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Abstract

Background: The COVID-19 pandemic necessitated rapid real-time surveillance of epidemiological data to advise governments
and the public, but the accuracy of these data depends on myriad auxiliary assumptions, not least accurate reporting of cases by
the public. Wastewater monitoring has emerged internationally as an accurate and objective means for assessing disease prevalence
with reduced latency and less dependence on public vigilance, reliability, and engagement. How public interest aligns with
COVID-19 personal testing data and wastewater monitoring is, however, very poorly characterized.

Objective: This study aims to assess the associations between internet search volume data relevant to COVID-19, public health
care statistics, and national-scale wastewater monitoring of SARS-CoV-2 across South Wales, United Kingdom, over time to
investigate how interest in the pandemic may reflect the prevalence of SARS-CoV-2, as detected by national testing and wastewater
monitoring, and how these data could be used to predict case numbers.

Methods: Relative search volume data from Google Trends for search terms linked to the COVID-19 pandemic were extracted
and compared against government-reported COVID-19 statistics and quantitative reverse transcription polymerase chain reaction
(RT-qPCR) SARS-CoV-2 data generated from wastewater in South Wales, United Kingdom, using multivariate linear models,
correlation analysis, and predictions from linear models.

Results: Wastewater monitoring, most infoveillance terms, and nationally reported cases significantly correlated, but these
relationships changed over time. Wastewater surveillance data and some infoveillance search terms generated predictions of case
numbers that correlated with reported case numbers, but the accuracy of these predictions was inconsistent and many of the
relationships changed over time.

Conclusions: Wastewater monitoring presents a valuable means for assessing population-level prevalence of SARS-CoV-2 and
could be integrated with other data types such as infoveillance for increasingly accurate inference of virus prevalence. The
importance of such monitoring is increasingly clear as a means of objectively assessing the prevalence of SARS-CoV-2 to
circumvent the dynamic interest and participation of the public. Increased accessibility of wastewater monitoring data to the
public, as is the case for other national data, may enhance public engagement with these forms of monitoring.

(JMIR Infodemiology 2023;3:e43891) doi: 10.2196/43891
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Introduction

The COVID-19 pandemic has given rise to a range of public
responses that have dynamically driven the cooperation of the
public with governmental guidance and public recognition of
the need for regular testing. Health care systems have been
stretched beyond capacity by sudden, large-volume influxes of
patients following sometimes unpredictable waves of the virus
[1]. There is a pressing need for local, national, and global
adaptability to manage these outbreaks of the disease to
minimize the impact on health care systems, the first
requirement of which is the stringent collection of reliable and
accurate data on viral prevalence [2].

Many strategies have been used to monitor SARS-CoV-2, for
example, self-reporting [3] and participatory surveillance [4-6],
including through the use of platforms such as accessible phone
apps [7]. Surveys and self-reporting, achieved through
participatory surveillance and even active crowdsourcing
strategies, have proven highly effective in monitoring symptoms
such as loss of taste [8]; participatory surveillance platforms
such as this have been a crucial component of monitoring in
partnership with the public [8,9]. Relying on surveys and
personal testing data, however, allows only a reactive approach
to mitigating the health care burden imposed by COVID-19,
which is often too little, too late to mitigate the heavy case
numbers and death tolls. Case data, while sometimes collected
by standardized surveys, can otherwise depend on self-reporting
by the public, many members of which may not self-test given
poor access to tests, may not feel obliged due to asymptomatic
cases, or may receive false negative results. Others may
unreliably or even dishonestly report the results of tests given
the restrictions that a positive test for COVID-19 imposed [10],
or they may be disenfranchised with the efforts to reduce the
prevalence of the disease given the overwhelming extent of
misinformation in circulation [11].

