
I M M U N O LO GY

DeepAIR: A deep learning framework for effective
integration of sequence and 3D structure to enable
adaptive immune receptor analysis
Yu Zhao1†, Bing He1*†, Fan Xu1, Chen Li2, Zhimeng Xu1, Xiaona Su1, Haohuai He1,
Yueshan Huang1, Jamie Rossjohn3,4, Jiangning Song1,2*, Jianhua Yao1*

Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell
receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity.
However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs,
omitting the structure features that are essential for binding affinity. In this study, we present a deep learning
framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence
and structure features of AIRs. DeepAIR achieves a Pearson’s correlation of 0.813 in predicting the binding
affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942
in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire,
DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease
in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive
immunity.

Copyright © 2023 The

Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).

INTRODUCTION
Adaptive immune receptors (AIRs) recognize antigens to activate
the ensuing immune responses, thereby cleaning up the tumor
cells and invading pathogens. T cell receptor (TCR) and B cell re-
ceptor (BCR) are two major types of AIRs. TCRs bind to the pep-
tides (antigens) presented by the major histocompatibility complex
(i.e., peptide-MHC, pMHC) on the cell surface (1), while BCRs di-
rectly recognize native and cognate antigens (2). Both TCR and BCR
are composed of two polypeptide chains (i.e., α-β or light-heavy)
that form three-dimensional structures of the complementarity-de-
termining region (CDR) loops (i.e., CDR1, CDR2, and CDR3) to
bind the antigen epitope (3). The CDR1 and CDR2 loops of TCR
often—but not always—contribute to MHC binding (4), while the
CDR3 loops can play a prominent role in contacting the peptide,
although CDR1/2 loops are known to mediate peptide contacts
too (5). Meanwhile, the CDR3 loop of BCR, especially the heavy
chain loop H3, is considered to be the most important region for
the recognition of antigen epitopes, which are highly diverse (6).
For both TCR and BCR, the CDR3 loop is the most diverse
region that has been widely used in the studies of immune repertoire
(7–9), which is defined as the sum of TCRs and BCRs that makes the
organism’s adaptive immune system. Each chain is encoded by a
somatically recombined gene sequence of the Variable (V) gene seg-
ments, the Diversity (D) gene segments (presented in half of the
chains), and the Joining (J) gene segments. The genetic rearrange-
ment of V(D)J gene segments generates a highly polymorphic AIR

repertoire, which contains approximately 1015 to 1061 different re-
ceptors in humans, allowing for the scrutinization and recognition
of various antigens (10). Accurate identification of the AIR-antigen
recognition is therefore crucially important for understanding the
adaptive immune system and designing immunotherapies and
vaccines.
High-throughput sequencing bulk techniques have been widely

applied to profile the V(D)J genes and the clonal diversity of AIRs
(11). The availability of such sequence data of V(D)J genes has
allowed for the clustering of the AIRs that recognize the same
antigen on the basis of the sequence-derived features (12, 13).
However, high-throughput bulk sequencing techniques often
capture only one chain of AIR, which is insufficient to profile the
complete sequence features of the receptor, thereby hindering the
development of a reliable prediction model for the AIR-antigen rec-
ognition based on the sequence features (11). Recent advances in
single-cell immune repertoire sequencing technologies have
enabled the capture of both chains of the receptor, providing com-
plete V(D)J gene sequencing data for the construction of AIR-
antigen binding prediction models, such as GLIPH (12), TCRdist
(14), DeepTCR (7), TCRAI (8), soNNia (9), ERGO (15), NetTCR
(16), TcellMatch (17), pMTnet (18),RACER (19), Mal-ID (20),
and DeepRC (21).
Most of the AIR-antigen binding prediction models focus on the

prediction of binding reactivity (or termed binding specificity),
which refers to whether AIRs bind to a specific antigen. Among
these models, GLIPH (12) and TCRdist (14) are two traditional stat-
istical approaches, RACER (19) uses a pairwise energy model, while
others, including DeepTCR (7), TCRAI (8), soNNia (9), ERGO
(15), NetTCR (16), TcellMatch (17), and pMTnet (18), leverage
state-of-the-art (SOTA) deep learning technologies. As expected,
deep learning–based models, such as DeepTCR (7) and TCRAI
(8), usually demonstrated superior prediction performance than
traditional statistical models, such as GLIPH (12) and TCRdist
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(14). It is also worth noticing that most of the methods were de-
signed for the AIR-antigen binding reactivity of TCR only,
whereas soNNia is the only currently available method for both
TCR and BCR. Beyond predicting the binding reactivity between
AIR and antigen, some of the models, such as DeepTCR (7) and
TcellMatch (17), further predict the strength of the binding,
which is termed binding affinity. Although SOTA methods, such
as DeepTCR (7) and TCRAI (8), achieved good performance in pre-
dicting the binding reactivity, the prediction of the binding affinity
is still a big challenge. Pearson’s correlations between the real value
and the predicted value by SOTA methods are around 0.7 (7).
The immune repertoire consists of TCRs and BCRs that make

the organism’s adaptive immune system. It is promising to identify
diseases by analyzing the antigen-binding TCRs and BCRs in the
immune repertoire. However, few of the above AIR-antigen
binding prediction models perform the analysis of immune reper-
toire. Only DeepTCR uses a supervised multiple instance learning
(MIL) algorithm that integrates the TCR binding reactivity to clas-
sify immune repertoire (7). The information on AIR-antigen
binding reactivity is not always necessary for current immune rep-
ertoire classification methods, such as Mal-ID (20) and DeepRC
(21). Mal-ID classifies immune repertoires and predicts disease by
combining three classifiers of BCR sequences (20). DeepRC uses a
modern Hopfield network with attention mechanisms for immune
repertoire classification and disease prediction (21).
All these methods only used sequence-derived features to con-

struct the machine learning models. However, the structures of AIR
play fundamental roles in recognizing and interacting with the
antigen (22, 23). Despite the shortage of structural data of AIRs
due to the high experimental cost, a wealth of accurately predicted
structural data of AIRs have been made available because of the
recent breakthrough of protein structure predictor, AlphaFold2
(24). It is now possible to investigate how to use the predicted
AIR structures to boost the computational models for AIR analysis,
including AIR-antigen binding prediction and immune repertoire
classification.
In this study, we present a deep learning framework, termed

DeepAIR, for structure-boosted AIR analysis. The functionality of
DeepAIR includes AIR-antigen binding prediction and immune
repertoire classification. Using a specifically designed gating-
based attention mechanism and a tensor fusion mechanism,
DeepAIR leverages the AlphaFold2-predicted AIR structure infor-
mation to make the AIR-antigen binding prediction. Our bench-
marking experiments demonstrate that on six datasets harboring
both TCRs and BCRs (antibodies) (table S1), DeepAIR achieved su-
perior prediction performance in terms of AUC [area under the re-
ceiver-operating characteristic (ROC) curve] across all three tasks of
AIR-antigen analysis compared to SOTA approaches, including
TCRAI, DeepTCR, and soNNia (Table 1).

RESULTS
DeepAIR is a deep learning framework by integrating
three-dimensional structure information for AIR-antigen
binding prediction
The CDR3 loop of AIR is the most diverse CDR loop that plays a
prominent role in contacting the epitope of antigen in the AIR-
antigen binding complex (5, 13). Thus, the information of the
CDR3 sequence was widely used in previous methods, such as

DeepTCR (7) and TCRAI (8), for the prediction of TCR-pMHC
binding. We hypothesize that the structure of the CDR3 region is
important for constructing an accurate model for AIR-antigen
binding prediction. To examine this, we collected experimentally
validated structures of two TCR-pMHC binding complexes
[Protein Data Bank (PDB) ID: 1OGA (25) and 3HG1 (26)] from
the PDB database (27) (fig. S1A). Figure S1A illustrates the
binding sites of paratopes that are located on different chains of
two TCRs according to the structures. We also collected the TCR
sequences that bind to the same epitopes from the 10x Genomics
website (28) (table S1). From the collected sequences, we found
that the amino acids on the binding sites of the paratope exhibit
varying degrees of conservation. It was observed that β-98R,
which binds to the epitope GILGFVFTL (HLA-A0201), displays a
considerably elevated level of conservation. Conversely, β-98 L,
which binds to ELAGIGILTV (HLA-A0201), shows relatively
lower levels of conservation (fig. S1A). In addition to sequences
themselves, structures predicted by AlphaFold2 using those se-
quences offer valuable and distinct information that can aid in de-
termining the AIR-antigen binding reactivity and specificity (fig.
S1, B to E); e.g., for AIRs (TCRs and BCRs) binding to the same
epitope of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) virus, although their CDR3 sequences are substitut-
ed one to five amino acids, their CDR3 structures are nearly the
same (fig. S1, B and D). However, for AIRs binding to different epi-
topes of the SARS-CoV-2 virus, we found that their CDR3 struc-
tures show a larger difference than the sequences (fig. S1, C and
E). The above observations from a limited number of samples
imply that incorporating the structure information of the CDR3
region into the DeepAIR model might help improve the prediction
performance.
DeepAIR takes three types of information from the CDR3 region

