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A B S T R A C T   
 

The generation of heterocycles containing 1,2,3-triazole and pyrazole moieties has been explored. The synthesis 

of these heterocycles is of interest because they are components of important compounds ranging from agro- 

chemicals to pharmaceuticals. Particularly interesting are their potential cancer cell anti-proliferation properties. 

Three 3-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazole-4-carbaldehydes, where the aryl substitu- 

ent is phenyl, 4-methoxyphenyl, or 4-nitrophenyl, have been used as precursors for the synthesis of new het- 

erocycles. 1H-1,2,3-triazoles containing dithiols, acrylates, isoxazol-5(4H)-one, hydrazone, and bis- 

thiocarbohydrazone were synthesized in good yields from the precursors using simple procedures. The in vitro 

assessment of the activity of the resultant heterocycles against human cancer cells (HCT-116, HepG2, and MCF-7) 

and a human healthy cell line (BJ-1) was performed using the lactate dehydrogenase assay. Thiocarbohydrazone 

was the most active heterocycle, and its cytotoxic activity was comparable to that obtained for doxorubicin as a 

reference. The other heterocycles showed moderate cytotoxic activities. 
 

 

 

1. Introduction 

 
Cancer has a high mortality rate globally [1]. Treatment includes the 

use of various nitrogen-containing heterocycles for, for instance, 

gastrointestinal stromal tumors, advanced renal cell carcinoma, and 

pancreatic cancer [2,3]. Other drugs act as growth inhibitors for tumors 

(e.g., breast cancer) and renal cell carcinoma [4–10]. 

Heterocyclic compounds containing nitrogen (e.g., 1,2,3-triazoles 

and pyrazoles) are important components of agrochemicals and phar- 

maceuticals [11,12]. The 1,2,3-triazole ring system is commonly pro- 

duced from 1,3-dipolar cycloaddition reactions of azides and alkynes in 

the presence of a copper catalyst [13–15]. The 1,2,3-triazole moiety is a 

salient structural backbone in many natural and synthetic biologically 

active molecules which display a wide range of pharmacological activ- 

ities,       acting       as       antioxidant,       antitubercular,    anticancer, 

anti-inflammatory, antimicrobial, and antidiabetic agents [16–25]. 1,2, 

3-Triazoles have anticancer activities by inhibiting enzymes, carbonic 

anhydrases,   tryptophan,   2,3-dioxygenase,   aromatase,  thymidylate 

synthase, and others [26–31]. 
Pyrazoles act as antioxidant, antifungal, anticancer, antitubercular, 

antimalarial, and anti-inflammatory agents [32–37]. They are essential 
components in a range of drugs, including betazole (a histamine H2 

receptor agonist), fezolamine (an anti-depressant), rimonabant (an 

anorectic anti-obesity), celecoxib (an anti-inflammatory), and 3-cya- 

no-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide     (an     anti-psychotic) 

[38–41]. 

Heterocycles containing both pyrazole and triazole units have been 

synthesized through cyclization of thiosemicarbazides or carbodi- 

thioate,    the    reaction    of    triazolylhyrazine    and    1,3-diketone or 

β-ketoester, acetylenic pyrazoles and azides, and pyrazolylazides and 
acetylenes [42–50]. Pyrazole-3(4)-carbaldehydes can be synthesized 
through  the  Vilsmeier-Haack  reaction  of  corresponding  hydrazones 

[51]. In furtherance of our work towards new heterocycles [52–56], the 
current research aimed to  synthesize several  heterocycles containing 

1H-1,2,3-triazole and 1H-pyrazole moieties generated from 3-(5-meth- 

yl-1-(aryl)-1H-1,2, 
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3- triazol-4-yl)-1-phenyl-1H-pyrazole-4-carbaldehydes and assess their 

anticancer activity. The target heterocycles were obtained in high yields 

using simple procedures. In addition, their anticancer activity against 

human cancer cells was evaluated and compared to those obtained for 

the chemotherapy drug doxorubicin as a reference. 

 
2. Experimental 

 
2.1. General 

 
Analytical or HPLC grades of solvents and reagents were sourced 

from Merck and used as received. Melting points (m.p.) were determined 

using an Electrothermal melting point apparatus. A JASCO FT/IR-4600 

spectrometer was used to record the IR spectra. The NMR spectra were 

obtained in deuterated dimethyl sulfoxide (DMSO-d6) using a JEOLNMR 

500 MHz spectrometer at 125 MHz and 500 MHz for 13C and 1H NMR 

measurements, respectively. The coupling constant was recorded in Hz, 

and the chemical shift was reported in ppm. Confirmation of 

exchangeable signals in the 1H NMR spectra was achieved by adding 

deuterated water (D2O). Compounds 1a–c [57], 12 [58], and 13 [59] 
were produced using literature procedures. 