Search engine use has been explored as a means for ascertaining
the prevalence of diseases [12,13], but this method is not
infallible and its accuracy over time must be assessed in different
epidemiological contexts [14,15]. Such data could anecdotally
track COVID-19 or specific related symptoms [16-19] but the
public searching for particular character strings cannot be
directly ascribed to the prevalence of the disease. This
“infoveillance” does, however, facilitate analysis of public
interest in subjects such as the pandemic [11,20], which can be
an important factor in health care management and the pandemic
response. Infoveillance can be integrated into interdisciplinary
frameworks such as “One Health” [21,22] and, more
specifically, “One Digital Health” [23], which aim to view
health care matters more holistically, particularly the interaction
between human and veterinary health and its implications for
zoonotic diseases, but also the environmental dimension of
disease occurrence and transmission.

Given the latency of surveys and testing by the public, and the
potential inaccuracies of infoveillance approaches, objective
means for disease surveillance without the requirement of public
participation have become increasingly important throughout
the COVID-19 pandemic. The presence of coronaviruses and
other human pathogenic viruses in human feces and their
subsequent presence in urban wastewater is a long-established
tool for assessing disease prevalence within a community
[24,25]. This approach provides a noninvasive means for
assessing SARS-CoV-2 prevalence across whole populations
via wastewater [25-31]. The monitoring of wastewater has
provided a robust and accurate means of assessing the
population-level prevalence of COVID-19, facilitating some
prediction of health care burden before symptoms arise [32].
Wastewater monitoring circumvents several barriers preclusive
to accurate testing data such as hesitancy, the availability of
testing, asymptomatic patients, and socioeconomic or cultural
barriers by passively sampling from whole communities [10,33].
The efficacy of this approach does not depend on public
participation, possibly leading to some inconsistencies with
national testing statistics. A strong positive correlation between
direct testing, wastewater monitoring data, and public interest
in the pandemic has been demonstrated [34], but the dynamic
relationship between these data and how public interest dictates
the accuracy of monitoring data are still poorly characterized.

Here, we compare public interest in the pandemic through search
engine use data against wastewater SARS-CoV-2 surveillance
data and nationally reported statistics over time to assess how
public interest dictated the relationship between disease
prevalence and reporting over a year of the COVID-19 pandemic
in South Wales, United Kingdom. This study also explores the
efficacy of wastewater monitoring and infoveillance as means
for assessing the national state of the pandemic, how these
relationships change over time, and how they could inform
predictions of case numbers for streamlined monitoring.

Methods

Wastewater Monitoring
Since mid-September 2020, wastewater samples were collected
every Monday, Wednesday, and Friday from Cardiff Bay,
Newport Nash, Llanfoist, Ponthir, Ogmore, Cog Moors,
Swansea Bay, and Gowerton wastewater treatment plants, and
samples from Carmarthen and Haverfordwest were collected
every Wednesday. Samples were transported on ice in a cooler
box to designated wastewater processing facilities at Cardiff
University. The processing of samples was based on Farkas et
al [35]. From each site, 200 mL of wastewater was spun at
3000×g for 30 minutes, and 150 mL of supernatant was
neutralized to pH 7-7.4 using 1 M NaOH. The supernatant was
incubated with 50 mL of 40% PEG and 8% NaCl overnight.
Samples were then spun at 10,000×g for 30 minutes and the
pellet was dissolved in 500 µL of PBS (pH 7.4). Of the dissolved
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pellet, 100 µL was spiked with 10,000 copies of synthetic murine
norovirus DNA to check the extraction efficiency. Subsequent
nucleic acid extraction and amplification took place in the
COVID-19 testing facilities at Cardiff University. Total RNA
was extracted using the methodology published by Oberacker
et al [36]. Total RNA was eluted in 100 µL of nuclease-free
water. For SARS-CoV-2 detection, 4 primer sets published by
the US Centers for Disease Control and Prevention (CDC),
Charité, and Hong Kong University [37] were used for
quantitative reverse transcription polymerase chain reaction
(RT-qPCR). Primer sets N1 and N2 target different regions of
the nucleocapsid (N genes); E_Sarbeco and ORF1b target the
SARS-CoV-2 E and nsp14 genes, respectively. For the controls,
a set of primers that target virus crAssphage [38] (which is
present in human fecal material) and murine norovirus [39]
(which was used to assess extraction efficiency) were selected
(Table 1). Samples were run in triplicate on Fast 384-well plates
(Applied Biosystems) using QuantStudio 7 Flex (Applied

