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Abstract

The formation and evolution of public opinion have been widely studied to understand how consensus forms due to

atomic interactions between individuals. While many studies have paid attention to modelling influence and interaction,

most of the literature assumes static agents, ignoring the frequent changes in physical locations expected in real-life.

This feature naturally allows humans to interact with diverse people and avoid disagreement, which heavily impacts the

co-evolution of opinions, communities or isolation in human societies.

Our previous work proposed an extension of the bounded confidence model inspired by the theories of homophily

and cognitive dissonance, which concern humans’ natural behaviours of attraction and disagreement. Although this

demonstrated a marked difference to a static opinion model and purely random mobility, the limited experiments gave

little insight into the causes or the resulting structures of consensus.

This paper addresses these shortcomings through a thorough investigation of the impact of mobility modelled by

different mechanisms. Through extensive simulation, we observe a transition from multiple stable opinion clusters to

complete consensus and a shift from a geographically-based organisation to isolated structure-less agents. Lastly, we

propose a novel classification of the different outcomes of self-organisation in opinion models, highlighting the patterns

of emerging behaviours across the spectrum of interaction range and influence parameters.

Keywords

Opinion, communities, mobility, self-organisation, agent-based modelling, homophily, cognitive dissonance

Introduction

Public opinion is one of the main factors that drives the

formation of communities among humans. These opinions

are formed through the interactions that we undergo with

peers within our immediate proximity. Extensive work has

been undertaken to develop this field of opinion modelling,

as found across several surveys by Castellano et al. (2009);

Xia et al. (2011); Abid et al. (2018).

In sociology, empirical evidence highlights geographical

proximity as an indicator of increased interactions between

peers (Latané 1981; Lambiotte et al. 2008). The theory of

propinquity supports this, stating that physical proximity

and frequency of regular encounters raises the chance of

friendship or romantic relationships (Festinger et al. 1950).

Furthermore, Latané et al. (1995) studied proximity

impact with empirical data and concluded that the average

number of interactions people find noteworthy or memorable

is proportional to the inverse of the distance at which

individuals live. Other researchers have tried to increase the

chances of meeting other attendees in a conference to expand

their social network (Chin et al. 2012). They used proximity

and homophily in order to recommend a new contact. Cho

et al. (2011) have shown that social relationships can explain

10-30% of the human movement while periodic or pattern

movement explains more than 50%. Also, Monge and Kirste

(1980) noted the fact that proximity is dynamic and the

distance fluctuates with time due to peoples movement over

time.

In fact, similarities and differences in opinion or culture

have been highlighted as drivers that cause people to change

their location (Castles 2002; Motyl et al. 2014). At a more

general level, studies have shown how the preference of

people to be co-located with neighbours holding similar

ideologies to co-location can lead to segregation, as they

move out of a certain community or neighbourhood to a more

similar one (Schelling 1971).

When it comes to modelling assumptions, opinion models

have often been criticised for neglecting a number of realistic

features of social interaction, perhaps most significantly at

a local level, the possibility for agents to actually move

in physical space, in relation to others (Sobkowicz (2009);

Schweitzer and Hołyst (2000); Castellano et al. (2009); Xia

et al. (2011)). Given the substantial social psychological

research (Latané 1981; Lambiotte et al. 2008; Latané et al.

1995) on the relationship between impact and distance

(i.e., the proximity-influence relationship), it is surprising

that there is limited research on opinion evolution in

settings where personal mobility influenced by psychology

is included as an explicit feature. Indeed, most research in

this area is conducted on static settings where the locations of

agents are not dynamic (Castellano et al. (2009)). Therefore,
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studying the impact of proximity in continuous space instead

of discrete space can raise interesting findings.

One of the most well-studied opinion models is the

Bounded Confidence (BC) models proposed in Krause

(1997); Deffuant et al. (2000); Hegselmann et al. (2002)

using a threshold for influence. Hegselmann et al. (2002)

proposes a model with a simultaneous update rather than

the pairwise sequential interactions implemented in Deffuant

et al. (2000). The need to calculate opinion averages of

large groups of agents makes computer simulations of the

Hegselmann et al. (2002) model rather lengthy as compared

to Deffuant et al. (2000) model (Castellano et al. (2009)).

In this paper we use the Deffuant-Weisbuch BC model

(Deffuant et al. 2000), here denoted as DW. Our focus is not

the opinion model itself but the self-organisation emerging

from the impact of different mobility mechanisms. This helps

understand how communities emerge and identifies the main

drivers that could form or break communities. Therefore, for

simplicity and faster computation we applied the DW model,

as if agents are having a face-to face meeting or a one-on-one

interaction.

Despite the wide range of different approaches in the

literature, very few take into account the fundamental

principle of human mobility (Sobkowicz (2009); Schweitzer

and Hołyst (2000); Castellano et al. (2009); Xia et al.

(2011); Gracia-Lázaro et al. (2009)). Alraddadi et al. (2020)

proposed the addition of a new mobility mechanism into

the bounded confidence model, which included attractive

and repulsive forces between agents based on their

agreement/disagreement, inspired by psychological theories.

This model can be considered a generalisation of the filter

bubble problem (Nguyen et al. 2014), where information

is usually shared within a group and without external

influences. This makes it hard for opinions to change and

can support misinformation spreading. This was supported

by results which showed a greater likelihood that clusters of

distinct opinions would survive.

Related work

Opinion models that include mobility explicitly have

typically applied uniformly random changes in location

without considering any direction of movement (Centola

et al. (2007); Gracia-Lázaro et al. (2009); Kozma and Barrat

(2008); Qiang et al. (2008); Schelling (1971)). Furthermore,

they commonly are based on analogies to moving particles,

typically ignoring the psychological triggers that lead to

movement (Sousa et al. (2008); Zhang et al. (2018); Ree

(2011); Martins (2008b); Galam et al. (1998)).

