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Abstract: To promote the adoption of Direct Air Capture (DAC) systems, this paper proposes and
tests a photovoltaic-powered DAC system in a generic residential building located in Qatar. The
proposed DAC system can efficiently reduce CO2 concentration in a living space, thus providing an
incentive to individuals to adopt it. The ventilation performance of the building is determined using
Computational Fluid Dynamics (CFD) simulations, undertaken with ANSYS-CFD. The CFD model
was validated using microclimate-air quality dataloggers. The simulated velocity was 1.4 m/s and
the measured velocity was 1.35 m/s, which corresponds to a 3.5% error. The system decarbonizes air
supplied to the building by natural ventilation or ventilation according to the ASHRAE standards.
Furthermore, the performance of the photovoltaic system is analyzed using the ENERGYPLUS
package of the Design Builder software. We assume that 75% of CO2 is captured. In addition, a
preliminary characterization of the overall system’s performance is determined. It is determined that
the amount of CO2 captured by the system is 0.112 tones/year per square meter of solar panel area. A
solar panel area of 19 m2 is required to decarbonize the building with natural ventilation, and 27 m2

is required in the case of ventilation according to the ASHRAE standard.

Keywords: direct air capture systems; carbon capture and storage; energy analysis; computational
fluid dynamics analysis; living space

1. Introduction

Recent research has clearly demonstrated that a swift and comprehensive transition to
renewable energy systems is essential for achieving a 1.5–2 ◦C reduction in temperature [1],
as per the desired global energy transition [1]. The Paris Agreement, adopted by the United
Nations Framework Convention on Climate Change (UNFCCC) in 2015, aims to strengthen
the ability of countries to deal with the impacts of climate change and to accelerate and
intensify the actions and investment needed for a sustainable low carbon future. However,
atmospheric carbon prevents us from meeting these goals. In [1], it is estimated that the
direct air capture of CO2, commonly known as negative emission (NE)), requirement will
be around 10,000 megatons of CO2 in the next 25 years, followed by 10,000 additional
megatons by the end of this century. This suggests that the capacity for non-emitting energy
sources (NEES) should be increased within the next 15 years; substantial investments will
be necessary to achieve this by 2050. As recently observed in [2], and fully endorsed by the
Intergovernmental Panel on Climate Change (IPCC) [3,4], most of the integrated assessment
models (IAMs) heavily depend on bio-energy carbon capture and storage (BECCS) systems;
they generally do not consider CO2 reduction through Direct Air Capture (DAC).
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However, various obstacles hinder the extensive implementation of BECCS. These
obstacles include the need for substantial land areas due to the BECCS’ low area efficiency,
high water usage, a strain on the energy system caused by low energy return on investment,
and the high cost of bioenergy-based sources [5–8].

In addition, BECCS as an inflexible base power-generation technology would not
add much to an energy system that is primarily based on inexpensive, sustainable energy
sources, such as solar and wind energy, which require flexibility [6,9,10]. According
to [11,12], future power systems will rely, to a very large extent, on variable renewable
energy (VRE) and may be less expensive than most current energy systems. In 2018, for the
first time, it was concluded by the IPCC that systems entirely based on renewable energy
(RE) must be seriously considered.

The technological practicality and profitability of 100% RE systems, particularly for
the electricity industry, were highlighted in [11]; most research in highly renewable shares
supports the need for sustainable bio-energy alternatives [11–13].

