
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 3 2 5 9/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Bac h m a n n,  Luis a,  S c hlö m e rk e m p er, Anja  a n d  S e n g ul Tezel, Yase min  2 0 2 3.  A

va ri a tion al  a p p ro a c h  to  s t r ain-limiting  viscoela s ticity in on e  s p ac e  di m e nsion.  P u r e

a n d  Applied  F u n c tion al  Analysis  

P u blish e r s  p a g e:  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



A VARIATIONAL APPROACH TO STRAIN-LIMITING

VISCOELASTICITY IN ONE SPACE DIMENSION

L. BACHMANN, A. SCHLÖMERKEMPER, AND Y. ŞENGÜL

Abstract. In this work we investigate existence of solutions for a strain-
rate type model of viscoelastic material response in the context of strain-
limiting theory. We consider a strain-rate type constitutive relation and
the equation of motion to derive a partial differential equation where un-
like classical equations in nonlinear elasticity the unknown is the stress
rather than the deformation. Here, we introduce a variational frame-
work where we prove existence of solutions to this equation for a special
case of the nonlinearity by considering the Euler-Lagrange equations of a
functional. Finally, we apply the method of time-discretization in order
to solve the problem.

1. Introduction

Many materials we come across in our daily lives show viscoelastic re-
sponse, such as aluminium, polymers and human tissue. One particularly
interesting viscoelastic response is the strain-limiting response, which has
been experimentally observed in a wide class of materials such as titanium
alloys and biological fibres such as collagen (see [15] and references therein).
This kind of material response has been modelled successfully using the re-
cently developed implicit constitutive theory. Among other advantages, it
leads to a different small strain theory allowing for a nonlinear relationship
between the linearized strain and the stress.

The main aim of this work is to investigate such a strain-limiting model
for the response of strain-rate type viscoelastic materials. More precisely, we
are interested in studying a model where the sum of the linearized strain and
the rate of the linearized strain is given as a function of the stress. However,
different from the earlier work on strain-limiting response of materials, we
adopt a variational approach to get existence of solutions. This method
is novel in two ways. Firstly, we define a suitable minimization problem
where the unknown is the stress. Moreover, in order to be able to use
classical results in the calculus of variations, we use time-discretization so
that a static minimization problem is considered at each time step. Secondly,
for compactness at each time step, we obtain a priori bounds using the
energy which is expressed in terms of the stress, rather than in terms of the
deformation or displacement.

Key words and phrases. viscoelasticity, implicit constitutive theory, variational meth-
ods, time-discretization.
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Typically, the main difficulty for studying physically meaningful mathe-
matical models describing behaviour of materials is the lack of fundamental
mathematical theory underlying the models. Such models often result in a
variational problem or a system of nonlinear partial differential equations.
Hence, an important mathematical task in describing material response is
to develop new analytic tools to find solutions of such systems. In this paper
we combine variational methods with continuum mechanical tools leading to
a new approach to study such models. We hope the framework introduced
in this manuscript will be generalized to higher space dimensions as well as
adopted for a larger class of problems.

In Cauchy elasticity, the relation between the stress and the strain is
given by explicit relations where the stress is described as a function of the
strain. Even though these kinds of explicit constitutive relations are quite
successful in describing the response of a wide variety of solids, they are
not able to capture many important observed features such as the nonlinear
relationship between the stress and the strain which can hold even when the
strains are very small. As a result, Rajagopal [10, 11, 12, 13] introduced a
more general framework to describe material response, namely by means of
an implicit relation between the stress and the strain resulting in a nonlinear
relationship after linearization. An important advantage of this framework
is that the strain can be considered as a function of the stress so that as
a result of linearization one obtains a non-linear relationship between the
stress and the strain. This means they allow for the gradient of the dis-
placement to stay small so that one could treat the linearized strain, even
for arbitrary large values of the stress. Such models have recently attracted
a considerable amount of attention due to the fact that various phenomena,
including cracks, are successfully described by them, as well as the fact that
in the classical linear elasticity theory such nonlinear response cannot be
explained, see [2, 14] and references therein for related work.

