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Going the Extra Mile in Face Image Quality
Assessment: A Novel Database and Model

Shaolin Su®¢, Hanhe Lin%¢, Vlad Hosu¢, Oliver Wiedemann®, Jinqiu Sun?, Yu Zhu®,
Hantao Liu¢, Yanning Zhang® and Dietmar Saupe®

Abstract—An accurate computational model for image quality
assessment (IQA) benefits many vision applications, such as im-
age filtering, image processing, and image generation. Although
the study of face images is an important subfield in computer
vision research, the lack of face IQA data and models limits the
precision of current IQA metrics on face image processing tasks
such as face superresolution, face enhancement, and face editing.
To narrow this gap, in this paper, we first introduce the largest
annotated IQA database developed to date, which contains 20,000
human faces — an order of magnitude larger than all existing
rated datasets of faces — of diverse individuals in highly varied
circumstances. Based on the database, we further propose a novel
deep learning model to accurately predict face image quality,
which, for the first time, explores the use of generative priors
for IQA. By taking advantage of rich statistics encoded in well
pretrained off-the-shelf generative models, we obtain generative
prior information and use it as latent references to facilitate blind
IQA. The experimental results demonstrate both the value of the
proposed dataset for face IQA and the superior performance of
the proposed model.

Index Terms—Image quality assessment, face quality, subjec-
tive study, GAN, generative priors

[. INTRODUCTION

He computer vision research on human faces includes

the key area of multimedia processing. Since the human
visual system (HVS) is especially sensitive to human faces
[1], [2] in media content, dedicated processing tasks such
as face superresolution, face enhancement, face generation
and face editing have garnered growing interest over the
past few decades. Although quality control in face image
processing applications is a crucial factor determining user
experience, the lack of face image quality metrics in the
current research limits the precise measurement of these face-
specific applications. Recently, blind image quality assessment
(BIQA) approaches applied to broad-domain images have
significantly improved; however, it is still unclear whether
the methods are directly applicable to the face domain due
to the following two factors: First, because of the specific
processing mechanism dedicated to faces in the HVS [1], [3],

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — Project-ID 251654672 — TRR 161 (Project A05). Correspond-
ing author: Hanhe Lin, E-mail: hlin001 @dundee.ac.uk

“School of Computer Science and Engineering, Northwestern Polytechnical
University, China.

bSchool of Science and Engineering, University of Dundee, DD1 4HN
Dundee, United Kingdom.

¢Department of Computer and Information Science, University of Konstanz,
78464 Konstanz, Germany.

dSchool of Computer Science and Informatics, Cardiff University, CF24
4AG Cardiff, United Kingdom.

[4], the perceptual representation and mapping pattern to face
quality might be different from those to generically categorized
images. Therefore, learning a dedicated face quality metric not
only improves the quality prediction accuracy but also assists
in understanding the perceptual mechanism of the HVS for
human faces. Second, as existing IQA databases collect images
of mostly generic categories, face image data are less often
included. For example, only approximately 2% and 10% of
images contain faces in two of the largest in-the-wild IQA
datasets, KonlQ-10k [5] and SPAQ [6], respectively. As a
result, either the image content shift or sample amount limits
the ability of existing IQA models to draw correct quality
mappings to face data.

Consequently, there is a need for IQA datasets that contain
more subjectively rated face images to facilitate face IQA
and processing. In this paper, we therefore introduce such a
large-scale quality-annotated dataset and expect several appli-
cations to benefit from generic face image quality assessment
(GFIQA). Examples of potential applications are as follows: 1.
To improve the performance of face recognition, face images
with quality scores below a predetermined threshold can be
excluded during the acquisition phase, hence reducing the
error rate of face recognition systems. 2. To improve general
IQA model predictions, as the HVS is extremely sensitive to
faces, the visual quality of face regions might be more critical
in the perception process of the whole image; Therefore,
an accurate face IQA metric could be advantageous for the
general IQA task. 3. Other practical usages include album
selection and optimization. When importing images to a photo
album, face image quality can be used as a standard to
determine acceptance or rejection.

Note that GFIQA differs from the definition of face image
quality assessment in the biometrics community [7], [8], where
quality is a form of utility for biometric systems such as
identification of a face image. Recently, [9] also proposed a
method to assess the visual quality of face images; however,
they focused on GAN-generated face images, which address
the quality assessment related to image synthesis models.
Different from the above, for GFIQA, we aim to create
predictive models (metrics) for in-the-wild face image quality
assessment, where the quality relates to the degradation factors
existing in the real world. The factors include the degradation
introduced by an imaging system during capturing, processing,
storage, compression, and display of face images [10], [11].

To compute accurate estimates of generic face IQA, we
further proposed a novel model to fulfill the task. The re-
cent successful use of deep generative priors in many image
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restoration and editing tasks [12] has inspired us to explore the
effectiveness of this powerful guidance in the field of IQA. In
contrast to previous models using a vanilla encoder [13]-[15],
we are the first to exploit deep generative priors in an image
quality prediction model and develop an effective framework
for utilizing these powerful priors in IQA. Rich statistics of
natural images are encoded in pretrained generative models;
by extracting intermediate generative features, we can utilize
them as latent references corresponding to the distorted target
images. The combination of distorted and latent reference
features therefore facilitates the blind IQA task and allows for
more accurate quality prediction results. Note that different
from previous GAN-based IQA models [16], [17] that train
their generators from scratch, the proposed model directly
makes use of off-the-shelf GAN models to extract the prior
information. The framework not only avoids the cumbersome
training procedure of the generative models but also leverages
the well pretrained GAN models on large-scale image data
as an approximation to the natural image manifold, thus
possessing more stability toward solving the challenging in-
the-wild IQA problem.
The main contributions of this paper are as follows:

1) We created the largest IQA database of human faces in-the-
wild, which is called the Generic face image quality as-
sessment 20k database (GFIQA-20k). We collected 20,000
face images and ensured the diversity of the individuals,
who are depicted in highly varied circumstances. We also
validated the reliability of the collected dataset with gold-
standard questions and self-consistency tests.