Our previous work (Alraddadi et al. (2020)) demonstrated

that including random mobility triggered by differences of

opinion (i.e. where agents move to a random nearby location

whenever they have an interaction in which they disagree

with their peer) produces very similar results to the DW

global interaction method (i.e. convergence to a very limited

number of opinions across the population). We suggested

that the similarity exhibited by a purely random model could

explain why incorporating mobile agents has not been widely

studied in opinion models, because results don’t produce

any significant impact on opinion dynamics. The focus of

Alraddadi et al. (2020) was to study the overall impact of a

more complex model of mobility that reflected psychological

theories of homophily (agents move closer to those with

similar opinions) and cognitive dissonance (agents move

away from those they disagree with). It is worth noting

that while cognitive dissonance generally represents the

psychological distress felt through misalignment of beliefs

and actions, we are here focusing on its direct reflection on

the social network of individuals, when actors holding strong

ties act in a manner that is difficult to reconcile with their

respective ideological positions. This form of dissonance is

known in the literature as vicarious dissonance (Norton et al.

2003) and motivates individuals to restore consonance by, for

example, changing the ties and relationships that they hold

with others.

However, the range of experiments considered was

somewhat limited, failing to consider the individual

mechanisms that caused these differences, and whether

changes in location or opinion are driving convergence. To

address these shortcomings, in this paper we decompose

the mobility model into distinct components in order to

study their individual impact on the agent’s organisation,

allowing us to use extensive simulation to propose a novel

classification that identifies a small number of different

outcomes that may occur. We also propose additional metrics

that explicitly consider agents convergence in location in

addition to convergence in opinion. This detailed study of

mobility components and wide parameter spectrum can help

identify the drivers for certain patterns of behaviours.

Mobility is defined in many different ways across the

literature. The simplest approaches locate agents at discrete

locations on a lattice, with mobility either changing the

locations of individuals (Schelling (1971); Schweitzer and

Hołyst (2000); Galam et al. (1998); Sousa et al. (2008);

Pfau et al. (2013); Zhang et al. (2018); Gracia-Lázaro et al.

(2009); Hamann (2018); Ree (2011); Qiang et al. (2008))

or swapping places occupied by pairs of agents (Martins

(2008a)). Other works refer to mobility in terms of allowing

an agent to interact with a far away agent, even though

neither agent will actually change their location (Guo et al.

(2015)). A distinctive approach is presented in Feliciani et al.

(2017); Martı́nez et al. (2015), which applies mobility on a

toroidal grid. However in Feliciani et al. (2017) opinion and

location don’t co-evolve, as the agents first move to organise

themselves, after which a period of opinion dynamics begins.

Table 1 summaries the major opinion models that include

any type of explicit mobility or change in their network

structure, allowing us to draw parallels between different

approaches and highlight omissions. In these dynamic

networks, agents change their links with others depending

on the policy or reaction upon the model. To extend the

depth of mobility models we have included a small number

of dynamic networks for comparison. Finally, although the

model does not study opinion dynamics, we include the work

of Schelling (1971) due to the use of disagreement/cultural

difference as a trigger to movement.

In the table, we categorise the details of the models,

including the mobility trigger, which describes the reason or

stimulus that causes an agent to take action. Some models

perform movement after disagreement is encountered while

others randomly move at each time step. When an action is

taken, the mobility dynamics describes the mechanism that

determines the location for the next movement. Following

Prepared using sagej.cls
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Table 1. Opinion models with incorporated mobility - N/A denotes feature not considered.

Reference Opinion model Environment Interaction Trigger Dynamic Inspiration

Alraddadi

et al.

BC Free space Neighbour Agreement and dis-

agreement

Move closer or away

from a peer

Homophily

(McPherson et al.)

and Cognitive

Dissonance

(Festinger)

Centola et al. (Axelrod) Lattice Neighbour Disagreement Augment neighbor-

hood

N/A

Galam et al. Voting (Galam) Lattice Neighbour Random Move (to

unoccupied)

Reaction-diffusion

automata (Chopard

and Droz)

Gargiulo and

Huet

BC Network Local and external Disagreement Re-linking Cognitive

Dissonance

(Festinger)

Gracia-

Lázaro et al.

(Axelrod) Lattice Neighbour Disagreement Moving (to unoccu-

pied)

Intolerence

(Schelling)

Guo et al. Majority rule Network (small

world) (Newman and

Watts)

Local and global N/A N/A Levy flights (Gonza-

lez et al.)

Hamann (Galam) and

(Hamann)

Free space Neighbour Random Move Swarms

Holme and

Newman

Voter (Clifford and

Sudbury; Holley and

Liggett)

Network (random) Neighbour Random Re-linking N/A

Kozma and

Barrat

BC Network (random) Neighbour Disagreement Re-linking N/A

Martins Voter (Clifford and

Sudbury; Holley and

Liggett)

Lattice and network

(small world)

Neighbour Random Swap N/A

Pfau et al. (Axelrod) Lattice Distance/link

strength

Disagreement Move (to

unoccupied)

(Castles)

Qiang et al. BC Lattice and network

(scale free)

Neighbour Disagreement Move (to

unoccupied)

N/A

Ree BC Lattice Neighbour Random Move N/A

Schelling N/A Lattice Neighbour Disagreement Move (to

unoccupied)

Discrimination

Schweitzer

and Hołyst

Social Impact The-

ory (Nowak et al.;

Lewenstein et al.)

