
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/163364/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Chen, Boyu, Che, Yanbo, Zhou, Yue and Zhao, Shuaijun 2023. Day-ahead optimal peer-to-peer energy
trading strategy for multi-microgrids based on Nash bargaining game with data-driven chance constraints.

Sustainable Energy, Grids and Networks 36 , 101192. 10.1016/j.segan.2023.101192 

Publishers page: http://dx.doi.org/10.1016/j.segan.2023.101192 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



1 

Abstract — This paper proposes an optimization model to 
obtain the day-ahead optimal peer-to-peer (P2P) trading strategy 
for multi-microgrids (MMG). Firstly, a joint economic energy 
and reserve scheduling model of a microgrid (MG) is established 
while considering specific network constraints.  Then, to mitigate 
the impact of renewable energy and load forecasting errors, 
chance constraints are introduced for the reserve capacity and 
buses voltage limitations of an individual microgrid. Additionally, 
a versatile distribution method is adopted to capture the 
probability distribution of uncertain variables in a data-driven 
manner, avoiding any prior assumptions. Finally, Nash 
bargaining theory is employed to deal with the P2P energy 
trading problem among MMG. The problem is equivalently 
transformed into two sequential subproblems for solving. 
Moreover, the alternating direction method of multipliers 
algorithm is used to solve the subproblems in a distributed 
manner for privacy concerns. The proposed model not only 
enables effective P2P energy trading for MMG, but also ensures 
compliance with the internal network constraints of each MG. 
Furthermore, the scheduling strategy exhibits robustness in 
handling forecast errors related to renewable energy and load. In 
case studies, MMG containing three interconnected MGs is 
constructed based on the IEEE-123 bus distribution network, 
and simulation results show that the cost of the MMG is reduced 
by 9.92% while all the MGs can benefit from P2P trading. In 
addition, the risk-averse scheduling results of energy and reserve 
are obtained, and the conservativeness can be controlled by 
changing the confidence level, which verifies the effectiveness of 
the proposed model. 

Index Terms-- Multi-microgrids; peer-to-peer energy trading; 
Nash bargaining game; data-driven chance constraint; 
distributed optimization. 
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MG Microgrid 
BS Battery storage 
DG Distributed generator 
MILP Mixed-integer linear programming 
SOP Soft open points 
RO Robust optimization 
SO Stochastic optimization 
CCP Chance constraint programming 
PV Photovoltaic 
WT Wind turbines 
MGO MG operator 
PDF Probability density function 
CDF Cumulative distribution function 
ADMM Alternating direction method of multipliers 
Sets 
T Set of time slots 
G Set of DG 
BS  Set of BS 
 Set of buses 
Indices 
t Indexes of time slots 
g Indexes of DG 
bs Indexes of BS 
j Indexes of buses 

Variables 
,gd b

tP Buying power from the main grid 
,sgd

tP Selling power to the main grid 
g

tP Output power of controllable DG 
g
tx Binary variable indicates the operating status 

of DG 
,g su

tx , ,g dn
tx Binary variable indicating the starting and 

stopping status of DG, respectively 
,g dn

tR , ,g up
tR Downward and upward reserve of DG 

bs
tE Energy state of BS 

,bs c
tP , ,bs d

tP Charging and discharging power of BS 
,bs dn

tR , ,bs up
tR Downward and upward reserve of BS 

gd
tQ Interactive reactive power between MG and 

the main grid 
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in
jtP Injected active power of the bus j  
in
jtQ Injected reactive power of the bus j

jtV Voltage amplitude of the bus  j  

,
l

ij tP Active power on the branch  l  

,
l
ij tQ Reactive power on the branch  l  

,
n

m tP Active power trading from MG m  to MG  
n  

,
n
m tQ Reactive power supporting by SOP to MG 

m  
,
,

n loss
m tP Active power loss of SOP 

Parameters 
b
tpr Buying price of electricity 
s
tpr Selling price of electricity 

ga , gb , gc Cost factors of the DG 
g,supr , ,dnpr g Starting and stopping costs of DG 

gP ,  gP Lower and upper output limits of DG 
cη , dη  Charging and discharging efficiency of BS 
bsE , bsE Upper and lower limits of the energy state 
bs
0E Initial energy state of BS 
bs,cP , bs,dP Upper limit of charging power and 

discharging power 
gdP Maximum interactive active interactive 

power between MG and the main grid 
gdQ  Maximum interactive reactive power 

between MG and the main grid 
jκ Binary parameter indicating the connection 

status of the bus to the equipment 
l
ijP Upper limits of active power of the branch 
l
ijQ Upper limits of reactive power of the branch 

0V Voltage amplitude of the root bus 
ΔV Maximum allowable deviation of the bus 

voltage 
sopA Loss factor of SOP 

 
m
n,sopS Capacity of SOP 

1. Introduction

istributed generators (DG), battery storage (BS), and 
local loads can be integrated into a microgrid (MG) for 

efficient management [1]. With the increasing penetration of 
distributed energy resources, multiple interconnected MGs, 
will emerge in the neighborhood to form the multi-microgrids 
(MMG) [2]. The concept of the control system of MMG was 
first introduced in [3]. MMG can take advantage of the 
differentiated resource distribution and supply-demand 
relationship between different MGs to achieve power supply 
through peer-to-peer (P2P) trading, reduce total system 
operating costs, and improve operational reliability [4]. In 

MMG, each MG is a profit-seeker, usually aiming to reduce 
its own operating costs [5]. Therefore, reasonable MMG 
scheduling strategy and trading mechanisms are needed to 
incentivize MGs to participate in P2P trading and achieve win-
win cooperation among all the MGs [6].  

1.1. Related work and motivation 
The scheduling framework for the P2P transaction of MMG 

can be classified as centralized or decentralized. The 
centralized scheduling framework requires a central controller 
that collects detailed information about each MG and develops 
the scheduling strategy for all the MGs in MMG [7], [8]. Ref. 
[9] considers mobile energy storage when formulating P2P
trading strategies for MMG, while Ref. [10] takes demand-
side response into account. A cooperative game model for
MMG was developed in [11], and the economic benefits were
assigned to each MG using Shapely values. Ref. [12]
presented a bi-level energy management framework to
coordinate P2P energy trading among multiple prosumers. By
using Karush-Kuhn-Tucker conditions, the bi-level model was
transformed into an equivalent single-level mixed-integer
linear programming (MILP) problem for solving.

