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Abstract
The formation and evolution of public opinion have been widely studied to understand how consensus forms due to
atomic interactions between individuals. While many studies have paid attention to modelling influence and interaction,
most of the literature assumes static agents, ignoring the frequent changes in physical locations expected in real-life.
This feature naturally allows humans to interact with diverse people and avoid disagreement, which heavily impacts the
co-evolution of opinions, communities or isolation in human societies.
Our previous work proposed an extension of the bounded confidence model inspired by the theories of homophily
and cognitive dissonance, which concern humans’ natural behaviours of attraction and disagreement. Although this
demonstrated a marked difference to a static opinion model and purely random mobility, the limited experiments gave
little insight into the causes or the resulting structures of consensus.
This paper addresses these shortcomings through a thorough investigation of the impact of mobility modelled by
different mechanisms. Through extensive simulation, we observe a transition from multiple stable opinion clusters to
complete consensus and a shift from a geographically-based organisation to isolated structure-less agents. Lastly, we
propose a novel classification of the different outcomes of self-organisation in opinion models, highlighting the patterns
of emerging behaviours across the spectrum of interaction range and influence parameters.
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Introduction

Public opinion is one of the main factors that drives the
formation of communities among humans. These opinions
are formed through the interactions that we undergo with
peers within our immediate proximity. Extensive work has
been undertaken to develop this field of opinion modelling,
as found across several surveys by Castellano et al. (2009);
Xia et al. (2011); Abid et al. (2018).

In sociology, empirical evidence highlights geographical
proximity as an indicator of increased interactions between
peers (Latané 1981; Lambiotte et al. 2008). The theory of
propinquity supports this, stating that physical proximity
and frequency of regular encounters raises the chance of
friendship or romantic relationships (Festinger et al. 1950).

Furthermore, Latané et al. (1995) studied proximity
impact with empirical data and concluded that the average
number of interactions people find noteworthy or memorable
is proportional to the inverse of the distance at which
individuals live. Other researchers have tried to increase the
chances of meeting other attendees in a conference to expand
their social network (Chin et al. 2012). They used proximity
and homophily in order to recommend a new contact. Cho
et al. (2011) have shown that social relationships can explain
10-30% of the human movement while periodic or pattern
movement explains more than 50%. Also, Monge and Kirste
(1980) noted the fact that proximity is dynamic and the
distance fluctuates with time due to peoples movement over
time.

In fact, similarities and differences in opinion or culture
have been highlighted as drivers that cause people to change
their location (Castles 2002; Motyl et al. 2014). At a more
general level, studies have shown how the preference of
people to be co-located with neighbours holding similar
ideologies to co-location can lead to segregation, as they
move out of a certain community or neighbourhood to a more
similar one (Schelling 1971).

When it comes to modelling assumptions, opinion models
have often been criticised for neglecting a number of realistic
features of social interaction, perhaps most significantly at
a local level, the possibility for agents to actually move
in physical space, in relation to others (Sobkowicz (2009);
Schweitzer and Hołyst (2000); Castellano et al. (2009); Xia
et al. (2011)). Given the substantial social psychological
research (Latané 1981; Lambiotte et al. 2008; Latané et al.
1995) on the relationship between impact and distance
(i.e., the proximity-influence relationship), it is surprising
that there is limited research on opinion evolution in
settings where personal mobility influenced by psychology
is included as an explicit feature. Indeed, most research in
this area is conducted on static settings where the locations of
agents are not dynamic (Castellano et al. (2009)). Therefore,
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studying the impact of proximity in continuous space instead
of discrete space can raise interesting findings.

One of the most well-studied opinion models is the
Bounded Confidence (BC) models proposed in Krause
(1997); Deffuant et al. (2000); Hegselmann et al. (2002)
using a threshold for influence. Hegselmann et al. (2002)
proposes a model with a simultaneous update rather than
the pairwise sequential interactions implemented in Deffuant
et al. (2000). The need to calculate opinion averages of
large groups of agents makes computer simulations of the
Hegselmann et al. (2002) model rather lengthy as compared
to Deffuant et al. (2000) model (Castellano et al. (2009)).

In this paper we use the Deffuant-Weisbuch BC model
(Deffuant et al. 2000), here denoted as DW. Our focus is not
the opinion model itself but the self-organisation emerging
from the impact of different mobility mechanisms. This helps
understand how communities emerge and identifies the main
drivers that could form or break communities. Therefore, for
simplicity and faster computation we applied the DW model,
as if agents are having a face-to face meeting or a one-on-one
interaction.

Despite the wide range of different approaches in the
literature, very few take into account the fundamental
principle of human mobility (Sobkowicz (2009); Schweitzer
and Hołyst (2000); Castellano et al. (2009); Xia et al.
(2011); Gracia-Lázaro et al. (2009)). Alraddadi et al. (2020)
proposed the addition of a new mobility mechanism into
the bounded confidence model, which included attractive
and repulsive forces between agents based on their
agreement/disagreement, inspired by psychological theories.
This model can be considered a generalisation of the filter
bubble problem (Nguyen et al. 2014), where information
is usually shared within a group and without external
influences. This makes it hard for opinions to change and
can support misinformation spreading. This was supported
by results which showed a greater likelihood that clusters of
distinct opinions would survive.

Related work
Opinion models that include mobility explicitly have
typically applied uniformly random changes in location
without considering any direction of movement (Centola
et al. (2007); Gracia-Lázaro et al. (2009); Kozma and Barrat
(2008); Qiang et al. (2008); Schelling (1971)). Furthermore,
they commonly are based on analogies to moving particles,
typically ignoring the psychological triggers that lead to
movement (Sousa et al. (2008); Zhang et al. (2018); Ree
(2011); Martins (2008b); Galam et al. (1998)).