In this work, we are interested in the analysis of a nonlinear differential
equation resulting from a viscoelastic constitutive relation specifying the
relation between the linearized strain, the rate of the linearized strain and
the stress. In Section 2 we recall the nonlinear partial differential equation
to study in the rest of the paper by using the viscoelastic constitutive re-
lation and the equation of motion. Afterwards we summarize the related
earlier work. The model is stated in a mathematical setting in Section 3. In
Section 4 we introduce a variational framework to solve the initial-boundary-
value problem corresponding to the nonlinear partial differential equation
we derived. Inspired by work of Friesecke and Dolzmann [9] on time dis-
cretization for a quasi-linear evolution equation, we propose an equivalent
minimization problem and adopt time-discretization which allows for solv-
ing a static problem at each time step. Using compactness arguments for
passing to the limit as the time step goes to zero, we prove existence of
solutions for the initial and boundary-value problem for a linear form of the
constitutive equation.
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2. The model and related past work

In this work we want to investigate an evolutionary equation in terms of
the stress T = T (x, t). The derivation of this equation follows the approach
described in [7]. Let Ω ⊂ R be a bounded open domain. The equation of
motion for a homogeneous, viscoelastic medium in one space dimension is
given by

(2.1) ρutt = Tx on Ω× [0,∞)

with suitable boundary conditions. Here, ρ ∈ R denotes the mass density,
u : Ω × [0,∞) → R the deformation/flow map and T : Ω × [0,∞) → R

the (one-dimensional) stress tensor. Differentiating (2.1) with respect to x

under the assumption of suitable regularity, and using the definition of the
(one-dimensional) linearized strain ǫ, one obtains

(2.2) ρǫtt = Txx on Ω× [0,∞).

The constitutive equation for a viscoealstic material showing strain-limiting
behaviour in the strain-rate setting is

(2.3) ǫ+ νǫt = h(T ) on Ω× [0,∞)

where ν > 0 is a constant, and h : R → R with h ∈ C2(R,R) being a
(possibly) nonlinear function (see [15]). Here we use the abbreviated nota-
tion h(T ) for h(T (·, ·)). Differentiating (2.3) twice with respect to time and
substituting (2.2) into the result thereof yields

(2.4) h(T )tt −
ν

ρ
Txxt =

1

ρ
Txx on Ω× [0,∞).

We note here that the time derivatives of h(T ) are total derivatives; for ǫ

and T there is no difference between partial and total derivatives since x is
not a function of t. For simplicity we will use the dimensionless quantities
introduced in [7] and work with

(2.5) h(T )tt − νTxxt = Txx on Ω× [0,∞).

In [7] Erbay and Şengül studied travelling wave solutions corresponding to
(2.5) for different nonlinear functions h. Then, Erbay, Erkip and Şengül
[6] proved local existence of strong solutions to the initial-value problem
corresponding to (2.5) when h is strictly increasing. Thereafter it was proved
by Şengül in [17] that the local-in time solutions obtained in [6] are actually
global solutions. More recently, in [16] Şengül proved that travelling wave
solutions can be found analytically and numerically when the nonlinearity
term in (2.5) was of the form of an arctangent function.

In the stress-rate type setting using the constitutive equation

(2.6) ǫ = h(T )− γ(T )Tt,

one can obtain a similar partial differential equation given by

(2.7) h(T )tt − (γ(T )Tt)tt = Txx,
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where γ is a (possibly nonlinear) function of the stress, and h is a (possibly)
nonlinear function satisfying h(0) = 0 (see [8] for a detailed derivation). In
[8] Erbay and Şengül considered a special case in one space dimension when
γ(T ) is a constant, and showed that γ > 0 must necessarily hold in order
for (2.6) to be consistent with the first and second law of thermodynamics.
Clearly, if γ = 0, the model reduces to the elastic case. For the stress-rate
type model (2.6), another work that exists in the literature is by Duman and
Şengül [5], where travelling wave solutions are investigated. The work by
Bachmann, De Anna, Schlömerkemper and Şengül [1] is also on stress-rate
type viscoelastic models, more precisely on (2.6) with constant γ, where the
existence of local-in-time smooth solutions to the linearized model is proved
in certain Gevrey classes.