However, in the aforementioned studies, when employing a 
manager to facilitate energy sharing between MGs within a 
centralized scheduling framework, several drawbacks emerge. 
Firstly, this approach necessitates each MG to disclose 
detailed information regarding its internal devices, thereby 
compromising the data privacy of the MG. Secondly, it 
imposes rigorous demands on communication and control 
systems, resulting in a lack of scalability and potentially 
burdening the computational resources [13], [14]. Due to the 
privacy concerns associated with each microgrid, using a 
centralized scheduling framework in practical applications can 
be challenging. In contrast to the above studies, a 
decentralized scheduling framework for  P2P energy trading 
of MMG had been established based on distributed algorithms 
such as the analytical target cascading algorithm [15], 
alternating direction method of multipliers (ADMM) 
algorithm [16], [17], [18], [19], and Dantzig-Wolfe 
decomposition algorithm [20]. In the decentralized scheduling 
framework, each MG only needs to utilize optimization model 
decomposition techniques and share limited information with 
neighboring MGs or a third-party coordinator, such as the 
exchanged power between other MGs. The detailed data of 
renewable energy generation, load power, power network 
topology, and other internal information within each MG is 
kept private, achieving the scheduling independence of MGs. 

In peer-to-peer energy trading, it is essential to consider the 
interests of different participants and develop a fair and 
reasonable energy trading clearance mechanism. Cooperative 
game theory is a widely adopted approach to achieving this 
objective. A cooperative game model for MMG was 
developed in [11], and the economic benefits of collaborative 
scheduling were assigned to each MG using Shapely values. 
However, in situations where a large number of players are 
involved, the computational complexity of this method 
becomes a significant obstacle. To overcome this challenge, 
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researchers have turned to Nash bargaining theory as an 
alternative model for cooperative energy trading problems. In 
[18] and [21], the Nash bargaining game optimization model 
was established for the coordinated operation problem of 
MMG, while considering demand side management. Ref. [22] 
proposed a bi-level P2P multi-energy trading framework and 
the lower-level P2P energy market was settled using Nash 
bargaining theory. Nash bargaining optimization model can be 
equivalently transformed into a social welfare optimization 
problem and a payment bargaining problem subproblem. 
These subproblems can then be solved within a distributed 
scheduling framework [16]. 

In [7]–[12] and [15]–[19], MGs were approximately 
simplified as aggregation buses, which lacks the consideration 
of the internal topology of MGs. This may cause the optimal 
scheduling strategy to violate physical constraints of power 
networks in MGs, making the strategy unfeasible. With the 
increasing penetration of renewable power generation and 
electric vehicles, over-voltage and under-voltage problems are 
becoming more and more prominent. It is essential to consider 
the network constraints within MG. In recent years, soft open 
points (SOP) have been widely used in distribution networks 
to replace traditional contact switches. When the SOP is 
installed between different feeder buses, it can effectively 
control the active power transmission between feeders while 
also providing reactive power support [23]. Therefore, by 
using SOPs to connect MGs, flexible connection of multiple 
MGs and complete controllability of power flow between 
MGs can be achieved. It provides an effective interconnection 
between MGs at physical level [24]. 

In addition, there are significant uncertainties in load 
consumption and renewable generation. Robust optimization 
(RO) [11], [20], [25], [26] and stochastic optimization (SO) 
[12], [18], [20] are two common methods to deal with 
uncertainty. RO only requires the boundary values of 
uncertain variables, but it will result in over-conservative 
scheduling results. SO uses information about the probability 
distribution of uncertain variables to generate multiple 
stochastic scenarios, resulting in robustness of the scheduling 
results being dependent on the generated stochastic scenarios 
and the computational complexity growing exponentially with 
the number of scenarios. 

The chance constraint programming (CCP) is another 
effective approach to deal with uncertain variables, which 
allows the constraints to be violated with a small probability. 
CCP is more appropriate to be applied in decentralized 
dispatch because of the less computational burden compared 
to SO, and the conservativeness of the solution can be 
controlled by changing the confidence level. In previous 
studies, CCP was widely used in the scheduling problem of 
integrated energy systems [27], MGs [28], active distribution 
networks [29], and MMG [15]. CCP requires prior knowledge 
about the probability distribution information of uncertain 
variables, which has traditionally been assumed to follow a 
Gaussian distribution in previous studies. However, the 
assumed probability distributions may not be well suited to 
real-world situations. If the actual distribution of prediction 
errors deviates from the Gaussian assumption, the resulting 
scheduling outcomes may fail to meet the confidence 
requirements of chance constraints, leading to violations of the 
operational constraints of the system and compromising its 
safety and stability. Fortunately, with the advancement of 
advanced measurement technologies, it has become feasible to 
extract probability distribution characteristics of prediction 
errors in a data-driven manner using historical measurement 
data. By employing a probability distribution that better aligns 
with the actual prediction error distribution, these issues can 
be mitigated. 

1.2. Objective and contributions 
There are two main issues in developing an optimal P2P 

trading strategy for MMG: 1) how to develop a dispatch 
strategy for each MG and 2) how to trade energy with other 
MGs and distribute the benefits. This paper aims to formulate 
an optimization model to obtain the day-ahead optimal P2P 
trading strategy for MMG, which can effectively solve the 
above two issues. In each MG, the network constraints are 
considered, and load consumption and renewable generation 
uncertainties are dealt with by a data-driven CCP approach. 
The P2P optimization model for maximizing the total benefits 
of MMG is established based on the Nash bargaining game 
theory and solved in a distributed manner. The comparison of 
the research between this paper and the previous studies is 
shown in Table 1.  

Table 1 
Comparison of the research of this paper and previous studies. 