Biosystems). A 10 µL RT-qPCR reaction was performed
containing 4 µL of extracted RNA template, 5 µL of Luna
Universal Probe One-step Reaction Mix (2X; NEB), 0.04 µL
of each primer set (100 µM), 0.02 µL of fluorescent probe (100
µM), 0.5 µL NEB Luna reverse transcriptase (20X), and 0.4 µL
nuclease-free water. The reverse transcription (RT) was carried
out at 55 °C for 10 minutes, followed by polymerase activation
at 95.0 °C for 1 minute and 40 cycles of denaturation, annealing,
and extension at 95.0 °C for 10 seconds and then 60.0 °C for 1
minute, respectively. Serial dilutions of the heat-inactivated
SARS-CoV-2 viral standards were run on every PCR plate to
generate standard curves used to quantify the copies of
SARS-CoV-2 genes. Additionally, RT-qPCR runs were
validated by positive (Qnostics, SCV2QC01-QC) and negative
controls (nuclease-free water). Resultant data were normalized
to account for population size in each area, and to correct for
dilution as described by Wilde et al [40].

Table 1. The quantitative polymerase chain reaction (qPCR) primers used for wastewater monitoring.

Sequences (5’-3’)Target geneAssay

EE_Sarbeco • F- 5’-ACAGGTACGTTAATAGTTAATAGCGT-3’
• R- 5’-ATATTGCAGCAGTACGCACACA-3’
• P- 5’-HEX-ACACTAGCCATCCTTACTGCGCTTCG- IBFQ-3

nsp14ORF1b • F-5’-TGGGGYTTTACRGGTAACCT-3’
• R-5’-AACRCGCTTAACAAAGCACTC-3’
• P- 5’-FAM-TAGTTGTGATGCWATCATGACTAG- IBFQ-3’

NucleocapsidN1 • F- 5’-GACCCCAAAATCAGCGAAAT-3’
• R- 5’-TCTGGTTACTGCCAGTTGAATCTG-3’
• P-5-HEX- ACCCCGCATTACGTTTGGTGGACC- IBFQ-3’

NucleocapsidN2 • F- 5’-TTACAAACATTGGCCGCAAA-3’
• R- 5’-GCGCGACATTCCGAAGAA-3’
• P- 5’-FAM- ACAATTTGCCCCCAGCGCTTCAG-IBFQ-3’

Q56crAssphage • F- 5’-CAGAAGTACAAACTCCTAAAAAACGTAGAG-3’
• R- 5’-GATGACCAATAAACAAGCCATTAGC-3’
• P- 5’-HEX- AATAACGATTTACGTGATGTAAC-IBFQ-3’

—bMNVa • F- 5’-CCGCAGGAACGCTCAGCAG-3’
• R- 5’-GGYTGAATGGGGACGGCCTG-3’
• P-5’-FAM- ATGAGTGATGGCGCA- IBFQ-3’

aMNV: murine norovirus.
bNot applicable.

National Statistics and Search Volume Data Extraction
This study concerns 2 periods: the primary study period
(between the weeks of October 11, 2020 and October 31, 2021;
the focus of all analyses and visualizations aside from
comparison with model-based predictions described below) and
the full study period (the primary study period with extension
up to July 17, 2022 to facilitate comparison of real-world data
with model-based predictions). All data were generated or
extracted to encompass the full study period. National statistics
on the daily number of COVID-19 cases, deaths, and
vaccinations in Wales were extracted from the UK government’s
COVID-19 data portal for the full study period [41]. Case data

