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Abstract: In this paper, multiple virtual synchronous machines (VISMAs) with fuzzy proportional
integral derivative (FPID) controllers optimized by differential evolution (DE) are proposed to
maintain frequency stability in the grid in the presence of renewable penetration, such as wind
and solar photovoltaic (PV) systems, residential loads, and industrial loads, by reducing the area
control error in the objective function. Simulations are conducted using MATLAB/Simulink, and
in the optimization process, the integral of the time-weighted absolute error (ITAE) is used as the
objective function. In the work to obtain optimized values of renewable energy sources (RESs),
fuzzy membership functions, controller gain parameters, and loads for system modeling, differential
evolution and genetic algorithm (GA) methods are applied and the results were compared. It was
shown that better results were achieved while FPID controllers were optimized by DE in the presence
of multiple VISMAs than DE in the presence of single VISMAs and GA in multiple VISMAs. Moreover,
the study is compared to integral control methods in which, compared to all controllers, the proposed
controller reduces undershoot by 0.0674 Hz more than a single VISMAs, in which it is improved
approximately by 97.82%. Similarly, the proposed controller improves the system settling time, rise
time, and overshoot by more than 99.5% compared to the classical integral controller. To examine the
robust operation of the system under the proposed controller, the system was run under a wide range
of disturbances and uncertainties using random load perturbation of ± 20%, in which the proposed
controller retains the system frequency by reducing or damping the system oscillation.

Keywords: single and multiple virtual synchronous machines; FPID; GA; DE frequency control; RESs

1. Introduction
1.1. Background and Motivation

The virtual synchronous machine (VISMA) is a new technology used to provide the
necessary inertia and damping to stabilize the grid and the frequency in the power system
in case of disturbance. Such a control-technique-based electronic inverter is called a virtual
synchronous machine [1]. With the growing penetration level of distribution generations
(DGs), the effect of damping and inertia on the grids increases [2]. VISMA technology aids
in solving the issue of integrating large-scale RE generation in power systems. With the use
of VISMA technology, it is possible to maintain frequency stability and can by damping
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system inertia, which also reduces high-priced RE power systems. On the other hand,
the integration of RESs has the advantages of providing pollution-free and clean energy
and reducing carbon emissions. Integration of large-scale RESs, such as wind and solar,
has advantages of frequency stability and the provision of clean energy for sustainable
improvement of the environment. Sometimes environmental problems also appeared due
to the large penetration of RESs; to deal with such problems, power electronic converters in
power systems are being controlled in different ways by researchers worldwide to enhance
system stability. VISMAs are a crucial way to provide the necessary inertia and damping
for system stability [3]. The researchers were motivated to use the FPID controller with
multiple VISMAs to overcome the problems associated with frequency instability in power
systems due to the large integration of RESs.

