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Abstract
We obtain an equivariant classification for orientable, closed, four-dimensional
Alexandrov spaces admitting an isometric torus action. This generalizes the equiv-
ariant classification of Orlik and Raymond of closed four-dimensional manifolds with
torus actions.Moreover, we show that suchAlexandrov spaces are equivariantly home-
omorphic to 4-dimensional Riemannian orbifolds with isometric T 2-actions. We also
obtain a partial homeomorphism classification.
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Mathematics Subject Classification 53C23 · 57S15 · 57S25

1 Introduction

In in the presence of a continuous action by a fixed Lie group G on a space X there
are usually two kinds of classifications. By homeomorphism classification, we mean
characterizing all homeomorphism types of the spaces which admit such G-actions.
By equivariant classification, we mean determining all possible actions of G in terms
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of “enough data”. This means being able to decide when two sets of data of the actions
on two spaces give rise to an equivariant homeomorphism between them.

The study of T 2-actions on closed (i.e., compact andwithout boundary) 4-manifolds
was initiated by the work of Orlik and Raymond in [40], where they obtained an equiv-
ariant classification for such actions on orientablemanifolds under the added condition
that the action does not have exceptional orbits. In particular, they showed that the
smooth classification is equivalent to the topological classification, i.e., a continuous
effective action on a closed topological 4-manifold is equivariantly homeomorphic
to a smooth effective action on a closed smooth 4-manifold. In a follow-up paper
[41], Orlik and Raymond extended the equivariant classification for the case when
the action does admit exceptional orbits. The classification of the homeomorphism
type of smooth closed oriented 4-manifolds with an effective T 2-action was carried
out in [40–43]. We provide this classification in Sect 2.4. For the non-orientable case,
both the equivariant classification problem and the homeomorphism type classification
problem were addressed by Kim in [34].

Alexandrov spaces (with curvature bounded formbelow) are complete length spaces
with a lower curvature bound in the sense of triangle comparison. By Toponogov’s
Theorem, they generalize complete Riemannian manifolds with a uniform lower cur-
vature bound. Riemannian orbifolds (with a lower sectional curvature bound), orbit
spaces of isometric actions of compact Lie groups on Riemannian manifolds with sec-
tional curvature bounded from below, and Gromov–Hausdorff limits of sequences of
n-dimensional Riemannian manifolds with a uniform lower bound on their sectional
curvature are examples of Alexandrov spaces.

Two-dimensional Alexandrov spaces are topological two-manifolds, possibly with
boundary (see [4, Corollary 10.10.3]). Closed three-dimensional Alexandrov spaces
are either topological three-manifolds, or are homeomorphic to quotients of smooth
three-manifolds by orientation reversing involutions with isolated fixed points (see
[10] and cf. [27]). In higher dimensions though, similar general results do not exist.
ConsideringAlexandrov spaceswith a large amount of symmetry provides a systematic
way of studying them. This framework has been successfully used in the smooth
category to study, for instance, Riemannian manifolds with prescribed lower curvature
conditions, such as positive Ricci or positive sectional curvature (see for example [20,
22–25, 49]). In particular, many authors studied such spaces in the presence of a circle
or a torus action either in low dimensions or in general (see for example [11, 13, 19,
21, 29, 32, 35, 47]).

Since the group of isometries of a compact Alexandrov space is a compact Lie
group [7], one may assume the existence of an isometric compact Lie group action
and consider such spaces in analogy with the Riemannian case. This allows us to bring
the theory of compact transformation groups into the context of Alexandrov spaces
(see for example [2, 9, 12, 15, 16, 27, 28, 39, 50]).

In particular, there exists a (non-unique) maximal dimension torus acting by isome-
tries on X . When the space has curvature bounded below by 1, Harvey and Searle
showed in [27] that the dimension of any maximal torus contained in the isometry
group is bounded above by �(n + 1)/2�. In particular, for a compact 4-dimensional
Alexandrov space with curvature bounded below by 1, if we have an effective T k-
action by isometries, then k ≤ 2.
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In the present article, we study the equivariant classification of effective, isometric
T 2-actions on closed, orientable Alexandrov 4-spaces. We show that the techniques
used in the study of smooth effective T 2-actions on smooth 4-manifolds extend to this
metric setting. Furthermore, this family of Alexandrov spaces contains a subfamily of
spaces having maximal Abelian symmetry (see [27]).

Our main results are the following: Given a closed, orientable Alexandrov 4-space
X with an effective, isometric T 2-action, first we find a set of invariants classifying X
up to equivariant homeomorphism. More precisely, we show that given another closed
orientable Alexandrov 4-space Y with an effective, isometric T 2-action, if Y has the
same set of invariants as X , then Y is equivariantly homeomorphic to X .

Theorem A Let X be a closed, orientable Alexandrov 4-space admitting an effective,
isometric T 2-action. Then the set of inequivalent (up to equivariant homeomorphism)
effective, isometric T 2-actions on X is in one-to-one correspondence with the set of
unordered tuples of isotropic and topological invariants

{
(b1, b2); ε; g; { 〈pi , qi 〉

}s
i=1;

{(
(a�, b�), f�

)}t
�=1;

{
(α j ; γ j,1, γ j,2)

}k
j=1

}
.

We give the precise definitions and value constraints of the invariants stated in
Theorem 1 in Sect. 5.

Recall that a topologically regular Alexandrov space is an Alexandrov space with
every tangent cone homeomorphic to an Euclidean space. In particular, we recover
the following result of Galaz-García [8] for any topologically regular Alexandrov 4-
space, when comparing with the equivariant classification of effective T 2-actions on
orientable 4-manifolds.

Corollary B Let X be a closed, orientable and topologically regular Alexandrov 4-
space with an effective, isometric T 2-action. Then X is equivariantly homeomorphic
to a smooth 4-manifold and the T 2-action is equivalent to a smooth action.

Second, we show that the set of invariants in Theorem 1 is complete, that is, for
each “legal” set of invariants we show that there exists a closed, orientable Alexandrov
4-space X with an effective, isometric T 2-action, such that it has the given set of
invariants. In fact, we show that it is possible to realize such an Alexandrov 4-space
as a closed Riemannian 4-orbifold, thus obtaining the following result.

Theorem C Let X be a closed, orientable Alexandrov 4-space admitting an effective,
isometric T 2-action. Then X is equivariantly homeomorphic to the underlying topo-
logical space of a closed 4-orbifold.

Theorem 1 strengthens the results of [27,Theorem D] in dimension 4, where the
authors show that positively curved Alexandrov 4-spaces with T 2-action are equiv-
ariantly homeomorphic to 4-dimensional T 2-orbifolds. In fact, our theorem shows
that this is always the case, regardless of who is the lower curvature bound on the
Alexandrov space.

Due to Theorem 1, the homeomorphism classification for 4-dimensional Alexan-
drov spaces with an effective isometric T 2-action is contained in the homeomorphism
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classification of orbifolds with an effective T 2-action. Such orbifolds were studied by
Haefliger and Salem in [26], but they did not consider the homeomorphism classifica-
tion. We recall that a 2k-orbifold with an effective T k-action is called a torus orbifold.
These orbifolds were studied in [17, 48], for the case when the orbifold is simply
connected and rationally elliptic. A simply connected topological space X is called
rationally elliptic if it satisfies dimQ(H∗(X , Q)) < ∞ and dimQ(π∗(X) ⊗ Q) < ∞.

Regarding the homeomorphism type of closed, orientable Alexandrov 4-spaces
with effective and isometric T 2-actions we provide a basic topological recognition
result. More precisely we show that any closed, orientable Alexandrov 4-space with
an effective, isometric T 2-action can be decomposed as an “equivariant connected
sum” along subspaces homeomorphic to S2 × S1, where one of the pieces is an Orlik-
Raymond 4-manifold and the remaining pieces are “simple” Alexandrov 4-spaces.We
refer the reader to Sect. 7 for the details. From this basic decomposition it follows that
the topological classification could be answered, by identifying the homeomorphism
type of these “simple" Alexandrov pieces. The identification of such “simple" pieces
is beyond the scope of the present work.

Remark 1.1 The proof of Theorem 1 is mainly topological. The synthetic curvature
condition is used implicitly to describe small balls around points (see Proposition 2.7),
and to study the local isotropy action (see Theorem 2.8). Moreover, for Theorem 1 we
explicitly use the characterization of the spaces of directions.

The organization of the article is as follows. In Sect. 2 we recall the structural
properties of closed Alexandrov 4-spaces and the basic aspects and different notions
of orientability of Alexandrov spaces. We also recall the main features of the theory
of transformation groups on Alexandrov spaces. We conclude the section with a short
summary of the classification of T 2-actions on 3 and 4-dimensional manifolds. In
Sect. 3 we describe the set of topologically singular points. In Sect. 4 we describe the
local structure of the orbit space of a closed, orientable Alexandrov 4-space with an
effective, isometric T 2-action, around the different orbit types. We complete the anal-
ysis of Sect. 4 by providing the topological structure and distribution of the different
orbits in the orbit space. In Sect. 5 we define the isotropy and topological invariants
appearing in Theorem 1, as well as the proof of this result. In Sect. 6 we show the
completeness of the invariants in Theorem 1 by constructing for every given set of
invariants a closed, orientable Alexandrov 4-space with a T 2-action. Finally in Sect.
7 we define the equivariant gluings along S2 × S1 and prove the aforementioned
topological recognition result.

2 Preliminaries

2.1 Four-Dimensional Alexandrov Spaces

We give a brief account of the main structural properties of closed four-dimensional
Alexandrov spaces. For simplicity, throughout the article we refer to four-dimensional
Alexandrov spaces as Alexandrov 4-spaces. We refer the reader to [3, 4] for a general
introduction to the theory.
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Let X be a closed (i.e., compact and without boundary) Alexandrov 4-space.
The space of directions �x X at each point x ∈ X is a closed Alexandrov 3-space
with curv ≥ 1. It is a consequence of the classification of closed positively curved
Alexandrov 3-spaces ([10,Theorem 1.1]) that the possible spaces of directions of a
closed Alexandrov 4-space are homeomorphic to S3, Susp(RP2) or a closed spher-
ical 3-manifold with non-trivial fundamental group (see [10,Corollary 2.3], see also
[27,Proposition 3.6 and Corollary 3.7]). Namely

Proposition 2.1 [10,Corollary 2.3] The space of directions of a 4-dimensional Alexan-
drov space without boundary is homeomorphic to Susp(RP2) or to a spherical
three-manifold.

A point whose space of directions is homeomorphic to S3 is called topologically
regular. Otherwise, the point is said to be topologically singular. The set of topolog-
ically regular points of X is an open and dense subset of X . The local structure of X
is determined by Perelman’s Conical Neighborhood Theorem [45] which states that
every point x ∈ X has a neighborhood pointed-homeomorphic to the cone over �x X .