were new cases by publish date (ie, the number of new cases
r e p o r t e d  s i n c e  t h e  p r ev i o u s  u p d a t e ;
API=“newCasesByPublishDate”). Death data were new daily
national statistics office deaths by death date (ie, daily numbers
of deaths of people whose death certificate mentioned
C O V I D - 1 9  a s  o n e  o f  t h e  c a u s e s ;
API=“newDailyNsoDeathsByDeathDate”). Vaccine data were
new vaccines given by publish date (ie, daily numbers of new
v a c c i n e s  [ a l l  d o s e s ]  g i v e n ;
API=“newVaccinesGivenByPublishDate”). These data can be
downloaded via a permanent download link [41].
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Search volume data were extracted from Google Trends. These
data provide a proxy for public interest in or response to the
extent of the COVID-19 pandemic. The data extracted from
Google Trends are relative search volumes (RSVs) for
predetermined search terms, allowing comparison of search
rates for different terms via Google, the most widely used
internet search engine. These RSVs are presented for each date
of a given period within a given country, nation, or region and
are normalized relative to the highest search volume peak in
that search batch in the time period specified (this peak is
represented as a search volume of 100%). Search volumes were
releveled so that the highest peak in the primary study period
was represented by “100” and any higher peaks across the full
study period exceeded 100 to reflect the limitations of making
real-time predictions from existing data. Given the
representation of numbers less than 1 as “<1” by Google Trends,
all RSVs of “<1” were converted to 0 to facilitate quantitative
comparison.

Search terms were selected based on their broad relevance
throughout the study period and the high volume of searches
generated during that period. These included “COVID
lockdown,” “COVID rules,” “COVID symptoms,” “COVID
test,” and “COVID vaccine.” “COVID” was included in each
search term to ensure relevance to the COVID-19 pandemic;
“COVID” was selected over “coronavirus,” “SARS-CoV-2,”
and other variations due to the greater prevalence of searches
related to this string, and its inclusion within other search strings
such as “COVID-19”.

Statistical Analysis
Statistical analyses and plotting of data were carried out using
R (version v4.0.3; R Core Team) [42] and all data and code are
openly available [43]. Since wastewater sites were sampled
weekly, all data were averaged first by site and then by week.
Wastewater quantitative polymerase chain reaction (qPCR) data
were log-transformed to improve model fit and visualization.
Data were processed and aggregated using tidyverse packages
for reproducibility [44].

Correlations between search volumes; wastewater SARS-CoV-2
prevalence; and nationally reported cases, deaths, and
vaccinations were tested using Spearman ρ rank correlation via
the rcor function of the Hmisc package [45]. To facilitate the
assessment of correlation, week dates were transformed into
successive study weeks (ie, cumulative weeks of the study).
The data were identified as nonnormally distributed via
Shapiro-Wilk tests, so nonparametric correlation analyses were
selected. The output was visualized in a correlogram via the
corrplot function of the corrplot package [46], with colors to
denote the strength of correlations assigned via the viridis
package [47].

To assess how RSV for the selected search terms changed with
differences in the number of COVID-19–related cases, deaths,
and vaccines and the estimated prevalence of COVID-19 in
wastewater, a multivariate linear model (MLM) was built via
manylm in the mvabund package [4]. The dependent variable
comprised the RSVs, log-transformed (log[n+1]) to achieve

normality, and the independent variables were week; national
cases, deaths, and vaccinations; and 2-way interactions between
study week and each of the other variables. For visualization
via line plots, data were releveled so that their minimum and
maximum values were 0 and 100, respectively. These
normalized search volume, wastewater, and government data
were plotted against time using the ggplot2 package [48], with
colors assigned via the paired palette in the RColorBrewer
package [49] and data lines smoothed using the loess method.

Pairwise plots were generated for reported case data, qPCR
data, and RSVs from each of the Google Trends search terms
separately using ggpairs from the GGAlly package. Linear
models (LMs) were generated with the number of reported cases
as the dependent variable and, in a separate model for each, the
qPCR and Google Trends data as independent variables. The
predict function was used to make interpolated predictions of
case numbers across the primary study period and extrapolated
predictions of case numbers beyond the primary study period
for the remainder of the full study period. These predicted case
numbers were plotted against the reported case numbers, and a
correlation analysis was carried out as described above. A
generalized linear model (GLM) with a Gaussian error family
was built with reported cases as the dependent variables and
predicted case numbers, time, and pairwise interactions between
predictions and time as independent variables.