Our previous work (Alraddadi et al. (2020)) demonstrated
that including random mobility triggered by differences of
opinion (i.e. where agents move to a random nearby location
whenever they have an interaction in which they disagree
with their peer) produces very similar results to the DW
global interaction method (i.e. convergence to a very limited
number of opinions across the population). We suggested
that the similarity exhibited by a purely random model could
explain why incorporating mobile agents has not been widely
studied in opinion models, because results don’t produce
any significant impact on opinion dynamics. The focus of
Alraddadi et al. (2020) was to study the overall impact of a
more complex model of mobility that reflected psychological

theories of homophily (agents move closer to those with
similar opinions) and cognitive dissonance (agents move
away from those they disagree with). It is worth noting
that while cognitive dissonance generally represents the
psychological distress felt through misalignment of beliefs
and actions, we are here focusing on its direct reflection on
the social network of individuals, when actors holding strong
ties act in a manner that is difficult to reconcile with their
respective ideological positions. This form of dissonance is
known in the literature as vicarious dissonance (Norton et al.
2003) and motivates individuals to restore consonance by, for
example, changing the ties and relationships that they hold
with others.

However, the range of experiments considered was
somewhat limited, failing to consider the individual
mechanisms that caused these differences, and whether
changes in location or opinion are driving convergence. To
address these shortcomings, in this paper we decompose
the mobility model into distinct components in order to
study their individual impact on the agent’s organisation,
allowing us to use extensive simulation to propose a novel
classification that identifies a small number of different
outcomes that may occur. We also propose additional metrics
that explicitly consider agents convergence in location in
addition to convergence in opinion. This detailed study of
mobility components and wide parameter spectrum can help
identify the drivers for certain patterns of behaviours.

Mobility is defined in many different ways across the
literature. The simplest approaches locate agents at discrete
locations on a lattice, with mobility either changing the
locations of individuals (Schelling (1971); Schweitzer and
Hołyst (2000); Galam et al. (1998); Sousa et al. (2008);
Pfau et al. (2013); Zhang et al. (2018); Gracia-Lázaro et al.
(2009); Hamann (2018); Ree (2011); Qiang et al. (2008))
or swapping places occupied by pairs of agents (Martins
(2008a)). Other works refer to mobility in terms of allowing
an agent to interact with a far away agent, even though
neither agent will actually change their location (Guo et al.
(2015)). A distinctive approach is presented in Feliciani et al.
(2017); Martı́nez et al. (2015), which applies mobility on a
toroidal grid. However in Feliciani et al. (2017) opinion and
location don’t co-evolve, as the agents first move to organise
themselves, after which a period of opinion dynamics begins.

Table 1 summaries the major opinion models that include
any type of explicit mobility or change in their network
structure, allowing us to draw parallels between different
approaches and highlight omissions. In these dynamic
networks, agents change their links with others depending
on the policy or reaction upon the model. To extend the
depth of mobility models we have included a small number
of dynamic networks for comparison. Finally, although the
model does not study opinion dynamics, we include the work
of Schelling (1971) due to the use of disagreement/cultural
difference as a trigger to movement.

In the table, we categorise the details of the models,
including the mobility trigger, which describes the reason or
stimulus that causes an agent to take action. Some models
perform movement after disagreement is encountered while
others randomly move at each time step. When an action is
taken, the mobility dynamics describes the mechanism that
determines the location for the next movement. Following
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Table 1. Opinion models with incorporated mobility - N/A denotes feature not considered.

Reference Opinion model Environment Interaction Trigger Dynamic Inspiration

Alraddadi
et al.

BC Free space Neighbour Agreement and dis-
agreement

Move closer or away
from a peer

Homophily
(McPherson et al.)
and Cognitive
Dissonance
(Festinger)

Centola et al. (Axelrod) Lattice Neighbour Disagreement Augment neighbor-
hood

N/A

Galam et al. Voting (Galam) Lattice Neighbour Random Move (to
unoccupied)

Reaction-diffusion
automata (Chopard
and Droz)

Gargiulo and
Huet

BC Network Local and external Disagreement Re-linking Cognitive
Dissonance
(Festinger)

Gracia-
Lázaro et al.

(Axelrod) Lattice Neighbour Disagreement Moving (to unoccu-
pied)

Intolerence
(Schelling)

Guo et al. Majority rule Network (small
world) (Newman and
Watts)

Local and global N/A N/A Levy flights (Gonza-
lez et al.)

Hamann (Galam) and
(Hamann)

Free space Neighbour Random Move Swarms

Holme and
Newman

Voter (Clifford and
Sudbury; Holley and
Liggett)

Network (random) Neighbour Random Re-linking N/A

Kozma and
Barrat

BC Network (random) Neighbour Disagreement Re-linking N/A

Martins Voter (Clifford and
Sudbury; Holley and
Liggett)

Lattice and network
(small world)

Neighbour Random Swap N/A

Pfau et al. (Axelrod) Lattice Distance/link
strength

Disagreement Move (to
unoccupied)

(Castles)

Qiang et al. BC Lattice and network
(scale free)

Neighbour Disagreement Move (to
unoccupied)

N/A

Ree BC Lattice Neighbour Random Move N/A

Schelling N/A Lattice Neighbour Disagreement Move (to
unoccupied)

Discrimination

Schweitzer
and Hołyst

Social Impact The-
ory (Nowak et al.;
Lewenstein et al.)