1.2. Literature Review

With the modernization of the grid, the generation is shifting from conventional
energy to power electronic-based RESs. As the penetration of power electronic-based
RESs increases, the inertia of the grid will decrease and the results will be inaccurate. This
problem of decreasing the inertia of grid can be solved by the use of VISMAs. VISMAs
are very robust when it comes to frequency stability but not in phase stability [4]. The
authors of [5] studied the stability problem aspects of the grids, such as the integration of
RESs, type of power imbalance, control topology, stability issues in smart grids, modes
of operation, harmonics in DC microgrids, utility-connected microgrids, and frequency
control. In [6], the authors discussed how the three-phase inverter behaves or replaces the
use of VISMAs by considering different control techniques. The authors of [7] discussed
the frequency stability of an isolated area VISMA with the presence of the integration of a
PV power plant system, wind power plant, and load system using the whale optimization
method. In [8], the impact of different types of RESs, such as wind and solar, including
residential and industrial loads, is analyzed by considering single and multiple machines,
in which better frequency and grid control are obtained in the case of multiple machines
than single machines. The authors of [9] discussed the suitable application of VISMAs
in controlling the power electronics converters for distributed control of smart grids by
different analytical and verification methods. In [10], the role of VISMAs was studied by
considering the active power droop curve to the frequency of VISMAs. The authors of [11]
experimentally examined the damping and frequency stabilizing effect of VISMAs. In [12],
the advantage of the grid forming controls for the improvement of frequency improvement
is discussed. In [13], PV generation is introduced to provide frequency and inertia support
in a VISMAs control strategy for microgrids without energy storage by pre-defined power
vs. voltage curves. The authors of [14] proposed VISMAs with virtual impedance to control
the voltage to adjust the frequency of grid systems by enabling grid-connected inverters.
The test results depict that better stable frequency is achieved with VISMAs with virtual
impedance than VISMAs alone. In [15], a comprehensive control strategy, such as a VISMA
control with no negative sequence current and with no DC voltage ripples, is designed
using VISMAs for unbalanced grids. The use of RESs and hybrid systems to improve
voltage profiles in reducing greenhouse gas emissions to optimize the size of the DG,
network configuration, location, and operation and characteristics of the load have been
reviewed in [16]. In [17], different topologies of VISMAs have been compared and classified.
To sustain the grid, VISMAs that can take different controlling approaches, such as injecting
active power for a certain time period from milliseconds to seconds and following core
design structures, have been reviewed in [18]. The authors of [19] proposed VISMAs with
superconducting magnetic energy storage (SMES) for frequency stability control in the
grid. In addition to the use of VISMAs, the basic principle of operation, software control
strategies, hardware configuration, typical applications, and energy-supporting methods of
VISMAs have been clearly discussed in [20]. In [21], how the weak grids cause a wide-band
oscillation of VISMAs resulting in frequency instability and comparison of the theoretical
analysis to the dynamic simulations and experiments were discussed. Torsional oscillations,
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unstable oscillatory interactions, and some specific challenges for fault recovery response
are the problems caused in the grid by the penetration of RESs. VISMAs are used in [22] to
overcome such problems and make the control more effective. A battery energy storage
system (BESS) inverter and power system stabilizer (PSS) are incorporated into the VISMA
control strategy of the grid to enhance system stability [23]. The authors of [24] optimized
the parameters of a VISMA for the application of a small microgrid, which is analyzed
using a differential equation to minimize the increased grid stability problems caused by
RESs in the last two decades. The wide control application of VISMAs in grid control
of a more renewable-energy-integrated power system, including a photovoltaic–diesel
microgrid with energy storage, are briefly discussed in [25–27]. In using a VISMA to
improve frequency in the penetration of high RESs in the grid, it is advisable to use
appropriate optimization techniques in order to properly select the virtual inertia constant
of the VISMAs and the best control parameters for VISMAs. Power system frequency
oscillation damping is studied in [28] using DE optimization methods and doubly-fed
induction-generator (DFIG)-type wind turbines. In the study, the contribution of DFIG type
wind turbines in reducing power system oscillation is analyzed by considering different
wind penetration scenarios. In this regard, some of the optimization techniques used
by a few of the authors are particle swarm optimization (PSO), multi-objective particle
swarm optimization (MOPSO), and distributed grey wolf optimization (DGWO) methods,
which are briefly discussed in [29–31], respectively. The powerful optimization quality of
DE in multi-area applications compared to other metaheuristic techniques, such as those
with HVDC and IPFC, has also been clearly discussed in [32,33]. In this study, a genetic
algorithm was chosen for comparison with DE. For this work, both GA and DE use similar
genetic material transfer methods, like crossover and mutation as in nature, and both of
them are used in the optimization methods of metaheuristic or stochastic search algorithms.
These algorithms often mimic natural processes—such as evolution—in order to drive
towards better solutions to the problem. Additionally, this genetic algorithm is utilized to
find the optimized values of the droop controller parameters, and these parameters are
utilized in the simulations for optimal operation of the VISMAs [33].

In this article, the parameters of FPID controllers, RESs, and residential and industrial
load-gain parameters are optimized using DE and GA to maintain the steady state of
frequency, to reduce area control error, and to control the active power output of the
VISMAs of the grid system. Materials and methods, results, and discussion sections are
covered in Sections 2–4, respectively.