2.2 Orientable Alexandrov Spaces

In this section, we recall the notion of orientability for Alexandrov spaces (see [36]
for more details).

An Alexandrov space is called locally orientable if every point has an orientable
neighborhood and locally non-orientable otherwise. Equivalently, we say that X
is locally orientable if the space of directions at each point is orientable. That is
Hn(X , X � {p}, Z) ∼= Hn−1(�p X; Z) ∼= Z. Otherwise X is locally non-orientable (
[46,p. 124]).

Now we recall the global definition of orientability, following [36]:

Theorem 2.2 [36,Theorem 1.8] Let X be a compact n-dimensional Alexandrov space.
Then the following conditions are equivalent:

(a) The manifold part Xtop of X is orientable as an n-manifold;
(b) Hn(X; Z) ∼= Z;
(c) Hn(X; Z) ∼= Z and the canonical morphism Hn(X , X � {x}; Z) → Hn(X; Z) is

an isomorphism for any x ∈ X.

Definition 2.3 [36,Definition 1.10] A compact Alexandrov space is called orientable
if it satisfies one of the conditions (a)–(c) listed in Theorem 2.2.

Remark 2.4 For a compact Alexandrov space of dimension at least 2, the equivalence
between items (a) and (c) in Theorem 2.2 it is also proven by Lemma 3.3 in [27].

Remark 2.5 It follows directly fromProposition 2.1 that a closedAlexandrov 4-space is
locally orientable if and only if no space of directions is homeomorphic to Susp(RP2).
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2.3 Group Actions

Let X be a finite-dimensional Alexandrov space. Fukaya and Yamaguchi showed in
[7] that, as in the Riemannian case, the isometry group of X is a Lie group. Moreover,
if X is compact then its isometry group is also compact. We consider isometric actions
G × X → X of a compact Lie group G on X . The orbit of a point x ∈ X is denoted
by G(x) ∼= G/Gx . Here, Gx = {g ∈ G | gx = x} is the isotropy subgroup of x in
G. The ineffective kernel of the action is defined as the closed subgroup of G given by
∩x∈XGx . If the ineffective kernel is trivial, we say that the action is effective. In this
article, we assume all actions considered to be effective unless stated otherwise. Given
a subset A ⊂ X we denote its image under the canonical projection π : X → X/G
by A∗. In particular, we denote the orbit space by X∗ = X/G.

The following generalization of the Principal Orbit Theorem for Alexandrov spaces
was obtained in [9,Theorem 2.2].

Theorem 2.6 (Principal Orbit Theorem) Let G be a compact Lie group acting iso-
metrically on an n-dimensional Alexandrov space X. Then there is a unique maximal
orbit type and the orbits with maximal orbit type, the so-called principal orbits, form
an open and dense subset of X.

The following result stated in [12,Proposition 4] gives a description of the tangent
and normal spaces to the orbits of a Lie group action on an Alexandrov space.

Proposition 2.7 Let X be an Alexandrov space admitting an isometric G-action and
fix x ∈ X with dimG/Gx > 0. If Sx ⊂ �x X is the unit tangent space to the orbit
G(x) = G/Gx , and

S⊥
x = {w ∈ �x X | ∠(v,w) = π/2 for all v ∈ Sx },

then the following hold:

(1) The set S⊥
x is a compact, totally geodesic Alexandrov subspace of �x X with cur-

vature bounded below by 1, and the space of directions �x X is isometric to the
join Sx ∗ S⊥

x with the standard join metric.
(2) Either S⊥

x is connected or it contains exactly two points at distance π .

We finally recall a crucial tool in the theory of transformation groups, the so-called
Slice Theorem. This result provides a canonical identification of a small invariant
neighborhoods of the orbit of through a given point x with a fiber bundle over the orbit
whose structure group is Gx . The fiber is the so-called slice, and for an Alexandrov
space a slice can be identified with the cone over the space of unit normal directions
to the orbit.

Theorem 2.8 (Slice Theorem, [27,Theorem B]) Consider a compact Lie group G
acting by isometries on an Alexandrov space X. Then for all x ∈ X, there is some
ε0 > 0 such that for all ε < ε0 there is an equivariant homeomorphism

G ×Gx K
(
S⊥
x

)
→ Bε(G(x)),
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where K (S⊥
x ) is the cone over S⊥

x .

2.4 Torus Actions on 4-Manifolds

We conclude the preliminaries section with a brief review of the equivariant and
homeomorphism classifications due to Orlik, Raymond, Pao and Kim of closed 4-
manifolds admitting effective torus actions for the sake of completeness. Observe that
closed 4-manifolds with any Riemannian metric are Alexandrov spaces, since each
Riemannianmetric has a global lower bound for its sectional curvature. Thus, by taking
an equivariant Riemannian metric, the classification of closed orientable 4-manifolds
with a torus actions, is a particular case of the main results of the present work.

Let us begin by recalling the equivariant classification of closed, orientable 4-
manifolds with an effective torus action.

Theorem 2.9 [40, 41] Let M be a closed, orientable 4-manifold admitting a T 2-action
by homeomorphisms. Then the set of inequivalent (up to equivariant homeomorphism)
effective T 2-actions on M is in one-to-one correspondence with the set of unordered
tuples of isotropy and topological invariants

{
(b1, b2); ε; g; s; t; { 〈pi , qi 〉

}s
i=1;

{{al , bl}
}t
l=1;

{
(α j ; γ j,1, γ j,2)

}k
j=1

}

To avoid repetition, the definition of the invariants appearing in the previous theo-
rem, and their admissible values, are defined in Sect. 5 for the more general case of
isometric, effective torus actions on Alexandrov 4-spaces. Let us only mention here
that each invariant of the form {al , bl} corresponds to the invariant

(
(al , bl),±1

)
as

formulated in Sect. 5. This is due to the fact that there are no topologically singular
points in the manifold case.

Although it is not needed for the proofs of the results stated in Sect. 1, for the sake
of completeness, we recall here that Kim obtained the equivariant classification for
closed non-orientable 4-manifolds admitting an effective torus action [34].

Different orbit types correspond to the possible isotropy groups of the torus action.
An orbit is called a principal orbit or P-orbit if the isotropy group of a point (and
hence for any point) contained in the orbit is trivial. The set of points in M whose
orbits are P-orbits is denoted by P . Theorem 2.6, i.e., the Principal Orbit Theorem,
states that P is an open and dense subset of M . Orbits with non-trivial finite isotropy
acting by preserving the local orientation are called exceptional orbits or E-orbits.
The subset of M of points on E-orbits is called E . For the case of 4-dimensional
manifolds, The Slice Theorem 2.8 implies that each E-orbit is isolated from other
E-orbits, since we have a free linear action of a finite subgroup of T 2 on the circle S1

(see [40,p. 534] for the list of possible finite subgroups). The orbit of a point whose
isotropy is isomorphic to the circle is called a circular orbit or C-orbit. We denote
the set of points of M contained in C-orbits by C . Finally, the set of points which are
fixed points of the action (that is, having isotropy subgroup equal to T 2) are denoted
by F .
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The orbit space M∗ is a 2-manifold (possibly with boundary) in which the interior
points are made up by P∗ ∪ E∗. Moreover, E∗ is a finite set. The boundary, which
may be empty, is equal to F∗ ∪ C∗.

For the case in which F �= ∅ some families of 4-manifolds appear naturally as
“building blocks” of 4-manifolds admitting effective T 2 actions, and are presented
next. Let M be a closed 4-manifold admitting an effective T 2-action. We say that M
is of type:

(i) R(m, n), if gcd(m, n) = 1, and the orbit space M∗ is homeomorphic to an annulus
where the inner circle boundary is composed of orbits with isotropy

G(m, n) = {(ϕ, θ) | mϕ + nθ = 0, gcd(m, n) = 1}.

The outer circle boundary consists of two arcs joined by their endpoints where one
of them consists of orbits with G(0, 1) isotropy, while the other consists of orbits
with G(1, 0) isotropy.

(ii) T (m, n;m′, n′), if gcd(m, n) = gcd(m′, n′) = 1, mn − m′n′ = ±1, and the
orbit space M∗ is homeomorphic to an annulus where the inner circle boundary is
composed of two arcs joined at their endpoints: one of them has G(m, n) isotropy
while the other has G(m′, n′) isotropy. The outer circle boundary consists of two
arcs joined by their endpoints where the orbits in one of them hasG(0, 1) isotropy,
while the other arc consists of orbits with G(1, 0) isotropy.

(iii) L(n; p, q;m), if gcd(n, p, q) = 1, and the orbit space is homeomorphic to a
2-disk with the center point corresponding to an E-orbit with (non-normalized)
Seifert invariants (n; p, q;m) (see Sect. 5) and with the boundary consisting of
two arcs joined by their corresponding endpoints. One arc consists of orbits with
isotropy G(m, n) while the other arc consists to orbits with isotropy G(p, q).

The homeomorphism type of these manifolds was completely described by Pao
[42], and they are the following (see [42,Theorem III.3]):

(i) For each m, n with gcd(m, n) = 1,

R(m, n) =
{
S2 × S2#S3 × S1 if mn ≡ 0 (mod 2),

CP2#CP2#S3 × S1 if mn ≡ 1 (mod 2).

(ii) Observe that since mn − m′n′ = ±1 then at least two of the four integers
m, n,m′, n′ must be odd and one is even. Take t = 0 if there are two even integers,
and t = 1 otherwise. Then (see [42,Theorem IV.1]),

T (m, n;m′, n′) =
{
S2 × S2#S2 × S2#S3 × S1 if t = 0,

CP2#CP2#CP2#CP2#S3 × S1 if t = 1.
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(iii) For every m, n, p, q with gcd(n, p, q) = 1, there are two homeomorphism types
(see [42,Theorem V.1]):

L(n; p, q;m) =
{
L(n; 0, 1; 1) or

L(n; 1, 1; 1).

We point out that when n is odd, then L(n; 0, 1; 1) is homeomorphic to
L(n; 1, 1; 1). But for the case when n is even, the spaces L(n; 0, 1; 1) and
L(n; 1, 1; 1) do not have the same homotopy type (see [42,Theorem V.2]). Both
of these manifolds result from a T 2-equivariant surgery of type (2, 3) on S1 × S3.
By performing a surgery of type (2, 3) on one element in the fundamental group of
the manifold, we can produce at most two different manifolds (see [42,Corollary
V.8]).

With these definitions in hand, we now summarize the whole topological classifi-
cation of closed, orientable 4-manifolds with an effective T 2-action.

Theorem 2.10 [40–43] Let M be a closed, orientable 4-manifold admitting a T 2-
action by homeomorphisms. Then the following hold true:

(1) If M is simply connected, then E = ∅, F �= ∅ and M is equivariantly homeomor-
phic to an equivariant connected sum of a finite number of copies of CP2, CP2,
CP2#CP2, S2 × S2 and S4. This connected sum decomposition is not necessarily
unique (see [40,Sect. 5]).