of AIR as input: the sequence, structure, and V(D)J gene usage. The
system has three primary stages for processing this data and making
predictions, as illustrated in Fig. 1. The first stage, called multichan-
nel feature extraction, uses three feature encoders to comprehen-
sively encode the AIR. These encoders are the gene encoder,
sequence encoder, and structure encoder. The gene encoder
embeds information about the V(D)J gene usage using a trainable
embedding layer. The sequence encoder uses a multilayer Trans-
former model (29) to encode the sequences of the paired chains.
Last, the structure encoder uses pretrained AlphaFold2 (24) to
extract structure information and processes it using concatenated
convolutional layers. The second stage, called multimodal feature
fusion, uses a fusion module with a gating-based attention mecha-
nism to extract key features from the encoded information of struc-
ture, sequence, and gene usage. These features are then integrated
with a tensor fusionmechanism. The third stage, called task-specific
prediction, feeds the integrated features into task-specific prediction
layers for downstream analysis of AIR-antigen interaction. This in-
cludes predicting binding affinity with a regression layer, predicting
binding reactivity with a classification layer, and conducting
immune repertoire classification using theMIL layer. To objectively
characterize the contribution of the structure information, we
created two variants of DeepAIR, namely, DeepAIR-stru and
DeepAIR-seq. DeepAIR-stru is a model that uses only the structure
information, while DeepAIR-seq is a model that learns from se-
quence and the V(D)J gene usage information.
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Evaluation of the predicted AIR structures
Compared to more than 277 million TCRs and BCRs with known
sequences in the TCRdb (30) database and Immune Epitope Data-
base (IEDB) database (30), there are only 858 experimentally vali-
dated structures available for human TCRs and 3333 experimentally
validated structures available for human BCRs in the PDB database
(27). Because of the limited availability of most AIR structures, we
used AlphaFold2 to predict the unliganded AIR structure and con-
struct the DeepAIRmodel. The accuracy of the predicted AIR struc-
ture is therefore important for the prediction performance of
DeepAIR. To find the best way of predicting the AIR structure
using AlphaFold2, we collected experimentally validated structures
of TCRs and BCRs with and without antigen binding from the PDB
database (27). Then, we predicted the AIR structure with Alpha-
Fold2 using the amino acid sequences of the full-length β/heavy
chains (Fig. 2, A to D). The prediction accuracy was measured
using the root mean square deviation (RMSD) between the predict-
ed and the experimentally validated AIR structures.
In particular, we focused on the prediction accuracy of the CDR3

loop, which is the most diverse part of the AIR structure. The pre-
dicted CDR3 structures using the sequences of the full-length β/
heavy chains had a median RMSD of 0.964 Å (tables S2 and S3),
which is similar to that of AlphaFold2 on the CASP14 dataset
(24). The predicted TCR structures appeared to be more accurate
than the predicted BCR structures (Fig. 2E). The median RMSD
values for the predicted CDR3 structures of TCR and BCR were
0.35 and 1.92 Å, respectively (tables S2 and S3). The results
suggest that AlphaFold2 is not good at predicting the CDR3 struc-
ture of BCR. Moreover, the antigen binding decreased the predic-
tion accuracy for the CDR3 structure (Fig. 2, F and G). The median
RMSD values for the predicted CDR3 structures of AIRs compared
to the experimentally validated CDR3 structures of AIRs with and
without antigen binding were 1.42 and 0.46 Å, respectively (tables
S2 and S3), suggesting that antigen binding may change the struc-
ture of CDR3, which can increase the difficulty of predicting the
structure.

Prediction of the AIR-antigen binding affinity
The antigen binding is based on the affinity between AIR and
antigen. Currently, there is no reliable computational approach
for predicting the exact binding affinity, especially for the TCR-
pMHC binding (5). In this study, we used the counts of unique
TCR molecules that were captured by the pMHC as the observed
proxy of AIR-antigen binding affinity (28), following the strategy
used in the DeepTCR paper (7). We used the unique molecular
identifier (UMI) to represent each unique TCR molecule. UMI is
a type of molecular barcode that provides error correction and in-
creased accuracy during sequencing. These molecular barcodes are
short sequences used to uniquely tag each molecule in a sample
library. Because of the lack of BCR AIR-antigen binding affinity
data, we instead focused on the prediction of TCR AIR-antigen
binding affinity in this study.
We obtained the pMHC-captured single-cell TCR data from the

10x Genomics website (28), which includes the single-cell TCRs
captured by 44 pMHC multimers and six negative controls from
four donors. The data was curated using the Integrative COntext-
specific Normalization (ICON) workflow to remove the low-
quality TCRs and false-positive bindings (8). We aggregated
clones with different nucleotide sequences but identical amino
acid sequences together into one unique TCR clone. After data cu-
ration, 38,558 paired TCR α/β chains belonging to 5834 unique TCR
clones, in which 5560 clones bind to seven pMHC multimers, in-
cluding ELAGIGILTV (HLA-A0201) from MART-1 protein of
melanoma, GILGFVFTL (HLA-A0201) from M1 protein of influ-
enza virus (flu), KLGGALQAK (HLA-A0301) from IE1 protein of
cytomegalovirus (CMV), GLCTLVAML (HLA-A0201) from
BMLF1 protein of Epstein-Barr virus (EBV), AVFDRKSDAK
(HLA-A1101) from EBNA4 protein of EBV, IVTDFSVIK (HLA-
A1101) from EBNA3B protein of EBV, and RAKFKQLL (HLA-
B0801) from BZLF1 protein of EBV, were used in this study
(table S1).
The prediction of the AIR-antigen binding affinity is solved as a

regression task in the DeepAIR framework. For each pMHC
(antigen), its TCRs in the dataset were randomly split into training

Table 1. Performance of methods for adaptive immune receptor (AIR)–antigen binding analysis using single-cell immune repertoire data. √, support; /,
not support.

Methods
AIR

Structure feature
Binding affinity Binding reactivity

Immune repertoire
classification

AUC‡

MIL-pooling MIL-voting

TCR BCR Pearson’s correlation AUC TCR AUC* BCR AUC† TCR BCR TCR BCR

DeepAIR √ √ √ 0.813 0.912 0.904 0.942 0.990 1 1 1

DeepAIR-stru √ √ √ 0.800 0.904 0.867 0.913 / / / /

DeepAIR-seq √ √ / 0.732 0.889 0.827 0.799 / / / /

TCRAI √ / / / / 0.845 / / / / /

DeepTCR √ / / 0.754 0.876 0.844 / 0.880 0.905 / /

soNNia √ √ / / / 0.782 0.778 / / / /

DeepRC √ √ / / / / / 0.880 1 / /

*The median value of the area under the receiver-operating characteristic curve (AUC)in predicting the T cell receptor (TCR) binding reactivity for seven peptide–
major histocompatibility complex (pMHC) multimers. †The median value of AUC in predicting the B cell receptor (BCR) (antibody) binding reactivity for four
antigens and three epitopes. ‡The median value of AUC in the classifications for nasopharyngeal carcinoma (NPC) and inflammatory bowel disease (IBD).
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data (70%), validation data (20%), and test data (10%). We split the
data using TCR clone as the fundamental unit to reduce the se-
quence homology between the training and test data. The binding
affinity prediction model was trained using the training data, opti-
mized using the validation data, and tested independently using the
independent test data. Because TCRAI and soNNia do not predict
the binding affinity, we compared the performance of DeepAIR
with that of DeepAIR-stru, DeepAIR-seq, and DeepTCR. All the
methods here were trained using exactly the same training data.
Their performances on the same test data are shown in Fig. 3.
The affinities predicted by DeepAIR achieved the highest Pearson’s
correlation with the experimentally observed proxy of binding affin-
ities (Fig. 3A). Meanwhile, DeepAIR achieved the lowest mean
squared error (MSE) and mean absolute error (MAE) values, sug-
gesting that the AIR-antigen affinities predicted by DeepAIR were
the closest to the experimental observations (Fig. 3C). Next, we ex-
amined whether the predicted binding affinity was accurate enough
to determine the specific binding between the TCR and the pMHC.
We used the ROC curve to illustrate the power of the predicted af-
finity in distinguishing the experimentally observed TCR-pMHC

binding. The AUC is the aggregated measure of the performance
for this task. As a result, DeepAIR achieved an AUC of 0.912,
which was significantly better than that of any of the other
methods (Fig. 3B). It is also of particular interest to note that
DeepAIR-stru outperformed DeepAIR-seq across all the compari-
sons (Fig. 3, A to C), suggesting the contribution of the structure
data to improve the prediction performance.
To better understand and interpret how well DeepAIR could

predict the AIR-antigen binding affinity, we extracted the attention
weights of every residue from the model that predicts the affinity to
GILGFVFTL. A high weight indicates that the residue is important
to the prediction of AIR-antigen binding affinity. For example, ac-
cording to the attention weight, the amino acid residue arginine
(Arg, R) at the β-98 position is crucial to the binding between
TCR and HLA-A2-GILGFVFTL (M1 protein, flu) (Fig. 3D).
Then, we examined the crystal structure of the TCR-GILGFVFTL
binding complex that was collected from PDB ID: 1OGA (25).
We note that β-98R is the contacting residue between the TCR-β
chain and GILGFVFTL (Fig. 3D). In this case, DeepAIR precisely
captured the important part of the TCR that affects the AIR-antigen