2) We proposed a novel quality prediction model that for the
first time employs deep generative priors to facilitate the
BIQA task. Using the rich statistics encoded in pretrained
generative models, we obtain prior preserved images and
use them as latent references to improve the IQA prediction
accuracy.

3) The experimental results verified both the usefulness of the
proposed dataset in evaluating face image quality and the
effectiveness of the proposed model in achieving accurate
predictions. The database and code will be made available
at http://database.mmsp-kn.de/gfiqa-20k-database.html.

II. RELATED WORKS
A. Quality Assessment of Face Images

There are two main research areas that address the quality
of face images. The first and most developed field stems
from the biometrics community and aims at assessing face
image quality for face recognition systems. This is most
often referred to as face image quality assessment (FIQA).
The second is GFIQA and relates to general image quality
assessment dealing with perceptual image degradation. An in-
depth discussion about the differences between the two fields
has been presented by Schlett et al. [8].

FIQA has attracted increased attention in the face recog-
nition community [7], [8]. Earlier works proposed measuring
the quality of a face image in terms of its similarity to its
reference face image with respect to multiple factors such as
pose, expression, illumination, and occlusion. For example,

Sellahewa and Jassim [18] measure image quality in terms
of luminance distortion by comparing a face input image
to a known reference image. However, such approaches are
difficult to apply since they must consider every possible factor
individually, and reference face images may not be available
in an unconstrained environment.

In contrast, learning-based approaches, where the target
face quality is defined in some manner to be indicative
of face recognition performance, are more favorable. These
learning-based approaches can be grouped according to the
way the ground truth quality values are labeled. In most
approaches, the ground truth quality values are determined
computationally. For instance, Bharadwaj et al. [19] assigned
qualities to face images by using two commercial off-the-
shelf face recognition systems, where a face image is given
a good quality value if it matches well. Chen et al. [20]
assumed that the face images in dataset A have better quality
than thosc in datasct B for a face recognition method if
the recognition performance of this method on A is better
than that on B. Although there exists work that labels face
quality manually, e.g., in binary classes (good or bad) [21],
Best-Rowden and Jain [22] conducted the first subjective face
quality assessment study. By conducting a study on a small
set of pairwise comparisons of 13,233 face images taken from
[23], the quality ratings of all images were inferred using
matrix completion.

While FIQA is evolving significantly, no studies on GFIQA
exist. To the best of our knowledge, except for the small
number of face images present in existing IQA datasets, our
work is the first study of this kind dedicated exclusively to
face images.

B. Generative Priors

With the rapid development of generative models, GANs
have become capable of effectively learning the natural image
manifold and synthesizing high-resolution images with pleas-
ant visual quality [24]-[27]. With pretrained GAN models,
the well-learned image manifold can be further explored to
promote diverse image manipulation and restoration tasks
[28]-[33], referred to as generative priors. To utilize the rich
information encoded in generative models, target images are
first mapped back to the intermediate features or latent space of
pretrained GANSs [12], and image manipulation or restoration
tasks are then facilitated by feeding forward the inverted
features or codes to generators.

There are typically two approaches to invert GANs and
utilize the priors, optimization-based and learning-based.
Optimization-based methods optimize the input code of the
generator by minimizing the reconstruction error of the target
image. By manipulating latent codes or modifying objective
functions, image manipulation or restoration results can be
obtained. Image2StyleGAN [29] and Image2StyleGAN++ [30]
optimized latent codes in the W space of StyleGAN [26]
and the W space of StyleGAN2 [27] and achicved image
inpainting, morphing and style mixing results. mGANPrior
[34] optimized multiple latent codes and adaptively fused
them to achieve various image restoration results, including
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colorization, superresolution, and denoising. Noticing the dis-
tribution gap between the training and testing data, DGP
[31] proposed a method to fine-tune generator parameters
on-the-fly to adapt the target images while maintaining the
statistics of the GAN learned priors. Although they require no
training procedures, optimization-based methods are usually
time-consuming due to the large iteration numbers needed for
each instance image.

Learning-based approaches train an extra encoder to map an
image to its latent code. By modifying encoder architectures,
various image manipulation and reconstruction results can be
achieved. pSp [35] trained a multistage encoder to generate
a series of style codes for StyleGAN2 [27] and handles
various facial image translation tasks, including conditional
image synthesis, facial frontalization, inpainting, efc.. GLEAN
[36] proposed an encoder-generator-decoder design to fulfill
the large-factor image superresolution task. GFP-GAN [32]
and GPEN [37] fused target image features with generative
prior features to restore real-world degraded face images. [33]
warped and modulated generative prior features to achieve
controllable image colorization results. Unlike optimization-
based approaches, learning-based approaches obtain image
restoration results by performing only one feed-forward pass
at test time. However, extra data are usually needed to train
these models.

In this paper, we investigate for the first time the potential
application of generative priors to the task of IQA. Specifically,
we employ rich statistics encoded by StyleGAN2 as latent
references from the pristine image manifold to facilitate the
solving of the blind IQA problem. To utilize generative priors
efficiently and effectively, we propose a method to train a
multistage encoder and take advantage of multilevel attributes
controlled by the style codes to obtain the generative statistics.
The proposed approach avoids both expensive optimization
procedures and extra data training and shows its superiority in
solving the objective face IQA problem.

III. THE CREATION OF THE GFIQA-20K DATABASE
A. Face Image Collection

Our goal is to build an ecologically valid face IQA database
that includes a wide range of user-generated face images
representing those in the real world and thus train a model
that is of ecological validity.

To establish the dataset, we first collect face images from
YECC100M [38], a massive public multimedia database, to en-
sure diverse in-the-wild image qualities. We randomly selected
and downloaded one million images, from which face images
were extracted as follows. For a given image, we applied the
MTCNN model [39] to detect faces and their corresponding
key points, where the minimum size parameter of the face to
detect was set as 400 pixels. Next, we aligned the image for
each detected face according to the positions of the detected
left and right eyes. The central point of a detected face was
estimated to be the midpoint between the left and right eyes.
Next, the detected face image was cropped such that both the
width and height of the crop were equal to four times the
distance between the left and right eyes. Finally, the crop was

Fig. 1. Example of duplicate image pairs or image pairs with the same
identity, where the top images are face images in GFIQA-20k, and the bottom
images are images excluded from GFIQA-20k using our sampling strategy.