Merck supplied the Roswell Park Memorial Institute (RPMI) 1640 

medium. Fetal bovine serum (FBS) and fetal calf serum (FCS) were ob- 

tained from Gibco. Human liver carcinoma (HepG-2), human colorectal 

carcinoma (HCT116), human breast adenocarcinoma (MCF-7), and 

normal human skin fibroblast (BJ-1) cell lines were purchased from the 

American Type Culture Collection. The cell lines were maintained in 

RPMI-1640 medium, supplemented with 10% heat-inactivated FBS, 

100U/mL penicillin, and 100U/mL streptomycin. The cells were grown 

in a humidified atmosphere of CO2 (5%) at 37 ◦C. The experiments were 

conducted in triplicate (n 3), providing averages and standard de- 

viations (SD). The significant differences between the means of the 

values of the IC50 were determined using the SPSS software. 

 
2.2. Synthesis of dithiols 2–4 

To a solution of thiophenol (2.5 mmol, 0.30 g) and 1a–c (1 mmol) in 
DCM (15 mL), I2 (2.5 mol, 0.32 g) was added, followed by stirring for 4 h 

at room temperature. The mixture was diluted with Na2S2O3 (0.06 M) 

solution, and the layers were separated. Anhydrous Na2SO4 was used to 

dry the organic layer, and reduced pressure was used to remove the 

DCM. The solid was purified through recrystallization using dime- 

thylformamide (DMF) to give the corresponding dithiol 2, 3, or 4, 

respectively. 

2.2.1. 4-[3-(bis(Phenylthio)methyl)-1-phenyl-1H-pyrazol-5-yl]-5-methyl- 

1-phenyl-1H-1,2,3-triazole (2) 

Yield: 75%, m.p. 166–168 ◦C. IR (KBr, ν cm–1): 3074 (CH), 1672 
(C=N), 1596 (C=C). 1H NMR: 2.47 (s, 3H, Me), 6.95 (s, 1H, CH), 7.22 (d, 

7.6 Hz, 2H, Ar), 7.27–7.31 (m, 5H, Ar), 7.42 (d, 7.2 Hz, 4H, Ar), 7.48 (d, 

7.6 Hz, 1H, Ar), 7.60–7.67 (m, 5H, Ar), 7.87 (d, 7.2 Hz, 2H, Ar), 7.92 (br, 

1H, Ar), 8.66 (s, 1H, pyrazolyl). 13C NMR: 10.5, 49.3, 118.7, 121.8, 

125.6, 125.8, 127.1, 128.1, 129.0, 129.6, 130.1, 130.2, 131.7, 132.6, 

135.0, 136.3, 138.6, 139.6, 142.5, 162.8. Anal. Calcd. for C31H25N5S2 

(531.69): C, 70.03; H, 4.74; N, 13.17. Found: C, 70.28; H, 4.85; N, 

13.28%. 

 
2.2.2. 4-[4-(bis(Phenylthio)methyl)-1-phenyl-1H-pyrazol-3-yl]-1-(4- 

methoxyphenyl)-5-methyl-1H-1,2,3-triazole (3) 

Yield: 77%, m.p. 161–162 ◦C. IR (KBr, ν cm–1): 3064 (CH), 1654 
(C=N), 1593 (C=C). 1H NMR: 2.54 (s, 3H, Me), 3.83 (s, 3H, OMe), 6.97 

(s, 1H, CH), 7.15 (d, 8.6 Hz, 2H, Ar), 7.22 (t, 7.6 Hz, 2H, Ar), 7.26–7.31 
(m, 5H, Ar), 7.43 (d, 7.6 Hz, 4H, Ar), 7.47 (t, 7.6 Hz, 2H, Ar), 7.58 (d, 8.6 

Hz, 2H, Ar), 7.86 (d, 8.6 Hz, 2H, Ar), 8.65 (s, 1H, pyrazolyl). 13C NMR: 

10.4, 49.2, 56.1, 115.3, 118.7, 121.0, 121.8, 127.1, 127.3, 128.1, 129.0, 

129.1, 129.6, 130.1, 131.7, 132.7, 135.0, 138.4, 139.6, 142.6, 160.6. 

Anal. Calcd. for C32H27N5OS2 (561.72): C, 68.42; H, 4.85; N, 12.47. 

Found: C, 68.52; H, 4.89; N, 12.33%. 

 
2.3. 4-[3-(bis(Phenylthio)methyl)-1-phenyl-1H-pyrazol-5-yl]-5-methyl- 

1-(4-nitrophenyl)-1H-1,2,3-triazole (4) 

Yield: 78%, m.p. 158–160 ◦C. IR (KBr, ν cm–1): 3127 (CH), 1666 
(C=N), 1596 (C=C). 1H NMR: 2.66 (s, 3H, Me), 6.92 (s, 1H, CH), 

7.20–7.31 (m, 7H, Ar), 7.42–7.49 (m, 6H, Ar), 7.86 (d, 7.7 Hz, 2H, Ar), 
8.01 (d, 9.0 Hz, 2H, Ar), 8.44 (d, 9.0 Hz, 2H, Ar), 8.67 (s, 1H, pyrazolyl). 
13C NMR: 10.6, 49.3, 118.8, 120.0, 122.0, 125.7, 127.3, 128.2, 129.1, 

129.6, 130.1, 131.9, 134.9, 139.2, 139.6, 141.1, 142.1, 148.1, 162.1. 