2D spatial structure Social distance Agreement and dis-

agreement

Move Brownian particles,

Langevin equations

Sousa et al. (Sznajd-Weron and

Sznajd)

Lattice (various) Neighbour Random Move (to

unoccupied)/swap

Lattice gas (Ausloos

et al. )

Zhang et al. BC Lattice Neighbour Random Move (to

unoccupied)

N/A

this, we describe the inspiration behind the dynamics, which

are more frequently based on physical phenomena rather

than psychological concepts.

A majority of works apply randomness in their decision

making, either in their mobility trigger or their mobility

dynamics. There are also some models that are triggered

by disagreement. However, the agent’s choice of location

does not reflect the disagreement but this is simply randomly

chosen, with the exception of Gargiulo and Huet (2010);

Pfau et al. (2013). This has inspired the inclusion of

repelling forces in our proposed model, triggered based

on disagreement to move directly away from the peer,

following the principle of cognitive dissonance (Festinger

(1957)). Similarly, our model includes an attractive force

which captures the concept of homophily (McPherson

et al. (2001)). Therefore, we find it important to explore

the area and investigate the dynamics of the mobility

forces that would explain the emergence of opinions and

communities. Specifically, the model captures the following

ideas: 1. It explores the impact of physical but directed

mobility (i.e.relocation) on opinion evolution instead of

random mobility. 2. It enables analysis of the impact of

distance (instead of explicit or fixed links) on interactions

and community formation, which captures features not

considered in previous studies. 3. It helps to identify different

scenarios of self-organisation that may emerge.

This paper will discuss the results of the models and then

present a classification summary of the distinct outcomes.

The results section is broken down to initially discuss the

impact of mobility compared to the static model. From that

section, we chose random mobility as a benchmark for the

rest of the paper. Following that, we discuss the repulsive

and attractive components of directed mobility models with

an analysis of quantitative results. Then, the outcomes of

Prepared using sagej.cls
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the directed mobility models are classified into common

outcomes from the perspective of each metric individually.

Finally, the results across the metrics are synthesised and

combined to produce an overall classification diagram that

describes the limited number of possible outcomes from the

model in a number of scenarios.

Contribution

The related work section highlights the different features

of the most noteworthy mobility mechanisms published

in the literature, including our previous contribution

(Alraddadi et al. 2020). Of particular note is the focus

on either random mobility or the use of disagreement

as a trigger for movement, with very little consideration

on homophilous/attractive movement when agents are in

agreement. This triggers the research question for this paper:

How do the individual components of mobility impact the

co-evolution of opinion in terms of structure and self-

organisation? For example, is emergent behaviour purely

a result of disagreement, or do some outcomes result from

agreement? To address this, we use (Alraddadi et al. (2020))

as a starting point, which models mobility by taking into

account human psychological behaviour, where individuals

have control over their social structures. However, in this

paper, we go further by decomposing the mobility model

into distinct attractive and repulsive components, allowing

in-depth analysis of the self-organised outcomes that may

emerge. In contrast to many works, we do not impose a

fixed number of communities, or force agents to belong

to a community, but instead measure directly the emergent

behaviour. Note that many papers consider a dynamic

network model (e.g. based on lattices with rewiring),

however we note that this forces an explicit binary structure

on the potential for interactions that may hide more realistic

behaviour. For example, Latané et al. (1995) shows that

geographical distance is a factor for the people we choose

to interact with frequently. This motivates our use of a more

general 2D spatial setting.

To perform this study, we consider the Hybrid Model

(HM) proposed in Alraddadi et al. (2020) (where it was

termed homophilous), which combines both the attract and

repel mobility components. The original study found that

when restricting the interaction range, HM naturally acts as

a driver to stimulate more opinion clusters. In this paper,

we study the attract and repel mobility components in

isolation, while exploring the parameter space of influence

and interaction range.

We analyse the agent’s organisation at both the micro and

macro level and return quantitative results, where macro-

levels describe the status of the entire population and micro-

levels demonstrate an individual’s inner circle or local area.

To study forms of organisation, we consider the presence of

isolated agents whom are without a group membership and

isolated either geographically or in opinion. In this paper,

these isolated agent’s are referred to as loners. Loners are

used as an indicator for the overall (dis)organisation in the

system.

For rigour and consistent results, we propose a metric

that can capture stability in movement, whereas previous

works typically only consider convergence of opinion.

These are a novel addition to the field that allows new

insight into the structures that emerge among agents.

This will highlight the conditions and mechanisms that

stimulate complete consensus or allow diversity to persist.

In particular, attractive mobility stimulates multiple opinion

clusters under a large influence spectrum (ǫ). This highlights

that opinion clusters emerge with larger influence spectrum.

The final contribution is a novel classification of six

types of behaviours that describe the emergence of self-

organisation. This highlights the formation of communities,

isolated agents and tolerance between communities within

proximity. This classification provides a clear understand-

ing of the transition in behaviour or in particular, self-

organisation. These various findings highlight the signifi-

cance of mobility in naturalistic settings and emphasise the

importance of applying mobility under the inspiration of

psychological theories to resemble more human reactions.

This classification provides a basis for assessing mobility

models and sets a benchmark that can be carried forward and

followed against other models.

The model

Model framework

In this paper we propose a model for the co-evolution of

opinion and location. We consider a population of agents,

A = {a1, . . . , an}, where each agent ai is defined by a

location xyi = (xi, yi) and opinion opi ∈ [0, 1].

Following the DW opinion model (Deffuant et al. 2000), a

pair of agents ai, aj will interact if and only if their respective

opinions (opi, opj) are within an opinion threshold ǫ, where

µ is a global parameter controlling the effect of a peer’s

opinion (termed convergence rate in the original model).