2D spatial structure Social distance Agreement and dis-
agreement

Move Brownian particles,
Langevin equations

Sousa et al. (Sznajd-Weron and
Sznajd)

Lattice (various) Neighbour Random Move (to
unoccupied)/swap

Lattice gas (Ausloos
et al. )

Zhang et al. BC Lattice Neighbour Random Move (to
unoccupied)

N/A

this, we describe the inspiration behind the dynamics, which
are more frequently based on physical phenomena rather
than psychological concepts.

A majority of works apply randomness in their decision
making, either in their mobility trigger or their mobility
dynamics. There are also some models that are triggered
by disagreement. However, the agent’s choice of location
does not reflect the disagreement but this is simply randomly
chosen, with the exception of Gargiulo and Huet (2010);
Pfau et al. (2013). This has inspired the inclusion of
repelling forces in our proposed model, triggered based
on disagreement to move directly away from the peer,
following the principle of cognitive dissonance (Festinger
(1957)). Similarly, our model includes an attractive force
which captures the concept of homophily (McPherson
et al. (2001)). Therefore, we find it important to explore
the area and investigate the dynamics of the mobility

forces that would explain the emergence of opinions and
communities. Specifically, the model captures the following
ideas: 1. It explores the impact of physical but directed
mobility (i.e.relocation) on opinion evolution instead of
random mobility. 2. It enables analysis of the impact of
distance (instead of explicit or fixed links) on interactions
and community formation, which captures features not
considered in previous studies. 3. It helps to identify different
scenarios of self-organisation that may emerge.

This paper will discuss the results of the models and then
present a classification summary of the distinct outcomes.
The results section is broken down to initially discuss the
impact of mobility compared to the static model. From that
section, we chose random mobility as a benchmark for the
rest of the paper. Following that, we discuss the repulsive
and attractive components of directed mobility models with
an analysis of quantitative results. Then, the outcomes of
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the directed mobility models are classified into common
outcomes from the perspective of each metric individually.
Finally, the results across the metrics are synthesised and
combined to produce an overall classification diagram that
describes the limited number of possible outcomes from the
model in a number of scenarios.

Contribution
The related work section highlights the different features
of the most noteworthy mobility mechanisms published
in the literature, including our previous contribution
(Alraddadi et al. 2020). Of particular note is the focus
on either random mobility or the use of disagreement
as a trigger for movement, with very little consideration
on homophilous/attractive movement when agents are in
agreement. This triggers the research question for this paper:
How do the individual components of mobility impact the
co-evolution of opinion in terms of structure and self-
organisation? For example, is emergent behaviour purely
a result of disagreement, or do some outcomes result from
agreement? To address this, we use (Alraddadi et al. (2020))
as a starting point, which models mobility by taking into
account human psychological behaviour, where individuals
have control over their social structures. However, in this
paper, we go further by decomposing the mobility model
into distinct attractive and repulsive components, allowing
in-depth analysis of the self-organised outcomes that may
emerge. In contrast to many works, we do not impose a
fixed number of communities, or force agents to belong
to a community, but instead measure directly the emergent
behaviour. Note that many papers consider a dynamic
network model (e.g. based on lattices with rewiring),
however we note that this forces an explicit binary structure
on the potential for interactions that may hide more realistic
behaviour. For example, Latané et al. (1995) shows that
geographical distance is a factor for the people we choose
to interact with frequently. This motivates our use of a more
general 2D spatial setting.

To perform this study, we consider the Hybrid Model
(HM) proposed in Alraddadi et al. (2020) (where it was
termed homophilous), which combines both the attract and
repel mobility components. The original study found that
when restricting the interaction range, HM naturally acts as
a driver to stimulate more opinion clusters. In this paper,
we study the attract and repel mobility components in
isolation, while exploring the parameter space of influence
and interaction range.

We analyse the agent’s organisation at both the micro and
macro level and return quantitative results, where macro-
levels describe the status of the entire population and micro-
levels demonstrate an individual’s inner circle or local area.
To study forms of organisation, we consider the presence of
isolated agents whom are without a group membership and
isolated either geographically or in opinion. In this paper,
these isolated agent’s are referred to as loners. Loners are
used as an indicator for the overall (dis)organisation in the
system.

For rigour and consistent results, we propose a metric
that can capture stability in movement, whereas previous
works typically only consider convergence of opinion.
These are a novel addition to the field that allows new

insight into the structures that emerge among agents.
This will highlight the conditions and mechanisms that
stimulate complete consensus or allow diversity to persist.
In particular, attractive mobility stimulates multiple opinion
clusters under a large influence spectrum (ε). This highlights
that opinion clusters emerge with larger influence spectrum.

The final contribution is a novel classification of six
types of behaviours that describe the emergence of self-
organisation. This highlights the formation of communities,
isolated agents and tolerance between communities within
proximity. This classification provides a clear understand-
ing of the transition in behaviour or in particular, self-
organisation. These various findings highlight the signifi-
cance of mobility in naturalistic settings and emphasise the
importance of applying mobility under the inspiration of
psychological theories to resemble more human reactions.
This classification provides a basis for assessing mobility
models and sets a benchmark that can be carried forward and
followed against other models.

The model

Model framework

In this paper we propose a model for the co-evolution of
opinion and location. We consider a population of agents,
A = {a1, . . . , an}, where each agent ai is defined by a
location xyi = (xi, yi) and opinion opi ∈ [0, 1].

Following the DW opinion model (Deffuant et al. 2000), a
pair of agents ai, aj will interact if and only if their respective
opinions (opi, opj) are within an opinion threshold ε, where
µ is a global parameter controlling the effect of a peer’s
opinion (termed convergence rate in the original model).