1.3. Contribution

• With multiple VSIMA, frequency and grid stability is improved.
• With the proposed fuzzy proportional integral derivative (FPID) controllers optimized

by DE using multiple VISMAs, the dynamic performance of the grid increases.
• The work showed better damping of grid oscillations in cases of multiple VISMAs

with DE than in single VISMAs.
• Compared to the previous work in [8] using eigenvalue analysis, with the proposed

method, the overshoot of change in frequency is reduced by 0.14999, and the under-
shoot of change in frequency is reduced by 0.1485.

2. Materials and Methods

In this study, the grid in a power system integrating RESs, such as PV and wind, and
loads, such as residential and industrial loads, are considered. To enhance the frequency
and grid stability, single-VISMAs and multiple-VISMAs are optimized by optimization
methods to control parameters such as frequency, ACE, and active power to make the
grid stable, and the results have been compared. The parameters of RESs, such as solar,
wind, and both industrial and residential loads, are optimized by DE and GA algorithms.
The system models for the study of RES integration for single VISMAs and multiple
VISMAs, respectively, are presented in Figures 1 and 2, respectively. Similarly, small
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single-VISMA models for frequency analysis and multiple-VISMA models are depicted in
Figures 3 and 4, respectively. In the system modeling, to make the system more realis-
tic, important physical limitations are considered, such as GRC, time delay, and dead
band. Mathematical modeling for the analysis of the system under study is given in
Equations (1)–(6) [8]. In the study, two strategies for controller optimization, (1) single
VISMAs and (2) multiple VISMAs, with a system base of 15 MW, 6 MW of PV load, a 7 MW
wind-turbine system, and 5 MW and 10 MW residential and industrial loads, respectively,
have been considered. Moreover, to make the work more realistic, the integral classic
controller is used to compare with the proposed intelligence controller.
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Figure 1. RES integration in single VISMA. Figure 1. RES integration in single VISMA.

2.1. Power System Equations

The synchronous generator shown in Figure 1, which consists of a governor, dead
band, generation rate constraint (GRC), and turbine, are all involved in system control. For
example, the governor will send a signal to the turbines if disturbance due to RES or load
happens so that the generation tracks the system.

The gate opening and closing speed control systems in the GRC limiter block are
represented by VU and VL for the upper and lower valves, respectively. And the change in
the active power VISMAs of the turbine unit ∆Pm is given by Equation (1), where Tt and
∆Pg are the turbine time constant and change of speed governor control, respectively. The
relationship between frequency in the secondary control loop and change in speed control
is given in Equation (2).

∆Pm(s) =
1

1 + sTt
(∆Pg(s)) (1)

∆Pg(s) =
1

1 + sTg
(∆ACE(s)− 1

R
∆ f (s)), (2)
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where, the droop constant R is involved in primary control, and the frequency change and
governor time constant are given by ∆f and Tg, respectively. The change in area control
error (∆ACE) measures the signal feedback coming from both primary and secondary
control units. This frequency deviation is controlled in the secondary via the dynamic
control of the fuzzy PID (FPID) controller and in the primary using the governor unit.
Time delay (e–st) is added to see its effect on communication delay during the performance-
dynamic behavior of the secondary control. The secondary control for ACE is given in
Equation (3).

∆ACE(s) =
Ki × β× e−sT × ∆ f (s)

s
(3)

where Ki, which comprises K1, K2, K3 and K4, represents FPID controller-optimized gain
values; T is the time delay constant; and β is the bias factor. The generated power ∆PW
depends on wind speed in wind turbine and is given by Equation (4)

∆PW(s) =
1

1 + sTWT
∆Vwind(s) (4)

where ∆V is the speed change for wind power. Solar irradiation is the basic means for
generating electricity in PV; the power generated ∆PPV in a PV system is given in Equation
(5), where the solar constant is given by ∆Gsolar.

∆PPV(s) =
1

1 + sTPV
∆Gsolar(s) (5)

The frequency deviation in the small signal analysis after the disturbance due to (PL)
and RES power change (PW, PPV) is expressed in Equation (6), where H and D are the
system inertia and damping coefficient constants, respectively, and ∆VISMAs is the (virtual)
active power change [8].