Anal. Calcd. for C31H24N6O2S2 (576.69): C, 64.56; H, 4.19; N, 14.57. 

Found: C, 64.67; H, 4.27; N, 14.71%. 

 
2.4. Synthesis of acrylates 6 and 7 

 
A mixture of 1a or 1b (2 mmol) and 5 (0.38 g, 2 mmol) in dry EtOH 

(15 mL) containing piperidine (0.1 mL) was refluxed for 5 h. The 

mixture was left to cool, and the solid produced was collected by 

filtration. Crystallization of the crude solids using DMF gave either 6 or 

7, respectively. 

2.4.1. Ethyl 2-benzoyl-3-(5-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1- 

phenyl-1H-pyrazol-4-yl)acrylate (6) 

Yield: 82%, m.p. 139–140 ◦C. IR (KBr, ν cm–1): 3059 (CH), 1687 
(C=O), 1666 (C=O), 1596 (C=C). 1H NMR: 1.08 (t, 7.2 Hz, 3H, Me), 

2.47 (s, 3H, Me), 4.17 (q, 7.2 Hz, 2H, CH2), 7.32 (t, 7.6 Hz, 1H, Ar), 

7.44–7.52 (m, 3H, Ar), 7.61–7.69 (m, 9 H, Ar), 7.94 (d, 7.2 Hz, 2H, Ar), 

8.02 (s, 1H, pyrazolyl), 8.72 (s, 1H, CH). 13C NMR: 10.4, 14.5, 61.6, 

115.7, 119.4, 119.5, 125.9, 128.1, 128.4, 129.3, 129.7, 130.2, 130.3, 

130.5, 133.8, 134.8, 136.2, 136.4, 138.0, 138.8, 138.9, 145.8, 154.5, 

165.0, 195.9. Anal. Calcd. for C30H25N5O3 (503.56): C, 71.56; H, 5.00; 

N, 13.91. Found: C, 71.69; H, 5.08; N, 14.11%. 

 
2.4.2. Ethyl 2-benzoyl-3-(5-(1-(4-methoxyphenyl)-5-methyl-1H-1,2,3-tri- 

azol-4-yl)-1-phenyl-1H-pyrazol-4-yl)acrylate (7) 

Yield: 84%, m.p. 162–163 ◦C. IR (KBr, ν cm–1): 3159 (CH), 1708 
(C=O), 1666 (C=O), 1612 (C=C). 1H NMR: 1.08 (t, 7.2 Hz, 3H, Me), 

2.47 (s, 3H, Me), 3.83 (s, 3H, OMe), 4.17 (q, 7.2 Hz, 2H, CH2), 7.15 (d, 

9.1  Hz,  2H,  Ar),  7.32  (t,  7.6  Hz,  1H,  Ar),  7.44–7.53  (m,  4H,  Ar), 

7.58–7.63 (m, 5H, Ar), 7.93 (d, 8.1 Hz, 2H, Ar), 8.01 (s, 1H, pyrazolyl), 

8.72 (s, 1H, CH). 13C NMR: 10.4, 14.5, 56.2, 61.5, 115.3, 115.7, 119.4, 

119.4, 127.4, 128.1, 128.4, 129.1, 129.3, 129.7, 130.3, 130.5, 133.9, 

133.9, 134.8, 136.2, 137.7, 138.9, 160.6, 165.0, 195.9. Anal. Calcd. for 

C31H27N5O4 (533.58): C, 69.78; H, 5.10; N, 13.13. Found: C, 69.88; H, 

5.19; N, 13.22%. 

 
2.5. Synthesis of ethyl 2-((2-(2,4-dinitrophenyl)hydrazineylidene) 

(phenyl)methyl)-3-(5-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1- 

phenyl-1H-pyrazol-4-yl)acrylate (9) 

A mixture of 6 (1 mmol, 0.50 g) and 8 (1 mmol, 0.20 g) in dry EtOH 

(15 mL) containing concentrated HCl (0.1 mL) was refluxed for 3 h. The 

mixture was then cooled, and the solid obtained was filtered off and 

recrystallized from DMF to give 9 in 88% yield, m.p. 258–260 ◦C. IR 
(KBr, νcm–1): 3288 (NH), 3059 (CH), 1695 (C  O), 1609 (C  C). 1H 
NMR: 1.34 (t, 7.2 Hz, 3H, Me), 2.47 (s, 3H, Me), 4.52 (q, 7.2 Hz, 2H, 

CH2), 7.39 (t, 7.7 Hz, 1H, Ar), 7.43 (s, 1H, pyrazolyl), 7.50 (d, 7.6 Hz, 

2H, Ar), 7.54–7.64 (m, 9H, Ar), 7.67 (d, 7.6 Hz, 2H, Ar), 7.83 (d, 7.6 Hz, 
2H, Ar), 8.34 (s, 1H, CH), 8.46 (d, 9.5 Hz, 1H, Ar), 8.77 (s, 1H, Ar), 11.00 

(s, D2O exch, 1H, NH). 13C NMR (ppm): 10.3, 14.7, 62.2, 116.4, 117.0, 



B.F. Abdel-Wahab et al.  