3. The problem

Let Ω ⊂ R be an open, connected and bounded set. For the function
T : Ω× [0,∞) → R we consider the following initial-boundary-value problem

Txx + νTxxt = h(T )tt in Ω× [0,∞),(3.1)

T = α on ∂Ω× [0,∞),(3.2)

Tx = β on ∂Ω× [0,∞),(3.3)

T = T0 in Ω× {0},(3.4)

Tt = S0 in Ω× {0},(3.5)

where α, β : Ω× [0,∞) → R and T0, S0 : Ω×{0} → R are given functions.
We assume that

(A0) αtβ = αtβt = 0 on ∂Ω× [0,∞).

It is worth noting that, if α is a fixed constant in x and the relation β = αx

holds, then assumption (A0) is automatically satisfied. We also make the
following assumptions on the function h:

(A1) The primitive function H defined by h(z) = H ′(z), z ∈ R, satisfies
H ∈ C3(R,R). Moreover, there exists a constant c1 > 0 such that

0 ≤ H(z) ≤ c1
(

|z|2 + 1
)

for every z ∈ R.

(A2) There exists a constant c2 > 0 and a 0 < q < 1 such that

|h(z)| ≤ c2 (|z|
q + 1) for every z ∈ R.

(A3) (i) There is a constant c3 > 0 such that for all z 6= 0, we have
∣

∣

∣

∣

h′(z)−
h(z)

z

∣

∣

∣

∣

≤ c3.

(ii) There exists a constant c4 > 0 such that |h′(z)| ≤ c4 for all
z ∈ R.
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These assumptions are for instance satisfied for h(z) = arctan z. The
main result of this manuscript is on existence of weak solutions of system
(3.1)–(3.5), cf. Section 6. The estimates that are necessary for ensuring
existence of a minimizer at each time step are obtained for general functions
h(·) satisfying (A1), (A2) and (A3). Moreover, we prove the existence result
for linear h(z) = ηz with a constant η > 0. (We remark that assumption
(A2) is not satisfied for the linear case, thus it requires its own proof.) The
compactness results and the proof of the main result are then given for this
linear case.

4. Variational framework

4.1. Energy-dissipation law. To derive the energy-dissipation law of the
initial-boundary-value problem (3.1)–(3.5), we assume that (3.1) has a smooth
solution T . We multiply (3.1) by Tt and integrate over Ω, which yields
ˆ

Ω
TxxTt dx+ ν

ˆ

Ω
TxxtTt dx =

ˆ

Ω
h(T )ttTt dx for any t ∈ [0,∞].

By assumption (A0), TxTt = βαt = 0 as well as TxtTt = βtαt = 0 at
∂Ω × [0,∞). Hence, when we integrate by parts in the first and second
terms, the contribution from the boundary vanishes. Moreover, we apply
the product rule and Schwarz’ lemma to obtain

−

ˆ

Ω

(

1
2T

2
x

)

t
dx− ν

ˆ

Ω
T 2
xt dx =

ˆ

Ω
h(T )ttTt dx.(4.1)

We integrate this equation in time over the time interval (0, t) for an arbi-
trary t > 0 and obtain

−

ˆ

Ω

1
2T

2
x (x, t) dx− ν

ˆ t

0

ˆ

Ω
T 2
xτ (x, τ) dx dτ

=

ˆ t

0

ˆ

Ω
h(T )ττTτ dx dτ −

ˆ

Ω

1
2T

2
x (x, 0) dx

=

ˆ t

0

ˆ

Ω
h(T )ττTτ dx dτ −

ˆ

Ω

1
2(T0x)

2(x) dx.

(4.2)

Next we assume that there exists a function f(v, w) with f : R × R → R

such that f ∈ C2 and
(

h(T (x, t))
)

tt
=
∂f

∂v

(

(T (x, t), Tt(x, t)
)

−

(

∂f

∂w

(

T (x, t), Tt(x, t)
)

)

t

(4.3)

for every (x, t) ∈ Ω× [0,∞), see Remark 4.1 for examples. By the product
rule and since T is assumed smooth here, we then obtain that

h(T )ttTt =
∂f

∂v
Tt −

(

∂f

∂w

)

t

Tt =
∂f

∂v
Tt +

∂f

∂w
Ttt −

(

∂f

∂w
Tt

)

t

=(f(T, Tt))t −

(

∂f

∂w
Tt

)

t

.
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We plug this into (4.2) to get

−

ˆ

Ω

1
2T

2
x (x, t) dx− ν

ˆ t

0

ˆ

Ω
T 2
xτ (x, τ) dx dτ

=

ˆ t

0

ˆ

Ω

[

(f(T, Tτ ))τ −

(

∂f

∂w
Tτ

)

τ

]

dx dτ −

ˆ

Ω

1
2(T0x)

2(x) dx.