Paper Network Constraints Decentralized Nash bargaining Uncertainty 
RO SO CCP Data-driven CCP 

[7][8][9][10]     √   
[11]    √    
[12]   √  √   

[13][14] √    √   
[15]  √    √  

[16][17]  √ √     
[18]  √ √  √   
[19]  √      
[20] √ √  √ √   
[21]  √ √ √    
[22] √ √ √     
[25] √   √    
[26] √ √ √ √    

This paper √ √ √    √ 
The main contributions of this paper are summarized as follows. 
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(1) This paper considers the internal power flow
constraints and establishes a joint energy and reserve
economic dispatch model for an individual microgrid.
CCP is used to handle the impact of renewable energy
forecasting errors on reserve capacity and bus voltage
limits. Unlike previous studies that assumed the
forecasting errors followed a Gaussian distribution,
this paper uses a versatile distribution to characterize
the probability distribution of forecasting errors. The
parameters of this versatile distribution are obtained in
a data-driven manner using historical forecasting error
data, avoiding the need to assume a specific
probability distribution for forecasting errors.

(2) In this paper, MGs are connected via SOPs to
construct MMG. Over-voltage and under-voltage
problems of MGs are tackled by the reactive power
output from SOPs. The Nash bargaining model is
established for the P2P trading of MMG. Two
sequential subproblems, equivalent to the Nash
bargaining model, are formulated as a mixed-integer
second-order cone programming (MISOCP) and a
convex optimization problem, respectively. The
optimization models of the subproblems are solved in
a distributed manner using the ADMM algorithm.

(3) MMG containing three MGs are constructed based on
the IEEE 123-bus distribution network for simulation.
First, the fitting effect of the versatile distribution is
verified. Then, the dispatching results of energy and
reserve and the operating cost of MMG are analyzed to
verify the effectiveness of the proposed method.
Finally, the influence of the confidence level on the
scheduling results is analyzed.

The remainder of this paper is organized as follows. The 
optimization model of MGs with chance constraints is 
developed in Section 2. In Section 3, the Nash bargaining 
model of MMG is established, and the solution method is 
proposed. The results and analysis of the case study are 
presented in Section 4. Finally, this study is summarized with 
the future research topics discussed in Section 5. 

2. Chance constrained optimization model of an
individual microgrid

2.1. Optimization framework of an individual microgrid 

The optimization framework of an individual MG proposed 
in the paper is shown in Fig. 1. Renewable generation like 
photovoltaic (PV) panels and wind turbines (WT), as well as 
controllable DGs, are used to satisfy the load demand in the 
MG. The MG can also buy electricity from the main grid or 
sell surplus electricity to the main grid while operating in the 
grid-connected mode. In addition, BSs can provide additional 
dispatch flexibility for the MG. The MG operator (MGO) is 
responsible for developing the day-ahead dispatch plan for the 
MG. The versatile distribution is used to model the probability 
distribution of forecast errors, and chance constraints are 

formulated based on the versatile distribution. The MG is 
considered as a controllable entity in which the forecast error 
can be balanced by scheduling the reserve. According to the 
next day's power forecast curves, energy and reserve day-
ahead dispatch plans of DGs and BSs are developed by 
solving the optimization model. 

Main grid

Energy 

Reserve

WT

BSs DGs

PV
Historical 

data
Versatile 

distribution

Chance 
constraintsForecast 

data

Optimization 
model

MGO

Load

Power flow Information flow 

Fig. 1. The illustration of the proposed MG optimization framework. 

2.2. Objective function 

The MGO aims to minimize its operating costs, including 
the cost of interaction with the main grid and the fuel cost of 
controllable generators. The objective function can be 
expressed as: 

b , s ,s 2
t t g

g,su ,dn
T g g

, ,dn

pr pr a
min   

b c pr pr

gd b gd g
t t t

mg g g
t t

g su g
t t

P P

x x

P
C

P∈

 − + +
 =
 + + + 

∑ (1) 

The quadratic function about the operating cost of DGs can 
be linearized using the piecewise linearization method [30]. 

2.3. Constraints 

 (1) Distributed generator constraints
In the day-ahead stage, the output power and reserve

capacity are scheduled and should satisfy the power limitation 
constraints. The reactive power of DGs is not considered in 
the paper, i.e., the power factor of DGs is 1. The constraints of 
DGs are shown as follows: 

gg , ,P P G    g g dn g g up
t t t t

g
tx x R gR P+ ≤ ∀− ∈≤ (2) 

, ,
1 G  g su g dn g g

t t t tx x x x g−− = − ∀ ∈ (3) 
, ,0,   G0  g dn g up

t tR R g≥ ≥ ∀ ∈ (4) 
(2) Battery storage constraints
The charging, discharging power, and reserve capacity of

BSs are also scheduled at the day-ahead stage. The constraints 
are shown as follows: 

( )c , , d
1 Δ BSη / η t    bs bs bs c bs d

t t t tE P P bsE − ∀+ ∈= −  (5) 
bs bs bs

0E SE ,   E B     bs bs
t TE sE b∀= ∈≤ ≤  (6) 

, , bs,c , bs,c ,P ,  P BS  bs c bs dn bs dn bs d
t t t tP R P bR s+ ≤ ≤ ∈+ ∀ (7) 

, , bs,d , bs,d ,P ,  P B  Sbs d bs up bs up bs c
t t t tP R R P bs∀+ ≤ ∈≤ +  (8) 

, , , ,0 BS0,   0,   ,   0  bs c bs d bs dn bs up
t t t tP bP R R s≥ ∀≥ ∈≥ ≥ (9) 

(3) Main grid constraints
The active and reactive power interaction between the MG

and the main grid should meet the upper and lower limits, as 
follows: 
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gd,g, dP ,  0 0 Pgd b gd s
t tP P≤ ≤ ≤ ≤ (10) 

gd gdQ Qgd
tQ− ≤ ≤ (11) 

(4) Network constraints
In this paper, the power flow of MGs is modeled using the

linearized DistFlow model [31], [32], which can be expressed 
as: 

gd , , g pv
j j j

wt bs , , ld
j j j

κ ( ) κ κ
 

κ κ ( ) κ

gd b gd s g pv
t t t

wt bs d bs c l

t

d
in
jt

t t tt

P P P P
P

P
j

P P P

 − + + +
 =
 + − −

∀


∈  (12) 

gd ld
j jκ κ     ldin gd

jt t jtQ Q Q j−= ∀ ∈ (13) 