Fig. 1. Constructing the computational framework of DeepAIR. Flowchart of DeepAIR. There are three major processing stages in DeepAIR, including multichannel
feature extraction, multimodal feature fusion, and task-specific prediction. At the multichannel feature extraction stage, three feature encoders are involved and used to
extract informative features from the gene, sequence, and structure inputs. Then, the resulting features produced by three different encoders are further integrated via a
gating-based attention mechanism as well as the tensor fusion at the multimodal feature fusion stage to generate a comprehensive representation. Last, at the task-
specific prediction stage, specifically designed prediction layers are used to map the obtained representations to the output results. MIL, multiple instance learning.
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Fig. 2. Evaluating the predicted adaptive immune receptor (AIR) structures using AlphaFold2. The comparison between the predicted structure (blue) and the
experimentally validated structure (orange) for (A) T cell receptor (TCR), (B) B cell receptor (BCR), (C) TCR in the binding complex, and (D) BCR in the binding complex. For
each comparison, there were six predicted structures and six experimentally validated structures (tables S2 and S3). The root mean square deviation (RMSD) was used to
measure the difference between the predicted and experimentally validated structures. The structures were predicted using the full AIR β/heavy chain sequence. The
structures from the prediction with the lowest (best) and highest (worst) RMSD of CDR3 are located above the boxplot of the RMSD values. For each line, from left to right,
there are structures of the full TCR β chain (BCR heavy chain), complementarity-determining region (CDR), and CDR3 from the predicted structure. For each prediction,
RMSD was measured for the full TCR β chain (BCR heavy chain), CDR, and CDR3, respectively. (E) The boxplot of RMSD for the predicted CDR3 from TCR and BCR, re-
spectively. (F and G) The boxplot of RMSD between the predicted CDR3 and the experimentally validated CDR3 regions from TCR (F) and BCR (G) with and without
antigen binding, respectively.
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binding. Moreover, DeepAIR highlights the importance of aspara-
gine (Asn, N) at the α-98 position. This residue is the contact
residue between the α chain and β chain that stabilizes the structure
of TCR (12, 25, 31). Similar things were observed in another
example using the crystal structure of the TCR-GLCTLVAML
binding complex (EBV, PDB ID: 3O4L). DeepAIR highlights the
importance of α-91R and β-100 T in determining the binding

affinity of TCR to GLCTLVAML (fig. S2A). According to the
crystal structure of the TCR-GLCTLVAML binding complex
(EBV, PDB ID: 3O4L), the α-91R is the contact residue between
the α chain and β chain, while β-100 T is the contacting residue
between the TCR-β chain and GLCTLVAML (fig. S2B). In the
example using the crystal structure of the TCR-ELAGIGILTV
binding complex (melanoma, PDB ID: 3HG1), DeepAIR highlights

Fig. 3. Performance comparison of
DeepAIR and DeepTCR T cell recep-
tor (TCR) binding affinity predic-
tions. (A) Scatter plots demonstrating
the correlations between experimen-
tally validated adaptive immune re-
ceptor (AIR)–antigen binding affinity
values and the predicted binding
affinity values by DeepAIR and
DeepTCR respectively on the 7 pMHC
multimer dataset. The line was gener-
ated to show the best fit using a linear
regression model. (B) Receiver-operat-
ing characteristic (ROC) curves for de-
termining the experimentally
observed peptide–major histocom-
patibility complex (pMHC)–binding
using predicted affinity. The P value is
produced by the comparison of ROC
curves using the DeLong test. DeepAIR
achieved statistically higher perfor-
mance than the other three models. *P
< 0.05, **P < 0.01, and ***P < 0.001, in
the comparison with DeepAIR. (C) The
mean squared error (MSE) and the
mean absolute error (MAE) values
between the predicted AIR-antigen
binding affinity values and the exper-
imentally validated affinity values for
each pMHC multimer using DeepAIR
and DeepTCR. (D) The normalized
DeepAIR attention weights for each
residue in the CDR3 region of α chain
(up left) and β chain (up right), re-
spectively, and the experimentally
validated crystal structure (PDB ID:
1OGA) (bottom) of the TCR that binds
to the GILGFVFTL (Flu, PDB ID: 1OGA).
A higher attention weight indicates
the residue is more important to the
prediction of AIR-antigen binding
affinity. The amino acids with high at-
tention weight, such as α-98 N and β-
98R, are contact residues in the crystal
structure. The α-98 N stabilizes the TCR
structure formed by the α chain and β
chain, while β-98R stabilizes the
binding between TCR and GILGFVFTL
(Flu, PDB ID: 1OGA). The α-98 N and β-
98R residues are highlighted with
a frame.
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the importance of the contact residues between the α and β chains,
as well as those between the α chain and epitope, and between the β
chain and epitope (fig. S3). The results indicate that DeepAIR
learned that stabilizing the paired α-β structure is important for
the binding affinity between the TCR and antigen (31). Moreover,
DeepAIR identified similar partial structures in TCRs exhibiting
high binding affinity to GILGFVFTL (M1 protein, flu) but not in
those displaying low binding affinity (fig. S4). Together, DeepAIR
not only accurately predicts the AIR-antigen binding affinity but
also reveals the important residues that directly contribute to the
binding of AIRs to the antigens (12, 25).

Prediction of the AIR-antigen binding reactivity
In addition to the use of the AIR-antigen binding affinity, a
common strategy for predicting the AIR-antigen binding reactivity
is to effectively learn the patterns from the AIRs that bind to the
same antigen. This is considered and solved as a classification
task in DeepAIR. To evaluate the performance of DeepAIR for pre-
dicting the binding reactivity of TCR, we collected experimentally
validated pMHC-specific TCRs from various sources, including the
10x Genomics website (28) and a SARS-CoV-2 virus study (32). The
10x Genomics dataset, which has 38,558 paired TCR α/β chains be-
longing to 5834 unique TCR clones, in which 5560 clones bind to
seven pMHC multimers, is the same one as we used for the AIR-
antigen binding affinity prediction. The SARS-CoV-2 virus
dataset has 592 paired TCR α/β chains belonging to 589 unique
TCR clones that bind to three pMHC multimers from the SARS-
CoV-2 virus. These pMHC multimers include LTDEMIAQY
(HLA-A0101) and YLQPRTFLL (HLA-A0201) from the spike
protein and TTDPSFLGRY (HLA-A0201) from the ORF1ab poly-
protein. Therefore, a total of 6423 TCR clones for 10 pMHC multi-
mers were used in the prediction of binding reactivity.
To investigate whether the deep learning model can predict the

AIR-antigen binding reactivity for the unseen TCRs, we randomly
split the TCR clones into the training data (70%), validation data
(20%), and test data (10%) as we did in the binding affinity predic-
tion task. DeepAIR achieved a median AUC of 0.904 in predicting
the AIR-antigen binding reactivity for the 10 pMHC multimers

(Table 2), significantly outperforming all the other methods, in-
cluding DeepAIR-stru (median AUC = 0.867), DeepAIR-seq
(median AUC = 0.827), TCRAI (median AUC = 0.845),
DeepTCR (median AUC = 0.844), and soNNia (median AUC =
0.782) (Fig. 4A and Table 2). It is noteworthy that all methods
were trained and tested using the same datasets as DeepAIR. As
shown in Table 2, most of the methods achieved better performance
in predicting the TCRs that specifically bind to ELAGIGILTV
(MART-1 protein from melanoma) and worse performance in pre-
dicting TCRs that specifically bind to LTDEMIAQY (spike protein
from SARS-CoV-2 virus). These results suggest that TCRs for
LTDEMIAQY (the spike protein from the SARS-CoV-2 virus) are
more diverse than that for ELAGIGILTV (the MART-1 protein
from melanoma).
As DeepAIR depends on predicted structures from AlphaFold2,

we further investigated how the accuracy of structure prediction
affects the performance of the model (fig. S5). First, we performed
a Pearson’s correlation analysis between the pLDDT (predicted
Local Distance Difference Test) scores from AlphaFold2 and
RMSD values derived from comparing AlphaFold2-predicted
TCR CDR3 structures with 539 real TCR CDR3 structures collected
from the Structural T-cell Receptor Database (STCRDab) (33). The
result reveals that pLDDT generally reflects the prediction accuracy
of the TCR CDR3 structure (fig. S5A). Next, we assessed the AUC
performance of DeepAIR, DeepAIR-stru, and DeepAIR-seq using
TCRs with predicted CDR3 structures of varying pLDDT scores.
Our findings showed that incorporating structural information
with a pLDDT score greater than 80 substantially improved the
model performance, while including structures with pLDDT
scores lower than 80 resulted in a marginal increase (fig. S5B).
This highlights the impact of CDR3 structure prediction accuracy
on the contribution of structural information to model perfor-
mance. Considering that most (95.5%) of the TCR structures pre-
dicted in this study have pLDDT scores greater than 80 (fig. S5C),
with a median value of 86.2 (fig. S5D), incorporating structural in-
formation indeed holds the potential to improve model
performance.

Table 2. Performance of the T cell receptor (TCR) binding-reactivity prediction methods on the independent test data. Bolded values indicate the highest
AUC performance of all methods for each epitope.