∆ f (s) =
1

2Hs + D
(∆Pm(s) + ∆PW(s) + ∆PPV(s) + ∆PVISMA(s)− ∆PL(s)) (6)

In order to minimize the effect of noise and disturbances, the VISMAs model in Figure 3
comprises components such as inertia (Jvi), damping (Dvi), and low-pass filter block. In
addition to this, to make the system more robust, time delay also used, which is shown in
Figure 1. The time delay (e−sT) in the system is included to perform the communication
delays and dynamic behavior of filters. In addition, the time delay can also make the system
robust. Figure 3 presents the small-signal stability analysis for frequency control, which
consists of an inverter-based energy storage system (ESS) and the virtual rotor control
action. To control the frequency, an inertia-emulation-based derivative technique is found
to damp the disturbance [8].
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2.2. Different Objective Function Analysis

ITAE =

t∫
0

t.|ACEi(t)|dt (7)

IAE =

t∫
0

|ACEi(t)|dt (8)

ITSE =

t∫
0

t.ACEi(t)
2dt (9)

ISE =

t∫
0

ACEi(t)
2dt (10)

Tables 1–4 presents ITAE, IAE, ISE, and ITSE objectives of time response gain values,
respectively. Compared to other objective functions, the ITAE controls the time response
better. The tuning results for the system with ITAE settle much faster than other tuning
methods. ITAE tuning also produces systems with a sluggish initial response. ITAE is
chosen for this study because, when compared to ISE, ITSE, and IAE, it performs better in
terms of reducing objective function error, undershoot, and overshoot.

Table 1. ITAE objective function time responses using DE + FPID controller.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 5.7426 × 10−5 8.3205 −0.0015 −1.4282 × 10−6

Change if ACE 5.0578 × 10−4 8.8344 −0.0014 −2.7761 × 10−6

Change in output P 4.8571 × 10−5 7.0645 −0.0214 −4.0462 × 10−5

The error in cost function 0.0219
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Table 2. IAE objective function time responses using DE + FPID controller.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 7.9711 × 10−4 49.6977 −0.0840 0.0154

Change if ACE 0.0064 49.7039 −0.0823 0.0151

Change in output P 6.5204 × 10−4 48.5696 −1.2378 0.1834

The error in cost function 0.1662

Table 3. ISE objective function time responses using DE + FPID controller.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 1.4564 32.5382 0.0502 0.0739

Change if ACE 1.5336 26.1729 0.0504 0.0724

Change in output P 1.1245 49.7911 0.5393 0.7844

The error in cost function 0.0979

Table 4. ITSE objective function time responses using DE + FPID controller.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 0.3116 3.1474 0.0035 0.0077

Change if ACE 0.3209 3.6602 0.0037 0.0075

Change in output P 0.2473 23.6478 0.0379 0.0824

The error in cost function 0.0979

2.3. Fuzzy Logic Controller

With a fuzzy logic controller, one can control the system under a wide range of
operating conditions. For example, the truth values might lie between 0 and 1. Fuzzifi-
cation, knowledge base, fuzzy inference, and defuzzification are the four types of steps
in fuzzy logic, and each of them involves using rules in the input and output of system
operation. [34]. The FPID controller model for this study is given in Figure 5.
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Fuzzy theory was first proposed in 1965 by Professor Lotfi A. Zadeh. Unlike a fuzzy
logic controller, whose true value lies between any two numbers [0, 1], the true value in a
classical logic controller is either 0 or 1, and other very important features of fuzzy logic
are that it is used for controlling non-linear systems in systems of higher order with a time
delay. In this article, the FPID is designed using the fuzzy technique explained in [35,36].

Triangular membership functions are used in the work due to their advantages of fast
response and low computational burden as well as their reduced undershoot and overshoot.
The two inputs are a change in the error function (e) and derivative of the error function
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(de), and the output is (u). The rule-based output values are discussed in [33]. Table 5
presents the optimized fuzzy scaling factor parameters using DE + FPID.