Electricity-powered DAC alternatives have not received significant attention in IAMs.
This may be explained by the underappreciated contribution of VRE to mitigating climate
change [14]. However, current growth in the adoption of VRE [15] may prompt more atten-
tion to DAC and IAMs in the short term and lead to satisfactory solutions. DAC systems
can combine several desired characteristics, including a large area footprint for large-scale
deployment, minimal conflicts with land use, and a great fit with future electricity-based
RE systems, based on solar (PV) or wind energy [15–19]. This suggests further significant
benefits, including a very cheap energy supply, strong energy system integration, accessibil-
ity to regions with abundant energy resources, and the ability to decouple the sites of DAC
and power production, if necessary. In contrast to conventional CO2 capture methods, such
as amine-based post-combustion capture, DAC is gaining popularity, since it has enormous
potential and great flexibility to collect CO2 from discrete sources as a “synthetic tree”. It is
one of the newer carbon capture technologies that has emerged in recent years, although it
is still in the prototype study stage and faces several technical obstacles. The state-of-the-art
of DAC and CO2 management was thoroughly discussed by L. Jiang et al. [18], who also
noted technological limitations and provided inquiry prospects for large-scale commercial
applications. In addition, evaporation/condensation heat of the vapor compression refrig-
eration (VCR) cycle in the air conditioning system of buildings was recommended by Ying Ji
et al. [19] for the adsorption/desorption process of DAC in order to further increase thermal
performance. Ying Ji et al. examined the thermal performance of a four-step temperature
swing adsorption method (TSA) at varied adsorption/desorption temperatures utilizing
various adsorbents. In an effort to find a balance between the adsorbent and the refrigerant,
they also performed an analysis of the Coefficient of Performance (COP) of the VCR cycle.

Although a RE-powered DAC system has been proposed in the literature, incen-
tives at the individual level or to the carbon-emitting industries that have to abide to
national/international regulations for reducing CO2 emissions, are not clear. The industries
mainly use conventional Carbon Capture and Storage (CCS) technologies, which prevent
increases, but do not reduce the existing CO2 footprint in the same way as DAC systems.
Therefore, to promote the adoption of DAC systems, here, we propose a system composed
of a generic residential building (located in Qatar) equipped with a photovoltaic-powered
DAC system that efficiently achieves a reduction of the CO2 content in a specific living
space. This should provide direct motivation for individuals to adopt a DAC system. The
ventilation performance of the building has been determined through Computational Fluid
Dynamics analysis using ANSYS-CFD. The performance of the photovoltaic system has
been analyzed using the ENERGYPLUS package of the DesignBuilder software [20].

2. Materials and Methods
2.1. System Description (DAC)

The proposed system comprises three subsystems: a DAC system, a photovoltaic
system, and a generic building, as shown in Figure 1. The DAC system has been proposed



Energies 2023, 16, 5583 3 of 17

in [19]. It directly captures CO2 from the atmospheric air and supplies a building with
decarbonized air. We assume that 75% of the CO2 content is captured [19]. The DAC system
is powered by the photovoltaic system and comprises four main units: an air contactor,
a pellet reactor, a calciner, and a slaker. The air contactor captures CO2 by forcing air to
contact an alkali liquid. Once the air contacts the alkali liquid, a diffusion reaction occurs
that leads to the capture of CO2. The mass transfer coefficient (KL) has been estimated
in [19] to be approximately 0.13 cm/s at 293 K.
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Figure 1. Schematic of the DAC system powered by the photovoltaic system.

The mixture content in the air contactor is 1 M OH−, 0.5 M CO3
2−, and 2 MK+. The

resultant reaction that occurs in the air contactor reacts every CO2 mol with two mol of
KOH to produce one mol of H2O and one mol of K2CO3. The resultant K2CO3 from the
contactor reaction is transferred to the pellet reactor, in which each mol of K2CO3 is reacted
with one mol of Ca(OH)2 in an exothermic reaction (−5.8 KJ/mol) to produce two mol of
KOH and one mole of CaCO3. The former is recycled back to the air contactor, and the
latter is fed into the calciner to be transformed into CO2 and CaO in an endothermic process
(+178.3 kJ/mol). The latter is supplied to the slaker to react each mole of CaO with one
mole of H2O in the exothermic process to produce Ca(OH)2 . The latter is recycled back to
the pellet reactor. According to [19], the DAC system consumes approximately 8.81 GJ of
natural gas to capture one ton of CO2; this corresponds to approximately 2.45 MWh. For
capturing one ton of CO2, the rate of air capture should be approximately 2.194 × 106 kg/h.
The photovoltaic system is modeled in DesignBuilder [20], assuming constant efficiency
for the PV (option “PV constant efficiency”). The methodology is detailed in Section 2.2.