Antigen AUC

Epitope Epitope source DeepAIR DeepAIR-stru DeepAIR-seq TCRAI DeepTCR soNNia

LTDEMIAQY Spike protein (SARS-CoV-2) 0.757 0.681 0.697 0.624 0.694 0.612

TTDPSFLGRY ORF1ab polyprotein (SARS-CoV-2) 0.836 0.776 0.785 0.755 0.814 0.781

YLQPRTFLL Spike protein (SARS-CoV-2) 0.885 0.767 0.846 0.756 0.801 0.783

AVFDRKSDAK EBNA4 (EBV) 0.881 0.738 0.598 0.647 0.674 0.693

GILGFVFTL M1 (flu) 0.955 0.940 0.933 0.938 0.929 0.840

IVTDFSVIK EBNA3B (EBV) 0.922 0.885 0.807 0.835 0.847 0.674

RAKFKQLL BZLF1 (EBV) 0.934 0.907 0.879 0.933 0.911 0.860

GLCTLVAML BMLF1 (EBV) 0.972 0.876 0.912 0.908 0.840 0.916

ELAGIGILTV MART-1 (melanoma) 0.983 0.938 0.960 0.988 0.986 0.844

KLGGALQAK IE1 (CMV) 0.870 0.858 0.768 0.854 0.851 0.748

Median 0.904 0.867 0.827 0.845 0.844 0.782
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Considering that multiple sequence alignment (MSA) and tem-
plates highly influence structure prediction accuracy, we conducted
additional performance evaluations of DeepAIR, DeepAIR-stru,
and DeepAIR-seq using TCRs with predicted structures obtained

without incorporating highly similar MSA sequences and tem-
plates. The results revealed a slight decrease in AUC performance
for DeepAIR and DeepAIR-stru (table S4). Even with limited struc-
tural templates and similar MSA sequences available, the

Fig. 4. Performance comparison
between DeepAIR and state-of-
the-art (SOTA) approaches for
adaptive immune receptor (AIR)–
antigen binding reactivity pre-
diction. (A) Violin plots of the area
under the receiver-operating char-
acteristic (ROC) curve (AUC) values
for DeepAIR and SOTA approaches
in predicting the binding reactivity
of T cell receptors (TCRs). The “All
Epitopes” subplot includes 10
peptide–major histocompatibility
complex (pMHC) multimers, 7 of
which are from the 10x Genomics
dataset and the rest 3 multimers
are from the SARS-CoV-2 virus
study (table S1). The AUC for “All
Epitopes” measures the perfor-
mance of the obtained model on
the test data. The “Donor1,”
“Donor2,” “Donor3,” and “Donor4”
show the AUC values obtained in
the leave-one-out test, where the
donor data were used for testing
the performance. ns, not signifi-
cant; *P < 0.05 and **P < 0.01 in
comparison with DeepAIR. (B) The
coefficient of variance for the AUC
performance of DeepAIR and the
compared methods for all epitopes
and each donor, respectively. (C)
Violin plots of the area under the
ROC curve (AUC) values for
DeepAIR and SOTA approaches in
predicting the binding reactivity of
B cell receptors (BCRs) and anti-
bodies. The performances of
DeepAIR in the prediction of the
binding reactivity of BCRs (472
unique clones) collected from the
Immune Epitope Database (IEDB)
to four antigens and the binding
reactivity of antibodies collected
from the the coronavirus antibody
database (CoV-AbDab) (2647
unique clones) were evaluated and
compared with currently existing
methods. (D) ROC curves to show
the detailed performance of
DeepAIR and compared methods
in the binding reactivity prediction
of antibodies to the three epitopes,
including the S1:NTD, S1:RBD, and
S2, which are on the spike protein
of the SARS-CoV-2 virus. (E) ROC
curves to show the detailed performance of DeepAIR and compared methods in the binding reactivity prediction of BCRs to the four antigens, i.e., the envelope gly-
coprotein (ENV) of the HIV, the hemagglutinin (HA) of flu, the circumsporozoite (CS) protein of Plasmodium falciparum, and the spike glycoprotein (GP) of Zaire ebo-
lavirus (EBOV).
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incorporation of structural information into the model still resulted
in improved predictive performance compared to using sequence
information alone (table S4).
To better understand the impact of sequence similarity between

training and test data on model performance, we conducted exper-
iments to evaluate the performance of DeepAIR under different
conditions where sequence-to-sequence similarity of TCRs
between test and training data was limited to at most 95, 90, and
85%, respectively. The results showed that in accordance with the
decrease of the threshold of the TCR similarity, the model perfor-
mance decreased slightly with a corresponding drop of the median
AUC value (table S5). This indicates that the sequence similarity
between the training and test data also has an impact on the
model performance.
In practical use, a common scenario is that we use a well-trained

model to predict the AIR-antigen binding reactivity for the TCRs
from individuals independent from the training cohort. To evaluate
the model performance in this scenario, we performed the leave-
one-out cross-validation. There are four donors in the 10x Geno-
mics dataset. Donor1 and Donor2 have 1374 and 2183 TCR
clones, respectively, which bind to seven pMHC multimers.
Donor3 has 1752 TCR clones that bind to six pMHC multimers.
Donor4 has 251 TCR clones that bind to five pMHC multimers.
For each pMHC, we trained and optimized the model using TCRs
from three donors and tested the optimizedmodel using TCRs from
the last one. As a result, DeepAIR achieved the best performance in
all tested donors with a median AUC of 0.939 (Fig. 4A and Table 3).
Table 3 displays the per peptide performance of all the methods on
leave-one-out tests; it is interesting to note that DeepAIR-stru
achieved the second-best performance in nearly all the tests with
a median AUC of 0.881. Since the leave-one-out test splits the train-
ing and test data by donor, it is likely that there are shared TCR
clones between training and test donors. We further investigated
the performance of all methods in a strict mode of the leave-one-
out test by removing the shared TCR clones between the training
and test donors. Despite a decline in the performance of all
methods in this mode, DeepAIR and DeepAIR-stru still exhibited
the highest and second-highest performance, respectively, with a
median AUC of 0.840 and 0.829, outperforming DeepAIR-seq
(median AUC = 0.717), DeepTCR (median AUC = 0.726),
TCRAI (median AUC = 0.721), and soNNia (median AUC =
0.639) (table S6). This reveals that structure information contribut-
ed most to the advantage of the DeepAIR in predicting the AIR-
antigen binding reactivity.
The performance of the methods using structure information,

including DeepAIR and DeepAIR-stru, appears to be much more
stable than sequence-based methods, including DeepAIR-seq,
TCRAI, DeepTCR, and soNNia, as evidenced by the lower value
of the coefficient of variance in all tests (Fig. 4B). The result also
reveals that structure information indeed helps to improve the ro-
bustness of the model in predicting the AIR-antigen binding
reactivity.
To investigate which part of the structure is particularly impor-

tant for DeepAIR to predict the AIR-antigen binding reactivity, we
highlighted the CDR3 loops of TCR with the highest DeepAIR at-
tention weights in predicting the recognition of ELAGIGILTV
(MART-1 protein, melanoma) (fig. S6A), in which DeepAIR
achieved the highest AUC score (Table 2). We note that, similar
to what we observed in the prediction of binding affinity, in this

task, DeepAIR paid more attention to the α–β-chain–contacting
residues and antigen-TCR-contacting residues on the α chain and
the β chain, respectively. This implies the distinct roles of the α and
β chains in the AIR-antigen binding complex. Although the se-
quences in the highlighted region are diverse (fig. S6B), they
somehow constitute relatively conserved structures (fig. S6A), as ev-
idenced by a median RMSD of 0.725 Å, which is lower than the Al-
phaFold2’s median RMSD of 1.5 Å (24). On the contrary, the
sequences and structures are both highly diverse for the TCRs
without binding reactivity (fig. S6, C and D). This further illustrates
why structured-based methods could outperform sequence-based
methods in this study.
To evaluate the performance of the DeepAIR in predicting the

antigen-specificity of TCRs, we conducted the following antigen-
specificity prediction benchmark. Specifically, for each TCR,
DeepAIR predicts its binding reactivities to multiple epitopes of in-
terest and selects the epitope obtained with the highest binding
score as the predicted binding-specific target. This benchmark eval-
uated TCRs from an independent test set and included all 10 studied
epitopes as shown in Table 2. We calculated the Top-1, Top-2, and
Top-3 accuracies (34) as metrics to evaluate the performance of
DeepAIR, which indicate the proportion of TCRs with their
binding epitope among the Top-1, Top-2, and Top-3 predictions
of the DeepAIR model, respectively. DeepAIR demonstrated a
Top-1 accuracy of 0.852, Top-2 accuracy of 0.945, and Top-3 accu-
racy of 0.979, indicating its power in predicting the antigen specif-
icity of TCRs.
To evaluate the performance of DeepAIR for predicting the BCR

(antibody) binding reactivity to a specific antigen or epitope, we col-
lected BCRs with experimentally validated binding antigens from
the IEDB (35) and antibodies with experimentally validated
binding epitopes from the coronavirus antibody database (CoV-
AbDab) (36). After the data curation, 553 BCRs belonging to 472
unique BCR clones with known binding reactivity to four antigens,
including the envelope glycoprotein (ENV) of the HIV, the hemag-
glutinin (HA) of flu, the circumsporozoite (CS) protein of Plasmo-
dium falciparum, the spike glycoprotein (GP) of Zaire ebolavirus
(EBOV), and 3918 paired antibodies belonging to 2647 unique an-
tibody clones that bind to three epitopes, which are S1:NTD,
S1:RBD, and S2 on the spike protein of SARS-CoV-2 virus, were
used in this study. Using the BCR (antibody) clone as the basic
unit, we randomly split the BCRs (antibodies) into the training
data (70% of the whole data), validation data (20%), and indepen-
dent test data (10%) to evaluate the performance of each method for
predicting the BCR binding reactivity to each antigen and epitope.
As a result, DeepAIR achieved a median AUC of 0.942 in predicting
the antigen and epitope binding reactivity for BCRs (Fig. 4, C to E,
and Table 4), significantly outperformed all the other methods (Fig.
4C), including DeepAIR-stru (median AUC = 0.913), DeepAIR-seq
(median AUC = 0.799), and soNNia (median AUC = 0.778) (Tables
1 and 4). Among the three epitopes, all the methods achieved the
best performance in predicting the binding to S2 (Fig. 4D and
Table 4), mainly because of the fact that S2 is more conserved
than S1:NTD and S1:RBD (37).