(2) Assume that F ∪ C = ∅. Then M admits a fibering over S1 where the fiber is a
3-dimensional Seifert manifold (see [41,Sect. 2]).

(3) If M is not simply connected and F �= ∅ then M is equivariantly homeomorphic
to an equivariant connected sum of the simply connected manifolds appearing in
item (1) and elementary 4-manifolds of types L, R and T . The decomposition as
a connected sum is possibly non-unique (see [41,Sect. 3]).

(4) Suppose F = ∅ and C �= ∅, then the following hold (see [43]):

(a) If there areC-orbitswith isotropiesG(m1, n1)andG(m2, n2) such thatm1n2−
m2n1 = ±1, then M is an equivariant connected sum of copies of S4, S2 × S2,
CP2, CP2, S3 × S1 and manifolds of type L.

In the remaining cases, that is, when there are nomutually orthogonalC-orbits, the
topological classification is not yet complete. However, the following properties
hold:

(b) If M and the action have the following set of invariants

{
o, g, s,−, {〈pi , qi 〉}si=1 ; {

(α j ; γ j,1, γ j,2)
}k
j=1

}
,

then, for the second Stiefel–Whitney class ω2(M) of M, we have ω2(M) �= 0
if and only if there exist integers i and j with 2 ≤ i and j ≤ s such that

pi ≡ p j ≡ qi ≡ 1 (mod 2),
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q j ≡ 0 (mod 2).

(c) The integers 2g + s, k, α1, . . . αk and m = gcd(p1, . . . , ps) determine the
fundamental group of M (see [43,Sect. 3]).

It is worth remarking that the case F ∪ C = ∅ was treated in [41] as a particular
case of [6], where the authors classify holomorphic Seifert fiberings through so-called
Bieberbach classes (see also the work of Cišang in [5]). We refer the reader to [6] and
[41,Sect. 2] for a detailed exposition.

In view of the non-uniqueness of the connected sum decompositions in items (1)
and (3) in Theorem 2.10 above, Pao defined the so-called normal decomposition for
4-manifolds which admit an effective T 2-action with fixed points, and proved that
this decomposition is unique. We say that a connected sum decomposition of such a
4-manifold M into summands S4, S2 × S2, S3 × S1, CP2, CP2, and manifolds of
type L , is a normal decomposition if the number of copies of S4, CP2, CP2 and the
manifolds of type L , denoted by N (S4), N (CP2), N (CP2), N (L(n; 0, 1; 1)), and
N (L(n; 1, 1; 1)) respectively, satisfy the following conditions:

(i) N (S4) = 1,
(ii) N (CP2) = 0 or N (CP2) = N (CP2) = 1,
(iii) if N (CP2) �= 0 then N (L(n; 1, 1; 1)) = 0 for all n = 2, 3, . . . ,
(iv) N (L(n; 1, 1; 1)) = 0 for all n = 3, 5, 7, . . ..

Theorem 2.11 [42,Theorem II.4.2] Let M be a closed, orientable 4-manifold admit-
ting a T 2-action by homeomorphisms with F �= ∅. Then M has a unique normal
decomposition.

2.5 Cohomogeneity one 3-Manifolds

Throughout this article the classification of cohomogeneity one closed 3-manifolds
due to Mostert [37] and Neumann [38] is used and we review it here as well for the
convenience of the reader.

Let G be a compact, connected Lie group acting by diffeomorphisms on a closed
smooth 3-manifold M with cohomogeneity one. Then the orbit space M∗ is homeo-
morphic to either a circle S1, or to a closed bounded interval I = [−1, 1]. In the first
case, there is a single orbit type with corresponding isotropy H . Thus, M is a fiber
bundle over S1 with fiber G/H and structure group N (H)/H . In this case, M can be
classified by the components of N (H)/H .

In the case that the orbit space M∗ is homeomorphic to I , the two endpoints of I
correspond to the only two non-principal orbit types (which could be the same), with
isotropy subgroups K−, K+, while the interior corresponds to principal orbit types
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with isotropy H . Moreover, there is a group diagram made up of inclusions

G

K−

j−

K+

j+

H
i− i+

where K±/H are isometric to positively curved ri -spheres, with 0 ≤ ri ≤ 2. Using
the Slice Theorem, it is possible to prove that M is equivariantly diffeomorphic to the
union of two fiber bundlesG×K+ Dr1+1 andG×K+ Dr2+1, where Dri+1 is the closed
unit disk in Rri+1. Here the union is made via an equivariant diffeomorphism between
the boundaries of G ×K± Dri+1, which are diffeomorphic to a principal orbit G/H .
Therefore, M can be classified via this construction by the components of the double
quotient N1\N (H)/N2, where N1 = N (H) ∩ N (K−) and N2 = N (H) ∩ N (K+).

Using these structure results, Mostert and Neumann obtained that either G = T 2

with H = {e}, or G = SO(3) with H = O(2), or H = SO(2). In Table 1 we collect
the possibilities for the homeomorphism type of M , when M∗ is a closed interval,
together with the corresponding orbit structures. Here, by orbit structure we mean the
ordered tuple (H , K−, K+). We denote the Klein bottle as Kl, the non-orientable S2

bundle over S1 by S2×̃S1, a lens space as L(p, q), the closed Möbius band as Mb,
and A denotes the manifold obtained by gluing Mb × S1 to S1 × Mb via the identity
map along the boundary S1 × S1.

Galaz-Garcia and Zarei proved that for a topological manifold of dimension at
most 4, any continuous group action by a Lie group is equivariantly diffeomorphic to
a smooth action on a smooth manifold.

Theorem 2.12 [14,Corollary E]Consider a topological manifold M with an (effective)
topological action of a compact Lie groupG of cohomogeneity one. If M has dimension
at most 4, then M is equivariantly homeomorphic to a smooth manifold N with an
effective smooth action by G.

Therefore for dimension 3, Table 1 gives a complete list of continuous actions of
T 2 on topological 3-manifolds.

3 Local Structure of Topological Singular Points

In general, the set of topologically singular points SingX of an Alexandrov space X
may be wildly arranged in X . However, in the presence of an isometric T 2-action the
set SingX acquires more structure. We begin by pointing out that since T 2 acts by
isometries, then SingX is an invariant subset of X under the action of T 2.
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Table 1 Cohomogeneity one 3-manifolds

Homeomorphism type of M Orbit Structure for G = T 2 Orbit Structure for G = SO(3)

T 3 {e} ∅
Kl × S1 ({e}, Z2 × {1}, Z2 × {1}) ∅
A ({e}, Z2 × {1}, {1} × Z2) ∅
RP2 × S1 ({e}, Z2 × {1},G(1, 0)) (O(2),O(2),O(2))

S2×̃S1 ({e}, Z2 × {1},G(1, 0)) (SO(2), SO(2), SO(2))

S2 × S1 ({e},G(1, 0),G(1, 0)) (SO(2), SO(2), SO(2))

L(p, q) ({e},G(1, 0),G(p, q))

with gcd(p, q) = 1
∅

S3 ({e},G(1, 0),G(0, 1)) (SO(2), SO(3), SO(3))

RP3 ({e},G(1, 0),G(1, 2)) (SO(2),O(2), SO(3))

RP3#RP3 ∅ (SO(2),O(2),O(2))

Observe that SingX is invariant under the isometric action of T 2. We split the set
SingX into the disjoint union of the following subsets:

Sing0X = {
x ∈ SingX | dimG(x) = 0

}

Sing1X = {
x ∈ SingX | dimG(x) = 1

}

Sing2X = {
x ∈ SingX | dimG(x) = 2

}

3.1 Orbits of Points in SingX

As mentioned before, the canonical projection π : X → X∗ is a submetry. There-
fore a small neighborhood Bε(x∗) ⊂ X∗ centered at x∗ ∈ X∗ is homeomorphic to
π(Bε(x)) = Bε(x)∗, whereπ(x) = x∗. TheConical NeighborhoodTheoremof Perel-
man (see [44,Theorem 0.1], [33,Theorem 6.8]) together with Proposition 2.1 imply
that Bε(x) is either homeomorphic to a cone over the suspension of the real projective
plane K (Susp(RP2)), or a cone over a spherical manifold. Furthermore, Theorem 2.8
yields that Bε(x)∗ is homeomorphic to K (S⊥

x /Gx ).
To further investigate the local structure of X∗ at orbits of points in SingX we split

the analysis using the dimension of the orbits.

Proposition 3.1 Let X be a closed, orientable Alexandrov 4-space with an effective,
isometric T 2-action. Then SingX = Sing0X , that is, the set of topologically singular
points of X consists only of fixed points.

Proof Assume that there exists x ∈ Sing2X . By Proposition 2.7, we have �x X =
Sx ∗ S⊥

x . Since dimG(x) = 2, Sx = S1, and thus the space of normal directions S⊥
x

is a positively curved Alexandrov 1-space. Thus S⊥
x is homeomorphic to S1. But this

implies that the space of directions �x X = S1 ∗ S1 = S3. Thus x is a regular point,
which is a contradiction.

123



Torus Actions on Alexandrov 4-Spaces Page 13 of 35 214

Assume there exists x ∈ Sing1X . By Proposition 2.7, we have�x X = Sx ∗S⊥
x . Since

dimG(x) = 1, Sx consists of two points and hence the space of normal directions
S⊥
x is a positively curved Alexandrov 2-space. Thus S⊥

x is either homeomorphic to S2

or RP2. Therefore, we have that �x X is either homeomorphic to Susp(S2) = S3 or
Susp(RP2). The first casemeans that x is a topologically regular point, which is a con-
tradiction. Moreover, the case where �x X = Susp(RP2) contradicts the orientability
of X . Hence, we conclude that Sing1X = ∅. Recall that the isotropy subgroups, are
closed subgroups of T 2. Since for x ∈ Sing0X we have an homeomorphism between
T 2(x) and T 2/T 2

x , we conclude that T 2
x is a two-dimensional subgroup. This implies

that the isotropy subgroup is T 2, and x is a fixed point. ��
In the following lemma, we describe the normal space of directions for each orbit

type of the effective action by isometries of T 2 on X .

Lemma 3.2 Let X be a closed, orientable Alexandrov 4-space admitting an effective
isometric T 2-action. Then the normal space of directions to an orbit must be one of
the following:

(a) For a two-dimensional orbit, the normal space of directions is homeomorphic to
S1;

(b) For a one-dimensional orbit, the normal space of directions is homeomorphic to
S2; and

(c) For a zero-dimensional orbit, the space of directions is homeomorphic to a 3-
dimensional spherical manifold.

Proof We begin by proving (3.2). Let x ∈ X be an element contained in a two-
dimensional orbit. Thus its normal space of directions is a closed positively curved
1-dimensional Alexandrov space by Proposition 2.7; i.e., it is homeomorphic to the
circle S1. Consider now x ∈ X contained in a one-dimensional orbit. Observe that by
Proposition 3.1, it is topologically regular. Moreover, the tangent sphere to the orbit
consists of two points. Thus by Proposition 2.7, its normal space of directions is a
closed 2-dimensional Alexandrov space of curvature bounded below by 1. Hence S⊥

x
is S2.