In the DW model an agent can interact with any other
agent in the population regardless of its location. In our case,
the selection of an agent depends on the distance between
them, thus only allowing interactions between agents that
are close not only in opinion but also location. Let d(i, j)
denote the Euclidean distance between agents ai and aj , and
let N(xyi, rs) = {aj ∈ A− {ai} : d(i, j) ≤ rs} be the set
of agents that are at most distance rs from agent ai. For
each time step we select an inviting agent ai at random
from the population A, and select a peer at random from
N(xyi, rs) 6= ∅. However, if no neighbors are found then
nothing changes to the properties of ai.

At the end of an interaction, the agent’s details are
updated, both the opinions of ai and aj and the location of
ai (instigator). Movement is applied to ai with probability
p. A range of p has been studied in (Alraddadi et al. 2020)
and it mainly has impact on the convergence. For the purpose
of this paper we set p = 1 for mobility and p = 0 for static
agents where there is no movement nor change in location.
A parameter λ indicates the range of the step movement
between a distanced pair of agents. It is applied to control
the scale of movement of ai towards aj , with λ = 0 leading
to no movement and λ = 1 denoting that ai moves directly to
the same exact location as aj . In this paper the experiments
are fixed to λ = 0.6 (based on previous experiments from
Alraddadi et al. (2020)).
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Incorporating mobility
The mobility models proposed reflect on how the agents
may potentially respond in physical space towards a peer.
Firstly, we demonstrate a pure random mobility model.
This concept has been previously considered where agents
have continuous change of their sites or links in (Sousa
et al. 2008; Zhang et al. 2018; Ree 2011; Hamann 2018;
Martins 2008b; Galam et al. 1998). Secondly, we propose
two mobility models that incorporate two distinct dynamic
processes inspired by human behaviour: attractive and
repulsive mobility. The former movement is inspired by the
theory of homophily McPherson et al. (2001), where agents
are attracted to move closer to peers that share similar
opinions. Repulsive is inspired by cognitive dissonance
theory (Festinger (1957)), where agents are repelled by those
that hold significantly different opinions. Homophily is one
of the most common theories that is used in the modelling
of mechanisms for interaction (e.g.Axelrod (1997); Deffuant
et al. (2000); Gargiulo and Gandica (2016); Holme and
Newman (2006)). Cognitive dissonance has been used to
translate change in an agent’s location or links (Gargiulo
and Huet 2010; Gracia-Lázaro et al. 2009; Schelling 1971)
(shown in Table 1). Cognitive dissonance represents a
repulsive force that motivates a move away from the source
agent(s). We consider a simple directed movement to reflect
a co-evolution that combines both opinion dynamics and
structure in a geographical space.

In this paper, we will further compare the original model
(HM) in Alraddadi et al. (2020) to both the attract and
repel mobility components individually. In Kossinets and
Watts (2009) the authors state that mobility is constrained
geographically by the distance an individual can travel within
a day. Therefore, we conduct further experiments to study
the impact of the distance moved. In addition, we investigate
a full range of ε ∈ [0, 1] rather than stopping at ε = 0.5.
However, our results show consistency with (Fortunato 2004)
in terms of when we observe differences in behaviour, hence
we only show results for 0.1 ≤ ε ≤ 0.5. Below we present
the alternative mobility models used in our experimentation.

Pure Random Mobility Pure Random Mobility (PRM) is
applied after every interaction, with the inviting agent ai
moving to a random location in their local area regardless
of the relative opinions of the pair (Algorithm 1).

Algorithm 1 Pure Random Mobility (PRM)
function PRM(ai, aj , ε, λ) . Move

r ← rsλ
√
U(0, 1)

θ ← 2πU(0, 1)
return (xi + r cos θ, yi + r sin θ)

end function

Hybrid Mobility The Hybrid Model (HM) combines both the
attract and repel mobility, incorporating forces aligned to
both homophily and cognitive dissonance. Agent ai moves
closer to their peer aj if they are close in opinion, and further
away in the opposite direction if they differ (Algorithm 2).

Attractive Mobility Under Attractive Mobility (AM), after an
inviting agent ai interacts with a random neighbour aj , it will
move closer if their opinions are similar (Algorithm 3).

Algorithm 2 Hybrid Mobility - HM
function HM(ai, aj , ε, λ)

if |opi − opj | ≤ ε then
xy′i ← xyi + λ(xyj − xyi) . ai attracted to

similar peer
else

xy′i ← xyi − λ(xyj − xyi) . ai repelled from
different peer

end if
return xy′i

end function

Algorithm 3 Attractive Mobility (AM)
function AM(ai, aj , ε, λ)

if |opi − opj | ≤ ε then
return xyi + λ(xyj − xyi) . Move closer

else
return xyi . Don’t move

end if
end function

Repulsive Mobility Repulsive Mobility (RM) model is
triggered by disagreement, and as a consequence the inviting
agent ai will physically move away in exactly the opposite
direction (Algorithm 4).

Algorithm 4 Repulsive Mobility (RM)
function RM(ai, aj , ε, λ)

if |opi − opj | ≤ ε then
return xyi . Don’t move

else
return xyi − λ(xyj − xyi) . Move away

end if
end function

Method
Algorithm 5 presents the overall framework for simulation,
which is dependent on the input parameters described in
Table 2. Social interaction is the process of selecting an
agent to communicate with (here we use proximity as a
factor similarly to Latané et al. (1995)). Social influence is
the process in which individuals change their opinion, revise
their beliefs, or change their behaviour as a consequence
of an interaction (Moussaı̈d et al. (2013)). We consider two
subsequent phases of social influence with opinion influence
describing the change in opinion and mobility Influence
reflecting the agent’s response to this opinion change by
choosing their preferred location. The type of movement
is determined by the MOVE() function, where MOVE can
be either the PRM, HM, AM and RM algorithms specified
above. Finally, the agents properties are Updated for both
their opinion and location accordingly.