Immune repertoire classification
The immune repertoire consists of AIRs that exhibit recognition of
antigens associated with diseases, as well as irrelevant confounding
AIRs (38). The purpose of immune repertoire classification is to
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predict diseases for individuals by identifying disease-related AIRs
in their immune repertoire. To achieve this goal, DeepAIR uses a
two-step procedure for immune repertoire classification, which in-
cludes receptor-level probability prediction and repertoire-level
MIL (see Materials and Methods). In the receptor-level probability
prediction step, DeepAIR calculates the probability of whether an
AIR is related to a particular disease. In the subsequent

repertoire-level MIL step, DeepAIR predicts the occurrence of
disease for individuals by aggregating the predicted receptor-level
probabilities of all AIRs in their immune repertoire.
To evaluate the performance of DeepAIR for classifying the

immune repertoire, we collected the single-cell V(D)J sequencing
data for nasopharyngeal carcinoma (NPC) (39) and inflammatory
bowel disease (IBD) (40), respectively. We used the leave-one-out

Table 3. Performance of the T cell receptor (TCR) binding-reactivity prediction methods on the leave-one-out test. Bolded values indicate the highest AUC
performance of all methods for each epitope. /, No TCR from the donor was captured by the peptide–major histocompatibility complex (pMHC).

Antigen
Epitope
source EBNA4 (EBV) M1 (flu) EBNA3B

(EBV)
BZLF1
(EBV)

BMLF1
(EBV)

MART-1
(melanoma) IE1 (CMV) Median

Epitope AVFDRKSDAK GILGFVFTL IVTDFSVIK RAKFKQLL GLCTLVAML ELAGIGILTV KLGGALQAK

Donor1

DeepAIR 0.996 0.987 0.989 0.877 0.976 0.954 0.942 0.976

DeepAIR-
stru 0.995 0.974 0.980 0.879 0.966 0.919 0.940 0.966

DeepAIR-
seq 0.991 0.980 0.979 0.737 0.816 0.919 0.705 0.919

TCRAI 0.792 0.895 0.544 0.714 0.770 0.617 0.761 0.761

DeepTCR 0.994 0.968 0.978 0.807 0.772 0.837 0.938 0.938

soNNia 0.988 0.945 0.969 0.445 0.796 0.812 0.893 0.893

Donor2

DeepAIR 0.936 0.991 0.917 0.968 0.863 0.980 0.886 0.936

DeepAIR-
stru 0.862 0.974 0.826 0.931 0.863 0.960 0.840 0.863

DeepAIR-
seq 0.854 0.983 0.707 0.951 0.771 0.916 0.732 0.854

TCRAI 0.799 0.904 0.691 0.795 0.661 0.907 0.794 0.795

DeepTCR 0.799 0.973 0.738 0.961 0.577 0.973 0.863 0.863

soNNia 0.734 0.909 0.642 0.907 0.589 0.873 0.783 0.783

Donor3

DeepAIR 0.616 0.957 0.658 0.832 / 0.920 0.593 0.745

DeepAIR-
stru 0.617 0.957 0.674 0.777 / 0.882 0.573 0.726

DeepAIR-
seq 0.525 0.935 0.472 0.724 / 0.882 0.493 0.625

TCRAI 0.585 0.940 0.626 0.404 / 0.898 0.540 0.606

DeepTCR 0.473 0.943 0.532 0.490 / 0.820 0.557 0.545

soNNia 0.476 0.943 0.548 0.786 / 0.676 0.550 0.613

Donor4

DeepAIR 0.892 / 0.935 / 0.998 0.997 0.970 0.970

DeepAIR-
stru 0.926 / 0.697 / 0.814 0.986 0.771 0.814

DeepAIR-
seq 0.815 / 0.153 / 0.902 0.987 0.895 0.895

TCRAI 0.546 / 0.191 / 0.850 0.967 0.311 0.546

DeepTCR 0.432 / 0.502 / 0.972 0.998 0.165 0.502

soNNia 0.500 / 0.877 / 0.995 0.812 0.591 0.812

Median

DeepAIR 0.914 0.987 0.926 0.877 0.976 0.967 0.914 0.939

DeepAIR-
stru 0.894 0.974 0.762 0.879 0.863 0.940 0.806 0.881

DeepAIR-
seq 0.835 0.980 0.590 0.737 0.816 0.918 0.719 0.825

TCRAI 0.689 0.904 0.585 0.714 0.770 0.903 0.651 0.738

DeepTCR 0.636 0.968 0.635 0.807 0.772 0.905 0.710 0.807

soNNia 0.617 0.943 0.760 0.786 0.796 0.812 0.687 0.791
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strategy in this analysis, whereby we excluded the repertoire of one
sample and used the remaining data to train the DeepAIR model.
Subsequently, we predicted the receptor-level disease-association
probability for each AIR in the left-out sample’s repertoire. Last,
we used two MIL strategies, including the pooling-based MIL strat-
egy and the voting-basedMIL strategy, to generate a repertoire-level
probability for the left-out sample’s disease status. This was accom-
plished by using the predicted probabilities of AIRs in the left-out
sample’s repertoire.
From the violin plots of predicted AIR (TCR and BCR) proba-

bilities in each NPC sample and nasopharyngeal lymphatic hyper-
plasia (NLH) sample, we can observe that the values in the NPC
sample are generally higher than those in the NLH samples and
that the constitution of AIR repertoire is diverse across samples
(Fig. 5, A and B). Meanwhile, we also observe the existence of con-
founding AIRs from the distribution of predicted probability for
each AIR from NPC samples and NLH samples. Similar observa-
tions are found in the IBD and healthy samples (Fig. 5, C and D).
The median AUC for predicting NPC or IBD using the original AIR
probabilities is 0.779 (fig. S7). It is difficult to separate the disease
samples from control samples using the original AIR probabilities.
Pooling-basedMIL strategy, which converts a pool of AIR probabil-
ities to a single value that represents the immune repertoire, has
been used by immune repertoire classification methods, such as
DeepTCR (7) and DeepRC (21). We also used the pooling-based
MIL strategy to generate a single representation value for each
immune repertoire. The pooling-based MIL values from TCR rep-
ertoire well separate NPC and IBD samples from controls (NLH and
healthy samples, respectively). However, the pooling-based MIL
values from BCR repertoire only well separate all NPC samples
but not all IBD samples from controls (Fig. 5). To overcome this,
we further used the majority voting strategy, which showed superior
performance in recent MIL studies (41, 42). The voting-based MIL
values well separate all NPC and IBD samples from controls. We
also retrained and tested DeepTCR and DeepRC on the same train-
ing and test datasets used for DeepAIR. DeepTCR and DeepRC
achieved a median AUC of 0.893 (TCR AUC = 0.88, BCR AUC =
0.905) and 0.94 (TCR AUC = 0.88, BCR AUC = 1), respectively, in
classifying the immune repertoire (Table 1). Neither DeepTCR nor
DeepRC successfully separates all NPC and IBD samples from con-
trols. It reveals that DeepAIR outperformed current SOTAmethods
of immune repertoire classification.

DISCUSSION
Building a reliable prediction model for the AIR-antigen binding
can assist the experimental study of the adaptive immune system.
Current models, such as DeepTCR, TCRAI, and soNNia, are
based on the sequence information of AIR (12, 14). We hypothe-
sized that integrating the structure information of AIR into the
model may improve the prediction accuracy for the AIR-antigen
binding. Therefore, in this study, we present DeepAIR, a deep learn-
ing framework integrating structure information for the AIR-
antigen binding analysis. DeepAIR significantly outperformed se-
quence-based methods, including DeepTCR, TCRAI, and
soNNia, in predicting the AIR-antigen binding reactivity. We
created two versions of DeepAIR, including structure-based
DeepAIR-stru and sequence-based DeepAIR-seq, to investigate
the contribution of the structure information to the performance
of DeepAIR. Our experiments demonstrate that DeepAIR-stru sig-
nificantly outperformed DeepTCR, TCRAI, and soNNia, while
DeepAIR-seq did not achieve the best prediction performance
(Fig. 4). The performance comparison reveals that the integration
of structure information contributed to the superior performance
of DeepAIR. DeepAIR successfully captured structure patterns
from antigen binding AIRs to distinguish them from others
(fig. S6).
DeepAIR uses the AIR structures predicted by AlphaFold2 (24).