2.2. System Description (Photovoltaic System)

DesignBuilder was utilized in this study to assess the photovoltaic system’s efficiency.
DesignBuilder (EnergyPlus package) is the favored software for analyzing a building’s
energy performance amongst architects, engineers, and other professionals; it is considered
the industry standard for Building Energy Simulation [21]. The software enables users to
perform comprehensive energy simulations using a 3D interface. DesignBuilder’s energy
modeling accuracy has been certified by BESTest of the International Energy Agency [22].
The U.S. Department of Energy and the global community use BESTest to assess software
for building energy modeling [23]. The simulation incorporates diverse sub-hourly regional
climatic and environmental factors [21–24]. The photovoltaic model is built with the “PV
constant efficiency” option, as mentioned in Section 2.1. The parameter values used in the
generic residential building and photovoltaic system models are summarized in Table 1
and Table 2, respectively.
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The performance of the PV system was evaluated for a generic residential building
in Doha, Qatar. The weather data, displayed in Figure 2, was loaded into DesignBuilder,
following [25]. Information regarding the accuracy of this weather data can be found in
open-access sources [25]. The data are post-processed from the TMYx files available in [25].
MYx is typical hourly weather data from 2021 in the ISD (U.S. NOAA’s Integrated Surface
Database), obtained using the TMY/ISO 15927-4:2005 methodologies [25].

As suggested in [26,27], to generate accurate results, DesignBuilder has been config-
ured to execute an annual solar energy simulation with 30 steps per hour.
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Figure 2. Site weather data (Doha, Qatar). (A) Outside dry-bulb and dew-point temperatures.
(B) Direct normal and diffusive horizontal solar intensity. (C) Wind direction. (D) Wind speed. (E)
Solar altitude. (F) Solar Azimuth.

2.3. System Description (Generic Residential Building)

The building under consideration (see Figure 3A) is a generic residential building in
Qatar that has been described in detail in previous work [26,27].

The proposed DAC system is designed to capture all of the CO2 from the air that is
supplied to the building through ventilation. Therefore, to determine the required capacity
of the DAC system and the corresponding energy required, the natural ventilation rate, Vact,
is quantified below. The ventilation settings are assumed to be as in [26,27]; see Section 3.1.

Previous CFD studies [26,27] have used ANSYS-CFX to calculate the ventilation rate
of the building considered here. The weather conditions—average temperature and total
wind velocity—were taken from [28]; these were 27.8 ◦C and 4.2 m/s, respectively. The
total wind velocity on the building was modeled as in [26,27,29,30], with equal shear and
normal velocities (i.e., Vx = Vz = 2.97 m/s); see Figure 4. The Boolean technique was
applied by subtracting the solid domain from the fluid domain in [27,28]. The CAD model
is generated utilizing AutoCAD.

Mesh-sensitivity analysis is performed to verify the accuracy of the simulations, uti-
lizing the average air velocity. The results have been shown to be independent of the
resultant mesh size. The number of elements was determined based on mesh sensitivity
analysis—mesh independence was achieved at approximately 9.4× 105 elements—see also
Figure 3. [26,27]. However, a finer mesh with 2.19 × 106 elements was selected for the
simulation to ensure a high level of confidence and accuracy. More information about
the CFD setup of the generic building model can be found in [26,27,29,30]. Table 1 shows
the CFD simulation assumptions and setups. Furthermore, it is shown in Figure 3 that
reducing the mesh size results in a decrease in the relative error, as required (i.e., the air
velocity values achieved convergence with a relative error margin of 1%).

Table 1. CFD simulation assumptions, setup, and parameter values.

Category Property Specification

Mesh Quality Elements maximum size (mm) 500
Number of elements 2,190,000

Growth rate 1.2
Defeature size (mm) 2.5

Curvature minimum size (mm) 5
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Table 1. Cont.