In the DW model an agent can interact with any other

agent in the population regardless of its location. In our case,

the selection of an agent depends on the distance between

them, thus only allowing interactions between agents that

are close not only in opinion but also location. Let d(i, j)
denote the Euclidean distance between agents ai and aj , and

let N(xyi, rs) = {aj ∈ A− {ai} : d(i, j) ≤ rs} be the set

of agents that are at most distance rs from agent ai. For

each time step we select an inviting agent ai at random

from the population A, and select a peer at random from

N(xyi, rs) 6= ∅. However, if no neighbors are found then

nothing changes to the properties of ai.

At the end of an interaction, the agent’s details are

updated, both the opinions of ai and aj and the location of

ai (instigator). Movement is applied to ai with probability

p. A range of p has been studied in (Alraddadi et al. 2020)

and it mainly has impact on the convergence. For the purpose

of this paper we set p = 1 for mobility and p = 0 for static

agents where there is no movement nor change in location.

A parameter λ indicates the range of the step movement

between a distanced pair of agents. It is applied to control

the scale of movement of ai towards aj , with λ = 0 leading

to no movement and λ = 1 denoting that ai moves directly to

the same exact location as aj . In this paper the experiments

are fixed to λ = 0.6 (based on previous experiments from

Alraddadi et al. (2020)).
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Incorporating mobility

The mobility models proposed reflect on how the agents

may potentially respond in physical space towards a peer.

Firstly, we demonstrate a pure random mobility model.

This concept has been previously considered where agents

have continuous change of their sites or links in (Sousa

et al. 2008; Zhang et al. 2018; Ree 2011; Hamann 2018;

Martins 2008b; Galam et al. 1998). Secondly, we propose

two mobility models that incorporate two distinct dynamic

processes inspired by human behaviour: attractive and

repulsive mobility. The former movement is inspired by the

theory of homophily McPherson et al. (2001), where agents

are attracted to move closer to peers that share similar

opinions. Repulsive is inspired by cognitive dissonance

theory (Festinger (1957)), where agents are repelled by those

that hold significantly different opinions. Homophily is one

of the most common theories that is used in the modelling

of mechanisms for interaction (e.g.Axelrod (1997); Deffuant

et al. (2000); Gargiulo and Gandica (2016); Holme and

Newman (2006)). Cognitive dissonance has been used to

translate change in an agent’s location or links (Gargiulo

and Huet 2010; Gracia-Lázaro et al. 2009; Schelling 1971)

(shown in Table 1). Cognitive dissonance represents a

repulsive force that motivates a move away from the source

agent(s). We consider a simple directed movement to reflect

a co-evolution that combines both opinion dynamics and

structure in a geographical space.

In this paper, we will further compare the original model

(HM) in Alraddadi et al. (2020) to both the attract and

repel mobility components individually. In Kossinets and

Watts (2009) the authors state that mobility is constrained

geographically by the distance an individual can travel within

a day. Therefore, we conduct further experiments to study

the impact of the distance moved. In addition, we investigate

a full range of ǫ ∈ [0, 1] rather than stopping at ǫ = 0.5.

However, our results show consistency with (Fortunato 2004)

in terms of when we observe differences in behaviour, hence

we only show results for 0.1 ≤ ǫ ≤ 0.5. Below we present

the alternative mobility models used in our experimentation.

Pure Random Mobility Pure Random Mobility (PRM) is

applied after every interaction, with the inviting agent ai
moving to a random location in their local area regardless

of the relative opinions of the pair (Algorithm 1).

Algorithm 1 Pure Random Mobility (PRM)

function PRM(ai, aj , ǫ, λ) ⊲ Move

r ← rsλ
√

U(0, 1)
θ ← 2πU(0, 1)
return (xi + r cos θ, yi + r sin θ)

end function

Hybrid Mobility The Hybrid Model (HM) combines both the

attract and repel mobility, incorporating forces aligned to

both homophily and cognitive dissonance. Agent ai moves

closer to their peer aj if they are close in opinion, and further

away in the opposite direction if they differ (Algorithm 2).

Attractive Mobility Under Attractive Mobility (AM), after an

inviting agent ai interacts with a random neighbour aj , it will

move closer if their opinions are similar (Algorithm 3).

Algorithm 2 Hybrid Mobility - HM

function HM(ai, aj , ǫ, λ)

if |opi − opj | ≤ ǫ then

xy′i ← xyi + λ(xyj − xyi) ⊲ ai attracted to

similar peer

else

xy′i ← xyi − λ(xyj − xyi) ⊲ ai repelled from

different peer

end if

return xy′i
end function

Algorithm 3 Attractive Mobility (AM)

function AM(ai, aj , ǫ, λ)

if |opi − opj | ≤ ǫ then

return xyi + λ(xyj − xyi) ⊲ Move closer

else

return xyi ⊲ Don’t move

end if

end function

Repulsive Mobility Repulsive Mobility (RM) model is

triggered by disagreement, and as a consequence the inviting

agent ai will physically move away in exactly the opposite

direction (Algorithm 4).

Algorithm 4 Repulsive Mobility (RM)

function RM(ai, aj , ǫ, λ)

if |opi − opj | ≤ ǫ then

return xyi ⊲ Don’t move

else

return xyi − λ(xyj − xyi) ⊲ Move away

end if

end function

Method

Algorithm 5 presents the overall framework for simulation,

which is dependent on the input parameters described in

Table 2. Social interaction is the process of selecting an

agent to communicate with (here we use proximity as a

factor similarly to Latané et al. (1995)). Social influence is

the process in which individuals change their opinion, revise

their beliefs, or change their behaviour as a consequence

of an interaction (Moussaı̈d et al. (2013)). We consider two

subsequent phases of social influence with opinion influence

describing the change in opinion and mobility Influence

reflecting the agent’s response to this opinion change by

choosing their preferred location. The type of movement

is determined by the MOVE() function, where MOVE can

be either the PRM, HM, AM and RM algorithms specified

above. Finally, the agents properties are Updated for both

their opinion and location accordingly.