The major advantage of using predicted structures is that DeepAIR
can analyze any AIR as long as its sequence information is available
for structure prediction. This is critical for AIR analysis because of
the fact that experimentally validated structures are not available for
most AIRs in the immune repertoire (43). Moreover, AlphaFold2
demonstrated high accuracy competitive with experimental struc-
tures according to the results of 14th Critical Assessment of
Protein Structure Prediction (CASP14) (44). Our analysis also
showed that the median prediction accuracy for the CDR3 region
of AIRs using full sequence is comparable to the median accuracy
AlphaFold2 achieved in CASP14 (tables S2 and S3). We, therefore,
believe that it is reliable to use AlphaFold-2–predicted structures in
DeepAIR. However, the accuracy of the predicted structures still
affects the performance of DeepAIR-stru (fig. S5). To alleviate
such bias introduced by the predicted structures, DeepAIR also in-
tegrates information from sequence and gene features using the
multimodal feature fusion module to jointly contribute to its pre-
diction. The performance of DeepAIR is significantly better than

Table 4. Performance of the B cell receptor (BCR) (antibody) binding-reactivity prediction methods. Bolded values indicate the highest AUC performance of
all methods for each epitope. /, not available; ENV, envelope glycoprotein; HA, hemagglutinin; CS, circumsporozoite; GP, glycoprotein; EBOV, Zaire ebolavirus.

Antigen Epitope
AUC

DeepAIR DeepAIR-stru DeepAIR-seq soNNia

ENV (HIV) / 0.942 0.928 0.799 0.778

HA (flu) / 0.860 0.786 0.767 0.674

CS protein (P. falciparum) / 0.978 0.913 0.826 0.804

GP (EBOV) / 0.989 0.946 0.880 0.707

Spike protein (SARS-CoV-2) S1:NTD 0.895 0.850 0.787 0.780

Spike protein (SARS-CoV-2) S1:RBD 0.917 0.881 0.775 0.741

Spike protein (SARS-CoV-2) S2 0.996 0.969 0.996 0.788

Median 0.942 0.913 0.799 0.778
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Fig. 5. Performance of DeepAIR for the classification of the immune repertoire with nasopharyngeal carcinoma (NPC) and inflammatory bowel disease (IBD),
respectively. On the left, the violin plot shows predicted receptor-level disease-association probabilities for adaptive immune receptors (AIRs) in each sample, while the
middle plot displays the distribution of predicted receptor-level disease-association probabilities for AIRs in each sample group, such as NPC, nasopharyngeal lymphatic
hyperplasia (NLH), Healthy, IBD, and so on. On the right, the box plot illustrates the repertoire-level multiple instance learning (MIL) values for each sample. The plots are
arranged from top to bottom for (A) the prediction of NPC using T cell receptor (TCR) repertoire, (B) the prediction of NPC using B cell receptor (BCR) repertoire, (C) the
prediction of IBD using TCR repertoire, and (D) the prediction of IBD using BCR repertoire, respectively.
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both DeepAIR-stru and DeepAIR-seq (Figs. 3B and 4A). It reveals
that the gating-based attention and tensor fusion mechanism in the
fusion module successfully extracted distinguishable features from
both structures and sequences to achieve superior performance.
DeepAIR is an interpretable model that shows important resi-

dues in both α and β chains that are important to the AIR-
antigen binding using the attention weights. Several studies have
shown the importance of β chain contact residues in AIR-antigen
binding (45, 46), which can also be learned by the sequence-based
deep learning model (7). DeepAIR can highlight important residues
on the β chain that are the contact residues between the β chain and
antigen (Fig. 3D and figs. S2 and S3). DeepAIR can also identify the
critical residues on the α chain that contact the β chain to stabilize
the AIR structure, which contributes to the binding affinity between
AIR and antigen (Fig. 3D and fig. S4). Most of the AIR-antigen
studies focused on the β chain of AIR and its contact residues
with antigens (47). DeepAIR further enables the examination of
AIR-antigen complex stabilization by highlighting both structurally
and functionally important residues in both α and β chains.
There are some limitations of the current study. First, the TCR-

pMHC binding affinity value used in this study is presented by the
UMI count of TCRs captured by the pMHC rather than the real
binding affinity (7), as measuring the real binding affinity
between TCRs and pMHCs is challenging. Although shape comple-
mentarity statistics and buried surface area have often been used to
describe the TCR-pMHC interaction, neither of them is a reliable
indicator of TCR-pMHC binding affinity (5). Second, because of
the limited availability of BCR-antigen binding affinity data, this
study did not evaluate the performance of DeepAIR in predicting
the BCR-antigen binding affinity. Because the BCRs and antibodies
from the same B cell have nearly the same antigen binding affinity
(48), the prediction of BCR-antigen binding affinity may be mostly
equal to that of antibody-antigen binding affinity. With more data
available in the future, we will combine these two tasks and inves-
tigate the prediction power of DeepAIR on antibody (BCR)–antigen
binding affinity. A third limitation of the current DeepAIR frame-
work is the absence of any actual information about the antigen.
This results in the developed models being restricted in their
antigen coverage to the subset of targets that are included in the
training data. We will add antigen sequences and structures into
modeling in the future. Another limitation is that the AIR structures
predicted by AlphaFold2 are unliganded. However, it is known that
the CDR3 loops of TCR undergo a conformational change upon
pMHC binding (5). Similar scenarios also occur in BCRs upon
antigen binding (49). The conformational changes of AIR struc-
tures can affect the AIR-antigen binding; however, these changes
cannot be predicted by AlphaFold2. Advanced approaches that
are capable of accurately predicting the conformational changes
of AIR structures upon antigen binding will undoubtedly benefit
the research of AIR-antigen recognition. Meanwhile, as a general-
ized protein structure prediction tool, the prediction model of Al-
phaFold2 is not optimized for predicting the structure of AIR. The
increased accuracy of the predicted structure can greatly improve
the performance of DeepAIR-like structure-based methods. Last,
for the immune repertoire that includes a high number of diverse
AIRs, it is time consuming to predict the structure of each AIR in
the immune repertoire using AlphaFold2. To tackle this issue, a
lighter and faster prediction model that is specifically designed

and optimized for the AIR structure will greatly benefit DeepAIR
and other structure-based strategies in the future.
In conclusion, DeepAIR is a comprehensive and interpretable

deep learning framework for AIR-antigen binding analysis integrat-
ing both sequence and structural information. DeepAIR shows out-
standing prediction performance in terms of AIR-antigen binding
reactivity and outperformed SOTA predictors. We anticipate that
DeepAIR may serve as a prominent tool for profiling highly
antigen-interacting AIRs, thereby better informing the design of
personalized immunotherapy.

MATERIALS AND METHODS
Curation of the dataset for analysis of the AIR-
antigen binding
We downloaded the pMHC-specific binding data of TCR from the
10x Genomics website (https://support.10xgenomics.com/single-
cell-vdj/datasets). The dataset was then processed using the ICON
workflow (8). First, for each sample, the dataset included both
single-cell RNA sequencing (RNA-seq) data and paired α/β-chain
single-cell TCR sequencing (TCR-seq) data. We then used the
single-cell RNA-seq–based quality control to remove the low-
quality cells, such as doublets and dead cells. Doublets refer to
the T cells with more than 2500 detected genes per cell, while the
cells with more than 20% of mitochondrial gene expression or less
than 200 detected genes per cell were considered dead cells. Then,
we estimated the background noise using the six negative-control
dextramers, which are supposed to have no binding affinity with
any of the TCRs in the dataset. The background noise threshold
was assigned to each donor to remove false-positive bindings ac-
cording to the signal and noise distributions. The α/β chains of
the rest T cells were further checked on the basis of single-cell
TCR-seq data. For each cell, the chains with nonproductive or
non–high-confidence sequences were removed from the dataset.
T cells with only a single chain were then removed from the
dataset. If multiple α or β chains were detected in a T cell, the
chain with the highest UMI counts was retained. Clones with dif-
ferent nucleotide sequences but the same amino acid sequence were
aggregated together under one unique TCR clone. After data cura-
tion, 38,558 paired TCR α/β chains belonging to 5834 unique TCR
clones, in which 5560 clones bind to seven pMHC multimers, in-
cluding ELAGIGILTV from the MART-1 protein of melanoma,
GILGFVFTL from the M1 protein of the influenza virus (flu),
KLGGALQAK from the IE1 protein of the CMV, GLCTLVAML
from the BMLF1 protein of the EBV, AVFDRKSDAK from the
EBNA4 protein of EBV, IVTDFSVIK from the EBNA3B protein
of EBV, and RAKFKQLL from the BZLF1 protein of EBV, were
used in this study (table S1). The observed binding affinity
between TCR and pMHC was estimated by the TCR UMI counts
for the specific pMHCminus the average TCR UMI counts for neg-
ative controls.
We also downloaded experimentally validated TCRs from a