3 

 

 

= × 

119.4, 123.3, 125.8, 126.6, 127.7, 127.9, 128.9, 129.8, 130.2, 130.4, 

130.5, 130.6, 130.9, 131.2, 133.0, 133.3, 136.2, 137.9, 138.3, 138.5, 

139.3, 144.1, 145.2, 154.8, 168.3. Anal. Calcd. for C36H29N9O6 

(683.68): C, 63.24; H, 4.28; N, 18.44. Found: C, 63.32; H, 4.32; N, 

18.56%. 

 
2.6. Synthesis of 3-methyl-4-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4- 

yl)-1-phenyl-1H-pyrazol-4-yl)methylene)isoxazol-5(4H)-one (11) 

A mixture of 1a (2 mmol, 0.66 g), H2NOH.HCl (2 mmol, 0.14 g), 10 

(2 mmol, 0.26 g), and K2CO3 (2 mmol, 0.27 g) in aqueous DMF (1:1; 15 

mL) was refluxed for 8 h. The mixture was cooled, and ice water (100 

mL) was added. The solid obtained was filtered off, dried, and recrys- 

tallized from DMF to give 11 in 77% yield, m.p. 245–246 ◦C. IR (KBr, 

νcm–1): 3140 (CH), 1744 (C=O), 1617 (C=C). 1H NMR: 2.25 (s, 3H, Me), 

2.64 (s, 3H, Me), 7.64 (t, 7.7. Hz, 1H, Ar), 7.59–7.68 (m, 7H, Ar), 7.88 

(d, 7.6 Hz, 2H, Ar), 8.79 (s, 1H, pyrazolyl), 9.88 (s, 1H, CH). Anal. Calcd. 

for C23H18N6O2 (410.43): C, 67.31; H, 4.42; N, 20.48. Found: C, 67.43; 

H, 4.51; N, 20.54%. 

 
2.7. Synthesis of N’-(1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4- 

yl)ethylidene)-2-[(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl- 

1H-pyrazol-4-yl)methylene]hydrazine-1-carbothiohydrazide (14) 

A mixture of 1a (2 mmol, 0.66 g) and 12 (2 mmol, 0.20 g) in dry 

EtOH was refluxed for 5 min. 1,2,3-Triazole 13 (2 mmol, 0.49 g) was 

added, and the mixture refluxed for 2 h. After cooling, the solid was 

filtered and recrystallized from DMF to give 14 in 77% yield, m.p. 218–
220 ◦C. IR (KBr, ν cm–1): 3239 (NH), 3120 (CH), 1596 (C=C), 1237 

(C=S). 1H NMR: 2.46 (br s, 6H, 2 Me), 2.47 (s, 3H, Me), 7.39 (t, 7.7 Hz, 

1H, Ar), 7.56–7.67 (m, 8H, Ar), 7.89–8.03 (m, 4H, Ar), 8.45 (d, 9.1 Hz, 
2H, Ar), 8.89 (s, 1H, CH), 10.64 (s, D2O exch, 1H, NH), 12.07 (s, D2O 

exch, 1H, NH). 13C NMR: 10.4, 11.3, 118.3, 118.9, 119.2, 125.6, 125.7, 

125.9, 126.9, 127.7, 128.4, 129.9, 130.2, 130.4, 132.9, 133.3, 134.3, 

136.3, 138.3, 139.5, 141.0, 143.3, 144.5, 148.3, 163.0. Anal. Calcd. for 

C31H27N13O2S (645.70): C, 57.66; H, 4.21; N, 28.20. Found: C, 57.72; H, 

4.31; N, 28.33%. 

 
Table 1 

Crystal structure solution and refinement data. 

2.8. Crystal structure determination 

 
An Agilent SuperNova Dual Atlas diffractometer using mirror mon- 

ochromated Mo Kα or Cu Kα radiation was used to collect the single 
crystal diffraction data. The structures were solved by direct methods 

using SHELXT [60] and refined by full-matrix least-squares methods on 

F2 with SHELXL [61]. In the crystal structure of 6, the ethoxy group was 

modeled as disordered with two components of occupancy 0.61(1)/0.39 

(1). The ethoxy group of molecule 7 was also disordered with two 

components of occupancy 0.76(2)/0.24(2). Crystal and structure 

refinement data are shown in Table 1. The X-ray crystallographic data 

for compounds 4, 6, 7, and 14 have been deposited in the Cambridge 

Crystallographic Data Center with CCDC reference numbers 2268247–

2268250. 