, ,
φ(j) θ(j)

in l l
jt jk t ij t

k i
P P P j

∈ ∈

= − ∀ ∈∑ ∑  (14) 

, ,
φ(j) θ(j)

in l l
jt jk t ij t

k i
jQ Q Q

∈ ∈

= − ∀ ∈∑ ∑  (15) 

( ), ij , ij 0Vr xl l
it jt ij t ij tV Q lPV− = + ∀ ∈  (16) 

l l
ij , ijP Pl

ij tP l− ≤ ∀ ∈≤  (17) 
l l
ij , ijQ Ql

ij tQ l− ≤ ∀≤ ∈  (18) 

0 0V ΔV V ΔV    jtV j− ≤ ≤ + ∀ ∈ (19) 

2.4. Uncertain variables model 

In the above optimization model, the renewable generation 
and load consumption are difficult to predict accurately. They 
are uncertain variables, which can be expressed as the sum of 
the forecast value and the forecast error: 

,uv uv f uvP P ξ= + (20) 

where ,uv fP  and uvξ  denote the forecast value and forecast 
errors of uncertain variables, respectively. The superscripts uv  
represents PV, WT, or load. 

When using CCP to address uncertain variables in MGs, the 
probability distribution of the forecast error needs to be 
determined first. In previous studies, the forecast errors were 
assumed to follow Gaussian distribution. However, this 
assumption may not be well guaranteed in reality. Hence, this 
paper uses a versatile distribution to model the probability 
distribution of forecast errors [33]. This method is data-driven, 
and the distribution information can be obtained from 
historical data without prior assumptions. The probability 
density function (PDF), the cumulative distribution function 
(CDF), and the inverse function of the CDF of the versatile 
distribution can be expressed as: 

( )
( )

1
( )

( )
1

uv

uv

uv ef
e

γξ

ξ

δ

β
δ γ

δξ β − −

+
− −

=
+

(21) 

( )( )( ) 1
uvuvF e

β
δ ξ γξ

−
− −= + (22) 

( )1 1/1( ) ln 1uvF c
ξ

βγ
δ

ε− −= − − (23)

where δ , β  and γ  are the shape parameters, and ε  is a 
parameter related to the confidence level. The nonlinear least-
squares fitting method can be used to determine the shape 
parameters based on historical data. Since the shape 

parameters are obtained in a data-driven way based on 
historical data, the versatile distribution endogenously reflects 
the uncertain level of the uncertain variables without any prior 
assumptions. Leveraging the Eq. (23), the upper and lower 
bounds of the forecast error can be determined with the value 
of ε  specified by the MGO. In addition, it can be seen from 
Eq. (23) that the inverse function of the CDF has an exact 
analytical form. Thus, the chance constraints constructed 
based on the versatile distribution can be easily reformulated 
into a solvable form.  

2.5. Chance constraints model 

CCP is a commonly used method for handling uncertain 
variables. It achieves risk-averse scheduling outcomes by 
ensuring that the probability of meeting specific constraints is 
at least as high as a specified confidence level. For ease of 
comprehension, the general form of chance constraints can be 
represented as: ( )( , ) 0 1 εg xθ θ ≤ ≥ − . ( , )g x θ  represents the 
constraint function that depends on both the decision variable 
x  and the uncertain parameter θ . The inequality ( , ) 0g x θ ≤  
represents the constraint to be satisfied. The parameter ε  
represents the allowed violation probability, and the term 1 ε−  
denotes the confidence level, indicating the desired probability 
of meeting the constraint. A higher confidence level indicates 
that a higher uncertainty level is considered, and the chance 
constraint will be satisfied with a higher probability. Notably, 
a smaller probability of violation corresponds to a more 
conservative optimal scheduling, which brings more operating 
costs to MGOs. Hence, the MGO can control the conservatism 
of the optimal scheduling results by choosing an appropriate 
value of confidence level and making a trade-off between the 
conservatism and the economy of the optimal scheduling. 

In this paper, the total forecast error tξ  of uncertain 
variables in MGs can be expressed as: 

WT PV LD

wt pv ld
t t t t

wt pv ld
ξ ξ ξ ξ

∈ ∈ ∈

= + −∑ ∑ ∑  (24) 

A linear affine strategy is used to assign the total forecast 
error to the controllable units within the MG. ,g up

tα  and ,g dn
tα

denote the upward and downward reserve affine coefficients 
of DGs in time slot t , respectively. ,bs up

tα  and ,bs dn
tα  denote 

the upward and downward reserve affine coefficients of BSs 
in time slot t , respectively. The constraints of reserve affine 
coefficients can be expressed as: 

, , , ,

G BS
0,  0,  1g up bs up g up bs up

t t t t
g bs

α α α α
∈ ∈

≥ ≥ + =∑ ∑  (25) 

, , , ,

G BS
0,  0,  1g dn bs dn g dn bs dn

t t t t
g bs

α α α α
∈ ∈

≥ ≥ + =∑ ∑  (26) 

To meet the reserve demand with a significant probability, 
chance constraints are added to the upward and downward 
reserve provided by DGs and BSs as shown in Eqs. (27) and 
(28). 

( ), ,, ,

G

, 1 ε
t

g d gn g
t

ug dw up
t t t

p
t tR

g

R
ξ

α ξ α ξ≤ ≤ ≥−

∀

−

∈


(27)
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 ( ), , , ,

                                                       BS

, 1 ε
t

bs dn bs dn bs up bs up
t t t t t tR R

bs
ξ

α ξ α ξ≤ ≤−

∀

≥

∈

−
 (28) 

where ε  is a small positive number, indicating that the reserve 
demand is satisfied at the confidence level of 1 ε− .  