(4.4)

For any t ≥ 0 we define the energy functional by

E(T (t), Tt(t)) :=

ˆ

Ω

[

1
2T

2
x (x, t) + f(T (x, t), Tt(x, t))−

(

∂f

∂w
Tt

)

(x, t)

]

dx,

(4.5)

where we write T (t) as shorthand for the function T (·, t) depending on the
spatial variable x. Similarly, we write Tt(t) and Txt(t) as shorthand notations
for corresponding functions. The dissipation functional is defined by

D(Txt(t)) = −ν

ˆ t

0

ˆ

Ω
T 2
xτ (x, τ) dx dτ.

Then we obtain the energy-dissipation law

E(T (t), Tt(t))− E(T (0), Tt(0)) = D(Txt(t)),(4.6)

for any t ≥ 0. Note that

E(T (0), Tt(0)) =

ˆ

Ω

[

1
2(T0x)

2(x) + f(T0(x), S0(x))−
∂f

∂w
(x, 0)S0(x)

]

dx.

Hence, by D(Txt(t)) ≤ 0 and by the assumption on the finiteness of the
initial energy, we obtain that E(T (·), Tt(·)) is bounded in L∞(0,∞).

Remark 4.1. In the definition (4.3) for f , the linear case h(T ) = ηT , η > 0,
holds for instance for f(T, Tt) = −η

2T
2
t . Another example for the linear case

is f(T, Tt) =
η
3T

3Tt −
η
2T

2
t , which shows that f is not necessarily unique.

4.2. Time-discretization. In this section we introduce a time-discretized
system, which turns our dynamical problem into a static minimization prob-
lem at each time step. This approach is inspired by work of Friesecke and
Dolzmann [9].

Let k > 0 be a fixed time-step size. We discretize the time interval [0,∞)
and consider the slightly bigger time interval ∪∞

j=0((j − 1)k, jk]. We define
the set

X(Ω,R) :=
{

T ∈ W 1,2(Ω,R) : T − α ∈ W
1,2
0 (Ω,R)

}
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for a fixed boundary value α ∈ W 1,2(Ω,R). For initial data T k
0 ∈ X(Ω,R), Sk

0 ∈
L2(Ω,R) we define the following time-discretization scheme inductively in j

T k,−1 := T k
0 − kSk

0 ,

T k,0 := T k
0 ,(4.7)

T k,j := argmin
T∈X(Ω,R)

Jk,j(T ), j ∈ N,

where the functional Jk,j : X(Ω,R) → R, j ∈ N, is defined as

Jk,j(T ) :=

ˆ

Ω

1

2
(Tx)

2 +
ν

2k

(

Tx − (T k,j−1)x

)2

+
1

k2

[

h′(T )
(

T − T k,j−1
)2

+ h(T )
(

T − 2T k,j−1 + T k,j−2
)

(4.8)

−2h(T )
(

T − T k,j−1
)

+H(T )
]

dx.

The main contribution of the current work is the introduction of the varia-
tional framework for well-posedness of equation (3.1); this heavily depends
on the form of the functional defined in (4.8). Certainly, the choice in (4.8)
is not unique. However, for this functional we show that the related min-
imization problem is well-posed at each time step and the corresponding
Euler-Lagrange equation (4.13) is also the desired one.

Proposition 4.2. Let k > 0 be the time-step size, let T k,j−1, T k,j−2 ∈
X(Ω,R), j ≥ 2, be the minimizers from the time steps j − 1 and j − 2.
Assume that h satisfies assumptions (A1)–(A3) or that h(T ) = ηT with a
constant η > 0, then Jk,j attains a minimum in X(Ω,R).

Proof. Let s : Ω× R× R → R be defined as the integrand of the functional
Jk,j in (4.8), i.e.