2.9. Lactate dehydrogenase (LDH) assay 

 
An LDH release assay was used to test the newly synthesized het- 

erocycles on membrane permeability in the HepG2, MCF-7,  HCT-116, 

and BJ-1 normal cell lines [62,63]. The cells were seeded in 24-well 

culture plates (density    1    104  cells/well in a volume of 500 μL)     
and allowed to grow for 18 h. After treatment with heterocycles and 

doxorubicin® (positive control), the plates were incubated for 48 h. A 
supernatant (40 μL) was transferred to a new 96-well plate to determine 
the LDH release. Triton X-100 (6%; 40 μL) was added to the original 
plate to determine the total LDH. An aliquot of potassium phosphate 

buffer (0.1 M; 100 μL, pH 7.5) containing pyruvic acid (4.6 mM) was 
mixed with the supernatant using repeated pipetting. Potassium phos- 
phate buffer (0.1 M; 100 μL, pH 7.5) containing a reduced β-NADH 
(0.4 mg/mL) was added to the wells. The kinetic changes were read for 
1 min 

using the ELISA microplate reader in absorbance (wavelength = 340 
nm). The procedure was repeated with the total cell lysate (40 μL) to 
determine  the  total  LDH.  The  LDH  percentage  was  determined by 

dividing the LDH released into the media by the total LDH following cell 

lysis in the same well. 

Compound 4 6 7 14 

Formula C31H24N6O2S2 C30H25N5O3 C31H27N5O4 C31H27N13O2S 

Formula weight 576.68 503.55 533.57 645.71 

Temperature (K) 293(2) 296(2) 293(2) 293(2) 

Wavelength (Å) 0.71073 1.54184 0.71073 1.54184 

Crystal system Monoclinic Orthorhombic Triclinic Monoclinic 

Space group P21/n Pbca P̄ı P21/c 

a (Å) 11.4502(7) 7.1351(2) 7.7683(6) 13.4167(3) 

b (Å) 15.8394(10) 25.7615(6) 13.2446(10) 30.2489(9) 

c (Å) 15.6728(8) 28.5924(6) 14.3025(11) 7.3795(3) 

α (◦) 90 90 82.460(6) 90 

β (◦) 96.693(5) 90 80.792(7) 91.436(3) 

γ (◦) 90 90 76.226(7) 90 

Volume(Å
3
) 2823.1(3) 5255.6(2) 1404.15(19) 2993.96(17) 

Z 4 8 2 4 

Density (calc; Mg/m
3
) 1.357 1.273 1.262 1.433 

Absorption coeff. (mm
–1

) 0.229 0.684 0.086 1.420 

F(000) 1200 2112 560 1344 

Crystal size (mm
3
) 0.250 × 0.210 × 0.110 0.380 × 0.170 × 0.080 0.360 × 0.090 × 0.060 0.330 × 0.090 × 0.030 

Reflections collected 28078 37224 12809 10136 

Independent reflections 7036 5225 6642 5332 

R(int) 0.1031 0.0261 0.0311 0.0378 

Parameters 371 384 403 427 

Goodness-of-fit on F
2 

1.053 1.047 1.040 1.002 

R1 [I>2sigma(I)] 0.0743 0.0457 0.0744 0.0639 

wR2 [I>2sigma(I)] 0.1855 0.1437 0.1668 0.1712 

Extinction coefficient – 0.00065(11) 0.0086(19) – 

Largest diff. peak and hole (e.Å
–3

) 0.380 (–0.377) 0.275 (–0.197) 0.190 (–0.157) 0.384 (–0.358) 
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3. Results and discussion 

 
3.1. Heterocycle synthesis 

Thioacetalization of carbonyl compounds occurs if a catalyst is pre- 

sent. Suitable catalysts include nickel(II) dichloride [64], hex- 

abromoacetone [65], lithium perchlorate [66], sulfated zirconia [67], 

graphene oxide [68], I2/nanostructured pyrophosphate [69], I2  sup- 

ported on natural phosphate [70], H₃NSO₃ [71], H2O2–SOCl2 system 
[72], Cl3CCO2H in NaC12H25SO4 micelles [73], cerium triflate [74], I2 

generated in situ from Fe(NO3)3⋅9H2O/NaI [75], anhydrous Cu(II) SO4 

[76], and Lewis acids (e.g., ZnCl2, NiCl2, or CuCl2) supported on natural 

phosphate [77]. In the current work, the catalyst employed for the 

chemoselective thioacetalization of pyrazole-4-aldehydes was I2 with 

dichloromethane (DCM) as the solvent. 

Room temperature reactions of  3-(1-aryl-5-methyl-1H-1,2,3-triazol- 

4- yl)-1-phenyl-1H-pyrazole-4-carbaldehydes 1a–c (R = H, OMe, NO2) 
and two-mole equivalents of thiophenol in the presence of I2 in DCM for 

12 h. afforded the corresponding 4-[3-(bis(phenylthio)methyl)-1-aryl- 

1H-pyrazol-5-yl]-5-methyl-1-phenyl-1H-1,2,3-triazoles  2–4  in  75–78% 

yields (Scheme 1). 