Fig. 2. UI for the subjective generic face IQA study. Each time participants
were presented an image within a batch, they dragged a slider below the
face to rate its visual quality on a scale ranging from Bad (1%) to Excellent
(100%).

rescaled to 512x 512 pixels. Using this procedure, we collected
86,026 face images in the wild.

In practice, the face detection model cannot always guaran-
tee the absence of incorrect face detection instances, such as
false-positives (not human faces), or inaccurate key points. In
light of this, we manually checked and removed incorrectly
detected faces. This step reduced the number of samples to
53, 058.

In the final step, to ensure identity diversity, we removed
duplicate identities from the collected face images. We used
the FaceNet model [40] to extract the 512-dimensional deep
features from the face images, which have been demonstrated
to be effective in clustering face images into groups of people
with the same identity. We next applied k-means clustering on
the deep features to partition the 53,058 images into 20,000
clusters. In this case, images in the same cluster will include
duplicate images or face images with the same identity, as
shown in Fig. 1. In each cluster, an image is randomly selected
as a representative. With this step, the number of face images
decreased to 20,000, which were the face images included in
the GFIQA-20k. With our sampling strategy, duplicated face
images or images with the same identity were removed, which
guarantees identity diversity.
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Fig. 3. Analysis of the subjective study. All participants submitted ratings for all images, except for the one shown in red, who submitted 153 batches (6,120
study images). (a) Reliability analysis of the subjective ratings. (b) Correlation between ratings of each individual freelancer and MOS. The PLCC values
range from 0.832 to 0.928, all above the acceptance threshold of 0.75 PLCC, as recommended by [43]. (c) The average duration (second) of rating an image

for each subject in our study. The average duration is 5.25 seconds.

B. Subjective Face Image Quality Assessment

In the following, we performed a large-scale subjective
study to assess the visual quality of 20,000 face images.
The 20,000 images were randomly divided into 500 batches,
where each batch initially contained 40 images. To better
monitor and analyze participants’ performance, two reliability
mechanisms were used. One involved adding gold-standard or
test data for which the correct answers are already known [41].
The other involved utilizing a consistency test by posing the
same question multiple times [42]. In our study, we manually
selected 100 high-quality and 100 low-quality face images as
gold-standard images. Five images were randomly sampled
(with replacement) from the 200 images and added to each
batch. Moreover, five of the 40 study images were presented
twice in each batch. Eventually, each batch contained 50
images to be rated.

Before carrying out the study, participants were first pre-
sented with a page of instructions containing four sections.
In the first section, the definition of technical image quality
was introduced. The hardware requirements and detailed study
steps are explained in the second and third sections, respec-
tively. In the final section, in addition to providing examples
with different quality scales, we also provided some examples
to differentiate between technical face image quality and face
attractiveness. The user interface for our subjective face IQA
study is illustrated in Fig. 2.

The standard 5-point absolute category rating (ACR) scale,
i.e., Bad, Poor, Fair, Good, and Excellent, is used for subjective
rating. Participants are presented with a batch of face images
one at a time. Each time participants dragged a slider below
the face image to rate its visual quality on a scale ranging from
bad (1%) to excellent (100%). As participants were required
to drag a slider on a scale, which we linearly mapped to the
interval [0.01, 1]. To be more specific, let x be the original
5-point ACR, and the mapped score is y = (v —1)/4x 0.99+
0.01. As a result, the mapped 5-point ACR on the slider is
Bad — 1%, Poor — 25.75%, Fair — 50.5%, Good — 75.25%,
and Excellent — 100%.

To guide the freelancers on using the interface, we pro-
vided a training session for them. It contained 60 face im-
ages with given answers collected from the KonlQ-10k IQA
database [5]. After giving a quality rating for an image,
freelancers could click a button to proceed to the next image.
However, if the assessment result was incorrect, they were

informed of the incorrect assessment, and a range for the slider
position was suggested. Freelancers could only proceed after
having moved the slider into the suggested correct range. In the
process of study, the duration of rating an image was recorded
for further analysis.

A total of 13 freelancers were hired to participate in this
study, 7 of whom are visual arts professionals such as design-
ers, graphics artists, and photographers. More importantly, they
all achieved excellent performance in a previous IQA contest
of ours (not published), which demonstrated their expertise
in IQA. One freelancer quit the study after submitting 153
batches, while the remaining freelancers completed the entire
study.

C. Subjective study analysis

We determined the reliability of the freelancers by measur-
ing their accuracy on gold-standard test images and correlation
on a self-consistency test. Before conducting the analysis,
min-max normalization was applied for the rating of each
subject. For a gold-standard test image, a freelancer’s answer
is counted as correct if his answer falls in the range of 1%
to 35% when the image is labeled as low quality or in 65%
to 100% when the image is labeled as high quality. For the
self-consistency test, we used Spearman’s rank correlation
coefficient (SRCC) to calculate the reliability. The statistics
of the freelancer reliability analysis are shown in Fig. 3(a).
In Fig. 3(a), we plot the accuracy achieved on gold-standard
images on the x-axis and the self-consistency on repeatedly
presented images, expressed as the SRCC between the two
scores provided for all images, on the y-axis. All participants
achieved excellent self-consistency (mostly over 0.9 SRCC)
and maintained a high level of accuracy relative to the gold-
standard ratings (over 70% accuracy).

In addition to the reliability analysis, we report the Pear-
son linear correlation coefficient (PLCC) between individual
ratings and MOS in Fig. 3(b). The ratings of each freelancer
are highly correlated with the MOS, ranging from 0.832 to
0.928, all above the acceptance threshold of 0.75 PLCC,
as recommended by [43]. The results demonstrate that all
participants achieve high reliability regarding the subjective
ratings, thus guaranteeing the reliability of the constructed
dataset.
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Fig. 5. We show the distributions of the dataset in regard to several aspects, including lighting, sharpness, contrast, and MOS distribution, to visualize the

collected data attributes.