We consider x ∈ X in a zero-dimensional orbit. Then, x is a fixed point and
Proposition 2.1 gives that �x X is either homeomorphic to a spherical 3-manifold,
or to Susp(RP2). The orientability of X then implies that �x X is a spherical 3-
manifold. ��

4 Local Structure of the Orbit Space

In this section, we give the local characterization of the action by describing the
structure the orientable 4-dimensional Alexandrov space X∗ around the orbits of an
isometric effective action of T 2 . We stress that most of the contents of this section are
known (see for example, [40, 41]), but for the sake of completeness we review them
here. From Lemma 3.2, it follows that an orientable 4-dimensional Alexandrov space
X with an isometric effective T 2-action is in fact a rational cohomologymanifold.Note
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that X \Sing0X is an orientable manifold by Theorem 2.2. In particular, X \Sing0X is an
integral cohomology manifold. Such spaces were treated in [40,Appendix]. However,
thanks to the Slice Theorem (Theorem 2.8), we have a clear picture of the local
structure of an orientable 4-dimensional Alexandrov space with an effective isometric
T 2-action and its orbit space. This enables us to give a more precise description of the
action.

The possible isotropy groups correspond to closed subgroups of T 2. In order to
set notation, let us assume that T 2 is parametrized by (ϕ, θ) with 0 ≤ ϕ ≤ 2π and
0 ≤ θ ≤ 2π . Then the closed subgroups of T 2 consist of {1}, Zn , Zn × Zm , the
subgroups of the form

G(m, n) = {(ϕ, θ) | mϕ + nθ = 0, gcd(m, n) = 1},

G(m, n)×Zp and T 2 itself. Note thatG(m, n) is isomorphic to the circle group SO(2).
We write, G = T 2, and assume it acts isometrically and effectively on a closed,

oriented Alexandrov 4-space X . We list all the possible isotropy groups, slices and the
local picture of the orbit space.

Proposition 4.1 Let X be an orientable closed Alexandrov 4-space with an effective
isometric T 2-action. Then the possible isotropy groups are either the trivial one, T 2,
or of the form Zp, or G(m, n).

Proof We only need to show that G(m, n) × Zp and Zn × Zm cannot be the isotropy
group of any x ∈ X . We consider two cases: When x is not a topologically singular
point, then the analysis done by Orlik and Raymond in [40, 41] applies. That is, for a
topological regular point x ∈ X the possible isotropy groups are the trivial subgroup,
T 2, or one of the form Zp, or G(m, n) with gcd(m, n) = 1. From Proposition 3.1, we
know that for the case when x is a topological singular point, it is a fixed point which
concludes the proof. ��

4.1 Local Structure of X∗ Around Points in SingX

Given a point x ∈ SingX we describe a small neighborhood in X∗ of its orbit x∗ ∈ X∗,
and the isotropies of the orbits contained in this neighborhood. First, recall that x is a
fixed point of the T 2-action on X , and �x X is a spherical space form by Lemma 3.2,
Part (3.2). Moreover, it is not S3 as x is a singular point. Since T 2 acts on �x X
isometrically and effectively, the action is a continuous action of cohomogeneity one
on a spherical space form.

Moreover, since the space of directions �x X is a positively curved Alexandrov
space, by the generalized Bonnet–Myers Theorem for positively curved Alexandrov
spaces [27,Theorem 2.10], we conclude that�x X has finite fundamental group. Since
the fundamental group surjects onto the fundamental group of �x X/T 2, the orbit
space �x X/T 2 is a closed interval.

By the classification of cohomogeneity one actions on 3-dimensional manifolds
[14, 38] and by the fact that �x X is a spherical space form it follows that �x X is
a lens space L(q, p), and the orbit space �x X/T 2 has group diagram of the form
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Fig. 1 Neighborhood in X∗ around the orbit of a topologically singular point x ∈ Sing0X

(T 2,G(1, 0),G(p, q), {1}), for some appropriate splitting of T 2 (see Table 1). Fur-
thermore, it follows from [38] that (p, q) �= (1, 0) and (p, q) �= (0, 1). Otherwise
we would have that �x X is a 3-sphere or S2 × S1, respectively, which yields a con-
tradiction, since x ∈ SingX and �x X has finite fundamental group. Therefore, for a
general group diagram of the form (T 2,G(a, b),G(c, d), {1}) this implies that we
have ad − bc �= 0 and ad − bc �= ±1. Figure 1 depicts the local structure of X∗
around x ∈ Sing0X .

Moreover, since X is compact, we conclude that the set SingX consists of a finite
set of fixed points.

Lemma 4.2 Let X be a closed, orientable Alexandrov 4-space with an effective, iso-
metric T 2-action. Then SingX consist of a finite number of fixed points.

4.2 Fixed Points

Assume that x ∈ X � SingX is a point with isotropy group Gx = T 2, i.e., x is a
fixed point. To describe the local picture of the orbit space around x∗, we need to
examine the effective action of T 2 on the normal space of directions to the orbit, that
is S⊥

x = S3. A priori the action of T 2 on S3 is only continuous, but since it is of
cohomogeneity one, by Theorem 2.12, there is an equivariant homeomorphism to the
standard smooth T 2-action on S3. We recall that the standard action of T 2 on S3 is as
follows:

T 2 × S3 −→ S3

(ϕ, θ), (z1, z2)) �−→ (eimϕeinθ z1, e
ipϕeiqθ z2),

where we regard S3 ⊆ C2, and assume gcd(m, n) = 1, and gcd(p, q) = 1. Note that
this action is effective if and only if mq − np = ±1. The group diagram associated to
the cohomogeneity one action of T 2 on S3 is (T 2,G(m, n),G(p, q), {1}). Then we
have the local picture of X∗ around x∗ as in Fig 2(a).

4.3 One-Dimensional Orbits

Assume that x ∈ X � SingX is a point with a one-dimensional orbit. In this case, by
Lemma 3.2, Part (3.2), we have that S⊥

x
∼= S2. Furthermore, the isotropy group Gx is

also 1-dimensional. To obtain the local structure of X∗ around x∗, namely, K ((S⊥
x )∗),

the classification of the effective continuous actions of 1-dimensional compact Lie
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Fig. 2 Neighborhoods in X∗ around orbits of topologically regular points

groups on S2 is needed. By Theorem 2.12 this action can be assumed to be a smooth
action. From [31,Sect. 2.3] we get that this action of Gx on S2 is equivalent to the
action of SO(2), by rotating S2 with respect to the north-south poles. The group
diagram of this cohomogeneity one action is (G(m, n),G(m, n),G(m, n), {1}) and
the orbit space (S⊥

x )∗ is a closed interval. Therefore, x∗ is a boundary point of X∗ and
the local structure of X∗ around such orbits is as in Fig. 2b.

4.4 Finite Isotropy Groups

Let x ∈ X � SingX and Gx be its isotropy group. Assume that Gx is finite. Then, the
orbit G(x) is 2-dimensional, and the normal space of directions to this orbit, S⊥

x , is
1-dimensional. Therefore, S⊥

x
∼= S1.

To describe the slice and local picture of X∗ around x∗, we need to examine the
effective actions of finite groups on S1, preserving the orientation. SinceGx is a closed
subgroup (as it is finite) of the Lie group T 2, it is a compact Lie group by Cartan’s
theorem. Since we are assuming it preserves the orientation of S1, it is conjugate to a
closed subgroup of SO(2) (see [18,Sect. 4.1]). Thus we conclude that Gx is a cyclic
group acting by rotations on S1.

Hence, the local picture of the orbit space X∗ around x∗ is a 2-disk contained in
the interior of X∗. All of the points contained in this disk have trivial isotropy except
for x∗, which has Gx as isotropy. Therefore, x∗ is an isolated interior point.

4.5 Orbit Types

We have different orbit types according to the possible admissible isotropy groups
of the action. In the following, we recall those that already appear in the manifold
case, and define a new orbit type to account for the presence of topologically singular
points.

As in the manifold case, an orbit with trivial isotropy group is called a principal
orbit or P-orbit. We denote the set of points in X whose orbits are P-orbits by P . By
Theorem 2.6, P is an open and dense subset of X consisting entirely of topologically
regular points. Points having orbits with non-trivial finite isotropy are topologically
regular points, and therefore, the concept of local orientation is well defined: An orbit
with non-trivial finite isotropy acting by preserving the local orientation is called an
exceptional orbit or E-orbit. The subset of X of points lying on E-orbits is denoted by
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Table 2 Orbit types of a T 2-action on X

Orbit type Notation Isotropy Space of directions Comments

Principal P {1} S3 Interior point in X∗
Exceptional E Zk Interior point in X∗

(contained in some G(m, n)) Isolated from other E-
orbits

Circular C G(m, n) Boundary point in X∗

Regular RF T 2 Lateral isotropies
G(m, n) and G(p, q)

Fixed Point with mq − np = ±1

Singular SF T 2 L(q, p) Lateral isotropies
G(a, b) and G(c, d)

Fixed Point ( (q, p) �= (1, 0), (0, 1) ) with ad − bc �= 0, ±1

E . Each E-orbit is isolated from other E-orbits. The orbit of a topologically regular
point whose isotropy is isomorphic to the circle is called a circular orbit orC-orbit.We
denote the set of points onC-orbits byC . Note thatC consists entirely of topologically
regular points. The set of topologically regular points which are fixed points of the
action (that is, having isotropy T 2) is denoted by RF . By definition RF consists only
of topologically regular points. Finally we relabel the set of topologically singular
points (which by our previous analysis are fixed points of the action) by SF .

We collect all of this information in Table 2.
In the following proposition, we summarize our previous discussions and state

immediate consequences obtained byputting together the analysis of the local structure
of X∗ around orbits of topologically singular points and the analysis at topologically
regular points obtained in [40, 41].

Proposition 4.3 Let X be a closed, orientable Alexandrov 4-space with an effective,
isometric T 2-action. Then the following hold:

(1) The orbit space X∗ is a 2-manifold (possibly) with boundary.
(2) The interior of X∗ consists of P-orbits and a finite number of E-orbits.
(3) Each connected component of the boundary of X∗ consists of C, RF and SF-

orbits.

5 Equivariant Classification

As done for smooth T 2-actions on 4-manifolds (see [40, 41]) and SO(2)-actions on
3-manifolds (see [39]), we may endow the orbit space X∗ with a set of “weights"
that encode its topology, the isotropy information of the action, and the topological
regularity of the points in the orbit. In this section we prove that this set of weights
characterizes the action. We list these invariants:

(i) For a closed, oriented Alexandrov 4-space X with an effective T 2-action by isome-
tries we have by Proposition 4.3 that the orbit space X∗ is an oriented 2-manifold
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of a certain genus possibly with boundary. The integer g ≥ 0 denotes the genus
of X∗.