Information Sources and Reliability
Wastewater monitoring data were generated by the authors of
this study at Cardiff University as part of the Welsh
government–funded WEWASH project. The national statistics
on COVID-19 cases, deaths, and vaccinations were extracted
from the UK government’s COVID-19 data portal [41], which
is internationally recognized as a reputable source used for
national reporting, scientific research, and public awareness.
The Google Trends data should be reliable as indicators of
Google use since they are collected by Google based on the
input of users of their service.

Results

Overall, significant correlations were identified between many
of the variables (Figure 1 and Table S1 in Multimedia Appendix
1). Notably, wastewater SARS-CoV-2 RNA prevalence
significantly positively correlated with the number of reported
cases (Spearman ρ=0.428; P=.001) but did not correlate with
the number of reported deaths (Spearman ρ=0.044; P=.75). Of
the search terms included, wastewater prevalence positively
correlated with “COVID symptoms” (Spearman ρ=0.369;
P=.005) and “COVID test” (Spearman ρ=0.356; P=.007) and
significantly negatively correlated with “COVID vaccine”
(Spearman ρ=–0.504; P<.001). The number of reported cases,
however, positively correlated with both “COVID symptoms”
(Spearman ρ=0.805; P<.001) and “COVID test” (Spearman
ρ=0.531; P<.001) but negatively correlated with “COVID
vaccine” (Spearman ρ=–0.495; P=.001). All search terms except
“COVID rules” significantly negatively correlated with national
vaccinations (all P<.05; Table S1 in Multimedia Appendix 1).
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Figure 1. Correlogram of time (study week, ie, progressive number of weeks into the study period), Google Trends search volumes (variables starting
with “COVID”), nationally reported cases, deaths and vaccinations, and qPCR-based wastewater SARS-CoV-2 RNA prevalence. Circle size and color
(purple, through teal to yellow—denoting negative through neutral to positive) indicate the extent and directionality of the correlation. Crossed-out
circles are those for which correlations were not significant. qPCR: quantitative polymerase chain reaction.

Search volumes were significantly related to several of the
independent variables and their interactions (Table 2 and Figure
2), comprising wastewater SARS-CoV-2 prevalence (MLM:
F1,54=34.89; P=.002); time (MLM: F1,53=120.89; P=.002);
national COVID-19 cases reported (MLM: F1,52=117.77;
P=.002); national COVID-19–related deaths reported (MLM:
F1,51=65.84; P=.002); national COVID-19 vaccines administered

(MLM: F1,50=54.31; P=.002); and the interactions between time
and national COVID-19 cases (MLM: F1,48=46.32; P=.002),
time and national COVID-19 deaths (MLM: F1,48=26.09;
P=.004), and time and national vaccinations (MLM: F1,46=15.10;
P=.02). The interaction between time and wastewater
SARS-CoV-2 RNA prevalence (MLM: F1,49=0.77; P=.97) was
not significantly related to RSVs.
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Table 2. Univariate results from the multivariate linear model results for search volume data analyzed against time (progressive study weeks); wastewater
SARS-CoV-2 RNA prevalence; nationally reported COVID-19 cases, deaths, and vaccines; and 2-way interactions between time and each other variable.

P value“COVID lock-
down,” F test
(df)

P value“COVID
rules,” F
test (df)

P value“COVID
vaccine,” F
test (df)

P value“COVID
test,” F test
(df)

P value“COVID symp-
toms,” F test (df)

Independent
variable

.312.834 (1, 54).690.583 (1,
54)

.00228.838 (1,
54)

.690.418 (1,
54)

.342.211 (1, 54)Wastewater
SARS-CoV-2
prevalence

.00281.453 (1, 53).124.414 (1,
53)

.880.120 (1, 53).00234.716 (1,
53)

.880.189 (1, 53)Time

.037.315 (1, 52).410.677 (1,
52)

.114.122 (1, 52).00228.501 (1,
52)

.00277.157 (1, 52)National
COVID-19 cas-
es reported

.241.193 (1, 51).00230.232 (1,
51)

.00318.621 (1,
51)

.00313.42 (1,
51)