Fig. 3(c) shows the average duration of rating an image for
cach subject. The duration for each subject varies from 2.29
sec to 10.92 sec, with an average duration of 5.25 sec.

In the final step, to further improve the rater agreement, we
perform outlier detection and removal procedures. We screen
the ratings based on the assumption that the ratings provided
by reliable participants lie in an interval around the mean of
all the ratings of an image. To be more specific, the interval’s
length is twice the standard deviation of all ratings from an
image; ratings outside the interval are removed, and the rest
yield the mean opinion scores (MOSs). For each image, an
average of 12 ACR ratings are obtained.

D. Database overview

Finally, the collected MOSs with the corresponding 20,000
face images form the proposed GFIQA-20k dataset. In this
subsection, we provide an overview and some analyses of the
established dataset.

The database contains images with MOSs in the range
of 0.005 to 0.941. In Fig. 4, we show image samples of
different categories (Excellent, Good, Fair, Poor, and Bad)
from the GFIQA-20k dataset. We sample 10 images from
each category and plot their MOS distributions in Fig. 4 (b).
As seen, the collected face images cover a diverse perceptual
quality range, while images belonging to different categories
arc distinguishable from cach other in the MOS distributions.
In Fig. 5, we further show the distribution of the data in sev-
eral dimensions, including brightness, sharpness, contrast and
MOS distribution. In our calculation, brightness is estimated

Fig. 6. We show some types of distortions that particularly affect face image
quality in addition to common in-the-wild distortions. The distortions include
occlusion/shadows on faces ((a) and (b)), underwater faces (c) and faces from
old photos (d).

by the mean grayscale value, sharpness is calculated by taking
the log of the image gradient magnitudes, and contrast can
be calculated by contrast(I) = std(I)/kurtosis(I)T, where
std(I) and kurtosis(I) are the standard deviation and kurtosis
of the image signal, respectively. It can be seen that the
collected data is diverse in terms of different measurements,
thus demonstrating the richness of the dataset.

Although the proposed dataset collects data from the real
world and thus contains distortions similar to those in the in-
the-wild IQA dataset, we find that there exist other distortions
that particularly affect face quality. We show some examples
as well as their MOSs in Fig. 6; the distortions include
occlusion/shadow on face regions, underwater faces and faces
from old photos etc.. This indicates that the HVS perceives
face quality differently from generic image quality and the
need for constructing a specific face IQA dataset.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. X, AUGUST 2023

WoW,

1

' H

H '

i We—W, H

' 25ty = !

! | W.-w,l H
map2style —_.

—

StyleGAN2
(fixed)

Je fé

Predictor

Encoder

/\ map2style Predictor
{ K
> i 1x1 conv flG fE
1 3%3 cony, map2quality
A : stride=2 .
XN i i ! v
i i 1x1
< : 3x3 cony, map2quality
stride=2 ’ conv
‘ ~ L . 5
] ' modulation €
w 2 : :
| N 3x3 conv, @4_)
stride=2
CI(X) Xk Wi pooling —Rie
512x1x1

Fig. 7. The proposed face IQA model utilizing generative priors. Our framework consists of the following three parts: an encoder to both invert the target
image and extract distortion features, a generator to produce latent reference features in a pretrained GAN space, and a predictor to make quality estimations

by refining and fusing target image features and latent reference features.

IV. FACE IMAGE QUALITY ASSESSMENT WITH
GENERATIVE PRIORS

In this section, we provide a detailed description of the
proposed objective face IQA model utilizing generative pri-
ors. As shown in Fig. 7, the overall framework consists of
the following three parts: a multistage encoder to map the
target image into the latent GAN space, a fixed pretrained
GAN model to generate intermediate reference features, and a
quality predictor to obtain objective face quality estimations by
fusing both target image features and intermediate reference
features. Compared with conventional IQA models, which
mostly employ a single encoder architecture for quality score
regression, utilizing generative priors in the proposed frame-
work has two advantages. First, by restricting target image
features to the GAN latent space, semantically meaningful and
attribute-aware representations can be encoded. Second, by
feeding the latent codes forward, intermediate GAN-encoded
statistics can be obtained and used as latent references for the
challenging no-reference quality prediction task.

A. Obtaining GAN Encoded Statistics

Due to the lack of inference ability of the GAN model,
we first invert the target image x into N latent codes
wy,Ws, ..., wy in the GAN input space. Specifically, we
choose to train an encoder E to map target images into
the W space of StyleGAN2 [27], a state-of-the-art GAN
model capable of generating diverse facial images with high
resolution and visual quality. Similar to [35], we encode N
style codes w; € R®'? from multiple stages of a ResNet50 [44]
backbone, as follows:

(Wwn, fE) = E(z;0R), Swy] (D)

where fp are intermediate features and g are parameters of
E. Latent codes w are then fed to the different scales of a
fixed StyleGAN2 generator G to produce a reconstructed result
2. During generation, we add wyy to the average latent code
W = [y, s, . .. ,wy] in the pretrained W space to achieve
a good initialization, as follows:

WN = [wl,wg,..

iy =G(wy + W), )

where Z denotes the reconstructed result from z.
To train the encoder, we optimize 65 over the reconstruction
error between Z and x, as follows:

0% = argmin L(Zn, x), 3)

where £ denotes the loss function.

In this way, we train the encoder to map a target image x
into the GAN latent code space and obtain the intermediate
features fr for quality prediction. However, to utilize rich
generative priors, it is not enough to simply reconstruct the
target image and extract the corresponding generative features.
In the face IQA task, where target images are contaminated
with distortions, the reconstructed results also contain degra-
dation patterns and thus harm the GAN encoded statistics.
To obtain facial statistics in the original GAN space, we take
advantage of the interpretable and controllable attributes of the
multiscale latent codes {w; }. As latent codes at different scales
are responsible for controlling level-specific facial attributes
[26], [45], we observed that the low-level distortion attributes
are inherently encoded in latent codes at finer scales, and
the GAN statistics obtained in early stages are preserved.
Therefore, during feed forward, we propose injecting the first
K,K < N codes into G and discarding the last N — K latent
codes controlling the low-level details of G to obtain gener-
ative representations f&, which preserve the GAN encoded
statistics.