(ii) Fix an orientation for T 2. Recall that the 2-manifold X∗ inherits an orientation
from X via the orbit projection map and vice versa. We denote such an orientation
of X∗ by the symbol ε. Hence, ε has two different possible values.

(iii) The integer s ≥ 0denotes the number of boundary components of X∗ which consist
only ofC-orbits. To each connected component of this typewe associate theweight
〈pi , qi 〉 corresponding to the isotropy subgroup G(pi , qi ) of the corresponding
circular orbits.

(iv) The integer t ≥ 0 is the number of boundary components of X∗ which have non-
empty intersection with RF∗ ∪ SF∗. We label these boundary components from
1 to t . On the �-th boundary component of this type, there are r� ≥ 2 fixed points,
and the orbits between two such fixed points are circular orbits with isotropy
G(a�,w, b�,w). We set the weight f�,w to be the determinant of the isotropy groups
G(a�,w, b�,w) and G(a�,w+1, b�,w+1), i.e., f�,w = a�,wb�,w+1 − a�,w+1b�,w, for
1 ≤ w ≤ r� − 1, and f�,r� = a�,r�b�,1 − a�,1b�,r� . Therefore, for a fixed topo-
logically regular point we have f�,w = ±1, and for a fixed topologically singular
point we have f�,w �= ±1, and f�,w �= 0. Hence, we associate to the �-th boundary
component the sequence of weights

(
(a�, b�), f�

) = (
(a�,1, b�,1), f�,1, (a�,2, b�,2), . . . , (5.1)

(a�,(r�−1), b�,(r�−1)), f�,(r�−1), (a�,r� , b�,r� ), f�,r�
)
.

If r� = 2, for some 1 ≤ � ≤ t , then we require that f�,1 = − f�,2. This implies
that for r� = 2, both fixed points are topologically singular, or they both are
topologically regular.

(v) Let k ≥ 0 denote the number of exceptional orbits. To each exceptional orbit we
associate the weight (αl; γl,1, γl,2), the so-called oriented Seifert invariants of the
orbit (see [41,p. 93] for the precise definition).

(vi) In the case thatC∪ RF ∪ SF = ∅we further associate another invariant. Consider
E∗ = {x∗

i }ki=1, and let D∗
i be disjoint closed 2-disks in X∗ centered at x∗

i such
that D∗

i \ {x∗
i } ⊂ P∗ for all 1 ≤ i ≤ k. We arbitrarily choose a P-orbit x∗

0 ∈
X∗ \ ⋃k

i=1 D
∗
i and let D∗

0 be a small 2-disk centered at x∗
0 fully contained in P∗.

Let χ : ⋃k
i=0 ∂D∗

i → X be a cross-section to the restriction of the action to
⋃k

i=0 ∂D∗
i . By standard Obstruction Theory this cross-section can be extended to

X∗ \ ⋃k
i=0 int(D

∗
i ) and the obstruction to extending it to X∗ \ ⋃k

i=1 int(D
∗
i ) is an

element

(b1, b2) ∈ H2

(

X∗,
k⋃

i=1

D∗
i ; Z ⊕ Z

)
∼= Z ⊕ Z.

We refer the reader to [41,1.3] for a more detailed exposition of this invariant.
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Fig. 3 Example of a weighted orbit space of an effective and isometric T 2-action on a closed Alexandrov
4-space

In sum, to every orbit space X∗ of an effective and isometric T 2-action on X we
associate the following set of invariants,

{
(b1, b2); ε; g; { 〈pi , qi 〉

}s
i=1;

{(
(a�, b�), f�

)}t
�=1;

{
(α j ; γ j,1, γ j,2)

}k
j=1

}
. (5.2)

In the following we show that, as in the smooth case, this set of weights classifies
not only the space X up to equivariant homeomorphism, but also the action up to
orientation. Some remarks are in order.

Remark 5.1 If one of the sets C , RF ∪ SF or E is empty, we denote it on the set of
invariants by –.

Remark 5.2 Observe that the set of invariants (5.2) reduces to the set of invariants given
by Orlik and Raymond [40, 41] in the case that X is homeomorphic to a topological
manifold. Indeed, in this case, SF = ∅, and f�,w = ±1 for all values of � and w,
making the invariant f�,w superfluous (Fig. 3).

Remark 5.3 Aboundary component of X∗ may contain an odd number of topologically
singular fixed points. In particular, it may contain a single topologically singular fixed
point, as long as the total number of fixed points is at least three (see Example 7.3, with
(m1, n1) = (1, 0), (m2, n2) = (0, 1), and (m3, n3) = (m, 1), for m �= 0,±1). This
stands in contrast with the case of circle actions on 3-dimensional closed Alexandrov
spaces (cf. [39,Lemma 3.3] )

Let us now recall the definition of isomorphism between weighted orbit spaces.
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Definition 5.4 Let X and Y be two closed, oriented Alexandrov 4-spaces carrying
effective and isometric T 2-actions. We say that the orbit spaces X∗ and Y ∗ are iso-
morphic if there exists an orientation preserving homeomorphism f : X∗ → Y ∗,
such that for each x ∈ X∗, the weight associated to f (x∗) is the same as the weight
associated to x∗.

5.1 Cross-Sectioning Theorems

As in the manifold case, a key step in achieving the equivariant classification of
effective and isometric T 2-actions, is to show the existence of a cross-section to the
quotient map π : X → X∗ in the absence of exceptional orbits.

This has been done in [40,Appendix] for the more general family of 4-dimensional
cohomology manifolds with a continuous T 2-action. As pointed out in Sect. 4, an
orientable 4-dimensional Alexandrov space X with an effective and isometric T 2-
action is a cohomology manifold (see also [36,Corollary 8.7]). However, we present
a more detailed proof here given that we have a clearer picture of the local structure
of X .

We first consider the simpler case when the orbit space is homeomorphic to a 2-
disk and proceed in a similar fashion to the proof of Theorem 1.10 in [40] for smooth
closed 4-manifolds with a smooth T 2-action, by splitting the proof on the existence
of the cross-section into several lemmas. More precisely, we show how we can define
a cross-section on simple subsets (in terms of the topology and isotropy information)
and then show it is possible to extend any given cross-section on such subsets to a full
cross-section.

Lemma 5.5 (cf. [40,Lemma1.6])Let X be a compactHausdorff spacewith an effective
continuous T 2-action. Assume that the orbit space is homeomorphic to I × I , where
the orbits on the arc [0, 1] × {0} all have isotropy G(m, n). Then there exist a cross-
section ρ : X∗ → X. Moreover, assume that over a connected subset A∗ of J ∗ =
{0} × I ∪ I × {1} ∪ ×{1} × I we have defined a cross-section. Then this cross-section
can be extended to a cross-section over all of X∗.

Proof Let G(a, b) be a circle subgroup of T 2 such that an − bm = 1, i.e., such that
T 2 = G(m, n) × G(a, b). Consider Y = X/G(m, n). Then G(a, b) acts on Y freely,
and we have a principal circle fibration Y → X∗, with fiber G(a, b). Since X∗ is
contractible then Y is equivariantly homomorphic to X∗ × G(a, b) and there exist a
cross-sectionρ1 : X∗ → Y . Next, we observe that over X∗\ I×{0}, we have a principal
G(m, n)×G(a, b)-bundle. Again, since X∗ \ I ×{0} is contractible, we conclude that
over X∗ \ I ×{0} the bundle is trivial, i.e., the total space is (X∗ \ I ×{0})×G(m, n)×
G(a, b), and in particular we have a cross-section ρ2 : Y \ (I × {0} × G(a, b)) →
(X∗ \ I × {0}) × G(m, n) × G(a, b) ⊂ X . We can extend this cross-section to all
of Y since over I × {0} × G(a, b) we have only the fixed points of the G(m, n)-
action on X . Thus, combining the cross-sections ρ1 : X∗ → Y and ρ2 : Y → X we
obtain the desired cross-section ρ : X∗ → X . We also conclude that X is equivariantly
homeomorphic to X∗ ×G(m, n) ×G(a, b)/ ∼, where ((t, 0), ζ1, ξ) ∼ ((t, 0), ζ2, ξ)

for t ∈ I , ζ1, ζ2 ∈ G(m, n), and ξ ∈ G(a, b).
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Assume that we are given a cross-section σ : A∗ → X . Since X is equivariantly
homeomorphic to X∗ × G(m, n) × G(a, b)/ ∼, we have a cross-section σ : A∗ →
X∗ × G(m, n) × G(a, b)/ ∼. We prove that we can extend this cross-section to all
of X∗. We fix Z = X∗ × G(m, n)/ ∼, where ((t, 0), ζ1) ∼ ((t, 0), ζ2) for t ∈ I
and ζ1, ζ2 ∈ G(m, n). Observe that Z is the orbit space of the G(a, b)-action on
X∗×G(m, n)×G(a, b)/ ∼. Thus, we have two projection maps π1 : X∗×G(m, n)×
G(a, b)/ ∼= X → Z and π2 : Z → X∗. Moreover, the cross-section σ : A∗ →
X∗ × G(m, n) × G(a, b)/ ∼ is of the form σ(a∗) = [a∗, ζ(a∗), ξ(a∗)]. Observe that
we have a cross-section σ2 : A∗ → Z for π2 defined as σ2(a∗) = [a∗, ζ(a∗)]. We fix
A1 = σ2(A∗) ⊂ Z , and A = σ(A∗) ⊂ X∗ × G(m, n) × G(a, b)/ ∼. We obtain a
cross-section σ1 : A1 → A for π1, given by σ1[a∗, ζ(a∗)] = [a∗, ζ(a∗), ξ(a∗)].

We show first that we can extend σ2 to J ∗. We assume that A∗ is a proper subset of
J ∗. After removing the fixed points {(0, 0), (0, 1)} from J ∗, and possibly A∗, we get
two spaces J ∗

1 ⊂ J ∗ and B∗ ⊂ A∗ which have the same homotopy type.Moreover, we
have a circle fibration π2 : π−1

2 (J ∗
1 ) → J ∗

1 , since the action of G(m, n) over π−1
2 (J ∗

1 )

is free. From the fact that J ∗
1 has the same homotopy type as B∗, we conclude that

H2(J ∗
1 , B∗; Z) = 0, and thus the obstruction to extend σ2 from B∗ to J ∗

1 vanishes (see
[30,pp. 415–419]). Therefore, we can extend the map σ2 : B∗ → Z to J ∗

1 . By adding
back the fixed two fixed points to J ∗

1 , we get a cross-section σ2 : J ∗ → Z extending
the cross-section σ2 : A∗ → A1.