We consider three evaluation metrics to assess self-

organisation among agents. Convergence focuses on stabil-

ity, measuring how many iterations pass before changes in

opinion or location become trivially small. Clustering cap-

tures similar groups that emerge in opinion and/or location at

a macro-level in the population. Finally, tolerance considers

Prepared using sagej.cls
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Table 2. Input parameters.

Parameter Description Value

L× L Region size 10× 10

n Number of agents 100

limit Number of time steps per run 70,000

ǫ Opinion threshold [0.1, 0.2 . . . , 1]

µ Convergence rate 0.5

rs Interactive radius [2, 3, 5, 10]

p Probability of movement [0, 1]

δop Opinion change threshold 0.01

δmov Movement distance change

threshold

1

NF Number of time steps without

opinion change

10000

Algorithm 5 Simulation framework

Require: Input (n, limit, rs, ǫ, p, µ, λ, δop, δmov, NF ,MOV E)
for i← 1 to n do ⊲ Randomly create population A

opi ← U(0, 1)
xyi ← (U(0, L), U(0, L))

end for

for limit time steps do

ai ∈ A ⊲ Social interaction

aj ∈ N(xyi, rs)
⊲ Opinion influence (Deffuant et al. 2000)

if |opi − opj | < ǫ then

op′i ← opi + µ(opj − opi)
op′j ← opj + µ(opi − opj)

else

op′i ← opi
op′j ← opj

end if

if U(0, 1) < p then

xy′i ←MOVE(ai, aj , ǫ, λ) ⊲ Mobility influence

else

xy′i ← xyi ⊲ Don’t move

end if

opi ← op′i; opj ← op′j ⊲ Update

xyi ← xy′i
end for

the diversity of opinion at a micro-level within the local area

of each agent.

Convergence The opinion convergence time of a simula-

tion run is defined as the lowest value of t such that no agent

changes their opinion by more than δop between iteration

t and t+NF (with NF and δop set as input parameters).

Similarly, the movement convergence time is the lowest

value of t such that no agent changes location by a distance

greater than δmov between iteration t and t+NF (with δmov

an input parameter). For both measures, a convergence time

of limit denotes that the system did not stabilise.

Clusters The Density-based Spatial Clustering of Applica-

tions with Noise (DBSCAN) algorithm (Ester et al. 1996) is

used to identify clusters of agents that are similar in opinion

and/or location once the system has converged. Only non-

trivial clusters containing at least 5 agents are considered,

with all other agents being termed loners (with the number

of these denoted by Nloners).

Clusters based on opinion are identified by considering

the distance between two agents ai and aj to be |opi −
opj |, and setting the DBSCAN distance threshold to be δop,

being the maximum distance between a pair of agents for

which they are classified into a the same cluster. To identify

communities that are close in both opinion and location, the

distance between agents ai and aj is defined as:

d(xyi, xyj) if |opi − opj | < δop
∞ otherwise

The threshold δmov is then used as an input to the DBSCAN

algorithm to identify clusters that are both geographically

close and similar in opinion.

Tolerance Agents within δmov are considered to be in the

same local area, and δmov is specifically used to evaluate

the geographical structure between the agents. For an agent

ai, the set of agents sharing the same local area is given by

N(xyi, δmov), and we define N ′ to denote the subset of these

agents that hold a different opinion, where:

N ′(xyi, δmov) = {j ∈ N(xyi, δmov) : |opj − opi| > δop}

The tolerance of an agent ai, denoted by tol(ai), is

defined as the proportion of their local peers that hold a

different opinion (at the end of a simulation), where:

tol(ai) =







|N ′(xyi, δmov)|

|N(xyi, δmov)|
if |N(xyi, δmov)| > 0

0 otherwise

The tolerance of a population A is denoted tol(A) and

defined as the mean tolerance of all agents ai ∈ A:

tol(A) =
1

|A|

∑

ai∈A

tol(ai)

Results

Experiments are presented for a population of n = 100
agents located in a 10× 10 bounded 2D space. The initial

position and opinion of each agent are set uniformly

randomly to xyi = (U(0, 10), U(0, 10)) and opi = U(0, 1)
respectively. When an agent’s mobility would take it beyond

the confines of the region, it bounces back to remain within

boundaries.

A general property (Deffuant et al. 2000) of the DW

model is that when ǫ is large the system reaches complete

consensus with a single dominant opinion. Results from the

literature shows that ǫ ≥ 0.5 will always result in complete

consensus (Fortunato 2004) regardless of the topology.

However, the critical threshold of where complete consensus

is found is different between the models depending on the

different additional rules. Qiang et al. (2008) demonstrated

that, with mobility under scale free networks, complete

consensus is obtained with a smaller ǫ threshold than in

a lattice. Kozma and Barrat (2008) showed that a larger

ǫ is necessary under an adaptive network compared to a
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static network, stating that rewiring favors formation of

different clusters. Gargiulo and Huet (2010) states that under

a smaller ǫ complete consensus can be found in a dynamic

network, explaining that the group dynamics has the effect

of removing those individuals that usually occur between

0.26 < ǫ < 0.5. However, with lower opinion thresholds,

more opinion clusters are likely to emerge.

To address this wide variation, in this paper we include

a thorough investigation of the parameter space of opinion

threshold (ǫ) and interactive radius (rs). Note that when

the interactive radius is equal to one (rs = 1) then the

average number of neighbors typically consists of only

two agents, therefore we restrict our attention to rs ≥ 2,

where neighbourhoods of at least 10 agents are typical.