Forecast errors also impact not only the line power but also 
the bus voltage in MGs. While branches in MGs are typically 
not congested, problems related to over-voltage and under-
voltage violations tend to occur at several buses [34], [35]. As 
a result, the chance constraint for limiting bus voltage can be 
expressed as: 

 
( )0 0V ΔV V ΔV 1

                                                                   

( , , )
t

wt pv ld
tjt t tv

j
ξ

ξ ξ εξ− ≤ + −

∀ ∈

≤ ≥




 (29) 

where ( , , )wt pv ld
t t tjtv ξ ξ ξ  is a function which represents the 

relationship between the bus voltage and forecast errors. Since 
the network structure of MGs is radial and the power flow 
equations are linear, there is a linear relationship between bus 
voltage and bus injected power, i.e., ( , , )wt pv ld

t t tjtv ξ ξ ξ  is a 
linear function. 

In the chance constraints, the confidence levels for 
satisfying the upper and lower limits are specified as 1 2ε /− . 
Based on the inverse function of the CDF in Eq. (23) and the 
linear property of function ( , , )wt pv ld

t t tjtv ξ ξ ξ , chance 
constraints (27) – (29) can be reformulated as Eqs. (30) – (37) 
[36]. 

 ,,  G( )   g dn ld wt pv
t t

g
t t

dn
tR gα ξ ξ ξ− − ∀≤ − ∈  (30) 

 ,, ( G)    g up ld wt pv
t t t

g up
t tR gα ξ ξ ξ− − ∀ ∈≥  (31) 

 ,, ( )    BSbs dn ld wt pv
t t

bs
t

d
t t

nR bsα ξ ξ ξ− − ∀ ∈≤ −  (32) 

 ,, ( )     BSbs up ld wt pv
t t t

bs
t t

upR bsα ξ ξ ξ− − ∈≥ ∀  (33) 

 0 0,V ,ΔV V ΔV ( )   ld pv wt
t t tjtv jξ ξ ξ− ≤ + ∀≤ ∈  (34) 

 0 0,V ( , )ΔV V ΔV    ld pv wt
t t tjtv jξ ξ ξ ≤− ≤ + ∀ ∈  (35) 

 0 0,V ( , )ΔV V ΔV    ld pv wt
t t tjtv jξ ξ ξ ≤− ≤ + ∀ ∈  (36) 

 0 0,V ( , )ΔV V ΔV    ld pv wt
t t tjtv jξ ξ ξ ≤− ≤ + ∀ ∈  (37) 

where ld
tξ  and ld

tξ  are the lower and upper bounds of forecast 

error of load consumption, respectively; pv
tξ  and pv

tξ  are the 

lower and upper bounds of forecast error of the PV generation, 
respectively; wt

tξ  and wt
tξ  are the lower and upper bounds of 

forecast error of the WT generation, respectively. Based on the 
inverse function of the CDF of the versatile distribution, the 
lower and upper bounds of the forecast errors can be 
calculated as follows: 

 1 1( ),  (ε / 2 ε1 )/ 2ld ld
t t

ld ld
t tF F

ξ ξ
ξ ξ− − −= =  (38) 

 1 1( ),  (ε / 2 ε1 )/ 2pv pv
t t

pv pv
t tF F

ξ ξ
ξ ξ− − −= =  (39) 

 1 1( ),  (ε / 2 ε1 )/ 2wt wt
t t

wt wt
t tF F

ξ ξ
ξ ξ− − −= =  (40) 

It is worth noting that compared with CCP when using RO 
to deal with uncertain variables, the obtained scheduling 
results are over-conservative since the information on the 

probability distribution is not considered. Although the 
conservativeness of the optimal scheduling results can be 
controlled by the uncertainty budget in RO [37], the 
probability of violating the reserve and bus voltage constraints 
still cannot be directly quantified. Moreover, when using RO, 
the duality process should be conducted, which adds 
additional auxiliary variables and increase the complexity of 
the optimization model. In SO, the objective is to minimize 
the average operating costs with the scenarios considered [38], 
[39]. Hence, the obtained optimal scheduling result is 
essentially a risk-neutral scheduling result. By contrast, in this 
paper, leveraging CCP, the MGO can obtain risk-averse 
scheduling, effectively hedging against the operating risk 
caused by forecast errors. In addition, scenario-based SO 
provides poor out-of-sample performance unless the number 
of scenarios is very high, which in turn increases the 
computational burden. When using SO, scenario reduction is 
generally necessary. However, finding the optimal 
compromise between out-of-sample performance and 
calculation efficiency is not easy. Hence, in this paper, by 
using CCP, the probabilities of violating the reserve and bus 
voltage constraints are quantified leveraging the probability 
distribution information of versatile distribution, and the risk-
averse scheduling results, which can satisfy the chance 
constraints at a probability more than the predefined level, are 
obtained. In addition, the lower model complexity of CCP can 
well accommodate the calculation efficiency requirement 
when the optimization model needs to be solved repeatedly 
within a decentralized scheduling framework. 

Ultimately, the economic scheduling optimization problem 
with chance constraints for a single MG can be formulated as 
a MILP as follows: 

 
obj    (1)
s.t.    (2) (19), (24) (26), (30) (40)– – –

 (41) 

3. Nash bargaining model of MMG and solution method 

3.1. Nash bargaining model for MMG 

The Nash bargaining solution satisfies a set of axioms, 
including symmetry, where indistinguishable agents receive 
the same amount of profit, and Pareto optimality, where an 
agent's profit cannot be increased unless at least one other 
agent's profit is decreased. In Nash bargaining, the profit 
allocation can establish cooperation among agents by 
guaranteeing that each agent has a higher profit than it does in 
a noncooperative case. Using the Nash bargaining game 
approach, minimizing the operating costs of MMG, i.e., 
maximizing social welfare, is achieved. The benefits obtained 
from P2P energy trading are also rationally distributed among 
the MGs. The Nash bargaining game model is formulated as 
Eq. (42). ,com

mgC  denote the operating costs of the MG m  
after the bargaining process. If microgrids cannot reach an 
agreement, the bargaining process breaks down, and MG 
m  will operate individually with the operating cost ,indm

mgC . 
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It is also referred to as the disagreement point in the Nash 
bargaining game. 

( )
M

,ind ,

i
1

co

, nd ,co

max  

s.t. 0

m m
mg mg

m m
mg mg

m

C C

C C
=

−

−

≥

∏
(42) 

where M  denotes the number of MGs participating in the 
Nash bargaining game. By solving the above optimization 
problem, the optimal P2P trading strategy of MMG can be 
obtained. 