We show that we can extend this cross-section σ2 : J ∗ → Z to a cross-section
σ2 : X∗ → Z . Consider the point p∗ = (1/2, 0) ∈ X∗. Observe that X∗ is homeo-
morphic to the cone of J ∗ with vertex p∗, denoted by C(p∗, J ∗). For x∗ ∈ J ∗ and
1 ≥ t > 0we set σ2(x∗, t) = [(x∗, t), ζ(x∗)] ∈ Z , and at the vertex, σ2(p∗) = [p∗, ζ ]
for any ζ ∈ G(m, n).

Now we prove we can extend the cross-section σ1 : A1 → X to a cross-section
σ1 : Z → X . Recall that π1 : X → Z is a fibration with fiber a circle, since the
action of G(a, b) on X is free. We point out that A1 = A∗ ×G(m, n)/ ∼ has the same
homotopy type as Z = X∗×G(m, n)/ ∼. From this it follows that H2(Z , A1; Z) = 0,
and thus the only obstruction to extending the given cross-section σ1 : A1 → X∗ ×
G(m, n)×G(a, b)/ ∼ to the whole of Z vanishes (see [30,pp. 415–419]). Composing
σ2 with σ1 we obtain a cross-section σ = σ1◦σ2 : X∗ → X extending the given cross-
section σ : A∗ → X . ��
Remark 5.6 Observe that in the previous proof, we can assume that the corner point
(0, 0) ∈ X∗ is a fixed point of the T 2 action on X , and we still recover the same
conclusion: given a cross-section on A∗, we can extend this cross-section to X∗.

Lemma 5.7 (cf. [40,Lemma1.8])Let X be a compactHausdorff spacewith an effective
continuous action of T 2, and assume that X∗ = [−1, 1] × I , where the orbits in
[−1, 0)×{0} have isotropy subgroup G(m, n), the orbits in (0, 1]× {0} have isotropy
subgroup G(p, q) such that mp − nq �= 0, the point (0, 0) ∈ X∗ is a fixed point,
and all other points correspond to principal orbits. Then there is a cross-section to
this action. Moreover any cross-section on a connected subset A of the arc J ∗ =
{−1} × I ∪ [−1, 1] × {1} ∪ {1} × I may be extended to a cross-section over X∗.
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Proof We split the orbit space X∗ into two components: X∗
1 = [−1, 0] × I , and

X∗
2 = [0, 1] × I . Assume without loss of generality that A∗ ∩ X1 �= ∅. We then apply

Remark 5.6 to obtain a cross-section σ1 : X∗
1 → X extending the given cross-section

σ : A∗ ∩ X∗
1 → X1. We then apply Remark 5.6 to the cross-section σ2 : {0}× I ∪ A∗ ∩

X∗
2 → X , where σ2(0, t) = σ1(0, t) for t ∈ I , and σ2(a∗) = σ(a∗) for a ∈ A∗ ∩ X∗

2 .
Thus we obtain a continuous cross-section σ : X∗ → X by setting σ(x∗) = σ1(x∗)
for x∗ ∈ X∗

1 , and σ(x∗) = σ2(x∗) for x∗ ∈ X∗
2 ��

Another lemma thatwe need to prove the existence of the cross-section is as follows:

Lemma 5.8 [40,Lemma 1.7] Suppose that π : X → X∗ is the orbit map of a T 2-
action on a compact Hausdorff space and assume that X∗ = S1 × I , where S1 × {0}
corresponds to orbits with isotropy group G(m, n) with gcd(m, n) = 1 and all other
points to principal orbits. Then the map π has a cross-section. Moreover any cross-
section on S1 × {0} may be extended to a cross-section over X∗.

Remark 5.9 We observe that the hypotheses of both lemmas only require the space to
be Hausdorff, a condition which is satisfied by Alexandrov space since they are metric
spaces.

Proposition 5.10 Let X be a closed, orientable Alexandrov 4-space with an effective,
isometric T 2-action. If the orbit space X∗ is homeomorphic to a 2-disk and E = ∅,
then there exists a cross-section.

Proof We follow the same procedure as done in the proof of [40,Theorem 1.10]. If
RF∪SF = ∅, then X is homeomorphic to a 4-manifold and the torus action in question
has no fixed points. In this case, the result is exactly Case 1 of [40,Theorem 1.10].

Therefore, we assume that RF∪SF �= ∅. The strategy to deal with this case follows
along the lines of Case 2 of [40,Theorem 1.10]. Let RF∗ ∪ SF∗ = {x∗

1 , . . . , x
∗
r }. We

split X∗ as Y ∗ ∪D∗
1 ∪· · ·∪D∗

r , where Y
∗ is a closed 2-disk contained in the interior of

X∗, and each D∗
i is homeomorphic to [−1, 1]× I , and satisfies: D∗

i ∩(RF∗ ∩ SF∗) =
{x∗

i }, and D∗
i ∩ Y ∗ corresponds to [−1, 1] × {1}. The set D∗

i ∩ D∗
i+1 corresponds to{1}× I and the distribution of isotropies on D∗

i is exactly as in Lemma 5.7 (identifying
D∗
i ∩ ∂X∗ with [−1, 1]× {0} and x∗

i with {0}× {0}). Since Y ∗ does not contain orbits
with non-trivial isotropy, the restriction of the quotient map π : π−1(Y ∗) → Y ∗ is
a principal T 2-bundle. Furthermore, since Y ∗ is contractible, this principal bundle is
trivial. Thus, there exists a cross-section η : Y ∗ → π−1(Y ∗).

By considering the restriction of η to D∗
i ∩Y ∗ we fall into the hypotheses of Lemma

5.7. Hence, by this result, we can extend η to Y ∗∪D∗
1 . Slightly abusing the notation we

do not rename the cross-section. Similarly, by Lemma 5.7 and Remark 1.9 in [40], the
restriction of η to D∗

2 ∩(Y ∗ ∪D∗
1) can be extended to a cross-section on Y

∗ ∪D∗
1 ∪D∗

2 .
Proceeding inductively, it is clear that there exists an extension of η to X∗, thus proving
the result. ��
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5.2 Equivariant Classification

Theorem 5.11 Let X1 and X2 be two closed, oriented Alexandrov 4-spaces each with
an effective, isometric T 2-action. Then X1 and X2 are equivariantly homeomorphic
if and only if X∗

1 and X∗
2 are isomorphic.

Proof The “only if” part is clear. Therefore, we focus on showing that if X∗
1 is isomor-

phic to X∗
2 , then X1 is equivariantly homeomorphic to X2. To this end, we begin by

observing that if SFi = ∅, then Xi are homeomorphic to 4-manifolds. In this case the
proof is as in [40, 41]. Hence, in the following we assume SFi �= ∅. Suppose there is
an isomorphism h∗ : X∗

1 → X∗
2 of orbit spaces. We also consider the projection maps

π1 : X1 → X∗
1 and π2 : X2 → X∗

2 . Assume there are exceptional orbits x∗
1 , . . . , x

∗
k

in the interior of X∗
1 . Since all the topologically singular points lie in the boundary

of X∗
1 , this exceptional orbits are topologically regular points, and thus via the slice

theorem we can find small tubular neighborhoods Ds ⊂ X such that D∗
s � {x∗

s } and
h∗(D∗

s ) � {h∗(x∗)} contain only principal orbits. Since H2(∂D∗
s , Z ⊕ Z) = 0 and

H2(∂h∗(D∗
s ), Z⊕Z) = 0, we have cross-section on the boundaries of D∗

s and h
∗(D∗

s ).
Furthermore, assume the boundary of X∗

1 consist ofm connected components. SetU∗
j

to be a closed annular neighborhood of the j-th component.
Then for X1,1 = X1 \(D∗

1 ∪· · ·∪D∗
k ∪U∗

1 ∪· · ·∪U∗
m), and X1,2 = X2 \(h∗(D∗

1)∪· · · ∪ h∗(D∗
k ) ∪ h∗(U∗

1 ) ∪ · · · ∪ h∗(D∗
m)) from the proof of Theorem 1.10 in [40], the

sections on each ∂D∗
s can be extended to a section σ1 : X∗

1,1 → X1,1 = π−1
1 (X∗

1,1).
The same is true for the sections over the boundaries of h∗(D∗

s ); we can extend them
to a cross-section σ2 : X∗

1,2 → X1,2 = π−1
2 (X∗

1,2). Since the action of T 2 over X1,1

and X1,2 is free, we conclude that X1,1 is equivariantly homeomorphic to X∗
1,1 × T 2,

and X1,2 is equivariantly homeomorphic to X∗
1,2 × T 2. Thus we have an equivariant

homeomorphism h : X∗
1,1 × T 2 → X∗

1,2 × T 2 given by h(x∗, ξ, ζ ) = (h∗(x∗), ξ, ζ ).
The sections σ1 and σ2 can be extended over each annulusU∗

j , and h
∗(U∗

j ) by The-
orem 1.10 in [40] and Proposition 5.10. Consider x∗ ∈ U∗

j . Observe that for any y ∈
π−1
1 (x∗), there exists and element (ξ, ζ ) ∈ T 2, such that y = (ξ, ζ )σ1(x∗); the same

is true for h(x∗) ∈ h∗(U∗
j ). Set X

∗
2,1 = X∗ � (D∗

1 ∪· · ·∪ D∗
k ), X2,1 = π−1

1 (X∗
2,1),and

X2,2 = X2 � (D∗
1 ∪ · · · ∪ D∗

k ), X2,2 = π−1
2 (X∗

2,2). We can extend the equivariant
homeomorphism h, to an equivariant homeomorphism h : X2,1 → X2,2 as follows:
for (ξ, ζ )σ1(x∗) ∈ Uj = π−1

1 (U∗
j ) we set h((ξ, ζ )σ1(x∗)) = (ξ, ζ )σ2(h∗(x∗)).

To finish the proof, we have to extend the equivariant homeomorphism h to each Ds .
We recall that the actions on each Ds are completely understood (see [41,Sect 1.1]). In
this sense, there is a unique equivariant way to attach each of them to X2,1 and X2,2.
Therefore, we have an equivariant homeomorphism h : X1 → X2 lifting the given
isomorphism h∗. ��

6 Construction of an AlexandrovMetric

Wehave so far showed that two closed, oriented Alexandrov 4-spaces with an effective
and isometric T 2-action which have the same set of invariants must be equivariantly
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homeomorphic. To complete the equivariant classification we show that given an
arbitrary set of invariants as in (5.2), there exists a closed orientable Alexandrov 4-
space X and an effective and isometric T 2-action on X which has precisely this set
of invariants. More precisely, we assume that we are given a compact 2-dimensional
topological manifold endowed with a set of invariants as in Sect. 5. Then using a result
of Haefliger and Salemwe construct a smooth orbifold with a smooth T 2-action giving
rise to the given weighted orbit space. From this we construct an invariant Riemannian
orbifold metric with curvature bounded below.

Since it is a central tool in this section, for the sake of completeness, we recall the
result of Haefliger and Salem.