Each simulation run has a maximum of limit = 70, 000
iterations and all results presented are averaged over 20

independent simulation runs with different random seeds.

Other simulation parameters are listed in Table 2.

Static agents or random mobile agents

Most of the literature either employs static agents or

only considers random mobility, often without a stimulus

to trigger movement. Therefore, we first compare static

and randomly mobile agents (given by Algorithm 5,

where MOVE=PRM) before introducing models of directed

mobility. For the static case, we apply the DW model (by

setting p = 0 in Algorithm 5 to prevent movement) but vary

the interactive radius rs to restrict the locality of interactions.

The red box in Figure 1a and 1c denotes the mimicked DW

model under large interaction range rs = L (shown in the red

box).

Figure 1a shows that the number of opinion clusters

increases when interactions are restricted through distance

(rs < 3) and/or opinion (ǫ < 0.4). This is similar to (Kozma

and Barrat 2008) and (Castellano et al. 2009), which stated

that consensus forms around a larger number of opinions

under the restricted interaction of a static model. However,

their results show that communities do not form in large

numbers, with most agents being loners (Figure 1c), showing

that similar opinions are spread out across the region. In

contrast, a single opinion dominates for ǫ > 0.3, irrespective

of rs.

Under PRM (Figure 1b), changing rs has little effect

for each ǫ, with the number of opinion clusters similar

to the static DW model (Figure 1a, red box). This is in

line with Zhang et al. (2018) which incorporated mobility

and found opinion consensus for a small interaction range

or low probability of movement. Similarly, Sousa et al.

(2008) found that random mobility removes small factions

of opposing opinions so that all agents reach full consensus.

Other evaluation metrics behave likewise, with values

similar under both PRM and the DW model, although

restricting interactions does delay opinion convergence.

Furthermore, due to the PRM constant mobility convergence

in movement is never found. However, both PRM and the

DW model display high tolerance when multiple opinions

are present (for low ǫ).

To conclude, in the static DW model, where all peers

may interact, the spread of an opinion is only dependent

on ǫ. In contrast, restricting the interaction range leads

to more opinions at a macro-level (Figure 1a), although

restricting interaction did not impact random mobility

models (Figure 1b) as there is still a high probability that

any pair of agents will meet at some point. As a result

we find that random mobility leads to the same number

of opinion clusters as in the static DW model with a

global interactive method. Adding random mobility tends to

eliminate the effect of restricting the static DW model to local

interactions and increases the numbers of opinion clusters,

thus highlighting it’s insensitivity to rs.

Directed mobility

In this section we consider a more sophisticated mobility

that models agents reaction to each other’s opinion, with

the nature of these interactions guiding the direction of

movement. Since PRM behaves as the static DW model

under a global interactive method, we use PRM as the

baseline to compare with the directed mobility models.

Convergence Results show that the speed of convergence

in either opinion or in movement is dependant on the

opportunity for an agent to interact with their peers

(controlled by ǫ and rs). For each of the mobility models

(AM, RM, HM), increasing ǫ reduces the time taken to

converge in opinion, with convergence found within 2,000

time steps in all cases.

Figure 2 shows convergence in movement for the different

mobility models, particularly highlighting that convergence

is slow or non-existent under RM and HM for the

combination of small ǫ with high rs. Low ǫ means that agents

are less likely to agree and successfully interact with their

local peers, while high rs leads to a lack of local structure as

agents move.

Overall, convergence in opinion is typically faster than

convergence in movement, suggesting that opinions are

usually settled before agents change their location in search

for a “content” neighbourhood. For repulsive mobility, large

rs leads to difficulty in finding such a location. In line with

Zhang et al. (2018), convergence in opinion gets faster as the

interaction range, rs, increases.

Opinion diversity at a macro-level and micro-level In this

section we assess the extent to which different opinions can

co-exist under each mobility scheme both at a macro and a

micro level within a local area. Figure 3 shows that restricting

interactions (rs < 5) stimulates a larger number of opinion

clusters than PRM for all other mobility models, with little

variation in particular between AM and HM. Diverse opinion

clusters persist even when ǫ increases since lower values of

rs restrict the opportunities for agents to interact with diverse

peers.

With RM under higher rs, agents that are repelled expose

a new neighbourhood of peers to their opinion, hence

this mechanism tends to produce a single opinion cluster.

Their common repel mechanism means that both RM and

HM have similar tolerance (Figure 3), as neither model is

stable when agents with different opinions are in the same

neighbourhood. A higher tolerance only occurs for small ǫ,

which allows multiple opinions to persist.

AM shows higher tolerance for levels as high as ǫ = 0.3,

where agents are less likely to influence their peers opinion,

but lack a mechanism to move away.
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(a) Mean number of opinion clusters under p = 0 - DW (b) Mean number of opinion clusters under p = 1 - PRM

(c) Mean number of loners outside communities under p = 0 - DW (d) Mean number of loners outside communities under p = 1 - PRM

Figure 1. Opinion clusters and loners outside communities under static (p = 0) and PRM (p = 1). Each cell represents an average

of 20 simulation runs.

When rs ≥ 5, all directed mobility models (AM, RM,

HM) result in a similar number of opinion clusters as the

maximum number of 1

2 ǫ
clusters that can be produced by

DW (Deffuant et al. (2000)). This is because there is a high

chance that a pair of agents will be within the interaction

range rs. A similar effect is found in Guo et al. (2015), where

agents move around a lattice structure augmented by a small

number of global links, and increased mobility results in the

formation of a single opinion.