.222.373 (1, 51)National
COVID-19–re-
lated deaths

.0485.770 (1, 50).430.586 (1,
50)

.028.766 (1, 50).00221.308 (1,
50)

.00217.880 (1, 50)Vaccines admin-
istered national-
ly

.980.165 (1, 49).980.243 (1,
49)

.980.011 (1, 49).980.067 (1,
49)

.980.284 (1, 49)Time: wastewa-
ter prevalence

.271.301 (1, 48).00215.869 (1,
48)

.00410.632 (1,
48)

.00215.165 (1,
48)

.163.349 (1, 48)Time: cases

.00415.155 (1, 47).590.246 (1,
47)

.183.04 (1, 47).154.113 (1,
47)

.183.536 (1, 47)Time: deaths

.075.903 (1, 46).371.89 (1, 46).066.898 (1, 46).810.171 (1,
46)

.810.241 (1, 46)Time: vaccines
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Figure 2. Relative search volumes extracted from Google Trends compared against nationally reported data and qPCR-based estimates of prevalence
for SARS-CoV-2 in wastewater. All values are normalized so that the maximum value for each variable is 100. Lines are loess-smoothed curves, thus
representing the overall trend, and do not always represent the most extreme (eg, maximum) values. Dashed rectangles represent periods of national
lockdown in Wales for reference. Wastewater qPCR-based SARS-CoV-2 prevalence is given in light purple, Google Trends data are given in green or
blue, and national data are given in orange or red or purple. A figure containing nonsmoothed trends is presented in Figure S1 in Multimedia Appendix
1. qPCR: quantitative polymerase chain reaction.

National case data significantly related to Google Trends data
for “COVID symptoms” (LM: t54=7.248, P<.001; Figure S4 in
Multimedia Appendix 1), “COVID test” (LM: t54=6.070,
P<.001; Figure S5 in Multimedia Appendix 1), and “COVID
vaccine” (LM: t54=–3.301, P=.002; Figure S6 in Multimedia
Appendix 1 but not qPCR-based wastewater SARS-CoV-2
prevalence (LM: t54=1.360, P=.18 Figures S2-6 in Multimedia
Appendix 1) nor Google Trends data for “COVID lockdown”
(LM: t54=0.897, P=.37; Figure S2 in Multimedia Appendix 1)
and “COVID rules” (LM: t54=0.320, P=.75; Figure S3 in
Multimedia Appendix 1). Notably, wastewater SARS-CoV-2
RNA prevalence-based predictions significantly positively
correlated with the number of reported cases (Spearman
ρ=0.274; P=.008). Of the search terms included, case data

correlated with predictions based on “COVID symptoms”
(Spearman ρ=0.683; P<.001), “COVID test” (Spearman
ρ=0.706; P<.001), and “COVID rules” (Spearman ρ=0.409;
P<.001). National case data significantly related to case numbers
predicted by “COVID symptoms” (GLM: t92=5.158, P<.001)
and “COVID test” (GLM: t92=–4.997, P<.001) RSVs, but these
relationships changed over time (“COVID symptoms”:
t92=–5.162, P<.001; “COVID test”: t92=5.029, P<.001; Figure
4). National case data marginally insignificantly related to case
numbers predicted by qPCR wastewater SARS-CoV-2
prevalence (GLM: t92=–1.896, P=.02) and “COVID rules” RSVs
(GLM: t92=1.853, P=.07), but these relationships were
marginally insignificantly related to time (qPCR: t92=1.920,
P=.06; “COVID rules”: t92=–1.866, P=.07; Figure 4).
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Figure 3. Correlogram of time (study week, ie, progressive number of weeks into the study period), nationally reported cases, and the number of cases
predicted based on linear models of cases against Google Trends search volumes and qPCR-based wastewater SARS-CoV-2 prevalence. Circle size
and color (purple, through teal to yellow—denoting negative through neutral to positive) indicate the extent and directionality of the correlation.
Crossed-out circles are those for which correlations were not significant. qPCR: quantitative polymerase chain reaction.
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Figure 4. COVID-19 case numbers, and predicted case numbers interpolated and extrapolated based on linear models of case numbers and, separately,
each Google Trends search term and qPCR-based SARS-CoV-2 prevalence in wastewater. The dashed rectangle denotes the primary study period,
within which data are interpolated. Interpolations are based on data from the primary study period from which models were generated. Extrapolations
(outside of the rectangle) are based on data from the following 9 months. Wastewater qPCR-estimated SARS-CoV-2 prevalence is given in light purple,
Google Trends data are given in green or blue, and national reported case data are given in orange. Nonsmoothed data are presented in Figure S7 in
Multimedia Appendix 1. qPCR: quantitative polymerase chain reaction.