The 1H NMR spectra of 2–4 showed the CH and pyrazolyl protons as 
singlets at 6.92–6.97 and 8.65–8.67 ppm, respectively, while the CH 

carbon appeared at high field (49.2–49.3 ppm) in the 13C NMR spectra. 
The structure of 4 was confirmed using single crystal X-ray diffrac- 

tion. The molecule of 4, C31H24N6O2S2, (Fig. 1) consists of nitrophenyl 
(A4, C1–C6, N1, O1, O2), methyl triazole (B4, C7–C9, N2–N4), methyl 
pyrazole (C4, C10–C13, N5, N6), phenyl (D4, C26–C31) and benzene- 
thiol ([E4, C20–C25, S1], [F5, C14–C19) groups. Though not planar, the 
segment of the molecule closest to planarity comprises groups A4–D4 
with twist angles A4/B4    36.73(8)◦, B4/C4    20.41(13)◦ and  C4/D4 

23.43(11)◦ in the crystal structure. In contrast, the orientations of the 

benzenethiol groups E4 and F4 deviate more significantly from the 

A4–D4 segment, with twist anglesC4/E4 71.38(12) ◦ and D4/F4 

69.53(12)◦. 

Next, we attempted the Claisen-Schmidt condensation reaction of 1. 

pyrazole (C6, C10–C12, N4, N5), ethyl butanoate (E6 (C13–C17, O2, 
O3) and benzaldehyde (F6, C18–C24, O1) groups. In the crystal struc- 
ture, groups B6–D6 are almost coplanar, with twist angles B6/C6 = 
11.51(3)◦ and C6/D6 = 10.85(5)◦. Groups A6 and F6 deviate from the 

plane of B6–D6 with twist angles A6/B6 = 66.95(8)◦ and D6/F6 = 
89.12(7)◦. The torsion angle C15–O3–C16–C17 is 100.5(6)◦, whereas 
the rest of the ethyl butanoate group is planar. 

The molecule of 7, C31H27N5O4, (Fig. 3) consists of methoxy phenyl 

([A7, C25–C31, O4)], methyl triazole (B7, C22–C24, N3–N5),  pyrazole 

(C7, C13–C15, N1, N2), phenyl (D7, C16–C21) ethyl butanoate (E7, 
C8–C12, O2, O3) and benzaldehyde (F7, C1–C7, O1) groups. In the 
crystal structure, groups B7–D7 are coplanar, with twist angles B7/C7 
= 6.00(10)◦ and C7/D7 = 7.24(13)◦. Groups A7 and F7 deviate from the 

plane  of B7–D7  with twist angles A7/B7 68.68(13)◦ and C7/F7 

86.39(10)◦. The ethyl butanoate group is planar, as shown by the torsion 

angle C9–O3–C10–C11 of 179.7(6)◦. 
Condensation of  6 and  2,4-dinitrophenylhydrazine  (8) in EtOH 

containing concentrated HCl as the catalyst gave the corresponding 

hydrazone 9 in 88% yield (Scheme 2). The IR spectrum of 9 had ab- 

sorption bands at 3288 and 1695 cm–1 assigned to NH and C  O groups, 

respectively. After adding D2O, the 1H NMR spectrum of 9 revealed an 

exchangeable singlet at 11.00 ppm assigned to the NH proton. CH pro- 

tons were observed as a singlet at 8.34 ppm. The carbonyl carbon 

appeared at a low field (168.3 ppm) in the 13C NMR spectrum of 9. 

Isoxazol-5(4H)-one 11 was synthesized in 77% yield through a one- 

pot reaction of equimolar equivalents of 1a, hydroxylamine hydro- 

chloride, and ethyl acetoacetate (10) in a boiling mixture of H2O and 

DMF (1:1) in the presence of potassium carbonate (K2CO3) for 8 h 

(Scheme 3). The IR spectrum of 11 showed a strong absorption band at 

1744 cm–1 due to the C  O group. The 1H NMR spectrum showed the CH 

proton as a singlet at a low field (9.88 ppm). It should be noted that 11 is 

highly insoluble in DMSO-d6, and attempts to record the 13C NMR 

spectrum failed. 

Finally, the one-pot three-component reaction of equimolar equiva- 

lents of 1a, thiocarbohydrazide 12, and 4-acetyl-1,2,3-triazole 13 in 

boiling dry EtOH containing concentrated HCl for 2 h gave the corre- 

Condensation of pyrazol-4-carbaldehydes 1a,b (R = H, OMe) and ethyl sponding bis-carbothiohydrazone 14 in 77% yield (Scheme 4). –1 

benzoylacetate 5 in anhydrous EtOH containing piperidine as catalyst 

afforded the corresponding enone esters 6 (R  H) and 7 (R   OMe) in 

82 and 84% yield, respectively (Scheme 2). 

The IR spectra of 6 and 7 showed the presence of two carbonyl 

groups in the molecule. For example, the IR spectrum of 7 showed two 

strong absorption bands that appeared at 1666 and 1708 cm–1 due to the 

two carbonyl groups. The 1H NMR spectra of 6 and 7 showed triplet (3H) 

and quartet (2H) signals at 1.08 and 4.17 ppm due to methyl protons and 

methylene protons of the ethyl group, respectively. In addition, the CH 

proton appeared at a high field (8.72 ppm). The 13C NMR spectra of 6 

and 7 showed two carbonyl groups at a very low field at 165.0 and 195.9 

ppm, while the CH carbon appeared in the aromatic region at 115.7 

ppm. The structures of 6 and 7 were confirmed using X-ray diffraction. 

