.100560

Webb, N. P., & Strong, C. L. (2011). Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian 
Research, 3(2), 165–179. https://doi.org/10.1016/j.aeolia.2011.03.002

Wolman, M. G., & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. The Journal of Geology, 68(1), 54–74. 
https://doi.org/10.1086/626637

Woodward, M. (1992). Formulae for sample size, power and minimum detectable relative risk in medical studies. Journal of the Royal Statistical 
Society: Series D (The Statistician), 41(2), 185–196. https://doi.org/10.2307/2348252

Woodward, S. (2001). Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. Journal of 
Geophysical Research, 106(D16), 18155–18166. https://doi.org/10.1029/2000JD900795

Zender, C. S., Bian, H., & Newman, D. (2003). Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatol-
ogy. Journal of Geophysical Research, 108(D14), 4416. https://doi.org/10.1029/2002JD002775

Zender, C. S., Newman, D., & Torres, O. (2003). Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic 
hypotheses. Journal of Geophysical Research, 108(D17), 4543. https://doi.org/10.1029/2002JD003039

Zhao, A., Ryder, C. L., & Wilcox, L. J. (2022). How well do the CMIP6 models simulate dust aerosols? Atmospheric Chemistry and Physics, 
22(3), 2095–2119. https://doi.org/10.5194/acp-22-2095-2022

Ziegler, N. P., Webb, N. P., Chappell, A., & LeGrand, S. L. (2020). Scale invariance of albedo-based wind friction velocity. Journal of Geophys-
ical Research: Atmospheres, 125, e2019JD031978. https://doi.org/10.1029/2019JD031978

 21698996, 2023, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

038584 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [20/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.aeolia.2019.100560
https://doi.org/10.1016/j.aeolia.2011.03.002
https://doi.org/10.1086/626637
https://doi.org/10.2307/2348252
https://doi.org/10.1029/2000JD900795
https://doi.org/10.1029/2002JD002775
https://doi.org/10.1029/2002JD003039
https://doi.org/10.5194/acp-22-2095-2022
https://doi.org/10.1029/2019JD031978

	Elucidating Hidden and Enduring Weaknesses in Dust Emission Modeling
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods and Data
	2.1. Dust Emission Modeling
	2.1.1. Exemplar Traditional Sediment Transport
	2.1.2. 
            Albedo-Based Sediment Transport
	2.1.3. Dust Emission Modeling

	2.2. 
          Large-Scale Dust Emission Modeling, Mapping Spatial Variation, and Change Detection
	2.3. DPS and DOD Frequency
	2.4. Dust Emission Model Evaluation Against DOD and Calibration Against DPS

	3. Results
	3.1. The Impact of “Erodible” Fraction (E) Implementation on Dust Emission Modeling
	3.2. Modeled and Observed Dust Emission Frequency at DPS Locations
	3.3. Modeling Dust Emission Change Over Space
	3.4. Modeling Dust Emission Change Over Space and Time

	4. Discussion
	4.1. Overcoming Dust Emission Model Weaknesses Using the Albedo-Based Approach
	4.2. Overcoming Dust Emission Model Tuning to DOD
	4.3. Implications of Model Weaknesses for Dust Emission Modeling

	5. Conclusion
	Conflict of Interest
	Data Availability Statement
	References