Jk,j(T ) =

ˆ

Ω
s (x, T (x), Tx(x)) dx.

The function s(x, z1, ·) is obviously convex for every (x, z1) ∈ Ω×R because
of its quadratic structure in the last variable. To show that s is coercive we
introduce the following notation for simplicity

β1 := (T k,j−1)x(= ∂xβ2),

β2 := T k,j−1,

β3 := 2T k,j−1 − T k,j−2.
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Let h satisfy assumptions (A1)–(A3). By assumption (A1) we obtain

s(x, z1, z2) =
1

2
|z2|

2 +
ν

2k
(z2 − β1)

2 +
1

k2

(

h′(z1)(z1 − β2)
2

+ h(z1)(z1 − β3)− 2h(z1)(z1 − β2) +H(z1)

)

=
1

2
|z2|

2 +
ν

2k
(z2 − β1)

2 +
1

k2

((

h′(z1)−
h(z1)

z1

)

z21

−

(

h′(z1)−
h(z1)

z1

)

2β2z1 + h′(z1)β
2
2 − h(z1)β3 +H(z1)

)

(4.9)

≥
1

2
|z2|

2 +
1

k2

(

h′(z1)−
h(z1)

z1

)

z21

−
1

k2

∣

∣

∣

∣

h′(z1)−
h(z1)

z1

∣

∣

∣

∣

2|β2||z1| − |h′(z1)|
β2
2

k2
− |h(z1)|

|β3|

k2
.

By Young’s inequality, |β2||z1| ≤
1
2(|β2|

2 + |z1|
2). Importantly, the terms

involving |z1|
2 cancel. We thus obtain

s(x, z1, z2) ≥
1

2
|z2|

2 −
1

k2

∣

∣

∣

∣

h′(z1)−
h(z1)

z1

∣

∣

∣

∣

|β2|
2 − |h′(z1)|

β2
2

k2
− |h(z1)|

|β3|

k2
.

Then, by assumptions (A3)(i) and (A3)(ii) and another application of Young’s
inequality, we get

s(x, z1, z2) ≥
1

2
|z2|

2 −
c3

k2
|β2|

2 −
c4β

2
2

k2
−

|h(z1)||β3|

k2

≥
1

2
|z2|

2 −
c3

k2
|β2|

2 −
c4β

2
2

k2
−

|h(z1)|
2

2k2
−

|β3|
2

2k2
.

Finally, by (A2) we obtain

s(x, z1, z2) ≥
1

2
|z2|

2 + α1|z1|
q + α2(x)

for some α1 ∈ R and α2 ∈ L1(Ω), which implies that the functional Jk,j is
weakly lower semicontinuous on W 1,2(Ω,R) and allows an application of a
standard existence theorem in the direct method of the calculus of variation,
see [4, Theorem 3.30].

Next we prove the lower bound in the case of h(T ) = ηT for some η > 0.
Starting with (4.9), we have

s(x, z1, z2) =
1

2
|z2|

2 +
ν

2k
(z2 − β1)

2 +
η

k2

(

β2
2 − z1β3 +

1

2
z21

)

≥
1

2
|z2|

2 −
η

2k2
|z1||β3|+

η

2k2
1

2
z21 .
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An application of Young’s inequality to the second term and a cancellation
of the terms involving z21 yields

s(x, z1, z2) ≥
1

2
|z2|

2 −
η

2k2
|β3|

2

and hence the coercivity required for an application of the above cited ex-
istence theorem. For the upper bound we start again from (4.9) and apply
assumption (A3) to obtain for some constant c > 0 (which may change from
line to line)

s(x, z1, z2) ≤c
(

|z2|
2 + |β1||z2|+ β2

1 + z21 + |β2||z1|+ β2
2

+ |h(z1)||β3|+H(z1)
)

.

Finally, another application of Young’s inequality implies

s(x, z1, z2) ≤c
(

|z1|
2 + |z2|

2 + |β1|
2 + |β2|

2 + |β3|
2 + |h(z1)|

2 +H(z1)
)

.

We remark that |h(z)|2 ≤ c(|z|2q + |z|q + 1) ≤ c(|z|2 + 1) for any z ∈ R by
(A2). Thus we obtain, applying also (A1), that

s(x, z1, z2) ≤c
(

|z1|
2 + |z2|

2 + |β1|
2 + |β2|

2 + |β3|
2 + 1

)

.