In conclusion, in comparison to purely random movement,

we find that directed mobility (AM, RM, HM) results in

a larger number of opinion clusters when the interactive

radius is restricted, even for large values of ǫ. This result

highlights the importance of attraction and repulsion in

the mobility model, a feature that is often overlooked in

other studies. For example, in a network based approach,

Kozma and Barrat (2008) found that fewer clusters emerge

with higher frequency of rewiring, when considering only

purely random re-linking. We note in particular that random

mobility behaves in a similar manner to the DW model.

Community formation In this section we investigate how

mobility affects the number of communities that evolve

in terms of agent opinions and geographical locations

as well as the levels of emerging loners. Other research

has investigated the DW model and found that loners

are frequently found. Lorenz (2007) reports that outliers

exist for structural reasons, and identifies that Deffuant

et al. (2000); Weisbuch et al. (2002) chose to ignore

clusters with one agent. Lorenz (2007) further highlights

that Hegselmann et al. (2002) (group-based interactions)

in comparison to the DW model (peer-based interactions)

have no minor clusters. Gargiulo and Huet (2010); Kozma

and Barrat (2008) demonstrates the DW model while also

implementing group-based interactions while permitting

rewiring and these outliers disappear, similar to the static

Hegselmann et al. (2002) model. Therefore, in this paper

we propose a quantifiable measurement of the occurrence of

isolated agents to be considered along with the formation of

communities.

Figure 4 shows that despite the lack of an attractive

component, RM with restricted interactions (ǫ ≤ 0.3 and

rs < 5) encourages the formation of geographic clusters

with few loners (mean 17%). For both AM and HM

across rs, self-organisation is easier and able to produce

multiple communities with minimum number of loners due

the nature of attractive mobility. However, when AM is

highly restricted (ǫ < 0.2 and rs < 3), the number of loners

increases dramatically, as agents lack opportunity explore

new areas with the potential for successful interactions.

For AM and HM, large ǫ and rs > 3 lead to a single

opinion, as the attract component minimises the number of

loners and encourages agents to gather into a single centered

cluster. In contrast, when rs ≤ 3, many more communities

are detected across the different ǫ levels.

In conclusion, HM has both the repel and attract

components and as a result it produces the most uniform
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(a) Mean time of convergence in movement under AM for a combination

of rs and ǫ values.

(b) Mean time of convergence in movement under RM for a combination

of rs and ǫ values.

(c) Mean time of convergence in movement under HM for a combination

of rs and ǫ values.

Figure 2. Movement convergence time under p = 1, values of

70,000 denote convergence is not found. Each cell represents

an average of 20 simulation runs scaled down for

representation.

clusters geographically with minimum noise. However, due

to the repulsive impact, when there are multiple opinions

and the interaction range is up to its full potential, a

noisy geographical structure results, because of the constant

repelling jumps.

Identifying behaviour change under 2D metric

spectrum

In this section we classify the behaviour and outcomes of

each evaluation metric as ǫ and rs vary under the directed

mobility models (AM, RM, HM) compared to random

mobility (PRM).

For each metric we show an abstract classification diagram

illustrating “quadrants” of similar outcomes, and provide an

example of a single run for specific ǫ, rs which exhibits this

behaviour.

Opinion clusters Three different outcomes are evident in

our experiments, represented graphically in Figure 5:

(i) A single opinion cluster emerges that is shared by the

entire population.

(ii) Multiple opinion clusters are formed across the

population, at a similar rate to DW.

(ii) Exceeds static model where more opinion clusters are

formed than in the static DW model. This corresponds

to more than the maximum number of 1

2 ǫ
clusters that

can be produced by DW (Deffuant et al. (2000)).

In quadrant QIII (low ǫ, low rs), all mobility models (AM,

RM, HM) produce more heterogeneity in opinion clusters

than the static DW. Moreover, for the higher ǫ in quadrant

QII, attract forces (AM, HM) are needed to enable multiple

opinions to persist, with RM leading to complete consensus.

In quadrants QI and QIV (i.e. larger rs) all mobility

models (AM, RM, HM) result in a similar number of opinion

clusters as with the PRM model.

Communities To demonstrate the organisation of the agents

in geographical space, we first classify in Figure 6 the

potential outcomes of:

(i) Multiple communities of agents that are close in both

opinion and distance.

(ii) A single community of agents holding the same

opinion.

(iii) Undefined when no coherent communities are formed

(with at least 5 members).

A second geographical classification (Figure 7) is based

on the presence of loners:

(i) No structure where many agents are isolated outside

of communities (NLoners > 30).

(ii) Organised where most of the agents are part of a

community, located in the same neighborhood and

holding the same opinion (NLoners ≤ 30).

Mobility models with attract components (AM, HM)

display organisation for almost all values of ǫ, rs. Repulsion

only (RM) leads to organisation when interactions are most

restricted (QIII), with some exceptional cases for high rs
(likely due to the high volatility that comes with larger

movement).

When considered together, Figures 6 and 7 demonstrate

the importance of attraction in building structured communi-

ties with little noise. AM and HM only differ in the small

regions that lack structure. For example, the behaviour of

AM in QIII means that agents are not attracted towards like
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Figure 3. Opinion clusters and tolerance. 20 runs shown for each experiment, ◦ denotes the simulation converges in movement,

and × no convergence.

minded agents beyond the immediate region, but also are not

influenced by local opinions. In contrast, HM lacks structure

in QIV, where small ǫ leads to frequent disagreement, but

large rs results in unstructured movement.

Tolerance in the neighbourhood Figure 8 classifies the two

outcomes of tolerance:

(i) Mixed opinion where geographical neighbourhoods

hold a range of opinions (tol(A) ≥ 0.1).