Category Property Specification

Curvature normal angle (degree) 18
Skewness 0.21188

Orthogonal quality 0.78694
Inflation transition ratio 0.75

Inflation number of layers 5

Turbulence model k − ε

k = 3
2 (UI)2

ε = c
3
4
µ k

3
2 l−1

I = 0.16Re−
1
8

l = 0.07L

Solid Modeling Domain Boolean
Solid-fluid No-Slip Walls

Inlet conditions Velocity inlets; as per Figure 5, with a turbulence
intensity of 5%

Fluid Modeling and
Boundary Conditions Outlet condition Pressure outlets of 1 bar

External surfaces of the
computational domain

Openings
An open boundary condition is a computational
boundary that allows phenomena generated in

the interior domain to pass through the artificial
boundary without distortion and without

affecting the interior solution.

Computational performance Computational performance Computational performance
Computational time 12 h/case

Software Ansys CFX
Residual targets 1 × 10−3

Achieved residual level Approximately 1 × 10−6

Boundary Wall No slip wall Smooth
Simulation Steady state

CFD assumptions As detailed in [26,27,29,30] [26,27,29,30].
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Figure 4. The geometry of the building, as used in the CFD model. The air comes into the building
through natural ventilation. The normal and shear air velocities on the building are shown. The
temperature is assumed to be 27.8 ◦C.

The DeltaOhm datalogger for microclimate—air quality analysis [31] was used to
validate the CFD model. The instrument measures air velocity using an Omnidirectional
hotwire probe. The velocity range has been determined to be 0.02–5 m/s, used for PMV
measurement [32]. The setup is shown in Figure 5. The measured velocity was 1.35 m/s)
and the simulated velocity was 1.4 m/s) which corresponds to an estimated error of 3.5%.
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2.4. Numerical Model Specifications and Assumptions

Here, we summarize all of the assumptions we adopted for the three subsystems,
described in Section 2.1–2.3; i.e., the DAC system, the Photovoltaic system, and the generic
residential building. Details justifying these assumptions are found in the references
provided in Table 2.

Table 2. Assumptions adopted for the three subsystems (DAC system, Photovoltaic system, and
generic building).

DAC System

Parameter Value Reference

Subunits Air contactor, Pellet reactor, Calciner,
and Slaker [19]

Mass transfer coefficient (KL) 0.13 cm/s (293 K) [19]

Mixture content in the air contractor 1 M OH−, 0.5 M CO3
2−, and 2 MK+ [19]

Reaction in the air contractor CO2 + KOH→ H2O + K2CO3 [19]

Reaction in the pellet reactor K2CO3 + Ca(OH)2 → 2KOH + CaCO3 [19]

Reaction in the calciner CaCO3 → CO2 and CaO [19]

Reaction in the slaker CaO + H2O→ Ca(OH)2 [19]

Energy consumption to capture 1 ton of CO2 2.45 MWh [19]

Air flowrate needed to capture 1 ton of CO2 2.194× 106 kg/h [19]

Percentage of captured CO2 75% [19]

DAC-Building integration CO2 captured from ducts transferring air to
and from the rooms Proposed
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Table 2. Cont.

DAC System

Parameter Value Reference

Photovoltaic system

Parameter Value Reference

PV efficiency
(
ηpv ) 15% [20]

Inverter efficiency (ηI ) 95% [20]

Fraction of surface with active solar cells (Aact/APV ) 90% [20]

Total solar panel area (APV ) 1–27 m2 [20]

Depth (D ) 0.025 m [20]

Tilting Fixed horizontal [20]

Mounting system for installing photovoltaic Roof-Solar Bitumen [20]

Operation scheme
Base load (operates even if the electric power

generated is greater than the building
demand)

[20]

Electric Bus type Direct Current with inverter [20]

Conditions of the generic building

Average outside temperature 27.8 ◦C [26]

Total wind velocity 4.2 m/s [27]

Shear and normal velocity, Vx, Vz 2.97 m/s [28]

3. Results
3.1. Ventilation Performance

As discussed in Section 2.3, the natural ventilation rate obtained through our CFD
analysis (see Figure 6) was used to determine the required capacity of the DAC system and
the corresponding energy required to decarbonize the air supplied to the building. The
air velocity contours and streamlines were plotted at two planes inside the building (1 m
and 1.7 m above ground), as in [26,27]. Subsequently, the average velocity and the total
ventilation rate were estimated and are displayed in Figure 7.