Discussion

Principal Findings
This study provides evidence to suggest that public interest in
topics related to the pandemic changed dynamically across the
study period, with some relation to the prevalence of the virus
in wastewater and the number of reported cases. Both internet
search volume and qPCR-based SARS-CoV-2 RNA prevalence
data provide some predictive potential for monitoring
SARS-CoV-2 and could be applied across other contexts.

During the course of this study, comprising 2 significant waves
of the COVID-19 pandemic in Wales, the correlation between
reported COVID-19 cases and wastewater-quantified
SARS-CoV-2 prevalence was significantly positive overall, as
has been demonstrated in previous studies [28,34], but this
correlation may have changed over time. Comparing the
prevalence of wastewater SARS-CoV-2 estimates and national
cases across the full study period shows that wastewater
prevalence of SARS-CoV-2 peaked substantially higher in
October 2020 than the rest of the study period, whereas case

data peaked the following October (Figure S1 in Multimedia
Appendix 1). Indications of correlation between SARS-CoV-2
prevalence in wastewater and COVID-19 disease prevalence
were recognized at an early stage of the pandemic in other
countries [32]. The Google Trends search volume data show
web-based searching for some COVID-19–related strings largely
reduced over time, although this was highly dependent on the
search string. This could indicate reduced public interest,
fluctuations that were reported even in the initial months of the
pandemic despite the importance of sustained public action to
ensure the success of public health measures [50].

In this same period, many of the search volumes, with the
intuitive exception of “COVID vaccine,” appear to inversely
correlate with increased vaccinations. This suggests that the
public may have been seeking vaccine opportunities and
otherwise expressed less interest in COVID-19 following mass
vaccinations, although additional data would be required to
confirm this. Importantly, searches for “COVID vaccine” may
also represent those that were concerned with misinformation
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or conspiracy theories that were commonplace, particularly
around the vaccine [11].

The search term “COVID test” was maintained at a relatively
constant level throughout the study and, along with “COVID
symptoms” and “COVID vaccine,” correlated with the
wastewater SARS-CoV-2 prevalence just as national case data
did. This indicates the potential of carefully selected search
terms for estimating the prevalence of the virus, further ratified
by the predictions made in this study. The relationship between
predictions and case data varied greatly depending on the data
used to guide predictions and, importantly, these relationships
changed over time. The variable potential of infoveillance to
predict epidemiological trends has been recorded in other cases,
such as for Google Flu Trends [13,15], and is an important
consideration for the use of infoveillance in a monitoring
context. The efficacy of infoveillance is contingent on public
interest consistently reflecting epidemiology, which is ultimately
unlikely for global pandemics given natural spikes and
fluctuations in public interest. It is, however, important to
contextualize this with the likely reasons for members of the
public searching with this particular string. Search volume data
could nonetheless provide anecdotal monitoring of disease
prevalence, especially since many nations face difficulties in
monitoring the virus using molecular methods or
population-level testing. Search volume data, while imperfect,
may provide a valuable alternative for anecdotal epidemiological
monitoring in nations or regions lacking access to alternatives
[51], but the search terms must be carefully considered, closely
monitored, and interpreted with appropriate skepticism.