(G, fE) = G(wik + W), Wi =[wi,wa,...,wg] (4

where Tx is the reconstructed image with only the first K
codes injected, and f& denotes the intermediate generative
features.

In this framework, the first K codes are mainly responsible
for reconstructing high-level facial attributes such as facial
contours and organ shapes resembling the target image, and
generative statistics are preserved since distortion patterns
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encoded in low-level codes are discarded. Notably, by directly
discarding N — K latent codes, we do not obtain reconstruction
results that precisely match target images. However, in our
IQA task, we do not need such perfect reconstruction results,
and the results already obtain sufficient statistical priors to
serve as latent references for solving the IQA problem. By
further refining reference features to target image features, we
combine them to make objective quality predictions.

B. Quality Assessment with Generative References

After obtaining the target image features fr and the genera-
tive reference features f£, we refine and fuse them for quality
prediction. Specifically, we extract high-level representations
fr € R2048X16X16 from the last stage of E to avoid the need
for another encoding process and f& € R32X256x256 from
the last scale of GG since it contains most of the generative
information. We then apply an 1 x 1 convolution to fg and a
series of map2quality blocks to fé" for feature refinement. As
mentioned in Section IV-A, since the reconstructed structures
do not perfectly match the target image, to refine the reference
features, we use a CBAM [46] with a residual connection
inside each block to gradually adjust the features and a 3 x 3
convolution with stride 2 and doubled channel numbers to
resize the features, as shown in Figure 8. We then modulate
fr by f&, following the spatially adaptive denormalization
operation proposed in [47], as follows:

n,C,Y,T c
— B
fmoa =y (FE) B L 4 rOvE(fE),(5)
B

where 4™ <¥:2(fK) and v (fK) are elementwise modu-
lation parameters after convolving f& with 3 x 3 kernels and
n,c,y,z are batch, channel and spatial indices, respectively.
1% and of, denote the channelwise mean and standard devia-
tion values of fg.

The operation modulates the distribution of target image
features fg from its original distorted space to a generative
reference space, thus serving refined reference features to the
input. Finally, we concatenate fg with f,,,q and apply global
average pooling followed by three fully connected layers to
regress the features to the quality prediction score ().

C. Objective Functions

We use three loss functions, i.e., image reconstruction
loss, regularization loss and quality prediction loss, to train
our model. Image reconstruction loss ensures accurate GAN
inversion results, which contain an Lo loss, a perceptual loss
Lpercep and a face identity loss Lip, represented as follows:

7

Ly(z) = ||z — N2 (6)
Lpercep(T) = | fpercep(T) — fpercep(En) |2 (7
Lip(z) =1 - (R(z), R(2N)), ®)

where fpercep () extracts perceptual features from a pretrained
VGG [48] model, and R(-) extracts identity vectors from a
pretrained ArcFace [49] model.

The regularization loss constrains encoder E to output {w; }
distributed within the latent generator space to avoid harming
generative encoded statistics, as follows:

Lreg(w) = [[{wi} — wl|a. ©)

The quality prediction loss further optimizes the parameters
in the predictor, and we calculate the £; loss between the
prediction result and subjective labels g(x) as follows:

Lal) = lg(2) — q(x)].

Finally, we sum the above loss functions with weights

Ai,t = 1,2,...,5 and jointly train the proposed model as
follows:

(10)

L(x) =A1Lr(x) + A2 Lpercep () + AzLip ()
(11)
+ M Lreg(x) + A5 Lg().

V. IMPLEMENTATION DETAILS

In Table I, we show the architectural details of the proposed
model, including each module operation with its source input
and output settings. The output size is shown in the order
of Channels x Height x Width. Tt is worth noting that
for a pretrained StyleGAN2 generating 512 x 512 resolution
images, a total of 8 stages (1 stage without and 7 stages with
upsampling) are included, and we combined every two stages
in Table I for simplicity.

TABLE I
DETAILED ARCHITECTURE OF OUR PROPOSED MODEL.

Modunl

Operation
ResNet Stagel
ResNet Stage2
ResNet Stage3
ResNet Stage4

Input
3 x 512 x 512 target image
ResNet Stagel
ResNet Stage2
ResNet Stage3

Output Size
256 x 128 x 128
512 x 64 x 64
1024 x 32 x 32
2048 x 16 x 16

Encoder

map2stylel ResNet Stagel SI2 x 1 x1
map2style2 ResNet Stage2 S12x 1 x 1
map2style3 ResNet Stage3 SI2x 1 x1
map2style4 ResNet Stage4 512 x 1 x 1
StyleGAN2 Stagel map2style4, 4 x 4 constant 512 x 8 x 8
StyleGAN2 Stage2 | map2style3, StyleGAN2 Stagel 512 x 32 x 32

Generator StyleGAN2 Stage3

StyleGAN2 Stage4
map2quality X 5
modulation
concat

map2style2, StyleGAN2 Stage2
map2stylel, StyleGAN2 Stage3
StyleGAN2 Stage4
ResNet Stage4, map2style
ResNet Stage4, modulation

128 x 128 x 128
32 x 512 x 512
1024 x 16 x 16
1024 x 16 x 16
2048 x 16 x 16

Predictor global average pool concat 2048
fully connectionI global average pool 1024
fully connection2 fully connectionl 512
fully connection3 fully connection2 1

We implemented our model with Pytorch, and StyleGAN2
is implemented based on its Pytorch version reimplementation.
The pretrained StyleGAN2 model is taken from GFPGAN
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TABLE 11
PERFORMANCE COMPARISONS BY TRAINING ON PREVIOUS GENERIC IQA
DATASETS WITH A SPECIFIED MODEL AND TESTED ON THE GFIQA-20K
TEST SUBSET.