The above Nash bargaining model can be equivalently 
decomposed into two sequential subproblems [40]. The first 
subproblem is the P2P trading problem to minimize the 
operating cost of MMG and obtain the optimal P2P trading 
strategy. The second subproblem is the payment bargaining 
problem to achieve a reasonable distribution of total benefits 
among MGs. 

(1) SP1: P2P energy trading problem
The constraints of SOPs should be satisfied in the P2P

trading problem, which can be expressed as follows: 
 lo

,
s

, , ,
s loss 0n m

m t m t n t n tP PP P++ + = (43) 
n,sop n,sop

,m mQ Qn
m tQ− ≤ ≤ (44) 

( ) ( )2 2sop 
,

los
, ,

s A n n
m t m t m tP P Q= + (45) 

( ) ( )2 2 n,sop 
, , mSn n

m t m tP Q+ ≤ (46) 

Eqs. (45) and (46) can be reformulated to second-order cone 
constraints (47) and (48), respectively [41]. 

( ) ( ) p

,lo

o

ss
2 2 , ,

, , s s

,loss

p o
2

2A 2A
m t m tn

m m

n

t

n
n

t

P P
P Q+ ≤ (47) 

( ) ( )
 

m
n,sop n,sop 2 2

, ,
mS S2

2 2
n n

m t m tP Q+ ≤ (48) 

The constraints for each bus’s active and reactive power 
balance described in Eqs. (12) and (13) should be replaced by 
Eqs. (49) and (50). 

o
, , ,

l
,

( )

s

)

s

(

in n l l
jt m t m t jk t ij t

k j i j
P P P P P

ϕ θ∈ ∈

= −+ + ∑ ∑ (49) 

, , ,
( ) ( )

in l l
jt m t jk t ij t

k j i

n

j
Q Q Q Q

ϕ θ∈ ∈

−+ = ∑ ∑ (50) 

Ultimately, SP1 is formulated as a MISOCP as follows: 

M
min   

s.t.   (2) (11), (14) (19), (24)
)

– – (26),
(30) (4–

–
–0), (43) (44), (47) (– 50

m
mg

m
C

∈
∑

(51) 

(2) SP2: Payment bargaining problem
The optimization model of SP2 is as follows:

( )
M

,ind ,co* ,bar
,

,ind ,co* ,bar
,

,bar ba
,

1

, r
, 0

max  

s.t.   

       

0

m m n
mg mg m mg

m m n
mg mg m mg

n m

m

m mg n mg

C C C

C C C

C C

=

−

−

−

− ≥

+ =

∏
(52) 

where ,indm
mgC  is the cost of operating the MG m  independently; 

,co*m
mgC  is the operating cost of the MG m  when P2P energy 

trading is conducted, ,bar
,

n
m mgC  denotes the payment variable from 

MG m  to MG n . 

3.2. Decentralized solving method based on ADMM 

In this paper, the SP1 and SP2 are solved in a distributed 
manner by using the ADMM algorithm to protect data privacy. 
To facilitate the description of the ADMM algorithm, a 
convex optimization problem is considered as follows: 

,
min ( ) ( )

s.t.     A +B =c 
x yx S y S

f x g y

x y
∈ ∈

+
(53) 

The augmented Lagrangian model of the convex 
optimization problem denotes as follows: 

2
2

( , , ) : ( ) ( ) ( )

2

TL x y f x g y Ax By c

Ax By c

ρ λ λ

ρ

= + + + −

+ + −‖ ‖
(54) 

where λ  denotes Lagrangian multiplier, ρ  is a positive 
constant. To apply the ADMM model, a three-step procedure 
could be defined in which the variables would be iteratively 
updated as below: 

( )1 arg min , ,
x

k k k

x S
x L x yρ λ+

∈
= (55) 

( )1 arg min , ,
z

k k k

z S
y L x yρ λ+

∈
= (56) 

( )1 1 1k k k kAx By cλ λ ρ+ + += + + −  (57)

Local variables x  and global variables y  update by using 
Eq. (55) and (56), respectively. Eq. (57) is used to update 
Lagrangian multiplier λ . Finally, the following criteria are 
defined in order to ensure convergence of the approach. 

:kr Ax By c= + −‖ ‖ (58) 

( )1:k T k ks A yB yρ −= − (59) 

where kr  represents primal residual, and ks  shows dual 
residual of the ADMM model. 

The exact procedure for SP1 and SP2 using the ADMM 
algorithm is shown below. 

(1) SP1: P2P energy trading problem
In SP1, Eq. (43) is the coupling constraint, which can be

reformulated as Eqs. (60) and (61) by introducing auxiliary 
variables ,

ˆ n
m tP  and oss

,
l

m̂ tP . 
s  

,
lo s los

, ,
s

,
ˆ 0ˆ ˆˆn m
m t m t n t n tPP P P+ + + = (60) 

s losslos  
, , , ,

ˆˆm m
n t n t n t n tP PP P+ = + (61) 

The Lagrange multiplier of Eq. (61) is denoted by 1, ,
n
m tλ . 

Then, the augmented Lagrangian function about SP1 is 
expressed as: 
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M

loss
1, ,

loss
loss 1

1 1,

 
, , ,

, ,
M M\

loss,  
, ,

(

   = ˆ )

ˆ

(

ˆ2

, , )

ˆ

m
m

n m
m t m t n t

n
m t m t

n t m
t

n
m t

m
mg

m t T

n t

n m

n

P

P

P P

C P P
P

P

λ

ρ

∈

∈ ∈ ∈

=

  + − −
    + + 

+  
− −    

∑

∑ ∑ ∑

m m mx y λ 

 (62) 

where mx  denotes the variables about MG m , my  denotes 
the auxiliary variable associated with MG m , and 1ρ  is the 
penalty factor of the quadratic term. 

Based on the ADMM algorithm, using τ  denotes the 
number of iterations, and the specific iterative solution process 
of SP1 is as follows [42]. 