Therefore it holds that

inf
T∈X(Ω,R)

{
ˆ

Ω
s(x, T (x), Tx(x)) dx

}

< ∞.

By the direct method of the calculus of variations, the functional attains a
minimum in X(Ω,R), see e.g. [4, Thm 3.30]). �

Next we consider the first variation of the functional in (4.8). Let λ ∈
(−λ∗, λ∗) for some suitably small λ∗ ∈ R and φ ∈ C∞

0 (Ω,R). The first
variation is then given by

d

dλ
Jk,j (T + λφ)|λ=0

=

ˆ

Ω
Txφx +

ν

k

(

Tx − (T k,j−1)x

)

φx +
1

k2

[

h′′(T )
(

T − T k,j−1
)2

φ

+ 2h′(T )
(

T − T k,j−1
)

φ+ h′(T )
(

T − 2T k,j−1 + T k,j−2
)

φ

− 2h′(T )
(

T − T k,j−1
)

φ+ h(T )φ− 2h(T )φ+ h(T )φ
]

dx

=

ˆ

Ω

{

− Txx −
ν

k

(

Txx − (T k,j−1)xx

)

+
1

k2

[

h′′(T )
(

T − T k,j−1
)2

+h′(T )
(

T − 2T k,j−1 + T k,j−2
)]

}

φ dx,

where we used integration by parts for the last equality. Hence, a minimizer
T k,j ∈ X(Ω,R) of Jk,j , j ≥ 1, satisfies the weak, discretized Euler-Lagrange
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equation

ˆ

Ω

{

− (T k,j)xx −
ν

k

(

(T k,j)xx − (T k,j−1)xx

)

+
1

k2

[

h′′(T k,j)
(

T k,j − T k,j−1
)2

+h′(T k,j)
(

T k,j − 2T k,j−1 + T k,j−2
)]

}

φ dx = 0

(4.10)

for every φ ∈ C∞
0 (Ω,R), which is exactly the weak, time-discretized version

of (3.1).

In the following we introduce a time-dependent function T̃ k : Ω×[0,∞) →
R by piecewise constant interpolation of the T k,j , which are the solutions
of the discretized Euler-Lagrange equation. For a time-stepsize k > 0 and
for j ∈ N ∪ {0} set Ik,j := ((j − 1)k, jk]. Moreover, we construct a time-
dependent function T k : Ω× [0,∞) → R by linear interpolation of the min-
imizers T k,j at time kj and T k,j−1 at time k(j − 1), which, in contrast to
the constant interpolation, is differentiable with respect to time. Then the
interpolations are defined as follows for any (x, t) ∈ Ω× [0,∞):

T̃ k(x, t) := T k,j(x), if t ∈ Ik,j ,

T k(x, t) :=

(

j −
t

k

)

T k,j−1(x) +

(

t

k
− (j − 1)

)

T k,j(x), if t ∈ Ik,j .

Correspondingly, the first time derivatives are defined by

S̃k(x, t) := Sk,j(x) :=
1

k

(

T k,j(x)− T k,j−1(x)
)

, if t ∈ Ik,j ,

(4.11)

Sk(x, t) :=

(

j −
t

k

)

Sk,j−1(x) +

(

t

k
− (j − 1)

)

Sk,j(x), if t ∈ Ik,j .

Finally, for the second-order time derivatives we set

R̃k(x, t) := Rk,j(x) :=
1

k

(

Sk,j(x)− Sk,j−1(x)
)

, if t ∈ Ik,j ,

Rk(x, t) :=

(

j −
t

k

)

Rk,j−1(x) +

(

t

k
− (j − 1)

)

Rk,j(x), if t ∈ Ik,j .

Note that
(

T k
)

t
= S̃k,

(

Sk
)

t
= R̃k.(4.12)

Hence, the weak, time-discretized Euler-Lagrange equation in (4.10) can be
rewritten, for every φ ∈ C∞

0 (Ω,R), as

(4.13)

ˆ

Ω

[

−(T̃ k)xx − ν(S̃k)xx +
(

h′′(T̃ k)(S̃k)2 + h′(T̃ k)R̃k
)]

φ dx = 0.
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5. Compactness

For the case h(T ) = ηT , η > 0, we prove the compactness result needed
for the proof of the main result of this paper.