Dataset/Model SRCCT PLCCT RMSE]
LIVE/MEON 0.6603  0.6371 0.1593
LIVEC/HyperlQA 0.7501 0.7314 0.1055
KonlQ-10k/Koncept512  0.8968  0.8925 0.0826
SPAQ/MT-A 0.6980  0.7144 0.1282
KonlQ++/BIQA 0.9225 09196 0.0720

[32], where they provided the parameters for a 512 x 512
generator model. We selected K = 12 for our model. During
training, the batch size is set to 16, and the learning rate is
set to 5 x 107° and then decayed by a factor of 10 every 10
epochs. During training, the StyleGAN2 decoder is fixed, and
only the encoder and the predictor are optimized. We trained
the model with the Adam optimizer [50] for a total of 25
epochs to report the final results. The whole model is trained
using eight NVIDIA 1080Ti GPUs.

VI. EXPERIMENTS
A. Setup

We first randomly split the proposed GFIQA-20k dataset
into a training subset (70%, 14,000 images), a validation
subset (10%, 2,000 images) and a test subset (20%, 4,000
images). For testing, we selected the best performing model
with the highest SRCC on the validation set for performance
comparisons. We use the SRCC, Pearson Linear Correlation
Cocfficient (PLCC), and Root Mean Square Error (RMSE) to
evaluate the model prediction accuracy and monotonicity.

B. How Does the Generic IQA Perform on the FacelQA Task?

To reveal the quality properties of face data, we first tested
a cross database to observe how previous generic IQA datasets
and models performed on the face IQA task. Specifically, we
selected one synthetic IQA dataset LIVE [51] and four in-the-
wild IQA datasets, including LIVE Challenge (LIVEC) [52],
KonlQ-10k [5], SPAQ [6] and KonIQ++ [53], for cross testing.
We trained IQA models MEON [54], HyperIQA [55], Kon-
cept512 [5], MT-A [6], and BIQA [53] on the five datasets.
Among the testing models, MEON [54] and HyperIQA [55]
are state-of-the-art (SOTA) IQA methods that perform well
on synthetic and authentic distortions, respectively, and the
other models are proposed along with their training datasets.
We tested the performance on the GFIQA-20k test subset and
show the results in Table II.

From Table II, we observe that training on the synthetic
IQA dataset LIVE did not give good predictions for in-the-
wild face data. This result was foreseeable because of the
domain gap between real world degradation and laboratory
simulated distortions. The two authentic IQA datasets LIVEC
and SPAQ also yielded relatively poor performances on the
face data. This is probably because of the small number
of training samples (1,162 images) contained in LIVEC and
because of the bias in the smartphone photography images
contained in SPAQ. Surprisingly, we found that KonIQ-10k

and its extension KonlQ++ both performed relatively well (ap-
proximately 0.90 SRCC). The possible reason is that images
from the KonlQ-10k dataset and the proposed GFIQA-20k
dataset are both selected from YFCC100M [38], resulting in a
smaller domain gap. Despite this, there is still room for further
performance improvement, and the following section discusses
the development of face IQA models.

C. Performance Evaluation with Competing Models

In this subsection, we conduct performance comparisons
of models trained with GFIQA-20k data. Due to the lack of
baselines in the face IQA task, we first created diverse baseline
models from different upstream tasks. Specifically, we selected
ArcFace [49] pretrained on the refined face recognition dataset
MSIM [56], Koncept512 [S] pretrained on the general IQA
dataset KonlQ-10k [5], and ResNet50 [44] pretrained on the
image classification dataset ImageNet [57]. We finetuned these
models on the GFIQA-20k training subset and reported the
results in Table III. As seen, by simple transfer learning, all the
bascline models achieved high performance (over 0.95 SRCC).
The results demonstrate the effectiveness of the collected data
in handling face IQA tasks.

TABLE III
PERFORMANCE COMPARISONS OF TRANSFER LEARNING OF BASELINE
MODELS, SOTA IQA MODELS AND THE PROPOSED MODEL.

Model SRCCT PLCCT RMSE]
ArcFace 0.9505  0.9503 0.0588
Koncept512  0.9520  0.9512 0.0572
ResNet50 0.9629  0.9635 0.0504
BRISQUE 0.7824  0.8055 0.1793
CORNIA 0.8547  0.8616 0.1001
HOSA 0.8861 0.8997 0.0945
PQR 0.9519  0.9534 0.0551
DBCNN 0.9609  0.9611 0.0520
HyperlQA 0.9627  0.9635 0.0505
MUSIQ 0.9630  0.9637 0.0503
TRes 0.9632  0.9638 0.0498
Proposed 0.9643  0.9652 0.0486

We further compared the proposed model with the fol-
lowing eight general IQA models: BRISQUE [59], COR-
NIA [60], HOSA [61], PQR [62], DBCNN [63], Hyper-
IQA [55], MUSIQ [58] and TRes [64]. Here, BRISQUE,
CORNIA and HOSA are traditional IQA methods, PQR,
DBCNN and HyperIQA are CNN-based deep learning models,
and MUSIQ and TRes are transformer-based deep learning
models. The selected deep learning models are all SOTA in-
the-wild IQA models. Except for in the case of the traditional
models, the training and testing runs are all repeated 10
times with random weight initialization for competing deep
learning models, and the median results are reported in Table
III. Among all the competing models, the proposed model
outperformed the others on all three criteria. Statistical analysis
also demonstrates the superior performance of the proposed
model: by conducting a Student’s t-test, the p values between
the proposed model and MUSIQ [58] are 0.0100 for SRCC
and 0.0032 for PLCC, and 0.0176 for SRCC and 0.0081 for
PLCC against TRes [64], where p < 0.05 indicates statistical
significance.
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Fig. 9. We compare heatmaps of the generic IQA model [53] and face IQA model to visualize their perceptual differences regarding faces. It is clearly
shown that the generic IQA model does not make quality predictions from faces, while the face model learns to consistently concentrate on perceptual critical
regions such as eyes, noses and mouths to determine a face image’s quality, regardless of various distortions.

TABLE IV
PERFORMANCE COMPARISONS FOR DIFFERENT TRAINING SAMPLE AMOUNTS.