The strong positive correlation between national testing,
wastewater monitoring data, and Google RSVs has previously
been demonstrated in the United States [34]. The relation of
search term data to SARS-CoV-2 prevalence in wastewater
changed over time, suggesting that such approaches require
monitoring and constant evaluation, again suggesting that an
approach combining data types may be optimal [34].
Importantly, the predictions made based on qPCR-based
wastewater monitoring were marginally insignificantly related
to recorded cases. Given the relative objectivity of this molecular
monitoring, this is likely to reflect the inconsistent accuracy of
national case data reporting as the pandemic progressed,
highlighting the need for objective measures of virus prevalence
irrespective of public participation. While these different data
types dynamically interact and often imperfectly reflect one
another, as demonstrated by our univariate predictions, together
they could generate models with greater predictive power for
forecasting improved above that of univariate approaches [34].
This aligns with the “One Health” perspective of integrating
different data types across disciplinary boundaries to monitor
health care and epidemiological events more holistically [22,23].
Wastewater monitoring has been integrated into One Health
frameworks for pathogen monitoring [52] and emerging
concepts such as antimicrobial resistance in the environment
[53]. Given that infoveillance similarly aligns with the principles
of One Health [23], this presents an ideal opportunity to integrate
different data types for sociobiological monitoring of
SARS-CoV-2 and other pandemic agents.

Limitations
Regarding infoveillance, this study relied exclusively on Google
search volume data; while this represents the most used search
engine and thus the greatest single source of such data, other
search engines are regularly used that might provide different
insights. Web-based search data, while an asset for assessing
public responses, is also collected without the context of its
users’motives; thus, assumptions cannot reliably be made about
the specific interests related to each search string. Even without
this context, however, the search volumes presented in this study
indicate interest, positive or negative, in those topics. Previous
studies have demonstrated that the efficacy of these data in
predicting epidemiological trends can be, at best, variable and,
at worst, ineffective [13-15]; this can be mitigated to some
degree via robust statistical methods to increase the reliability
and accuracy of infoveillance for epidemiological “nowcasting”
[15], but the integration of these data into more holistic
frameworks across disciplinary boundaries could further
ameliorate these inaccuracies and provide increasingly accurate
predictions [22,23].

While the qPCR data in this study represent a nationwide effort
to monitor SARS-CoV-2, they do not comprehensively cover
the nation of Wales, which is otherwise fully represented by
the Google Trends and national reporting data. Importantly, the
qPCR data do account for all of South Wales, which, in turn,
accounts for approximately 71% of the national population [54],
meaning that these data should accurately reflect the overall
national SARS-CoV-2 prevalence. Future studies could
investigate how different spatiotemporal resolutions of data
affect the accuracy and outcomes of analyses such as these,
especially given that this will impact the feasibility of long-term
monitoring using most methods.

The progression of COVID-19 as a global pandemic continues
to be extremely complicated and unpredictable, and the findings
of this study focus on just 1 period in this evolving situation,
prior to the emergence of the SARS-CoV-2 Omicron variant
and its sublineages. More importantly, the early months of the
pandemic are not represented due to the unavailability of qPCR
data for that period. While this study relates primarily to those
later months of the first year of the pandemic through to the
second year, the use of Google Trends data may have been more
powerful in the early months of the pandemic when public
familiarity was lower and more people were seeking
information.

Conclusions
Both molecular monitoring of wastewater and infoveillance
approaches demonstrate potential for monitoring and prediction
of epidemiological trends. Personal testing and surveys can
introduce latency to monitoring, lack randomization, and can
receive reduced participation for fear of positive test outcomes
[10]; thus, reduced dependency on these data through
widespread adoption of wastewater monitoring will likely
improve the accuracy of epidemiological data. Wastewater
monitoring has previously correlated strongly with national case
data [32], but any decrease in this correlation must importantly
be viewed with respect to the public interest and how this might
impact reported case data. Disease surveillance via wastewater
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monitoring provides many potential benefits, not least its
objectivity. As public interest in the pandemic wanes,
widespread molecular analysis of wastewater will become
increasingly important as personal testing data become
increasingly inaccurate at the population level. Public access
to wastewater monitoring data has been facilitated through

web-based reporting, including the data used in this study [38],
but accessible presentation of these data in interactive
dashboards, as has been the case for other national data, may
increase public understanding, appreciation, and use of this
important data source.
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