We consider three evaluation metrics to assess self-
organisation among agents. Convergence focuses on stabil-
ity, measuring how many iterations pass before changes in
opinion or location become trivially small. Clustering cap-
tures similar groups that emerge in opinion and/or location at
a macro-level in the population. Finally, tolerance considers
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Table 2. Input parameters.

Parameter Description Value

L× L Region size 10× 10

n Number of agents 100

limit Number of time steps per run 70,000

ε Opinion threshold [0.1, 0.2 . . . , 1]

µ Convergence rate 0.5

rs Interactive radius [2, 3, 5, 10]

p Probability of movement [0, 1]

δop Opinion change threshold 0.01

δmov Movement distance change
threshold

1

NF Number of time steps without
opinion change

10000

Algorithm 5 Simulation framework

Require: Input (n, limit, rs, ε, p, µ, λ, δop, δmov, NF ,MOV E)
for i← 1 to n do . Randomly create population A

opi ← U(0, 1)
xyi ← (U(0, L), U(0, L))

end for
for limit time steps do

ai ∈ A . Social interaction
aj ∈ N(xyi, rs)

. Opinion influence (Deffuant et al. 2000)
if |opi − opj | < ε then

op′i ← opi + µ(opj − opi)
op′j ← opj + µ(opi − opj)

else
op′i ← opi
op′j ← opj

end if
if U(0, 1) < p then

xy′i ←MOVE(ai, aj , ε, λ) . Mobility influence
else

xy′i ← xyi . Don’t move
end if
opi ← op′i; opj ← op′j . Update
xyi ← xy′i

end for

the diversity of opinion at a micro-level within the local area
of each agent.

Convergence The opinion convergence time of a simula-
tion run is defined as the lowest value of t such that no agent
changes their opinion by more than δop between iteration
t and t+NF (with NF and δop set as input parameters).
Similarly, the movement convergence time is the lowest
value of t such that no agent changes location by a distance
greater than δmov between iteration t and t+NF (with δmov
an input parameter). For both measures, a convergence time
of limit denotes that the system did not stabilise.

Clusters The Density-based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm (Ester et al. 1996) is
used to identify clusters of agents that are similar in opinion

and/or location once the system has converged. Only non-
trivial clusters containing at least 5 agents are considered,
with all other agents being termed loners (with the number
of these denoted by Nloners).

Clusters based on opinion are identified by considering
the distance between two agents ai and aj to be |opi −
opj |, and setting the DBSCAN distance threshold to be δop,
being the maximum distance between a pair of agents for
which they are classified into a the same cluster. To identify
communities that are close in both opinion and location, the
distance between agents ai and aj is defined as:

d(xyi, xyj) if |opi − opj | < δop
∞ otherwise

The threshold δmov is then used as an input to the DBSCAN
algorithm to identify clusters that are both geographically
close and similar in opinion.

Tolerance Agents within δmov are considered to be in the
same local area, and δmov is specifically used to evaluate
the geographical structure between the agents. For an agent
ai, the set of agents sharing the same local area is given by
N(xyi, δmov), and we defineN ′ to denote the subset of these
agents that hold a different opinion, where:

N ′(xyi, δmov) = {j ∈ N(xyi, δmov) : |opj − opi| > δop}

The tolerance of an agent ai, denoted by tol(ai), is
defined as the proportion of their local peers that hold a
different opinion (at the end of a simulation), where:

tol(ai) =


|N ′(xyi, δmov)|
|N(xyi, δmov)|

if |N(xyi, δmov)| > 0

0 otherwise

The tolerance of a population A is denoted tol(A) and
defined as the mean tolerance of all agents ai ∈ A:

tol(A) =
1

|A|
∑
ai∈A

tol(ai)

Results
Experiments are presented for a population of n = 100
agents located in a 10× 10 bounded 2D space. The initial
position and opinion of each agent are set uniformly
randomly to xyi = (U(0, 10), U(0, 10)) and opi = U(0, 1)
respectively. When an agent’s mobility would take it beyond
the confines of the region, it bounces back to remain within
boundaries.

A general property (Deffuant et al. 2000) of the DW
model is that when ε is large the system reaches complete
consensus with a single dominant opinion. Results from the
literature shows that ε ≥ 0.5 will always result in complete
consensus (Fortunato 2004) regardless of the topology.
However, the critical threshold of where complete consensus
is found is different between the models depending on the
different additional rules. Qiang et al. (2008) demonstrated
that, with mobility under scale free networks, complete
consensus is obtained with a smaller ε threshold than in
a lattice. Kozma and Barrat (2008) showed that a larger
ε is necessary under an adaptive network compared to a
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static network, stating that rewiring favors formation of
different clusters. Gargiulo and Huet (2010) states that under
a smaller ε complete consensus can be found in a dynamic
network, explaining that the group dynamics has the effect
of removing those individuals that usually occur between
0.26 < ε < 0.5. However, with lower opinion thresholds,
more opinion clusters are likely to emerge.