Criterion Model 10% 20% 30% 40% 50% 60% 70%
SRCCt ResNet50 0.9480 0.9542 0.9581 0.9612 0.9626 0.9628 0.9629

Proposed 0.9484 0.9565 0.9609 0.9625 0.9632 0.9638 0.9639
PLCCT ResNet50 0.9474 0.9537 0.9586 0.9618 0.9625 0.9632 0.9635

Proposed 0.9478 0.9570 0.9608 0.9623 0.9635 0.9643 0.9644
RMSE| ResNet50 0.0603 0.0550 0.0524 0.0521 0.0514 0.0507 0.0504

Proposed 0.0586 0.0538 0.0514 0.0503 0.0501 0.0489 0.0489

To further validate the effectiveness of the proposed model,
in Table IV, we evaluated how the model performed with
different training sample amounts. We compared the proposed
model with the well-performing ResNet50 baseline and varied
the training sample size from 10% to 70% of the images in
the GFIQA-20k dataset, leaving the remaining images, except
for the validation subset, for testing. Similarly, the proposed
model showed consistently superior prediction accuracy for
variable training sample sizes.

D. Perceptual Comparison between Generic IQA and
FacelQA Data

To understand the perceptual mechanism of deep models
on face images and to reveal their difference from generic
IQA, in this subsection, we visualize how models make their
predictions when trained for generic IQA and for the GFIQA
task. Specifically, we select the BIQA model from [53] trained
on the generic IQA dataset KonlQ++ and the proposed model
trained on the GFIQA-20k dataset for comparison and draw
their heatmaps [65] to understand how they perceive the face

image quality. We show the results in Figure 9 and make the
following observations. First, although the generic IQA model
[53] performed relatively well on the GFIQA task in Table
II, the predictions are not correctly made from the regions
of the faces. It extracts features from different regions for
different faces and thus might not be robust to diverse images.
Second, as a comparison, when trained on the GFIQA-20k
dataset, the model learns to capture critical face regions as
quality representations, including eyes, noses and mouths. The
result indicates the value and importance of the constructed
dataset, which converges deep models on critical perceptual
regions for the GFIQA task. Third, it is also interesting to
find that although not explicitly constrained, the model learns
on its own to consistently focus on the fixed regions when
making quality predictions. We attribute the phenomenon to
the subjective MOS being intrinsically perceptually biased
toward these face organs, resulting in the model being op-
timized on these regions. The hypothesis further assists us
in understanding some perceptual HVS mechanisms regarding
faces. Since the deep model fits its perceptual mapping to the
HVS, by examining how the model perceives face quality,
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Fig. 10. We visualize some generated latent reference images (right) with respect to their distorted images (left). Thanks to the powerful generative prior
information, latent reference images are constructed despite various distortions contained in inputs and are able to facilitate the implementation of our quality
prediction task. For each image, we also show the predicted quality score by MUSIQ [58] for comparison.

we also assume that the HVS perceives face quality prior to
perceiving facial organs. The finding is not only consistent
with the neuroscience study that refrontal neurons in the HVS
are selectively biased to recognize face identity [2] but also
unravels the precise and concrete regions to which the neuron
cortex is particularly sensitive.

E. Visualizing Generative References

One of the benefits facilitated by utilizing generative priors
is producing latent reference face images with preserved GAN
statistics. In this subsection, we visualize the reconstructed
reference images to illustrate the effectiveness. In Fig. 10,
we show pairs of distorted images = and the reconstructed
latent references &(K), as well as quality scores predicted
by MUSIQ [58] for both images. We include various in-the-
wild distortions, including blur, color, contrast, noise, and
composite distortions. Thanks to the rich prior information
encoded in generative models, the reconstructed images are of
high quality, i.e., mostly approximately 0.8-0.85 by MUSIQ
scores, thus serving as latent references to the blind face IQA
task. Since we impose loss constraints mainly on face regions,
the generated latent reference images might not precisely
match the target images in the hair or background regions.
However, since the HVS is extremely sensitive to face regions
such as eyes and mouths, the difference in hair or background
regions does not contribute critically to the perceptual quality,
which is also shown in the predicted reference image scores.

F. Ablation Study

In this subsection, we conducted several ablation experi-
ments to evaluate the effectiveness of the model design. We
first compared our model configured with the baseline encoder
ResNet50 trained by only £, loss. We then added StyleGAN2
and reconstruction loss to the model but did not fuse the
latent reference features (w/o ref) to observe if encoding in
generative latent space benefits model performance. Next, we
evaluated how different values of K affected the performance.
We selected K = 4,8,12,16 while keeping the other com-
ponents fixed. Finally, we validated the designation of the
quality predictor. We substituted the map2quality module with
ordinary convolution blocks (w/o map) while the other parts
remained fixed. We also removed the modulation block and
simply concatenated Fz and f& (w/o mod) to observe the
effectiveness of the feature modulation block. The results are
shown in Table V.

TABLE V
ABLATION STUDIES ON DIFFERENT MODEL CONFIGURATIONS.
model SRCCT PLCC{T RMSE|
baseline 0.9629  0.9635 0.0504
w/o ref 0.9629  0.9636 0.0504
K=4 0.9624  0.9630 0.0504
K=8 0.9627  0.9635 0.0505
K=12 0.9639  0.9644 0.0489
K=16 0.9637  0.9644 0.0492
w/o map  0.9631 0.9635 0.0503
w/omod  0.9634  0.9640 0.0495
full 0.9643  0.9652 0.0486
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(a) MOS = 0.752, prediction = 0.647
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(b) MOS = 0.705, prediction = 0.571

Fig. 11. We show some image cases where quality prediction errors are larger than 0.1. The faces (left) are viewed at rotated angles, leading to inaccurate
generative references (right) and, thus, inaccurate quality predictions. Including images with more diverse rotation angles to train more powerful generative

priors might be a solution.