Proposition 6.1 [26,Proposition 4.5] Let W be a paracompact space and {Vi }i∈I an
open covering of W such that for each i ∈ I , there exists a T n-orbifold Xi with orbit
space equal to Vi . Assume the following compatibility condition: Let πi : Xi → Vi
be the projection map of each T n-action. For each w ∈ Vi ∩ Vj , there is an open
neighborhood V of w in Vi ∩ Vj and a T n-equivariant diffeomorphism of π−1

i (V )

onto π−1
j (V ) over V . Then to these compatible local data there is an associated

cohomology class in H3(W , Zn) whose vanishing is equivalent to the existence of
a T n-orbifold X with orbit space W, such that π−1(Vi ) is locally equivalent to Xi ,
where π : X → W is the projection map.

In the following definition we make explicit the restrictions that the a given set of
weights needs to satisfy in order to be considered the set of invariants of an T 2-action
on a 4-dimensional orbifold.

Definition 6.2 Consider X∗, a compact topological 2-manifold (possibly with bound-
ary) which has associated to it the following set of weights:

{
(b1, b2); ε; g; { 〈pi , qi 〉

}s
i=1;

{(
(a�, b�), f�

)}t
�=1;

{
(α j ; γ j,1, γ j,2)

}k
j=1

}
. (6.1)

We say that X∗ is legally weighted if the determinant of two adjacent weights,
(a, b) and (c, d), in X∗ is non-zero, i.e., ad − bc �= 0.

Remark 6.3 The condition of being legally weighted is required to get, at a fixed point,
as space of directions a suspension of a spherical space. In other words to exclude
S2 × S1 as space of directions (see [38]).

Remark 6.4 Let X∗ be homeomorphic to a 2-disk with two fixed points: one, topo-
logically regular and the other, topologically singular. In other words we have the
following weight information:

{
(ε, 0, 0, 0, 1); {(

(a, b), δ, (c, d), 1
)}}

,

where δ �= ±1. By Sect. 5, Item (iv), we exclude such weighted orbit space.

Remark 6.5 Observe that if X is a closed orientable 4-dimensional Alexandrov space
with an effective T 2-action by isometries, then the orbit space X∗ with the set of
invariants described in Sect. 3, is a legally weighted space.
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The following theorem shows that legal sets of weights are realized by orbifolds.

Theorem 6.6 Let X∗ be the legally weighted topological 2-manifold with weights as
in (6.1). Then there exists an orbifold OX with a T 2-action, such that OX/T 2 is
isomorphic to X∗.

Proof We begin by pointing out that if SF∗ = ∅ then the result follows directly from
[40, 41], and in this caseOX is in fact a smooth 4-manifold. Thus, in the following we
assume that SF �= ∅. To prove the result in this case we construct an open cover of X∗
that satisfies the hypothesis of [26,Proposition 4.5]: we give an open cover {V ∗

i } of X∗,
such that for each open set V ∗

i , there exists an orbifold Vi with a smooth T 2-action,
projection map πi : Vi → Vi/T 2, such that V ∗

i is the orbit space of the action, and
for w∗ ∈ V ∗

i ∩ V ∗
j , there exists an open neighborhood V ∗ ⊂ V ∗

i ∩ V ∗
j of w∗, and an

equivariant diffeomorphism between π−1
i (V ∗) and π−1

j (V ∗).
Recall that t + s is the total number of boundary components of X∗. Let us write

∂X∗ = (�q
i=1∂X

∗
i ) � (�t+s

j=q+1∂X
∗
j ) for some q ≥ 0 in such a way that for q + 1 ≤

j ≤ t + s, the boundary component ∂X∗
j contains at least one SF-orbit, and for

1 ≤ i ≤ q, the boundary component ∂X∗
i contains no SF-orbit (i.e., it contains only

C- and RF-orbits). Here, we adopt the convention that if C∗, RF∗ = ∅ then q = 0
and (�q

i=1∂X
∗
i ) = ∅.

Consider the following open cover for X∗. Assume that W ∗
i and U∗

i , q + 1 ≤ i ≤
t + s, are annular neighborhoods around each boundary component with SF∗-points,
such that Ū∗

i is properly contained in W ∗
i , and W ∗

i ∩ W ∗
j = ∅, for all i �= j . Let us

denote Y ∗ = X∗ \ ⋃t+s
i=q+1 Ū

∗
i . Note that Y

∗ is a 2-surface of genus g with boundary.
We now divide each open neighborhood W ∗

i into smaller neighborhoods Z∗
i j , where

each Z∗
i j is required to contain only a single fixed point, and

⋃
j Z

∗
i j = W ∗

i (see Fig. 4).

Now we construct smooth 4-orbifolds equipped with effective T 2-actions over
each of the pieces of the open cover {Y ∗}∪ (∪i j {Z∗

i j }, and show that on the non-trivial
intersections they are compatible in the sense of Proposition 6.1.

Orbifold Corresponding to Y∗

We point out that the number of boundary components in X∗ containing only RF-
orbits is given by q − s in the notation above. With this observation we point out that
by [40, 41], the set of invariants

{
(b1, b2); ε; g; { 〈pi , qi 〉

}s
i=1;

{(
(al , bl),±1

)}q−s
l=1 ; {

(α j ; γ j,1, γ j,2)
}k
j=1

}

determines a unique (up to equivariant homeomorphism) closed, smooth 4-manifold
Ŷ with an effective T 2-action having these invariants. Note that Ŷ ∗ has exactly q ≥ 0,
boundary components: s boundary components containing only circular isotropy; and
q − s boundary components containing at least one regular fixed point. Recall that
t is the number of boundary components of X∗ containing fixed points. The number
of boundary components containing SF-orbits is given by t + s − q. Let Ŷ ∗

1 be the
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Fig. 4 Open cover of X∗

subset of Ŷ ∗ obtained by taking out sufficiently small, disjoint, closed neighborhoods
of t + s − q (arbitrary) points with trivial isotropy. Then Ŷ ∗

1 is isomorphic to Y ∗. Set
Y to be the inverse image of Ŷ ∗

1 under the projection map Ŷ → Ŷ ∗, associated to the
T 2-action on Ŷ . Notice that Y is an open submanifold of Ŷ which is invariant under
the action of T 2.

Orbifolds Corresponding to Z∗
ij

Let x∗
i j ∈ Z∗

i j be the fixed point in this neighborhood with isotropies G(ai j , bi j ) and
G(ai( j+1), bi( j+1)), with ai j bi( j+1) − ai( j+1)bi j = fi j . From Sects. 4.1 and 4.2, we
know that the open cone over a lens space has an T 2-action such that the orbit space
is isomorphic to Z∗

i j . We point out that the cone over a lens space admits an orbifold
structure. We denote such a cone by Zi j .

Compatibility of the Open Cover

Wenowshow that over theoverlaps in X∗, the smooth4-orbifoldswehaveproduced are
equivariantly diffeomorphic. That is, we need to examine the intersection of Z∗

ik with
Y ∗, and the intersection of Z∗

i j with Z∗
i( j+1), for j = 1, . . . , ri with the identification

ri + 1 = 1.
In the first case, the intersection Z∗

ik ∩Y ∗ is the product of two open intervals I1× I2
(see Fig. 4). Set A = π−1

Y (I1 × I2) ⊂ Y . Observe that A is contained in a smooth
manifold, and the action of T 2 on A is free. Since A/T 2 = I1 × I2 is contractible, we
conclude that A is equivariantly diffeomorphic to T 2 × I1 × I2 via a diffeomorphism
ψA : T 2 × I1 × I2 → A. Analogously we point out, that B = π−1

Zik
(I1 × I2) ⊂ Zik is
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a manifold, and the action of T 2 on B is free. Since B/T 2 = I1 × I2 is contractible,
we conclude that there exists an equivariant diffeomorphism ψB : B → T 2 × I1 × I2.
Therefore, there exists an equivariant diffeomorphism � : B → A defined as � =
ψ−1

A ◦ ψB .
We now focus ourselves on Z∗

i j ∩ Z∗
i( j+1). We can consider the closure of Z∗

i j ∩
Z∗
i( j+1) in X∗, and since Zi j and Zi( j+1) are open cones over lens spaces, we can

then assume Zi j and Zi( j+1) to be the closed cones. The intersection of the closures is
homeomorphic to [0, 1]×[0, 1]. Moreover, the edge [0, 1]×{0} consists of orbits with
isotropy G(ai( j+1), bi( j+1)), for both actions of T 2 on Zi j and Zi( j+1) (see Fig. 4).
Then by the proof of Lemma 5.5, the subset A = π−1

Zi j
([0, 1] × [0, 1]) ⊂ Zi j is

equivariantly diffeomorphic to [0, 1] × K (S1) × S1, where K (S1) is the closed cone
over S1. This same statement holds for B = π−1

Zi( j+1)
([0, 1] × [0, 1]) ⊂ Zi( j+1): it

is equivariantly diffeomorphic to [0, 1] × K (S1) × S1. Thus we conclude that A is
equivariantly diffeomorphic to B.

Thus the conditions of compatibility in Proposition 6.1 are fulfilled and this pro-
cedure gives rise to a cohomology class in H3(X∗, Z2). Since X∗ is a 2-dimensional
manifold, the group H3(X∗, Z2) vanishes, and the conclusion of Proposition 6.1 gives
us a compact, smooth 4-orbifold X (possibly with boundary) carrying an effective T 2-
action which has exactly the collection

{
(b1, b2); ε; g; { 〈pi , qi 〉

}s
i=1;

{(
(a�, b�), f�

)}t
�=1;

{
(α j ; γ j,1, γ j,2)

}k
j=1

}

as its set of invariants. That is, X/T 2 is isomorphic to X∗. ��
Thus for a weighted surface X∗, we have constructed a space X (the underlying

space of a smooth 4-orbifold) which admits a T 2-action, and realizes X∗ as its orbit
space. Now, we point out that this space X admits an Alexandrov metric.

Theorem 6.7 For each legally weighted surface X∗, there exists a closed, orientable
Alexandrov 4-space admitting an effective and isometric T 2-action realizing X∗ as its
orbit space.

Proof Let X be the underlying space of the orientable orbifold OX obtained by The-
orem 6.6. As in the case of Riemannian manifolds, for the T 2-action on OX we can
construct an invariant orbifold metric via [1,Theorem 3.65]. This induces the desired
invariant Alexandrov metric. ��

Combining Theorems 5.11, 6.6, and 6.7 we conclude the following

Corollary 6.8 Let X be a closed orientable 4-dimensional Alexandrov space with a
T 2-action by isometries. Then X is equivariantly homeomorphic to an orbifold.

7 Basic Topological Recognition

In this section we prove a basic topological recognition result: we show that given
a closed, orientable Alexandrov 4-space with an effective, isometric T 2-action, it
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is always possible to decompose it as an “equivariant connected sum” of a closed
smooth 4-manifold with an effective T 2-action, with a finite number of “simple”
closed, orientable Alexandrov 4-spaces with standard T 2-actions; the connected sum
is done along the boundaries of tubular neighborhoods of some circle orbits. To make
this statement precise we define these simple closed Alexandrov 4-spaces with an
isometric T 2-action.