Table 5. The optimized fuzzy scaling factor parameters using DE + FPID.

Change in Error (e) Derivation of Error (de) Output (u)

−0.2 −0.2 −0.2 −0.1511 −0.02 −0.02 −0.02 −0.0160 −0.25 −0.25 −0.25 −0.1792
−0.1808 −0.1191 −0.0817 −0.0177 −0.0148 −0.0073 −0.2248 −0.1659 −0.0902
−0.1230 −0.0958 −0.0124 −0.0101 −0.0060 −0.0029 −0.1492 −0.1008 −0.0308
−0.0461 0 0.0631 −0.0054 0 0.0040 −0.06960 0.0418

0.0227 0.0363 0.1322 0.0015 0.0053 0.0110 0.0176 0.0799 0.1665
0.0970 0.1656 0.1894 0.0077 0.0121 0.0179 0.1171 0.2044 0.2095

0.1341 0.2 0.2 0.2 0.0162 0.02 0.02 0.02 0.1817 0.25 0.25 0.25

2.4. Optimization Problem
2.4.1. Genetic Algorithm

GA is a larger class in evolutionary algorithms, with the idea that the fittest will
survive. GA, as part of artificial intelligence, employs genetic mutation and recombination.
Initialization is the first step in the creation of a random population. A population size of
50 and total generation or iteration of 100 was used in all of the results presented here.

2.4.2. Differential Evolution

The following parameters are applied: iterations—100; population—50; decision
variables boundaries—[0, 2]. From Darwinian evolutionary principles in DE, the individual
at its fittest survival will leave a footprint for the next generation. It was proposed in 1995,
and it has initialization, mutation, crossover, and selection and termination criteria [37].

Initialization

The initial population of a range [0, 2], which is the lower and upper limits of a
predefined range, is randomly generated.

Mutation

With mutation, search quality will improve in DE.

Crossover

With the improvement in population diversity, in crossover, a new trial population
is created.

Selection and Stop Criteria

In selection, an individual based on strong objective values is selected to form the next
generation. A comparison is being made between the trial and current individuals in DE
based on their objective values.

3. Result Analysis and Discussion

The power system shown in Figure 1 consists of an SG, wind-turbine system, photo-
voltaic system, residential load, industrial load, and VISMAs with two control strategies:
single VISMAs and multiple VISMAs. The system control parameters are presented in
Table 6. The system under study is considered to be 50 populations and 100 iterations.
During simulation, the program runs for 108 h more than 10 times using the proposed
FPID controller in the case of multiple VISMAs with DE optimization, with a simulation
stopping time of 50 s. To identify the best controller for the system, the FPID controller is
also optimized by the GA with multiple VISMAs, and the system ran with 50 populations
and 100 iterations more than 10 times. The output power pattern in the presence of solar
radiation and wind velocity is also depicted in Figure 6. Similarly, the load output pattern
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for residential and industrial loads is depicted in Figure 7. Table 7 shows the optimum
controller gains for multiple VISMAs optimized by DE-FPID.

Table 6. System control parameters values.

S. No Description Symbol Value

1 Speed-governor time constant (s), Tg 0.07

2 Dead-band rate limit (Hz) ±0.018

3 Primary droop constant (Hz/p.u. MW), R 2.4

4 Turbine time constant (s), Tt 0.36

5 Upper valve/gate opening/closing speed (p.u.), VU +0.5

6 Lower valve/gate opening/closing speed (p.u.), VL −0.5

7 Frequency bias factor (p.u. MW Hz−1) β 0.98

8 Time delay constant (s), T 0.5

9 Virtual droop constant (s), Rv 2.7

10 Virtual inertia constant (s), Jv 1.6

11 Virtual damping constant (s), Dv 1.3

12 Time constant of inverter-based ESS (s), TEES 1.0

13 Maximum capacity of ESS (p.u. MW), PESS_max 0.4

14. Minimum capacity of ESS (p.u. MW), PESS_min −0.4

15 Time constant of wind turbine TWT(s) 1.4

16 Time constant of solar system TPV(s) 1.9

17 Inertia constant of the system (p.u. MW s), H 0.083

18 Damping coefficient of the system (p.u. MW Hz−1), D 0.016

Table 7. Optimum controller gains for multiple VISMAs optimized by DE-FPID.