recent SARS-CoV-2 study(32). The SARS-CoV-2 virus dataset con-
tains 592 paired TCR α/β chains belonging to 589 unique TCR
clones that bind to three pMHC multimers from the SARS-CoV-
2 virus. These pMHC multimers include LTDEMIAQY and
YLQPRTFLL from the spike protein and TTDPSFLGRY from the
ORF1ab polyprotein, respectively.
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We downloaded experimentally validated data of BCR with a
known antigen from the IEDB (35) (www.iedb.org/). To download
the BCR data from IEDB, “B cells” were selected in “Assay,” with
“Host” set to “Human” in the searching option. A total of 996
BCRs were downloaded from IEDB. The BCRs were further filtered
by selecting the unique ones with paired full-length chains and
known experimentally validated antigens. Meanwhile, six BCRs
were removed from the dataset as AlphaFold2 failed to predict
their structure. Clones with different nucleotide sequences but the
same amino acid sequence were aggregated together under one
unique BCR clone. Last, 553 BCRs belonging to 472 unique BCR
clones were used in this study. Among them, 212 BCR clones
were used as the positive samples for the model, including 117
BCR clones that bind to the ENV of the HIV, 52 BCR clones that
bind to the HA of flu, 23 BCR clones that bind to the CS protein
in P. falciparum, and 20 BCR clones that bind to the spike GP of
EBOV. The rest BCR clones were then used as the negative data.
We downloaded experimentally validated data of antibodies

with a known antigen epitope from the CoV-AbDab database
(36) (https://opig.stats.ox.ac.uk/webapps/covabdab/). The antibod-
ies were further filtered by selecting the unique paired full-length
chains with experimentally validated antigen epitopes. We used
the same criteria with BCR to aggregate antibody clones with differ-
ent nucleotide sequences. After data curation, 3918 paired antibody
heavy/light chains belonging to 2647 unique antibody clones that
bind to three epitopes, which are S1:NTD, S1:RBD, and S2 on the
spike protein of SARS-CoV-2 virus.

Curation of the data for classification of the immune
repertoire
We downloaded the raw single-cell V(D)J sequencing data, includ-
ing RNA and TCR/BCR sequencing data for NPC (39) (SRP262300)
and IBD (40) (SRP181666) from the Sequence Read Archive (www.
ncbi.nlm.nih.gov/sra) (50). Then, we used the Cell Ranger pipeline
(v6.1.2, 10x Genomics, Pleasanton, CA) to analyze the single-cell
sequencing data. The FASTQ reads were aligned to the GRCh38
human reference (v5.0.0) to extract the gene expression matrix
and TCR/BCR sequences for each cell. In each cell, the chains
with nonproductive or non–high-confidence sequences were
removed from the dataset. If multiple α or β chains were detected
in a T cell, or multiple heavy or light chains were detected in a B cell,
then the chain with the highest UMI counts was retained for that
cell. Those T cells and B cells that had only a single chain, with
more than 5000 or less than 200 detected genes per cell, or with
over 20% of mitochondrial gene expression, were further removed
from the dataset. After the data curation process, 18,979 paired TCR
α/β chains belonging to 13,396 unique TCR clones and 15,539
paired BCR heavy/light chains belonging to 14,647 unique BCR
clones from seven patients with NPC and three patients with
NLHwere obtained. For IBD, 34,140 paired TCR α/β chains belong-
ing to 26,405 unique TCR clones and 27,872 paired BCR heavy/light
chains belonging to 19,430 unique BCR clones from six patients and
eight healthy controls were processed for further analysis.

Curation of the data for analyzing the correction between
the pLDDT and RMSD of the prediction from the
AlphaFold2
To assess the correlation between the pLDDT scores and the RMSD
values obtained from the AlphaFold2 during the prediction of TCR

structures, we curated a TCR dataset with known structure informa-
tion from the STCRDab (http://opig.stats.ox.ac.uk/webapps/
stcrdab, downloaded on January 15, 2023). The database automat-
ically collects and curates TCR structural data from the Protein Data
Bank. We removed 52 TCRs with only one available chain and in-
cluded the remaining 539 TCRs with structure information of both
chains in our analysis. In this study, we computed the average
pLDDT score as a metric to indicate the confidence and accuracy
of AlphaFold2’s predictions for a given sequence or sequence
region such as the TCR CDR3 region (abbreviated as pLDDT
score to facilitate the ease of its use throughout the paper.).

Prediction of the AIR structure
We used amino acid sequences of the paired chains (i.e., the α and β
chains for TCRs, or heavy and light chains for BCRs) as the input to
AlphaFold2 (24) to predict AIR structures. Then, the structure of
the CDR3 loop was extracted from each predicted AIR structure.
Specifically, MSAs for the CDR sequences were generated by
HHBlits (51) with the following command: hhblits -i <input-file>
-o <result-file> -oa3m <result-alignment> -n 3 -e 0.001 -d <uni-
clust30>. HHBlits searches the sequences with three iterations
against the consensus sequences in the uniclust30 database, cluster-
ing the UniProtKB (52) sequences at the level of 30% pairwise se-
quence identity. We accepted MSA hits with an e-value of lower
than 0.001. HHsearch (53) was used to identify the top 20 ranked
templates through a clustered version of the PDB70 (27), which
contains PSI-BLAST (54) alignments produced with sequences of
PDB full chain representatives (<70% sequence identity) as
queries. The accepted templates and MSAs were used as the input
features for AlphaFold2 (24) (version v2.1.1). Specifically, the
monomer predicted TM-score (pTM) model, which is the original
CASP14 model fine-tuned with the pTM layer, provides a pairwise
confidence measure and therefore was used for the structure
prediction.

The construction of the DeepAIR framework
Overview and architecture
DeepAIR was designed with a feature encoding backbone and mul-
tiple task-specific prediction layers for addressing both receptor-
level analysis tasks, including binding affinity prediction
(DeepAIR with a main regression layer) and binding reactivity pre-
diction (DeepAIR with a classification layer), and repertoire-level
analysis tasks (DeepAIR with a MIL layer) such as the repertoire
classification (e.g., the disease diagnosis based on the adaptive
immune repertoire) (Fig. 1). The feature encoding backbone of
DeepAIR consists of a multichannel feature extraction module
and a multimodal feature fusion module.
In the multichannel feature extraction module, three feature en-

coders are involved, i.e., V(D)J gene encoder, sequence encoder,
and structure encoder. The V(D)J gene encoder embeds the
V(D)J gene segment information via a trainable embedding layer,
after being tokenized by a tokenizer to convert the text descriptions
to numerical representations. The embedding dimension is 16 for
the V gene and 8 for J and D genes. The sequence encoder generates
a high-level representation of sequence information for the two
TCR/BCR chains (CDR3 regions) based on a pretrained multilayer
transformer encoder: ProtBert (29). ProtBert consists of 30 trans-
former layers, which are pretrained on large corpuses of protein se-
quences including UniRef100 (216 million proteins) and BFD100
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(2122 million proteins) using a masked language modeling (MLM)
objective. In this MLM self-supervised training scheme, ProtBert is
allowed to learn the language of protein sequence and is suggested
can generate informative feature representations of the entire
protein sequence (29). In the sequence encoder of DeepAIR,
similar to sequence-based models such as DeepTCR (7) and
TCRAI (8), The sequences are aligned to the same length by
adding paddings at the end of the sequence. The structure
encoder uses the pretrained AlphaFold2 to extract initial struc-
ture-information embedded features and then fine-tunes and recal-
ibrates these features specifically for better AIR-antigen binding
prediction. To be specific, we input the sequences of the full-
length CDR β/heavy or α/light chains into the pretrained Alpha-
Fold2 model in the first step. After obtaining the structure-informa-
tion embedded features of the full-length CDRs from the end of the
structure module (eight blocks) in AlphaFold2, we then select the
structure features of the CDR3 regions as the input to the structure
encoder of DeepAIR. The structure encoder is composed of two
one-dimensional convolution layers, where the first layer has 64
filters and the second layer has 128 filters. They both have a 1 × 3
kernel followed by the Exponential Linear Unit activation function,
a dropout layer with dropout rate as 0.1 and a batch normalization
layer. The DeepAIR encoder structure ends with a global max-
pooling layer. The multichannel feature extraction module is fol-
lowed by the multimodal feature fusion module to integrate the
learnt features obtained from feature extracting channels via a
gating-based attentionmechanism as well as a tensor fusion for gen-
erating a comprehensive representation of the AIR receptor. Then,
the task-specific prediction layers map the obtained receptor repre-
sentation to the predicted results (Fig. 1). Specifically, assuming the
obtained gene, sequence, and structure features after the corre-
sponding encoders are hg, hseq, and hstru, DeepAIR then concate-
nates hg and hseq to obtain a synthesized feature denoted as hbio.
Then, to eliminate the impact of noisy components of features
hbio and hstru during multimodal feature fusion, DeepAIR leverages
a gating-based attention mechanism to adjust the expressiveness of
them by attention score vector abio and astru. These score vectors are
learnt as linear transformationWb

bs andW
s
bs of modalities hbio and

hstru. Details are as follows

h0bio ¼ abio � ĥbio ð1Þ

where

ĥbio ¼ ReLUðWbio � hbioÞ ð2Þ

and

abio ¼ σðWb
bs � ½hbio; hstru�Þ ð3Þ

Similarly, we have

h0stru ¼ astru � ĥstru ð4Þ

where

ĥstru ¼ ReLUðWstru � hstruÞ ð5Þ

and

astru ¼ σðWs
bs � ½hbio; hstru�Þ ð6Þ

Wb
bs, W

s
bs, Wbio, and Wstru are weight matrix parameters that

DeepAIR learns for feature gating. σ represents the sigmoid func-
tion. After obtaining the h0bio and h