Step 1 (initializing parameters): for each MG m M∈ , 
initialize auxiliary variables 0=my and 0=mλ . Set the 
number of iterations 0τ = , and the values of the convergence 
tolerance ς  and penalty parameters 1ρ . 

Step 2 (solving optimization models of each MG): due to 
the decomposability of the augmented Lagrangian function Eq. 
(62), each MG Mm ∈  can solve its optimal scheduling 
problem independently. The optimization model of MG m  
can be expressed as follows: 

 

, ,τ ,τ
1

τ+1
,

                  s.t.   (2) (11), (14) (19), (24) (26),
                         (30) (40), (44), (47) (50), (60)

: arg min  ( , , )
– – –
– –

m m m m
m=x x y λ

 (63) 

After solving Eq. (63), each MG Mm ∈  broadcasts 1,
,

n
m tP τ +  

and loss, 1
,m tP τ +  to MG n . 

Step 3 (updating auxiliary variables): the auxiliary variables 
are updated according to Eq. (64). 

 

1 loss, 1 1 loss, 1

1 loss,

, ,
, , , ,

, ,
, ,

1 1 loss,
,

1
,

ˆ ˆ ˆ ˆ( )
ˆ ˆ ˆ ˆ( ) ( )

=
2

n m
m t m t n t n t

n m
m t m t n t n t

P P P P

P P P P

τ τ τ τ

τ τ τ τ

+ + + +

+ + + +

= −

−

+ +

+ +  (64) 

Step 4 (updating Lagrange multipliers): each MG Mm ∈  
updates the Lagrange multiplier according to Eq. (65). 

 
1 loss, 1

, 1 ,
, , 1 1 lo ,

,
,

1

,

, s
, ,

sˆ ˆ
n n
m t m

n
m t m t

n
m t m t

t

P P

P P

τ τ
τ τ

τ τ
λ λ ρ

+ +

+

+ +

 +
 = +
 − − 

 (65) 

Step 5 (convergence judgement): the primal and dual 
residuals are calculated. When the residuals are less than the 
convergence tolerance, stop the iteration and output the 
optimization result, otherwise 1τ τ= +  and return to Step 2. 
The convergence criterion is specified in Eq. (66). 

 
, ,

, 1 , 1

, ,
, , , ,

, ,
, , , ,

ˆ ˆ
max

ˆ ˆ ˆ ˆ

loss losn n
m t m t m t m t

n n
m t m t m

s

loss los
t m t

s

P P P P

P P P P

τ τ τ τ

τ τ τ τ
ς

− −

 + − −
  ≤  + − − 

 (66) 

Remark: Global convergence of the ADMM algorithm can 
be guaranteed when the model is convex [43]. However, the 
model of SP1 is non-convex because of the binary variables. It 
has been verified in [44] that the ADMM algorithm can 
converge linearly in a finite number of iterations for the 
optimization model, including binary variables. 

(2) SP2: Payment bargaining problem 
Since the objective function of SP2 is non-convex, the 

problem cannot be solved directly. Firstly, the objective 
function of SP2 is reformulated into a convex function by 
logarithmic transformation. Then, similar to SP1, the auxiliary 
variable ,bar

,
ˆ n

m mgC  is introduced and the coupling constraint Eq. 
(52) is replaced by Eqs. (67) and (68). 

 ,bar ,bar
, , 0ˆ ˆn m

m mg n mgC C+ =  (67) 

 ,bar ,bar
, ,

ˆm m
n mg n mgC C=  (68) 

The Lagrange multiplier of Eq. (68) is denoted by 2, ,
n

m tλ . 
Then, the augmented Lagrangian function about SP2 is 
expressed as: 

 

( )
( )

,ind ,co* ,bar
,

,
,

2 2,

bar ,bar
2, , ,

M M
,bar ,bar2M\

, ,

ln

2

ˆ

ˆ

m m n
mg mg m mg

n m m
m t n mg n mg

m m
m mn m
n mg n mg

m

C C C

C C

C C

λ

ρ∈ ∈

∈

 − − +
 
  −=   
  
 + − 



−

 

= ∑ ∑
∑

   (69) 

Afterward, SP2 is solved iteratively using the same steps 
described in SP1, which are not repeated here. The overall 
process flowchart of the method proposed in this paper is 
illustrated in Fig. 2. 
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distribution
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SP1: P2P energy 
trading problem
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parameters

MMGs energy 
trading results
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bargaining problem
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payment results
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Initializing 
parameters

Solve optimization 
models of each MG
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variables
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multipliers

Convergence 
judgement NY

Y

 
 

Fig. 2. Flowchart of the proposed method. 

4. Case study 

4.1. System Configuration 

In this paper, based on the IEEE 123-bus distribution 
network [45], MMG containing three MGs is constructed, as 
shown in Fig. 3. The hourly electricity prices of the main grid 
are shown in Fig. 4 [46]. The base values of load consumption 
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in MG1, MG2, and MG3 are 1.47 MW, 1.75 MW, and 2.15 
MW, respectively. The PV and WT installed capacities at each 
bus are 0.65 MW and 0.55 MW, respectively. The hourly 
forecasting power curves of load, PV, and WT in three MGs 
are the same, as shown in Fig. 5. The equipment parameters in 
the three MGs are the same, as shown in Table 2 [47]. The 
convergence tolerance ς  is 10-4. The confidence level ε  is 
0.95. The code is programmed in Matlab and solved by Mosek. 
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Fig. 3. A MMG containing three MGs adapted from the IEEE 123-bus 
distribution network. 
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Fig. 4.  Hourly electricity prices of the main grid. 
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Fig. 5. Hourly forecasting power curves of load, PV, and WT. 