Definition 7.1 Let X be a closed, orientable Alexandrov 4-space with an effective,
isometric T 2-action. We say that X is simple if X∗ is homeomorphic to a 2-disk and
E = ∅, C = ∅ and RF ∪ SF �= ∅.

We observe that the set of invariants (5.2) associated to a simpleAlexandrov 4-space
is of the form

{
(0, 0); ε; 0;−; {(

(a1,1, b1,1), f1,1, (a1,2, b1,2), f1,2, . . . , (a1,r1 , b1,r1), f1,r1
)};−}

.

Before proving the decomposition result of closed orientable 4-dimensional
Alexandrov spaces with a T 2-action by isometries, we present some examples of
simple Alexandrov spaces. At the present moment we are not aware of a complete list
of simple spaces.

Example 7.2 Let T 2 act on the lens space L(r , s) of cohomogeneity one with the group
diagram (T 2, 1,G(p, q),G(m, n)), where pn − mq = r . Then Susp(L(r , s)) with
the suspension action of T 2 is a simple Alexandrov space. This action has two singular
fixed points and its set of invariants is as follows:

{
(0, 0); ε; 0;−; {(

(p, q), r , (m, n),−r
)};−}

.

Example 7.3 This example deals with a T 2-action on a weighted projective space,
which is defined as follows: Consider the unit sphere

S5 = {(z1, z2, z3) |
3∑

i=1

|zi |2 = 1} ⊆ C3,

and define an action of the circle T1 on S5 as follows:

eiϕ.(z1, z2, z3) = (eir1ϕz1, e
ir2ϕz2, e

ir3ϕz3).

Here the ri ’s, are coprime integers. The quotient space of the sphere by this action

WP(r1, r2, r3) = S5/T1

is called aweightedprojective space.Note thatWP(r1, r2, r3) is a compactRiemannian
orbifold and in particular an Alexandrov space. We now define an effective T 2-action
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on WP(r1, r2, r3). We assume that each ri is positive, and we choose three pairs of
coprime integers (m1, n1), (m2, n2), and (m3, n3), satisfying

m1n2 − m2n1 = r2,

m2n3 − m3n2 = −r3,

m3n1 − m1n3 = r1.

We define an T 2-action on S5 as

(ϕ, θ).(z1, z2, z3) = (z1, e
i
m3ϕ+n3θ

r1 z2, e
i
m1ϕ+n1θ

r1 z3).

Since the actions of the circle T1 commutes with the action of T 2 on S5, the action of
T 2 on S5 descends to an action on WP(r1, r2, r3). This action has three fixed points
and the set of invariants of the action is:

{
(0, 0); ε; 0;−; {(

(m1, n1), r2, (m2, n2),−r3, (m3, n3), r1
)};−}

.

C-Equivariant Connected Sums

We describe a similar construction to that of the usual equivariant connected sums
which are performed at RF-orbits (see [40, 41]). The core difference is that it is
performed at C-orbits.

Let X1 and X2 be two closed, orientable Alexandrov 4-spaces equipped with effec-
tive and isometric T 2-actions, and let πi : Xi → X∗

i denote the canonical projection
maps for i = 1, 2. We let Ci , RFi , SFi and Ei denote the subsets of Xi consisting
of points on circular orbits, topologically regular fixed points, topologically singular
fixed points and exceptional orbits, respectively, for i = 1, 2. We assume that Ci �= ∅
for i = 1, 2. Furthermore, we assume that there exist circular orbits x∗

i ∈ X∗
i having

the same isotropy, that is, there exist xi ∈ Xi withπi (G(xi )) = x∗
i andGxi = G(m, n)

for some m, n, with gcd(m, n) = 1, for i = 1, 2.
Now we consider invariant closed tubular neighborhoods Bi of each orbit π

−1
i (xi ),

sufficiently small so that Bi ∩ SFi = Bi ∩ RFi = Bi ∩ Ei = ∅ for i = 1, 2. Since
the actions are by isometries, ∂Bi is an invariant subset of Xi . It follows from the
classification of cohomogeneity one 3-manifolds [38] (see Sect. 2.5) that the restriction
of the T 2-action on Xi to ∂Bi is equivalent to the cohomogeneity one actionwith group
diagram (T 2,G(m, n),G(m, n), {1}). Note that this in particular shows that ∂Bi is
equivariantly homeomorphic to S2 × S1 for i = 1, 2 (see Table 1). Hence, there exists
an equivariant homeomorphism � : ∂B1 → ∂B2.

In a similar fashion to that of the RF-equivariant connected sums we consider a
space Z obtained by gluing X1 \ B1 with X2 \ B2 along their homeomorphic S2 × S1

boundaries via �.

Definition 7.4 We say that the space Z is the C-equivariant connected sum of X1
and X2 with respect to the circular orbits x∗

1 and x∗
2 and denote it by X1#C X2.
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Fig. 5 The image of Bi in X∗
i

Remark 7.5 Since ∂Bi is T 2-invariant and � is an equivariant homeomorphism, one
can define a homeomorphism�∗ : (∂B1)

∗ → (∂B2)
∗ such that the following diagram

commutes:

Recall from Sect. 4.3 and the Slice Theorem that Bi is equivariantly homeomorphic
to (T 2 ×C(S2))/G(m, n), where C(S2) is a closed cone over S2, and its boundary is
equivariantly homeomorphic to (T 2 × S2 × 1)/G(m, n). Note that Bi is mapped to
the shaded subset of X∗

i as in Fig. 5 and its boundary is mapped to the arc âbc.
Hence, the image of Xi \ Bi is merely X∗

i with the shaded area removed (see
Fig. 6). It is clear from the gluing procedure that Z∗ is just the gluing of (X1 \ B1)

∗
and (X2 \ B2)

∗ along (∂B1)
∗ and (∂B2)

∗ via the homeomorphism �∗ as illustrated in
Fig. 6, for X1 and X2 simply connected.

Therefore, we have shown the following lemma.

Lemma 7.6 Let Xi , i = 1, 2 and X1#C X2 be as above. Then we have

(X1#C X2)
∗ = (X1 \ B1)

∗#C (X2 \ B2)
∗,

where #C on the right hand side means the gluing along (∂Bi )∗ via the map�∗ defined
in Remark 7.5. In particular, if the boundary component of X∗

1 containing x
∗
1 has only

C-orbits with isotropy G(m, n), then the boundary component of Z obtained as a
result of C-equivariant connected sum and the boundary component of X2 containing
x2 have the same weights.

Let us make some remarks. The equivariant homeomorphism type of X1#C X2
depends on the choices of the circular orbits used in the construction. For the sake of
simplicity, the notation we use does not explicitly display this fact. The space X1#C X2
is naturally equipped with an effective T 2-action. Moreover, as the orbit space of such
action is legally weighted, it follows from Theorem 6.6 that X1#C X2 is equivariantly
homeomorphic to the closed, orientable Alexandrov 4-space having an effective and
isometric T 2-action (uniquely determined up to equivariant homeomorphism) having
(X1#C X2)

∗ as orbit space.
With these definitions in hand we state the main result of the section.

Theorem 7.7 Let X be a closed, orientable Alexandrov 4-space with an effective, iso-
metric T 2-action. Then X is equivariantly homeomorphic to C-equivariant connected
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Fig. 6 Gluing (X1 \ B1)
∗ and (X2 \ B2)

∗ along (∂Bi )
∗ via �∗
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sums of a single closed orientable 4-manifold with an effective T 2-action and a col-
lection of simple Alexandrov 4-spaces.

Proof We begin by noting that if SF = ∅ then the result is immediate as X is equiv-
ariantly homeomorphic to a 4-manifold and there is no need to take C-equivariant
connected sums. Therefore, we assume that SF �= ∅.

Let X be determined by the following set of invariants

{
(b1, b2); ε; g; { 〈pi , qi 〉

}s
i=1;

{(
(a�, b�), f�

)}t
�=1;

{
(α j ; γ j,1, γ j,2)

}k
j=1

}
.

By our assumption on SF we have that t > 0. Then we can assume without loss
of generality, by relabeling the boundary components if necessary, that there exists a
maximal index 0 ≤ q < t such that for each 1 ≤ � ≤ q we have f�,w = ±1 for all
1 ≤ � ≤ q; i.e., up to the index q all the boundary components containing fixed points
do not contain SF-points.

We now consider a collection of simple Alexandrov 4-spaces X j with j =
1, . . . , t − q, given by

{
(0, 0); ε; 0; −; {(

(a j
1,1, b

j
1,1), f j

1,1, (a
j
1,2, b

j
1,2), f j

1,2, . . . , (a
j
1,r j+q

, b j
1,r j+q

), f j
1,r j+q

)}; −
}

,

satisfying that (a j
1,w, b j

1,w) = (a j+q,w, b j+q,w) for all w = 1, . . . , r j+q . We also
consider a closed, orientable 4-manifold M with an effective T 2-action determined
by the invariants

{
(b1, b2); ε; g; { 〈pi , qi 〉

}s
i=1;

{(
(a�, b�), f �

)}t
�=1;

{
(α j ; γ j,1, γ j,2)

}k
j=1

}
,

wherewe recall that
(
(a�, b�), f �

)
denotes

(
(a�,1, b�,1), f �,1, . . . , (a�,r�

, b�,r�
), f �,r�

)
,

satisfying the following conditions:

(i) s = s + t − q and t = q,
(ii) (a�,w, b�,w) = (a�,w, b�,w) (and therefore f �,w = f�,w = ±1) for all w =

1, . . . , r̄�, and � = 1, . . . , t ,
(iii) 〈pi , qi 〉 = 〈

ai+q,1, bi+q,1
〉
for all i = 1, . . . , t − q.

By the third point in the conditions defining M , for each j = 1, . . . , t − q there
exist a circular orbit x∗ ∈ M∗ contained in the j-th connected component of ∂M∗
containing only circular orbits and a circular orbit x∗

j ∈ X∗
j having the same weight,

namely (a j+q,1, b j+q,1). Therefore the C-equivariant connected sum of M and X j

can be performed with respect to x∗ and x∗
j for all j = 1, . . . , t − q yielding a space

M#C X1#C . . . #C Xt−q with an effective T 2-action whose orbit space is isomorphic
to X∗ by Lemma 7.6. Hence by Theorem 5.11 we have that X is equivariantly home-
omorphic to M#C X1#C . . . #C Xt−q . ��
Remark 7.8 To achieve a full homeomorphism classification of closed, orientable
Alexandrov 4-spaces with effective and isometric T 2-actions it is sufficient to have a
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classification of the homeomorphism type of simple Alexandrov 4-spaces and com-
bine this with the previous homeomorphism classification of Orlik-Raymond [40, 41]
and Pao [42, 43].
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