The average air velocity at the 1-m and 1.7-m planes is found to be approximately
1.33 m/s and 1.06 m/s, respectively. The ventilation rate, Vact, is estimated to be 532.97 kg/h,
which is equivalent to 4669 tons of air per year. This implies that the photovoltaic-
powered DAC can effectively decrease carbon emissions. According to [19], the DAC
system consumes approximately 8.81 GJ of natural gas to capture one ton of CO2, which
corresponds to PDAC = 2.45 MW of electric power. The air to capture this content of
CO2 is approximately VDAC = 2194 tons at STP “Standard Temperature and Pressure”.
Therefore, the power to airflow ratio that fully decarbonizes the air entering the build-
ing is PDAC/VDAC = 0.001 MW/n. Hence, the power required to decarbonize the air that
would have been supplied to the building through natural ventilation over a year is
Pact = Vact ×

pDAC
VDAC

= 5.21 MW.

3.2. Photovoltaic System Performance

As discussed in Section 3.1, to decarbonize the air supplied to the building by 75%
through natural ventilation, the DAC system’s power should be Pact = 5.21 MW/year.
Therefore, the performance of the photovoltaic system is estimated herein for a 1 m2 solar
panel; see Figure 8.
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We find that the total annual power generated by a 1-m2 solar panel photovoltaic

system is approximately
−
Pv = 0.2746 MW/year·m2 (see Figure 8).

It is assumed that the designed photovoltaic system’s power output is linearly re-
lated to the size of the solar panel area (APV). Therefore, the required solar panel area
that can allow full decarbonization of the air supplied to the building is approximately
Pact
−
Pv

= 19 m2. This is determined by plotting the power production for the solar panel

area taken to be 1–27 m2, with a step size of 1 m2; see Figure 9. Figure 10 shows a linear
relationship; the power sensitivity of the photovoltaic system with respect to the solar-panel
area (∂Pact/∂APV) is approximately 0.275 MW/year.m2, which is equivalent to the total

annual power generated by a 1-m2 solar panel photovoltaic system ,
−
Pv.



Energies 2023, 16, 5583 11 of 17Energies 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 
Figure 7. Actual ventilation rate and the average velocity at 1 m and 1.7 m. 

3.2. Photovoltaic System Performance 
As discussed in Section 3.1, to decarbonize the air supplied to the building by 75% 

through natural ventilation, the DAC system’s power should be 𝑃௧ = 5.21 MW/year. 
Therefore, the performance of the photovoltaic system is estimated herein for a 1 m2 solar 
panel; see Figure 8. 

We find that the total annual power generated by a 1-m2 solar panel photovoltaic 
system is approximately 𝑃ത௩ = 0.2746 MW/year·m2 (see Figure 8). 

 
Figure 8. (A) The total annual power generated by a 1-m2 solar panel photovoltaic system ( 𝑃ത௩). (B) 
The monthly power breakdown generated by a 1-m2 solar panel photovoltaic system. 

It is assumed that the designed photovoltaic system’s power output is linearly related 
to the size of the solar panel area (𝐴). Therefore, the required solar panel area that can 
allow full decarbonization of the air supplied to the building is approximately ೌതೡ =19 
m2. This is determined by plotting the power production for the solar panel area taken to 
be 1–27 m2, with a step size of 1 m2; see Figure 9. Figure 10 shows a linear relationship; the 
power sensitivity of the photovoltaic system with respect to the solar-panel area 

Figure 7. Actual ventilation rate and the average velocity at 1 m and 1.7 m.

Energies 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 
Figure 7. Actual ventilation rate and the average velocity at 1 m and 1.7 m. 

3.2. Photovoltaic System Performance 
As discussed in Section 3.1, to decarbonize the air supplied to the building by 75% 

through natural ventilation, the DAC system’s power should be 𝑃௧ = 5.21 MW/year. 
Therefore, the performance of the photovoltaic system is estimated herein for a 1 m2 solar 
panel; see Figure 8. 

We find that the total annual power generated by a 1-m2 solar panel photovoltaic 
system is approximately 𝑃ത௩ = 0.2746 MW/year·m2 (see Figure 8). 