Proposition 5.1. Assume that h(T ) = ηT with a constant η > 0 in (3.1).
Also, assume that the initial energy is bounded, that is,

sup
k>0

E(T k
0 , S

k
0 ) < ∞.

Then the following quantities defined in (4.7) weakly converge as the time
step k → 0, up to suitably chosen subsequences,

(5.1)
T k

∣

∣

t=0
= T k

0 ⇀ T0 in W 1,2(Ω,R),

Sk
∣

∣

t=0
= Sk

0 ⇀ S0 in L2(Ω,R).

Moreover, for every t > 0, after choosing suitable subsequences we obtain
the following convergences as k → 0;

T̃ k ∗
⇀ T̃ in L∞

(

0, t;W 1,2(Ω,R)
)

∩W 1,∞
(

0, t;L2(Ω,R)
)

,(5.2)

T k ∗
⇀ T in L∞

(

0, t;W 1,2(Ω,R)
)

∩W 1,∞
(

0, t;L2(Ω,R)
)

,(5.3)

S̃k ∗
⇀ S̃ in L∞

(

0, t;L2(Ω,R)
)

∩W 1,∞
(

0, t;L2(Ω,R)
)

,(5.4)

Sk ∗
⇀ S in L∞

(

0, t;L2(Ω,R)
)

∩ L2
(

0, t;W 1,2(Ω,R)
)

,(5.5)

R̃k ∗
⇀ R̃ in L2

(

0, t;W−1,2(Ω,R)
)

.(5.6)

Proof. Firstly, we note that the choice of h given in the statement of the
theorem allows one to have f(T, Tt) = −η

2T
2
t , in which case the energy

becomes

E(T (t), Tt(t)) :=

ˆ

Ω

(

1
2T

2
x (x, t) +

η
2T

2
t (x, t)

)

dx.

By this, which ensures having the term |Sk
0 |

2 in the initial energy in the
discrete setting, and the assumption on finiteness of the initial energy we
obtain the assertions in (5.1). To prove (5.2)–(5.6), we use (4.6) for the
discretized quantities T k and Sk given by
(5.7)
ˆ

Ω

(

1
2(T

k
x )

2(x, t)+ η
2 (S

k)2(x, t)
)

dx+ν

ˆ t

0

ˆ

Ω

(

Sk
x

)2
dx dt = E(T k

0 , S
k
0 ) < ∞.

By (5.7), we obtain (5.2), (5.3), (5.4) and (5.5). To prove (5.6), note that

h(z) = z implies h′′(T̃ k)(S̃k)2 + h′(T̃ k)R̃k = R̃k. Therefore, from (4.13), we
have

‖R̃k(t)‖W−1,2 ≤ ‖T̃ k
x (t)‖L2 + ν‖S̃k

x(t)‖L2 ∀t > 0,

where for q ≥ 1, the norm ‖ · ‖W−1,q and ‖ · ‖(Lq)′ are defined as

‖f‖W−1,q = sup
φ∈W 1,q

0
\{0}

∣

∣

´

Ω fφ dx
∣

∣

‖φ‖W 1,q

and ‖f‖(Lq)′ = sup
‖φ‖Lq

∣

∣

∣

∣

ˆ

Ω
fφ dx

∣

∣

∣

∣

.
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Now, the first term is bounded in L∞(0, t;L2(Ω,R)) and the last term in
L2(0, t;L2(Ω,R)) so both terms are bounded in L∞(0, t;L2(Ω,R)). �

We are now in a position to state the below result, which yields further
information on the limit functions.

Theorem 5.2. Assume that h(T ) = ηT , η > 0. Then, the limits obtained

in Proposition 5.1 satisfy T̃ = T, S̃ = S = Tt, R̃ = R = St. In particular,

T ∈ L∞(W 1,2) ∩W 1,∞(L2) ∩W 2,∞(L2)

and the equality
ˆ t

0

ˆ

Ω

{

(Tx + νSx)φx + ηSφt

}

dx dτ +

ˆ

Ω
η Sφ|τ=t −

ˆ

Ω
η Sφ|τ=0 = 0

holds for every t > 0, φ ∈ C∞
0 (Ω× [0,∞),R), and we have T |t=0 = T0 and

S|t=0 = S0.