To address this wide variation, in this paper we include
a thorough investigation of the parameter space of opinion
threshold (ε) and interactive radius (rs). Note that when
the interactive radius is equal to one (rs = 1) then the
average number of neighbors typically consists of only
two agents, therefore we restrict our attention to rs ≥ 2,
where neighbourhoods of at least 10 agents are typical.
Each simulation run has a maximum of limit = 70, 000
iterations and all results presented are averaged over 20
independent simulation runs with different random seeds.
Other simulation parameters are listed in Table 2.

Static agents or random mobile agents
Most of the literature either employs static agents or
only considers random mobility, often without a stimulus
to trigger movement. Therefore, we first compare static
and randomly mobile agents (given by Algorithm 5,
where MOVE=PRM) before introducing models of directed
mobility. For the static case, we apply the DW model (by
setting p = 0 in Algorithm 5 to prevent movement) but vary
the interactive radius rs to restrict the locality of interactions.
The red box in Figure 1a and 1c denotes the mimicked DW
model under large interaction range rs = L (shown in the red
box).

Figure 1a shows that the number of opinion clusters
increases when interactions are restricted through distance
(rs < 3) and/or opinion (ε < 0.4). This is similar to (Kozma
and Barrat 2008) and (Castellano et al. 2009), which stated
that consensus forms around a larger number of opinions
under the restricted interaction of a static model. However,
their results show that communities do not form in large
numbers, with most agents being loners (Figure 1c), showing
that similar opinions are spread out across the region. In
contrast, a single opinion dominates for ε > 0.3, irrespective
of rs.

Under PRM (Figure 1b), changing rs has little effect
for each ε, with the number of opinion clusters similar
to the static DW model (Figure 1a, red box). This is in
line with Zhang et al. (2018) which incorporated mobility
and found opinion consensus for a small interaction range
or low probability of movement. Similarly, Sousa et al.
(2008) found that random mobility removes small factions
of opposing opinions so that all agents reach full consensus.

Other evaluation metrics behave likewise, with values
similar under both PRM and the DW model, although
restricting interactions does delay opinion convergence.
Furthermore, due to the PRM constant mobility convergence
in movement is never found. However, both PRM and the
DW model display high tolerance when multiple opinions
are present (for low ε).

To conclude, in the static DW model, where all peers
may interact, the spread of an opinion is only dependent
on ε. In contrast, restricting the interaction range leads
to more opinions at a macro-level (Figure 1a), although

restricting interaction did not impact random mobility
models (Figure 1b) as there is still a high probability that
any pair of agents will meet at some point. As a result
we find that random mobility leads to the same number
of opinion clusters as in the static DW model with a
global interactive method. Adding random mobility tends to
eliminate the effect of restricting the static DW model to local
interactions and increases the numbers of opinion clusters,
thus highlighting it’s insensitivity to rs.

Directed mobility
In this section we consider a more sophisticated mobility
that models agents reaction to each other’s opinion, with
the nature of these interactions guiding the direction of
movement. Since PRM behaves as the static DW model
under a global interactive method, we use PRM as the
baseline to compare with the directed mobility models.

Convergence Results show that the speed of convergence
in either opinion or in movement is dependant on the
opportunity for an agent to interact with their peers
(controlled by ε and rs). For each of the mobility models
(AM, RM, HM), increasing ε reduces the time taken to
converge in opinion, with convergence found within 2,000
time steps in all cases.

Figure 2 shows convergence in movement for the different
mobility models, particularly highlighting that convergence
is slow or non-existent under RM and HM for the
combination of small εwith high rs. Low εmeans that agents
are less likely to agree and successfully interact with their
local peers, while high rs leads to a lack of local structure as
agents move.

Overall, convergence in opinion is typically faster than
convergence in movement, suggesting that opinions are
usually settled before agents change their location in search
for a “content” neighbourhood. For repulsive mobility, large
rs leads to difficulty in finding such a location. In line with
Zhang et al. (2018), convergence in opinion gets faster as the
interaction range, rs, increases.

Opinion diversity at a macro-level and micro-level In this
section we assess the extent to which different opinions can
co-exist under each mobility scheme both at a macro and a
micro level within a local area. Figure 3 shows that restricting
interactions (rs < 5) stimulates a larger number of opinion
clusters than PRM for all other mobility models, with little
variation in particular between AM and HM. Diverse opinion
clusters persist even when ε increases since lower values of
rs restrict the opportunities for agents to interact with diverse
peers.

With RM under higher rs, agents that are repelled expose
a new neighbourhood of peers to their opinion, hence
this mechanism tends to produce a single opinion cluster.
Their common repel mechanism means that both RM and
HM have similar tolerance (Figure 3), as neither model is
stable when agents with different opinions are in the same
neighbourhood. A higher tolerance only occurs for small ε,
which allows multiple opinions to persist.

AM shows higher tolerance for levels as high as ε = 0.3,
where agents are less likely to influence their peers opinion,
but lack a mechanism to move away.
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(a) Mean number of opinion clusters under p = 0 - DW (b) Mean number of opinion clusters under p = 1 - PRM

(c) Mean number of loners outside communities under p = 0 - DW (d) Mean number of loners outside communities under p = 1 - PRM

Figure 1. Opinion clusters and loners outside communities under static (p = 0) and PRM (p = 1). Each cell represents an average
of 20 simulation runs.

When rs ≥ 5, all directed mobility models (AM, RM,
HM) result in a similar number of opinion clusters as the
maximum number of 1

2 ε clusters that can be produced by
DW (Deffuant et al. (2000)). This is because there is a high
chance that a pair of agents will be within the interaction
range rs. A similar effect is found in Guo et al. (2015), where
agents move around a lattice structure augmented by a small
number of global links, and increased mobility results in the
formation of a single opinion.