 
Figure 8. (A) The total annual power generated by a 1-m2 solar panel photovoltaic system ( 𝑃ത௩). (B) 
The monthly power breakdown generated by a 1-m2 solar panel photovoltaic system. 

It is assumed that the designed photovoltaic system’s power output is linearly related 
to the size of the solar panel area (𝐴). Therefore, the required solar panel area that can 
allow full decarbonization of the air supplied to the building is approximately ೌതೡ =19 
m2. This is determined by plotting the power production for the solar panel area taken to 
be 1–27 m2, with a step size of 1 m2; see Figure 9. Figure 10 shows a linear relationship; the 
power sensitivity of the photovoltaic system with respect to the solar-panel area 

Figure 8. (A) The total annual power generated by a 1-m2 solar panel photovoltaic system (
−
Pv).
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In addition, as shown in Figure 10, with a solar panel area of 19 m2, the photovoltaic
system generates the required annual power to run the DAC system to decarbonize air
supplied to the building through natural ventilation (i.e., 5.21 MW/year to decarbonize
4669 ton/year).

According to [19], the DAC system consumes approximately 2.45 MW to capture one
ton of CO2. As shown in Figure 10, the solar panel area of the photovoltaic system required
to generate the required annual power to capture one ton of CO2 is approximately 9 m2.

Another crucial design criterion is to estimate the required power and solar panel
area to decarbonize the required ventilation rate of the building. The ventilation rate re-
quired in the building is recommended by the American Society of Heating, Refrigerating,
and Air-Conditioning Engineers (ASHRAE) standards. According to [26,27], the required
ventilation rate of the adopted generic building based on the ASHRAE standards is approx-
imately VASHRAE = 6642 tons/year of air. The corresponding CO2 content is 3.03 tons/year.
According to [19], the power to the captured CO2 ratio is 2.45 MW/ton; thus, the required
power to decarbonize VASHRAE is approximately 7.41 MW/year. As shown in Figure 10,
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the photovoltaic system with a solar panel area of 27 m2 has the capability of generating
7.41 MW/year.
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Since the ratio of the power required to the captured CO2 is 2.45 MW/ton [19], the
annual captured CO2 amount (mCO2 ) by the available power of each photovoltaic has been
estimated in Figures 10 and 11. As shown in Figure 11, the sensitivity of the captured
amount of CO2 with respect to the solar panel area is ∂mCO2 /∂APV= 0.112 tons/year.m2.
This means that increasing the solar panel area of the photovoltaic system by 1 m2 enables
the DAC system to capture an additional 0.112 tons/year of CO2.

National and international regulations dictate the capture of CO2 emissions generated
by industrial plants. Driven by these regulations and national and international law, the
industry has adopted carbon capturing and storage (CCS) methods. However, the usual
CCS techniques are the conventional post-combustion [33–35], pre-combustion [36–38],
and oxyfuel combustion [39,40] methods, which are preventive, but not corrective methods;
that is, they cannot lead to zero carbon emissions and, thus, cannot reduce the existing
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global carbon footprint. In contrast, implementing the DAC system is a corrective action
(i.e., a negative-carbon-emission system) as it directly removes CO2 from the atmosphere,
reducing the global carbon footprint.
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However, without binding international regulations, the main obstacle that faces
the implementation of DAC systems on a wide scale is identifying motivating factors for
individuals to adopt them. While the concept of a renewable-energy-powered DAC system
has been proposed in the literature, clear incentives for individuals were not previously
given. We propose a photovoltaic-powered DAC system that efficiently reduces the CO2
content in a living space, thus, providing the incentive for adoption at the individual level.
The proposed system is also attractive at the national/international level.