From Table V, we make several observations. First, although
not evident, encoding in generative latent space (w/o ref)
slightly improved the model performance. Second, when ex-
tracting latent reference features from earlier generator stages
(small K values), the model showed inferior performance
compared with the baseline. This is probably because, in
the early stages, the generator is not able to encode enough
statistics as a reference. However, when we extracted features
from the latter stages, they outperformed the baseline model.
Third, removing the map2quality or modulation module re-
duced the model performance, indicating the effectiveness of
the proposed architecture of the quality predictor.

G. Complexity Analysis

In this subsection, we compared the complexity of our
model with that of two models, HyperlQA [55] and MUSIQ
[58], in terms of computation complexity (FLOPs) and running
time. The results are shown in Table VI.

TABLE VI
COMPLEXITY COMPARISONS BETWEEN THE PROPOSED MODEL AND
OTHER MODELS.

Model FLOPs(G)  Time(s)
HyperlQA | 108.38 0.092
MUSIQ 72.78 0.068
Proposed 240.75 0.205

Although the computation complexity and running time of
the proposed model are slightly larger than those of the two
competitors due to the extra generative model, it achieves
better prediction accuracy. Compared to other models, an-
other benefit of introducing generative priors is that a totally
training-free IQA model could be developed, as we will
explain in Section VI-H.

H. Developing a Total Training-free GFIQA Metric

As shown in Section VI-E, thanks to generative priors, the
model is able to produce images that are distributed close to
the pristine image space as latent references. In this subsection,
we further asked, with the latent references, are we able to
develop a training-free GFIQA metric that fulfills the NR-IQA

task without any training requirements? To answer this ques-
tion, we modified the proposed model to a training-free model
(proposed-TF) and evaluated its performance on the GFIQA-
20k test set. Specifically, we extracted the generated image as
a reference and calculated its LPIPS [66] distance to the target
image as the quality measurement. Our underlying hypothesis
is that since the generated images can serve as high-quality
references, why not directly use FR-IQA models for quality
prediction? Since both the StyleGAN2 and LPIPS models are
off-the-shelf models, following the proposed framework, we
are able to avoid the extra training process.

TABLE VII
PERFORMANCE COMPARISON OF THE PROPOSED TRAINING-FREE GFIQA
METRIC WITH OTHER OPINION-UNAWARE [QA METRICS.

Model SRCCt PLCCT RMSE|
NIQE 0.5549  0.5612  0.5824
IL-NIQE 0.5806  0.5830  0.5538
LPSI 02160  0.2504  0.9229
QAC 0.2844  0.2932  0.8483
dipIQ 0.4582  0.4847  0.6470
RankIQA 0.5262  0.5435 04718
Proposed-TF ~ 0.7012  0.7236  0.3407

We compare the proposed training-free metric with other
opinion-unaware IQA models, including NIQE [67], IL-NIQE
[68], LPSI [69], QAC [70], dipIQ [71] and RankIQA [72].
Among the compared methods, NIQE [67], IL-NIQE [68]
and LPSI [69] are totally blind IQA estimators, and the rest
are trained on pseudo image quality labels. We show the
results in Table VII, and we make the following observations.
First, as shown, the proposed metric outperformed all the
competitors by a large margin on the GFIQA-20k test set.
Since the competing models mainly focus on the synthetic IQA
task, the proposed model showed its superior effectiveness
on the more challenging in-the-wild IQA task. Second, we
also found that the two deep learning-based models dipIQ
[71] and RankIQA [72] actually performed worse than the
totally training-free methods NIQE [67] and IL-NIQE [68].
The result indicates that the potential risk of overfitting exists
in the two deep learning-based models, which are trained
with images containing synthetic distortions. Third, compared
with the training-based model, the training-free framework
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Fig. 12. We show face examples with various technical qualities and attractiveness. (a) High quality (MOS = 0.910) and high attractiveness, (b) High quality
(MOS = 0.901) but low attractiveness, (¢) Low quality (MOS = 0.130) but high attractiveness, and (d) Low quality (MOS = 0.138) and low attractiveness.

still performed worse. This is probably due to the discrepant
perceptual mapping learned by LPIPS to the face perceptual
domain and the imperfect generative references of some flawed
face reconstruction cases, as will be explained in Section. VII.
Nevertheless, training-free models are commonly agreed to
be more robust to unseen data [73] [74]; thus, we expect
the proposed training-free IQA framework to be applied to
challenging real-world IQA applications.

VII. DISCUSSION

Although the proposed model showed its superiority in face
quality prediction, we find some limitations regarding the gen-
erative priors. By selecting test images with prediction errors
greater than 0.1 (10% of the quality score range), we find
that images with rotated faces usually lead to unsatisfactory
reconstructed results and poorer quality predictions, as shown
in Fig. 11. We assume this is because the generative prior
model StyleGAN2 was mostly trained with frontally viewed
samples while few images of rotated faces were included.
Thus, the generator can produce frontally viewed faces but
underperforms otherwise. To address this issue, training the
generative model with faces viewed from diverse view angles
to provide more powerful priors might be a solution, and
we leave the task for future work. It is also worth noting
that in our proposed framework, the prior model could be
substituted by others; therefore, with the development of more
powerful generative models, the proposed IQA model should
also benefit and perform better, which we expect to observe
in the future.

We also clarify that technical face image quality should
not be confused with face attractiveness, i.e., aesthetic. In
the subjective study, apart from giving a precise definition
of technical image quality in the instruction, we provided a
few examples to teach freelancers how to differentiate them.
Fig. 12 shows some face examples in GFIQA-20k with various
qualities and attractiveness. It shows the MOSes are consistent
with technical quality rather than attractiveness, which demon-
strates the effect of face attractiveness was minimized in the
proposed dataset.

VIII. CONCLUSION

We created GFIQA-20k, the largest annotated in-the-wild
database for face image quality prediction. The dataset con-
tains 20,000 faces of diverse individuals in various circum-
stances. Furthermore, to accurately predict face image quality,
we introduce generative prior information to the IQA task
for the first time. The proposed model makes use of rich
statistics encoded in pretrained deep generative models. Our
experiments validated its superiority relative to existing works.
We expect both the dataset and the model will be valuable in
face processing and gencral IQA research.
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