In conclusion, in comparison to purely random movement,
we find that directed mobility (AM, RM, HM) results in
a larger number of opinion clusters when the interactive
radius is restricted, even for large values of ε. This result
highlights the importance of attraction and repulsion in
the mobility model, a feature that is often overlooked in
other studies. For example, in a network based approach,
Kozma and Barrat (2008) found that fewer clusters emerge
with higher frequency of rewiring, when considering only
purely random re-linking. We note in particular that random
mobility behaves in a similar manner to the DW model.

Community formation In this section we investigate how
mobility affects the number of communities that evolve
in terms of agent opinions and geographical locations
as well as the levels of emerging loners. Other research
has investigated the DW model and found that loners
are frequently found. Lorenz (2007) reports that outliers
exist for structural reasons, and identifies that Deffuant
et al. (2000); Weisbuch et al. (2002) chose to ignore

clusters with one agent. Lorenz (2007) further highlights
that Hegselmann et al. (2002) (group-based interactions)
in comparison to the DW model (peer-based interactions)
have no minor clusters. Gargiulo and Huet (2010); Kozma
and Barrat (2008) demonstrates the DW model while also
implementing group-based interactions while permitting
rewiring and these outliers disappear, similar to the static
Hegselmann et al. (2002) model. Therefore, in this paper
we propose a quantifiable measurement of the occurrence of
isolated agents to be considered along with the formation of
communities.

Figure 4 shows that despite the lack of an attractive
component, RM with restricted interactions (ε ≤ 0.3 and
rs < 5) encourages the formation of geographic clusters
with few loners (mean 17%). For both AM and HM
across rs, self-organisation is easier and able to produce
multiple communities with minimum number of loners due
the nature of attractive mobility. However, when AM is
highly restricted (ε < 0.2 and rs < 3), the number of loners
increases dramatically, as agents lack opportunity explore
new areas with the potential for successful interactions.

For AM and HM, large ε and rs > 3 lead to a single
opinion, as the attract component minimises the number of
loners and encourages agents to gather into a single centered
cluster. In contrast, when rs ≤ 3, many more communities
are detected across the different ε levels.

In conclusion, HM has both the repel and attract
components and as a result it produces the most uniform
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(a) Mean time of convergence in movement under AM for a combination
of rs and ε values.

(b) Mean time of convergence in movement under RM for a combination
of rs and ε values.

(c) Mean time of convergence in movement under HM for a combination
of rs and ε values.

Figure 2. Movement convergence time under p = 1, values of
70,000 denote convergence is not found. Each cell represents
an average of 20 simulation runs scaled down for
representation.

clusters geographically with minimum noise. However, due
to the repulsive impact, when there are multiple opinions
and the interaction range is up to its full potential, a
noisy geographical structure results, because of the constant
repelling jumps.

Identifying behaviour change under 2D metric
spectrum
In this section we classify the behaviour and outcomes of
each evaluation metric as ε and rs vary under the directed
mobility models (AM, RM, HM) compared to random
mobility (PRM).

For each metric we show an abstract classification diagram
illustrating “quadrants” of similar outcomes, and provide an
example of a single run for specific ε, rs which exhibits this
behaviour.

Opinion clusters Three different outcomes are evident in
our experiments, represented graphically in Figure 5:

(i) A single opinion cluster emerges that is shared by the
entire population.

(ii) Multiple opinion clusters are formed across the
population, at a similar rate to DW.

(ii) Exceeds static model where more opinion clusters are
formed than in the static DW model. This corresponds
to more than the maximum number of 1

2 ε clusters that
can be produced by DW (Deffuant et al. (2000)).

In quadrant QIII (low ε, low rs), all mobility models (AM,
RM, HM) produce more heterogeneity in opinion clusters
than the static DW. Moreover, for the higher ε in quadrant
QII, attract forces (AM, HM) are needed to enable multiple
opinions to persist, with RM leading to complete consensus.

In quadrants QI and QIV (i.e. larger rs) all mobility
models (AM, RM, HM) result in a similar number of opinion
clusters as with the PRM model.

Communities To demonstrate the organisation of the agents
in geographical space, we first classify in Figure 6 the
potential outcomes of:

(i) Multiple communities of agents that are close in both
opinion and distance.

(ii) A single community of agents holding the same
opinion.

(iii) Undefined when no coherent communities are formed
(with at least 5 members).

A second geographical classification (Figure 7) is based
on the presence of loners:

(i) No structure where many agents are isolated outside
of communities (NLoners > 30).

(ii) Organised where most of the agents are part of a
community, located in the same neighborhood and
holding the same opinion (NLoners ≤ 30).

Mobility models with attract components (AM, HM)
display organisation for almost all values of ε, rs. Repulsion
only (RM) leads to organisation when interactions are most
restricted (QIII), with some exceptional cases for high rs
(likely due to the high volatility that comes with larger
movement).

When considered together, Figures 6 and 7 demonstrate
the importance of attraction in building structured communi-
ties with little noise. AM and HM only differ in the small
regions that lack structure. For example, the behaviour of
AM in QIII means that agents are not attracted towards like
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Figure 3. Opinion clusters and tolerance. 20 runs shown for each experiment, ◦ denotes the simulation converges in movement,
and × no convergence.

minded agents beyond the immediate region, but also are not
influenced by local opinions. In contrast, HM lacks structure
in QIV, where small ε leads to frequent disagreement, but
large rs results in unstructured movement.

Tolerance in the neighbourhood Figure 8 classifies the two
outcomes of tolerance:

(i) Mixed opinion where geographical neighbourhoods
hold a range of opinions (tol(A) ≥ 0.1).