Here, the power of the photovoltaic system to enable the DAC system to decarbonize
the ventilation flow was determined for a residential building. To decarbonize the natural
ventilation airflow (Vact), the solar panel area was found to be 19 m2 and the corresponding
power to be 5.22 MW/year; the DAC system then captures 2.13 tons/year of CO2. In
addition, to decarbonize the airflow corresponding to the ASHRAE standard (VASHRAE),
the solar panel area was found to be 27 m2 and the corresponding power to be 7.4 MW/year;
the DAC system then captures 3.03 tons/year of CO2. Moreover, the 9-m2 solar panel area
generates 2.47 MW/year, enabling the DAC to capture one ton/year of CO2.
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4. Conclusions

As motivation for individuals to adopt DAC systems, we propose a photovoltaic-
powered DAC system that directly reduces CO2 concentrations in a residential building.
The airflow in the building was simulated using CFD and the energy performance analysis
was undertaken using DesignBuilder. The CFD model was validated using microclimate-air
quality dataloggers. tThe performance of the system has been quantified in various cases.
To decarbonize the airflow supplied to the building by natural ventilation or ventilation ac-
cording to the recommended ASHRAE standard, the photovoltaic system should generate
5.22 MW/year (solar panel area: 19 m2) or 7.4 MW/year (solar panel area: 27 m2), respec-
tively. This corresponds, respectively, to 2.13 or 3.03 tons/year of CO2, captured. Finally,
the system’s sensitivity has been determined: the captured amount of CO2 with respect
to the solar-panel area ∂mCO2 /∂APV= 0.112 tons/year.m2. The power sensitivity of the
photovoltaic system with respect to the solar-panel area ∂Pact/∂APV = 0.275 MW/year·m2.

This study analyzed a preliminary design of a photovoltaic-powered DAC system; in
future work, it is crucial to consider other aspects, including the synchronization of the
power supply to the power demand. This would involve integrating electricity storage
techniques into the DAC system. In addition, while this study has determined the system’s
performance for a wide interval of decarbonizing capacity (solar panel area of 1–27 m2,
which corresponds to 0.275–3.03 tons/year of captured CO2, respectively), the extent to
which CO2 is captured in a living space should be taken into consideration as another
design-sizing criterion according to health guideline. It is noted that the results in this
paper should be used in the context of a preliminary design process. In future work, the
advanced design process shall consider more aspects. Carbon engineering typically uses a
natural gas generator to produce a high-temperature (~800 °C) stream to dissociate CaCO3
into CaO and CO2 in the calciner. Thus, it should be ensured that the photovoltaic system
can produce the temperature needed for CaCO3 dissociation. Alternatively, a similar
DAC process could be considered; for example, using the guanidine provided by Kasturi
et al. [41], where the regeneration temperature is much lower (~130 °C).
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Nomenclature

APV The total area of the PV [m2]
Aact/APV Fraction of surface with active solar cells [%]
D PV Depth [m]

Direct Air Capture
mCO2 The annually captured CO2 [tonne/year]
PDac The required DAC power to capture 1 tonne of CO2 [MW]
Pact The required DAC power to capture CO2 content from the actual natural

ventilation airflow [MW]
PDac/VDac The DAC power to air flow ratio to capture 1 tonne of CO2 [MW/tonne]
−
Pv The total annual power generated by a 1-m2 solar-panel photovoltaic system [MW]
T Temperature [K]
Vact The actual natural ventilation rate supplied to the building [tonne/year]
VASHRAE The required ventilation rate of the adopted generic building based on ASHRAE

standards [tonne/year]
VDac The corresponding air flow rate to capture 1 tonne of CO2 [tonne/year]
Vx Shear component of the wind velocity [m/s]
Vz Normal component of the wind velocity [m/s]
∂Pact/∂APV The power sensitivity of the photovoltaic system towards the solar-panel

area [MW/m2]
∂mCO2 /∂APV The sensitivity of captured amount of CO2 towards the solar-panel area [tonne/m2]
ηpv PV efficiency [%]
ηI Inventor efficiency [%]
Abbreviation
ASHRAE The American Society of Heating, Refrigerating and Air-Conditioning Engineers
BECCS Bio-energy carbon capture and storage
CCS Carbon Capture and Storage
CFD Computational Fluid Dynamic
COP Coefficient of Performance
DAC Direct Air Capture
IAM Integrated assessment models
IPCC Intergovernmental Panel on Climate Change
NE Negative emission
NEES Non-emitting energy sources
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RE Renewable energy
TSA Temperature swing adsorption method
VCR Vapor compression refrigeration
VRE Variable renewable energy
UNFCCC United Nations Framework Convention on Climate Change
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