(ii) Homogeneous opinion where neighbourhoods largely

hold the same opinion (tol(A) < 0.1).

Models with a repel component (RM and HM) behave

similarly in all four quadrants, as agents move away from

dissimilar opinions. Although Mixed opinion neighborhoods

are present in QIV, these are not stable and do not converge

in movement (Figure 2b and 2c).

In contrast, AM always converges in movement, but for

low ǫ, agents can not convince peers to adapt their opinion,

leading to high tolerance and mixed opinions.

Classification of Self-organisation

In this section we synthesise and combine all the results

and develop a novel classification diagram that identifies the

different self-organised outcomes listed below. As before,

we express these in terms of behaviours for each quadrant

formed by ǫ and rs (Figure 9) and provide indicative

examples of each outcome in Figure 10.

Outcomes

For a full picture, we outline each outcome and discuss the

causes, with Figure 10 showing a representative example

from the simulations.

Multiple uniform clusters. Multiple stable opinion

clusters emerge that are segregated (more or less evenly) in

the geographical space (Figure 10a), with agents located at

identical coordinates. This behaviour emerges as a result of

the attract component (AM or HM).

Multiple clumped clusters. Multiple opinion clusters

emerge that are segregated in the geographical space

(Figure 10b), although with agents not exactly co-located.

This outcome only occurs with the repel component (low ǫ

and rs), where limited movement and interaction prevents

global consensus but allows small pockets to form. The lack

of an attractive component prevents agents from co-locating

precisely.

Multiple mix clusters. Multiple opinion clusters emerge

that overlap within the same neighbourhood but don’t

interact (Figure 10c). Multiple mixed clusters are only found

with the attractive mobility via low ǫ, regardless of rs.
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Figure 4. Communities and loners. 20 runs shown for each experiment, ◦ denotes the simulation converges in movement, and ×

no convergence.

Clusters with the same opinions converge to a single location

while unaffected by nearby opinions that are different, often

resulting in higher tolerance.

Single uniform cluster. A single opinion cluster is formed

at a single location, which dominates the region Figure 10d.

This requires large ǫ and rs together with an attractive

component (AM or HM).

Single scattered clusters. A single opinion cluster

dominates, however the agents lack structure and are

scattered across the region (Figure 10e). This behaviour is

present in the RM model under large ǫ for all rs. Note

that this scattered distribution of a single opinion exhibits a

similar behaviour to the static DW model.

Multiple opinion unstable organisation. This describes

the case when multiple opinion clusters are formed (low

ǫ), but there is no self-organisation or communities formed

(Figure 10f). This is observed when rs is large with repel

component, causing no convergence in movement. The

structure is close to random, giving a similar outcome to the

static DW model.

Conclusions

Flache et al. (2017) stated that Axelrod (1997) posed the

question of ‘why not all differences eventually disappear if

social influence reducing differences between people is such

a pervasive force in social interaction’? Considering more

structured forms of mobility may be one of the explanations

for what we see in our every day lives. We have proposed a

framework for the co-evolution of opinion and location based

on the well-studied bounded confidence model. In contrast

to many previous implementations of mobility in opinion

dynamics, we consider individual attractive and repulsive

components, inspired by psychological theory. Thorough

simulation is used to classify the potential outcomes in terms

of local clustering and opinions emergence.

Our results show that purely random mobility produces

similar outcomes to the corresponding DW model, with

random dynamics supporting consensus, in line with the

literature. For example, Sousa et al. (2008) show that random

mobility makes complete consensus easier to obtain, while

in (Qiang et al. 2008) random re-linking and mobility leads

to a decrease in the critical value of ǫ for consensus.

The similarity with the static case may explain why

opinion formation with mobility has received relatively little

attention in the literature. In contrast, a more structured

movement triggered by agreement/disagreement is able to

produce a wider range of distinct outcomes.

Our attractive mobility model is inspired by homophily,

which typically leads to heterogeneous opinions at both

population and local levels. In contrast, a repulsive model

based on the principle of cognitive dissonance, frequently
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(a) Under AM, intersect at rs = 3 and ǫ = 0.3

(b) Under RM, intersect at rs = 3 and ǫ = 0.3

(c) Under HM, intersect at rs = 3 and ǫ = 0.3

(d) Under PRM, intersect at ǫ = 0.3 and insensitive to rs

Figure 5. Opinion cluster classification for different mobility

models, each colour represents a behaviour

results in homogeneous opinions at both population and local

level. Finally, a hybrid model combining both approaches

is able to produce scenarios with diverse opinions globally

while producing consensus locally. Our results show how the

outcomes of all these three models are heavily influenced

by the opportunity for peers to interact and influence each

other. This is controlled by measures of closeness in both

opinion and location. Typically, more opinions are sustained

as opportunities to interact are reduced.

In conclusion, our model provides an effective approach to

the abstraction and synthesis of the complicated behaviour

of real life agents by capturing some characteristics of

opinion evolution in a free space dynamic environment.

This provides further insights on the generic mechanisms

observed in opinion formation.

Future enhancements of the model could implement

heterogeneous distributions of the exogenous parameters (ǫ

and rs) across the population, reflecting different levels of

influence across agents. This may also lead to a less uniform

response in terms of mobility, such as agents that are more

(a) Under AM, intersect at rs = 3 and ǫ = 0.3

(b) Under RM, intersect at rs = 7.5 and ǫ = 0.1

(c) Under HM, intersect at rs = 3 and ǫ = 0.3

(d) Under PRM, intersect at ǫ = 0.1 and insensitive of rs

Figure 6. Community classification for different mobility

models, each colour represents a behaviour

tolerant would be expected to remain close to dissenting

peers.
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