Objective Function Optimum Control Gains

ITAE
K1 K2 K3 K4 K5 K6 K7 K8

0.0803 1.9631 0.1436 0.0100 0.0216 0.0107 0.0109 0.0115
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The simulation results presented in Figures 8–10 show that, in the case of using a
DE-optimized multiple VISMA, the better stability of the system is achieved for changes in
frequency, changes in ACE, and changes in active power output of VISMAs than the systems
optimized by a DE for single VISMAs and those optimized by a GA for multiple VISMAs.
Moreover, Figure 11 depicts the convergence characteristic comparison between DE in
multiple VISMAs and DE in single VISMAs, in which the proposed controller converges
at a faster rate and at a lower cost function. The seven triangular membership function
coordinate points of LN, MN, SN, Z, SP, MP, and LP are optimized during the simulation of
multiple VISMAs using DE. In addition to this, the gain parameter variables K1, K2, K3, and
K4 for FPID controllers, K5 and K6 for RESs of wind and solar, respectively, and K7 and K8
for residential and industrial loads, respectively, are optimized by DE in multiple VISMAs,
by DE in single VISMAs, and by GA in multiple VISMAs, and the optimized values are
presented in Tables 8–10, respectively.
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Table 8. Optimum controller gains for single VISMAs optimized by DE-FPID.

Objective Function Optimum Control Gains

ITAE
K1 K2 K3 K4 K5 K6 K7 K8

1.3090 0.0308 1.2409 0.0355 0.0799 0.0762 0.0479 0.0983

Table 9. Optimum controller gains for multiple VISMAs optimized by GA-FPID.

Objective Function Optimum Control Gains

ITAE
K1 K2 K3 K4 K5 K6 K7 K8

0.6105 0.0382 0.0819 0.9189 0.6193 0.4476 0.1997 0.2960

Table 10. Integral controller value.

Integral controller Integral Ki = 0.00068

The proposed controller has the lowest cost function, which is 0.0219 compared to
the cost functions of single VISMAs optimized by DE and multiple VISMAs optimized
by GA, and the comparison is presented in Table 11. Measuring the transient response
parameters in power systems is the most important factor and helps to analyze the rise
time, setting time, undershoot, and overshoot. In this study, the optimized gains of
these time response variables are optimized by using DE in multiple VISMAs, by using
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DE in single VISMAs, and by using GA in multiple VISMAs, and they are presented in
Tables 12–14, respectively, while the transient time response of the classical integral con-
troller is presented in Table 15. From the simulation results, the results have significantly
improved by obtaining smaller rise time, undershoot, and overshoot when DE is used in
optimizing multiple VISMAs as compared to the classical and other intelligent controllers.
To make the comparison more convenient and clearer, the optimized parameter values of
transient time response variables are compared as shown in Figures 12–14 for rise time,
overshoot, and undershoot, respectively.

Table 11. Comparison of ITAE error cost function values for different controllers.

Various Simulation Cases ITAE Objective Function Value

Multiple VISMAs optimized by DE-FPID 0.0219

Single VISMAs optimized by DE-FPID 0.3268

Multiple VISMAs optimized by GA-FPID 15.3836

Classic integral controller 55.5338

Table 12. Transient response of multiple VISMAs with DE.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 5.7426 × 10−5 8.3205 −0.0015 −1.4282 × 10−6

Change if ACE 5.0578 × 10−4 8.8344 −0.0014 −2.7761 × 10−6

Change in output P 4.8571 × 10−5 7.0645 −0.0214 −4.0462 × 10−5

The error in cost function 0.0219

Table 13. Transient response of single VISMAs with DE.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 6.9177 × 10−5 7.9905 −0.0689 −4.9628 × 10−6

Change if ACE 8.5616 × 10−4 8.5116 −0.0670 −4.0813 × 10−6

Change in output P 6.1766 × 10−5 7.1589 −0.1185 0.0036

The error in cost function 0.3268

Table 14. Transient response of multiple VISMAs with GA.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 0.3109 25.0302 −0.0315 0.0414

Change if ACE 0.3114 25.5142 −0.0308 0.0405

Change in output P 0.2616 24.4149 −0.04653 0.04468

The error in cost function 15.3836

Table 15. Transient response of classical integral controller.