The molecule of 6, C30H25N5O3, (Fig. 2) consists of phenyl ([A6, C1–

C6)]  and  [D6,  C25–C30],  methyl  triazole  (B6,  C7–C9, N1–N3), 

An absorption band due to the NH group was observed at 3239 cm 

in   the   IR   spectrum  of   14.   The  1H  NMR   spectrum  showed two 

exchangeable singlets at 10.64 and 12.07 ppm due to the two NH pro- 

tons. In addition, the spectrum showed a singlet at 8.89 ppm due to the 

CH proton. The C S carbon appeared at a low field (160.3 ppm) in the 
13C NMR spectrum of 14. 

Single crystal X-ray diffraction confirmed the structure of 14. The 

molecule, C31H27N13O2S, (Fig. 4) comprises phenyl ([A14, C1–C6)] and 
[D14, C13–C18], methyl triazole ([B14, C7–C9, N1–N3] and [F14, 
C23–C25, N10–N12]), pyrazole (C14, C10–C12, N4, N5), ethylidene- 
methylidenehydrazine-carbothiohydrazide (E14, C19–C22,  N7–N9, 
S1) and nitrobenzene (G14, C26–C31, N13, O1, O2) groups. In the 
crystal structure, groups B14–F14 are coplanar, with twist angles B14/ 
C14  = 8.40(11)◦,  C14/D14  = 4.15(10)◦,  C14/E14  = 6.07  (8)◦, E14/ 

F14   =  4.78   (9)◦.  The   planarity  of  E14   is  partially  stabilized  by 

 

 

Scheme 1. Synthesis of 4-[3-(bis(phenylthio)methyl)-1-aryl-1H-pyrazol-5-yl]-5-methyl-1-phenyl-1H-1,2,3-triazoles. 
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Fig. 1. An ortep representation of 4-[3-(bis(Phenylthio)methyl)-1-phenyl-1H-pyrazol-5-yl]-5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazole showing 50% probability 

atomic displacement ellipsoids. 

 

Scheme 2. Synthesis of acrylate containing heterocycles. 
 

intramolecular C–H…N and N–H…N contacts with geometry [C(19–H 
(19)...N(3) = 121.2◦, C(19)...N(3) = 3.152(4)Å,] and  [N(8)–H(8)...N 
(10) = 136.0◦, N(8)…N(10) = 2.688(3) Å]. Groups A14 and G14 deviate 
from the plane of B14–F14, with twist angles A14/B14 = 42.7(1)◦ and 
E14/F14 = 46.6(1)◦. An intermolecular N–H…O hydrogen bond with 
geometry (N(7)–H(7)...O(1)   154.8◦, N(7)…O(1)   3.416(4) Å occurs 
in the crystal structure. 

The molecules generated, including those characterized by single 

crystal diffraction (4, 6, 7, and 14) contain the 5-methyl-1-phenyl-4-(1- 

phenyl-1H-pyrazol-3-yl)-1H-1,2,3-triazole fragment. Several 

compounds containing the fragment have also been reported (Supple- 

mentary Table S1). In the structures of 6, 7, and 14, the three-ring 5- 

methyl-4-(1-phenyl-1H-pyrazol-3-yl)-1H-1,2,3-triazole groups are 

planar with twist angles between linked rings of less than 12◦, as already 

discussed. In each case, the phenyl group attached to the triazole group 

is twisted from this plane more significantly (> 36◦). The geometry with 

a planar methyl triazole-pyrazole fragment with the phenyl ring 

attached to the triazole group being twisted from this plane is also seen 

in other related crystal structures [for example, PUWCOC [78], 

QEGROM [79], RAPLEC [80] as well as most of the others in Table S1]. 
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Fig. 2. An ortep representation of ethyl 2-benzoyl-3-(5-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)acrylate showing 50% probability 

atomic displacement ellipsoids for the major disorder component. 

 

Fig. 3. An ortep representation of ethyl 2-benzoyl-3-(5-(1-(4-methoxyphenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)acrylate showing 50% 

probability atomic displacement ellipsoids for the major disorder component. 

 
In the structure of 4, however, the methyl triazole-pyrazole fragment 

shows less planarity, with a twist angle of 20◦. A similar twist (25◦) is 

also observed in a related QEGSAZ structure [79]. This exaggerated 

twist between the linked 1,2,3-triazole and pyrazole, the heterocyclic 

groups of interest, is rarer in the reported structures (Table S1). How- 

ever, the twist indicates structural flexibility in the solution allowing 

conformational adaptability that may influence their biological activity. 

 
3.2. In vitro antiproliferative activity 

The new heterocycles were tested in vitro for their antiproliferative 

properties. Their activity against HCT-116, HepG2, and MCF-7 human 

cancer cells and the human healthy cell line (BJ-1) was assessed using 

the LDH assay. The antiproliferative activity (IC50) of the synthesized 

heterocycles was calculated and compared to that of doxorubicin as a 

control (Table 2). The tests revealed that the heterocycles were safe 

against the non-cancer (BJ) cell line. Additionally, all heterocycles 

suppressed the three cancer cells (HCT-116, HepG2, and MCF-7) in a 
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Scheme 3. Synthesis of 3-methyl-4-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)isoxazol-5(4H)-one. 