(ii) Homogeneous opinion where neighbourhoods largely
hold the same opinion (tol(A) < 0.1).

Models with a repel component (RM and HM) behave
similarly in all four quadrants, as agents move away from
dissimilar opinions. Although Mixed opinion neighborhoods
are present in QIV, these are not stable and do not converge
in movement (Figure 2b and 2c).

In contrast, AM always converges in movement, but for
low ε, agents can not convince peers to adapt their opinion,
leading to high tolerance and mixed opinions.

Classification of Self-organisation
In this section we synthesise and combine all the results
and develop a novel classification diagram that identifies the
different self-organised outcomes listed below. As before,

we express these in terms of behaviours for each quadrant
formed by ε and rs (Figure 9) and provide indicative
examples of each outcome in Figure 10.

Outcomes
For a full picture, we outline each outcome and discuss the
causes, with Figure 10 showing a representative example
from the simulations.

Multiple uniform clusters. Multiple stable opinion
clusters emerge that are segregated (more or less evenly) in
the geographical space (Figure 10a), with agents located at
identical coordinates. This behaviour emerges as a result of
the attract component (AM or HM).

Multiple clumped clusters. Multiple opinion clusters
emerge that are segregated in the geographical space
(Figure 10b), although with agents not exactly co-located.
This outcome only occurs with the repel component (low ε
and rs), where limited movement and interaction prevents
global consensus but allows small pockets to form. The lack
of an attractive component prevents agents from co-locating
precisely.

Multiple mix clusters. Multiple opinion clusters emerge
that overlap within the same neighbourhood but don’t
interact (Figure 10c). Multiple mixed clusters are only found
with the attractive mobility via low ε, regardless of rs.
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Figure 4. Communities and loners. 20 runs shown for each experiment, ◦ denotes the simulation converges in movement, and ×
no convergence.

Clusters with the same opinions converge to a single location
while unaffected by nearby opinions that are different, often
resulting in higher tolerance.

Single uniform cluster. A single opinion cluster is formed
at a single location, which dominates the region Figure 10d.
This requires large ε and rs together with an attractive
component (AM or HM).

Single scattered clusters. A single opinion cluster
dominates, however the agents lack structure and are
scattered across the region (Figure 10e). This behaviour is
present in the RM model under large ε for all rs. Note
that this scattered distribution of a single opinion exhibits a
similar behaviour to the static DW model.

Multiple opinion unstable organisation. This describes
the case when multiple opinion clusters are formed (low
ε), but there is no self-organisation or communities formed
(Figure 10f). This is observed when rs is large with repel
component, causing no convergence in movement. The
structure is close to random, giving a similar outcome to the
static DW model.

Conclusions
Flache et al. (2017) stated that Axelrod (1997) posed the
question of ‘why not all differences eventually disappear if
social influence reducing differences between people is such

a pervasive force in social interaction’? Considering more
structured forms of mobility may be one of the explanations
for what we see in our every day lives. We have proposed a
framework for the co-evolution of opinion and location based
on the well-studied bounded confidence model. In contrast
to many previous implementations of mobility in opinion
dynamics, we consider individual attractive and repulsive
components, inspired by psychological theory. Thorough
simulation is used to classify the potential outcomes in terms
of local clustering and opinions emergence.

Our results show that purely random mobility produces
similar outcomes to the corresponding DW model, with
random dynamics supporting consensus, in line with the
literature. For example, Sousa et al. (2008) show that random
mobility makes complete consensus easier to obtain, while
in (Qiang et al. 2008) random re-linking and mobility leads
to a decrease in the critical value of ε for consensus.
The similarity with the static case may explain why
opinion formation with mobility has received relatively little
attention in the literature. In contrast, a more structured
movement triggered by agreement/disagreement is able to
produce a wider range of distinct outcomes.

Our attractive mobility model is inspired by homophily,
which typically leads to heterogeneous opinions at both
population and local levels. In contrast, a repulsive model
based on the principle of cognitive dissonance, frequently
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(a) Under AM, intersect at rs = 3 and ε = 0.3

(b) Under RM, intersect at rs = 3 and ε = 0.3

(c) Under HM, intersect at rs = 3 and ε = 0.3

(d) Under PRM, intersect at ε = 0.3 and insensitive to rs

Figure 5. Opinion cluster classification for different mobility
models, each colour represents a behaviour

results in homogeneous opinions at both population and local
level. Finally, a hybrid model combining both approaches
is able to produce scenarios with diverse opinions globally
while producing consensus locally. Our results show how the
outcomes of all these three models are heavily influenced
by the opportunity for peers to interact and influence each
other. This is controlled by measures of closeness in both
opinion and location. Typically, more opinions are sustained
as opportunities to interact are reduced.

In conclusion, our model provides an effective approach to
the abstraction and synthesis of the complicated behaviour
of real life agents by capturing some characteristics of
opinion evolution in a free space dynamic environment.
This provides further insights on the generic mechanisms
observed in opinion formation.

Future enhancements of the model could implement
heterogeneous distributions of the exogenous parameters (ε
and rs) across the population, reflecting different levels of
influence across agents. This may also lead to a less uniform
response in terms of mobility, such as agents that are more

(a) Under AM, intersect at rs = 3 and ε = 0.3

(b) Under RM, intersect at rs = 7.5 and ε = 0.1

(c) Under HM, intersect at rs = 3 and ε = 0.3

(d) Under PRM, intersect at ε = 0.1 and insensitive of rs

Figure 6. Community classification for different mobility
models, each colour represents a behaviour

tolerant would be expected to remain close to dissenting
peers.
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