Maeasured Variables Rise Time ST Undershoot Overshoot

Cahnge if f1 4.0327 15.8646 −0.0779 0.0486

Change if ACE 4.0358 16.2837 −0.0760 0.0476

The error in cost function 55.5338
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3.1. Results Analysis and Discussion on Random Load Change

Figure 15 is only depicted to show the random load pattern. Initially, a 0.01 load
disturbance is considered for normal optimization during the simulation of the system,
while to check the robustness of the proposed controller, a random load of ±0.2 p.u is
added to the system, and further, when the random load is also increased to ±0.4 p.u, the
proposed controller withstands the disturbances, and the simulation result is also shown in
Figure 16. As observed in Figure 16, when the load drops to −0.4, the frequency increases,
while when the load increases to 0.4, the frequency drops. However, the proposed controller
stabilizes the system more quickly with a smaller random load as compared to a bigger
random load.
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3.2. Discussion on Result Comparison with Classic Control and Other Studies

For comparison reasons, the classic integral controller was used in this study and
compared with the intelligent FPID controller optimized by the evolutionary techniques.
In the result analysis, it is shown in Figures 8 and 9 that, compared to the classic integral
controller with the intelligent controller of the proposed multiple VISMAs with DE, smaller
settling time, undershoot, overshoot, and rise time have been achieved. Similarly, the
ITAE error cost function of multiple VISMAs with DE is 0.0219, which is much smaller
than the classical integral controller, which is 55.5338, as shown in Table 11. The results
of time response overshoot and undershoot frequency measurement for the proposed
method in multiple VISMAs using the DE optimization method in the presence of an FPID
controller and the previous published paper using eigenvalue time domain analysis in [8]
have been compared in Table 16, and it reveals that with the proposed controller, significant
improvements were observed in terms of results.
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Table 16. Comparison between the previous result and the proposed method.

Frequency Response in (Hz) in the Previous
Published Paper Using Eigenvalue Time

Domain Analysis [8]

Frequency Response in (Hz) Using the
Proposed FPID Optimized Using DE

Technique

undershoot overshoot undershoot overshoot

−0.15 0.15 −0.0015 −1.4282 × 10−6

4. Conclusions

This article is basically concerned with enhancing the frequency stability of the system
by a multiple VISMA technique. In this work, single and multiple VISMAs optimized by
DE are compared with the multiple VISMAs optimized by the GA. The dynamic simula-
tion output of change in frequency, change in ACE, and change in active power output
are compared and reveal that with multiple VISMAs optimized by DE better results are
achieved. The error in the objective function from the minimum threshold set values are
much higher in a single VISMA system than in a multiple VISMA system, which are 0.3268
and 0.0219, respectively. This implies that by using multiple VISMAs in the proposed
controller, the error is reduced by approximately 13.9 times. It is also shown that compared
to the previous work performed by eigenvalue analysis in [8], by using the proposed
controller, overshoot of change in frequency is reduced by 0.14999, which in percentage is
improved by 99.99%; similarly, undershoot of change in frequency is reduced by 0.1485
and the improved percentage is 99%; and the comparison is also presented in Table 16.
Moreover, compared to the classical integral, for single VISMAs with DE and multiple
VISMAs using the GA and multiple VISMAs optimized by DE, a smaller rise time, reduced
undershoot, and reduced overshoot are achieved for changes in frequency and changes
in ACE. To examine the robust operation of the system under the proposed controller, the
system was run under a wide range of disturbances and uncertainties using random load
perturbation of ±20%, in which the proposed controller retains the system frequency by
reducing or damping the system oscillation.
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