Proof. By [9, Lemma 2.4] we know that the weak limits of piecewise constant
and piecewise linear interpolations of a function given at discrete time steps
coincide. Hence the assertion follows with the help of Proposition 5.1. �

In order to show that T is a weak solution of (3.1)–(3.5), it only remains
to pass to the limit. Before embarking upon this, however, we state the
following Aubin-Lions type lemma (see e.g. [3]) which will be referred to
later.

Lemma 5.3. Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1

where the first embedding being compact and the second one continuous. For
1 ≤ p, q ≤ ∞, let

W = {z ∈ Lp([0, t];X0) : zt ∈ Lq([0, t];X1)}.

If p < ∞, then the embedding of W into Lp([0, t];X) is compact. If p = ∞,
and q > 1, then the embedding of W into C([0, t];X) is compact.

Proposition 5.4. Let T k
0 and Sk

0 be as in Proposition 5.1, and let k be the
index of the subsequence for which the convergences (5.1) and (5.2)–(5.6)
hold. Then, T k, Sk and Rk converge strongly in L2(0, t;L2(Ω,R)).

Proof. We first note that by (5.3) and (5.5), we know that T k converges
to T in the weak topology of L∞(W 1,2) ∩ W 1,∞(L2). By Lemma 5.3, we
can conclude that this convergence is strong in L2(L2). Applying the same
result for Sk using (5.5) and (5.6) with Theorem 5.2, we can conclude that
Sk converges strongly to S in L2(L2). �

6. The main result

We now state and prove the main result of this work.



A VARIATIONAL APPROACH TO STRAIN-LIMITING VISCOELASTICITY 13

Theorem 6.1. Let Ω ⊂ R be an open, connected and bounded set and let
h(T ) = ηT , η > 0. Let α ∈ W 1,2(Ω,R), (A0) be satisfied and the initial
data belong to

T0 ∈ X(Ω,R) :=
{

T ∈ W 1,2(Ω,R) : T − α ∈ W
1,2
0 (Ω,R)

}

.

There exists a

T ∈ L∞
(

0,∞;W 1,2
)

∩W 1,∞
(

0,∞;L2
)

∩W 2,∞
(

0,∞;L2
)

∩W 2,2
(

0,∞;W−1,2
)

which is a global weak solution to (3.1)–(3.5), that is,
ˆ ∞

0

ˆ

Ω

(

Txφx + νTxxφt + (h(T ))ttφ
)

dx dt = 0.(6.1)

with T |t=0 = T0 and S|t=0 = S0, where φ ∈ C∞
0 (Ω × [0,∞),R). Moreover,

the energy-dissipation equality given by

E(T (t), Tt(t))− E(T (0), Tt(0)) = −ν

ˆ t

0

ˆ

Ω
T 2
xt(x, t) dx dt,

for every t > 0, is satisfied.

Proof. The assertion follows from Proposition 4.2, Proposition 5.1 and The-
orem 5.2. �

7. Conclusion

In this paper, the main aim is to place the already-developed theory
for strain-rate type viscoelasticity with limiting strain into the variational
framework of minimization problems. Even though some of the results pre-
sented here are proved for general nonlinearities h(T ) satisfying (A1)–(A3)
as well as for the linear case, the convergences, and hence the existence of
solutions are proved only for h(T ) = ηT , η > 0, which leaves the nonlinear
cases open for further work. Moreover, as a result of being able to work in
this variational setting, there are more generalizations to be made for the
elastic part of the energy, which we believe will be the main contributions
of some forthcoming papers.
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[17] Şengül, Y.: Global existence of solutions for the one-dimensional response of vis-

coelastic solids within the context of strain-limiting theory. Association for Women

in Mathematics Series, Research in Mathematics of Materials Science 31:319-332,
2022.

(L. Bachmann) University of Würzburg, Institute of Mathematics, Emil-

Fischer-Str. 40, 97074 Würzburg, Germany

Email address: luisa.bachmann@uni-wuerzburg.de
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