 

Scheme 4. Synthesis of N’-(1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethylidene)-2-[(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4- 

yl)methylene]hydrazine-1-carbothiohydrazide. 

 

Fig. 4. An ortep representation of a molecule of N’-(1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethylidene)-2-[(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)- 

1-phenyl-1H-pyrazol-4-yl)methylene]hydrazine-1-carbothiohydrazide showing 50% probability atomic displacement ellipsoids. 
 

dose-dependent manner. In the case of HCT-116 human colorectal car- 

cinoma cells, all the synthesized heterocycles except 2 showed mild 

antiproliferation properties (IC50 = 19.1–33.4 µM). The bis-thio- 
carbohydrazone 14 has cytotoxic activity (12.5 ± 2.2 µM) 
comparable to doxorubicin (11.8 1.5µM). Heterocycles 3, 4, 7, 6, 9, 
and 11 have moderate cytotoxic activities, while heterocycle 2 has 
low cytotoxic 

activity compared to doxorubicin. In the case of MCF-7 human breast 

cancer cells, 2, 3, 7, 9, 11, and 14 have moderate cytotoxic activities, 

and 4 and 6 have weak activities compared to the reference drug. In the 

case of HepG2 human liver cancer cells, the tested heterocycles showed 

promising antiproliferation properties with IC50 ranging from 2.3 to 2.6 

µM compared to 2.1 µM for doxorubicin. In the case of the non-

tumor 
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Table 2 

The antiproliferative (IC50) for the newly synthesized heterocycles against 

cancer cell lines.  

Heterocycle IC50 (µM) ± SD     

HCT-116 HepG-2 MCF-7 BJ-1 
 

2 56.5 ± 4.5 2.3 ± 0.1 23.3 ± 2.1 17.6 ± 2.1 

3 33.4 ± 2.9 2.4 ± 0.1 33.8 ± 3.2 17.6 ± 2.1 

4 32.4 ± 3.9 2.4 ± 0.3 45.9 ± 4.1 17.2 ± 1.9 

6 19.1 ± 2.3 2.3 ± 0.2 42.7 ± 3.1 19.9 ± 2.1 

7 25.6 ± 3.1 2.4 ± 0.1 26.2 ± 2.6 18.9 ± 1.7 

9 25.2 ± 1.9 2.3 ± 0.2 21.6 ± 1.8 16.4 ± 1.6 

11 28.8 ± 3.1 2.6 ± 0.2 30.5 ± 2.9 17.2 ± 1.5 

14 12.5 ± 2.2 2.5 ± 0.2 25.4 ± 3.2 28.8 ± 2.2 

    Doxorubicin 11.8 ± 1.5 2.1 ± 0.2 6.2 ± 0.5 17.7 ± 1.8  

 
fibroblast-derived cell line, heterocycles 2, 3, 4, 9, and 11 showed 

potentially higher potent cytotoxic activities than the control. Com- 

pounds 6 and 7 had cytotoxic activities only slightly higher than the 

reference drug, while, on the other hand, 14 had weak cytotoxic activity 

against the healthy cells. 

Based on the observed antiproliferation properties, the structure- 

activity relationship can be assigned. In the case of the dithiols 2–4,  
the unsubstituted derivative 2 (R = H, IC50 = 2.3 µM) has higher anti- 
proliferation properties than 3 containing 4-methoxyphenyl (C50 =  2.4 

µM) and 4 having 4-nitrophenyl (IC50 = 2.4 µM). A similar observation 
has been made for heterocycle 6 containing a phenyl group (IC50 = 2.3 

µM) and 7 having the 4-methoxyphenyl unit (IC50  2.4µM). In the case 
of the MCF-7 human breast cancer cells, only 2, 9, and 14 displayed 
moderate cytotoxic activity with IC50 ranging from 21.6 to 25.4 µM 
compared to only 6.2 µM for the reference drug. 

In conclusion, the newly synthesized agents show promising anti- 

proliferative properties against the human liver cancer cell line (HepG- 

2). Heterocycles14 displayed good antiproliferative properties against 

the colon anticancer cell line (HCT-116). It does not show any significant 

cytotoxic activity on the normal cells. 

 
4. Conclusions 

 
Several new heterocycles containing 1H-1,2,3-triazole and 1H-pyr- 

azole moieties have been synthesized. The procedures were simple, and 

heterocycles were produced in good yields. The chemical structures of 

the synthesized heterocycles have been established, and their anticancer 

activities against three types of human cancer cells were assessed. The 

newly synthesized heterocycles show promising antiproliferative prop- 

erties against the human liver cancer cell line. The heterocycle con- 

taining bis-thiocarbohydrazone showed the highest anticancer activity 

(e.g., against the colon anticancer) compared to the others. The anti- 

cancer activities of bis-thiocarbohydrazone were comparable to those 

obtained for the reference drug doxorubicin. The results obtained pro- 

vide support for the future design of new heterocycles based on bis- 

thiocarbohydrazone and assessment of their anticancer activity with the 

aim of finding effective treatment against malignant cells. 
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