0
stru, the tensor fusion module

works to synthesize them to generate the final comprehensive rep-
resentation of the AIR receptor, which can be calculated as follows

hfusion ¼ ½h0bio 1� � ½h
0
stru 1� ð7Þ

where ⊗ denotes the outer product.
Binding affinity prediction. During the binding affinity predic-

tion, the resulting features obtained after the feature encoding back-
bone were input into a regression layer [composed of a multilayer
perceptron (MLP)], which serves to map its input to the binding
affinity prediction of AIRs (TCR/BCR). In the training phase, a
multitask training strategy with adding an auxiliary affinity
grading layer was used to train DeepAIR for the binding affinity
prediction. Two training loss functions were used. The primary
loss function was the MSE loss for the main regression layer,
which encourages DeepAIR to directly predict an accuracy affinity
score. The auxiliary loss is the categorical cross-entropy (CE) loss
for the auxiliary affinity grading layer, which encourages
DeepAIR to learn the accuracy affinity orders (i.e., receptors with
higher binding affinity have higher affinity grades). Specifically,
the MSE loss LMSE and CE loss LCE are defined as:

LMSE ¼
1
N

XN

i¼0
ðyi � ŷiÞ

2
ð8Þ

LCE ¼ �
XC

c� 1
ySc logðpcÞ ð9Þ

where N is the sample number, y is the ground truth binding affin-
ity, ŷi denotes the predicted binding affinity,C represents the
number of stages, ySc is the ground truth affinity stage, and pc is
the probability for the cth stage. The total loss of DeepAIR
binding affinity prediction, LBAP is defined as:

LBAP ¼ LMSE þ λLCE ð10Þ

where λ is the hyper-parameter to adjust the influence of the auxil-
iary loss, which was set to 1 in this work.
Binding reactivity prediction. Similarly, for binding reactivity pre-

diction, DeepAIR uses an MLP classification layer to map the em-
bedded features after the feature encoding backbone to the
prediction of the AIR-antigen binding reactivity, i.e., identifying
which antigen epitope an assessed AIR (BCR/TCR) can bind to.
During the training of the DeepAIR for the AIR-antigen binding
reactivity prediction, the above-mentioned categorical CE loss is
used to allow DeepAIR to learn informative features.
Immune-repertoire-level analysis
In the repertoire-level analysis tasks, the characteristics of the entire
immune repertoire with massive receptors or the associations
between the entire immune repertoire and an interesting subject-
level status such as disease or healthy are evaluated. Different
from receptor-level analysis tasks, where each receptor has the in-
formation to conduct the prediction, the repertoire-level analysis
task needs to comprehensively integrate the information of all pos-
sible related receptors in an immune repertoire to make a predic-
tion. The repertoire-level analysis task can be formulated as a
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typical MIL problem (55), where each repertoire can be regarded as
a bag containing receptors that are instances. Note that it is chal-
lenging as there exist massive instances in a repertoire and only a
fraction of these receptors are correlated with the interested
subject-level status and therefore are discriminative.
In this work, we focused on repertoire classification, which is a

kind of repertoire-level analysis task when the prediction output
variable is a category. DeepAIR uses a two-stage pipeline to
address this MIL task. At the first stage, we trained the DeepAIR
with a classification layer to obtain receptor-level predictions, i.e.,
the category probabilities referring to each AIR. Then, DeepAIR
comprehensively summarizes all receptor-level predictions with a
MIL layer to perform the entire-repertoire-level prediction.
Specifically, assuming R is a repertoire with M receptors {r1, r2,

⋯, rM}, DeepAIR first trains a receptor-level prediction model f (rm,
θ) with the classification layer to predict the repertoire-level-catego-
ry probability as pm = f (rm, θ), where θ represents the model’s pa-
rameters. Then, DeepAIR uses the MIL layer to integrate the
predictions (votes) of all receptors to predict the repertoire-level-
category probability of the label Y with a transformation ϕMV,
given by

PŶ ¼ ϕMVðp1; p2; � � � ; pMÞ;

¼ ϕMV½f ðr1; θÞ; f ðr2; θÞ; � � � ; f ðrM; θÞ� ð11Þ

where ϕMV represents a majority-voting strategy and is defined as

PŶ ¼
1
M

XM

m¼0
gðpmÞ ð12Þ

gðpmÞ ¼ 0; if pm , T and gðpmÞ ¼ 1; if pm � T ð13Þ

where T is a threshold that has been set to 0.5 in this study.
An optional MIL layer is based on the average pooling strategy

(56), which can be defined as

PŶ ¼ ϕAVGðp1; p2; � � � ; pMÞ ð14Þ

In this work, we evaluated the performance of DeepAIR (with
MIL layers) on two repertoire classification tasks including the di-
agnoses of the NPC (39) and IBD (40).

Comparison of different methods for the immune-receptor-
level analysis
To ensure a fair comparison, all methods used in this study were
retrained using exactly the same training data, and their perfor-
mance was evaluated on identical test data.
Predicting TCR-antigen binding affinity and reactivity
with DeepTCR
The TCR-antigen binding reactivity and affinity prediction using
DeepTCR were performed by following the instructions provided
in the study by Sidhom et al. (7). For each TCR, we used the
single paired α and β TCR chains, with CDR3 amino acid sequence
and V(D)J gene usage as the input to DeepTCR. DeepTCR encodes
the amino acids to the numbers between 0 and 19 and uses categor-
ical variables to represent the genes in the V(D)J gene usage in the
feature calculation step. DeepTCR then implements a variational
autoencoder to transform the features into a latent space that is

parametrized by a multidimensional unit Gaussian distribution
(7). To cluster the antigen binding TCR sequences, a Euclidean dis-
tance in the latent space was used to measure the closeness between
any two TCR sequences. To predict the binding affinity, a super-
vised TCR sequence regression was performed with the UMI
counts as the measure for the predicted binding affinity.
Predicting TCR-antigen binding reactivity with TCRAI
We used the paired α and β TCR chains, with CDR3 amino acid
sequence and V and J genes for each chain, as the inputs (8). For
each CDR3 sequence, TCRAI applies the one-hot representation
scheme to generate an integer vector for the given CDR3 sequence.
For the V and J genes, TCRAI encodes the V and J gene seperately
(8). Then, TCRAI builds a convolutional neural network architec-
ture to process the input information and provides a prediction for
the binding reactivity.
Predicting TCR-antigen binding reactivity with soNNia
We used the paired receptor chains (i.e., the α and β chains for
TCRs, the heavy and light chains for BCRs, respectively), with the
CDR3 amino acid sequence and V and J genes for each chain, as the
inputs (9). soNNia divides the sequence features into three catego-
ries: V(D)J gene usage, CDR3 length, and CDR3 amino acid com-
position. The inputs from each category are first propagated
through the neural network model and then are combined and
transformed through a dense layer of the deep neural network. A
log-likelihood ratio is then computed as a functional classifier for
the binding reactivity prediction.

Construction of sequence motif
For motif generation, we applied ggseqlogo (version 0.1) with R
(version 4.2.2) to construct the motifs for a set of AIR sequences
with the same length. And for those with different lengths, we
used the online tool multiple Em for Motif Elicitation (https://
meme-suite.org/meme/tools/meme), which was designed for
finding motifs in unaligned DNA or protein sequences, to detect
the motifs. To deal with the different lengths of sequences, we fol-
lowed the strategies in TCRAI, i.e., the length L of the longest se-
quence in a set is defined as motif length. Then, each sequence
was aligned to the L-length motif via adding gaps in the middle
of the sequence.

Sequence similarity identification
In this study, we compared sequences and calculated their similarity
with the CD-HIT-2D algorithm (https://sites.google.com/view/cd-
hit). CD-HIT-2D is developed to compare two protein datasets and
identifies the sequences in dataset-2 that are similar to dataset-1 at a
certain threshold, which is fast and can handle extremely large
databases.

Statistical analysis
The AUC values of the ROC curves were calculated by the pROC R
package (57). To compute the AUC value for each epitope, we used
the AIRs that bind to the epitope as positive data, and the remaining
AIRs from the same dataset that do not bind to the epitope as neg-
ative data. We identified the binding interactions between AIR and
epitope in the 10x Genomics dataset using the ICON workflow (8),
whereas, in the remaining datasets, we relied on the records in the
databases. The statistical significance of the AUC differences was
determined by the paired Wilcoxon test (58). The statistical signifi-
cance of ROC differences was determined by the Delong method
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(59). All P values are two-sided unless stated otherwise. The P value
of less than 0.05 was defined as being statistically significant. The
Top-k accuracy scores were calculated with the scikit-learn
package (version 1.2.2) with the top_k-accuracy_score function.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Tables S1 to S6
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