Table 2 
Equipment parameters of the three MGs.  
Parameters Value Parameters Value 

ga 200 ($/MWh2) gdQ 2 MVAR 

gb 116.7 ($/MWh) bsE 0.06 MWh 

gc 0 bsE 0.54 MWh 
,supr g 10 $ bs

0E 0.3 MWh 
,dnpr g 6 $ bs,cP / bs,dP 0.2 MW 

gP 0.04 MW cη 0.95 
gP 0.4 MW dη 0.95 

0V 1  
m
n,sopS 2 MVA 

ΔV  0.05 sopA 0.02 
gdP 2 MW p

m
n,soQ 0.7 MVAR 

4.2. Results and Analysis 

(1) Fitting results of versatile distribution
This section analyzes the superiority of the versatile

distribution utilized in this paper for capturing the probability 
distribution of forecasting errors. We assume that the forecast 
error of load consumption follows the Gaussian distribution. 
The forecast error distributions of WT and PV are assumed 
with positive and negative skewness, respectively. Monte 
Carlo simulation is used to generate the historical forecast 
error data. The forecast deviation is defined as the forecast 
error divided by the forecast value. Distribution parameters of 
the forecast deviation are shown in Table 3. The results of 
shape parameters obtained by the nonlinear least-squares 
fitting method are shown in Table 4. The CDF results of 
versatile distribution are shown in Fig. 6. 
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Fig. 6. CDF results of versatile distribution (a) Load (b) WT (c) PV. 
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Table 3   
Distribution parameters of the forecast deviation. 

Mean Variance Skew Kurtosis 
Load 0 0.0009 0 3 
PV 0.0405 0.0047 -0.667 0.5098 
WT -0.0405 0.0047 0.667 0.5098 

Table 4 
Results of shape parameters.  

δ  β  γ  

Load 57.01 1.0208 -0.0005 
PV 36.8185 0.4657 0.0841
WT 19.5104 4.5218 -0.1423 

As shown in Fig. 6, the CDF of the historical forecast errors 
can be well fitted using the versatile distribution regardless of 
whether the actual historical forecast error data follow the 
Gaussian distribution. Hence, by employing the versatile 
distribution proposed in this paper as the foundation of 
formulating chance constraints, the obtained scheduling 
strategy becomes better aligned with confidence level 
requirement of chance constraints. 

(2) Scheduling results of energy and reserve
Based on the results of solving the SP1, the operation cost

of three MGs in each iteration are shown in Fig. 7. In terms of 
computational complexity, adopting the data-driven CCP 
approach proposed in this paper only requires adding 
constraints (30) – (37) to the determined optimization problem. 
Since these constraints are all linear, they impose a minimal 
burden on solving the problem. The simulations were 
conducted using a laptop with a 2.3 GHz Intel i7 CPU. As 
shown in Fig. 7, convergence is achieved after 17 iterations. 
Moreover, considering that each MGO can independently 
solve its optimization problem in parallel, the required 
solution time is only 12 seconds, demonstrating high 
computational efficiency. 
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Fig. 7. Operation costs of three MGs in each iteration. 

The energy and reserve dispatch results of each MG are 
shown in Fig. 8 and Fig. 9, respectively. 
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Fig. 8. Energy dispatch results (a) MG1 (b) MG2 (c) MG3. 

As shown in Fig. 8, the MGs purchase electricity from the 
main grid and charge the BSs when the buying price is lower. 
In contrast, the MGs turn on the DGs and discharge the BSs 
when higher buying price. Besides, during hours 4 and 5, the 
energy surplus of MG1 is transmitted to the MG2 and MG3 
via SOPs. Due to the high installed PV capacity in MG3, the 
surplus PV generation in MG3 is transmitted to MG1 and 
MG2 in hours 10–17. It can be seen that the MGs do not sell 
electricity to the grid, which implies that MGs prefer P2P 
trading to reduce the total operating cost of MMG, rather than 
the transaction with the main grid. The local utilization of 
renewable energy is also improved by P2P trading. 
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Fig. 9. Reserve dispatch results (a) MG1 (b) MG2 (c) MG3. 

As shown in Fig. 9, the upward and downward reserves of 
DGs and BSs are dispatched day-ahead to balance the forecast 
errors of uncertain variables. 

(3) Nash bargaining results of MMG
After a total of 16 iterations, SP2 reaches convergence,

demonstrating the high computational efficiency of the 
ADMM algorithm used in this paper. The computation time of 
both SP1 and SP2 is found to be well within acceptable limits 
for the day-ahead scheduling problem. The bargaining results 
among the three MGs are obtained and presented in Table 5. 

Table 5 
Operating cost of each MG. 

Cost ($) Independent 
operation 

P2P operation 
Before bargaining After bargaining 

MG1 1359.02 1048.1 1178.07 
MG2 2397.05 1959.94 2215.7 
MG3 1711.7 1917.32 1531.6 
Total cost 5467.77 4925.36 4925.37 

In Table 5, the before bargaining operating cost of MG3 is 
increased compared to the cost when operating individually. 
When the MMG perform P2P transactions, the surplus energy 
in MG3 is transmitted to other MGs instead of selling to the 
main grid. Thus, the operating costs of MG1 and MG2 are 
reduced, and the revenue of MG3 from electricity sales is 
reduced. After bargaining, the total benefit by P2P trading is 
distributed to all the MGs in the MMG. After bargaining the 
costs of all the MGs are reduced compared to the costs when 
operating independently. The total operating costs of the three 
MGs are 5467.77 $ and 4925.37 $ in the independent and P2P 
operation modes, respectively. Due to P2P trading, the total 
operating cost of the MMG is reduced by 9.92%. When P2P 
trading is executed in the centralized scheduling framework, 
the total operating cost of the three MGs is 4924.77 $. It can 
be seen that the difference between the distributed and 
centralized solutions is only 0.0122%, which verifies the 

effectiveness of the ADMM algorithm. 
(4) The impact of network constraints
In this section, three cases have been designed to

demonstrate through comparative analysis that the proposed 
method in this paper exhibits superiority in adhering to the 
network constraints within the microgrid system while 
formulating P2P energy strategies. Case 1: the network 
constraints of MGs are not considered, Case 2: the network 
constraints are considered without the chance constraints for 
the limit of bus voltage, Case 3: the network chance 
constraints of MGs are considered with the chance constraints 
for the limitation of bus voltage. The results of bus voltage of 
the MMG in the three Cases are shown in Fig. 10. 

As shown in Fig. 10(a), in Case 1, the voltage of MGs in 
22–24 hours violate the lower bound due to the negligence of 
network constraints. This is because the load consumption is 
high, and DGs are not operating in 22–24 hours, causing 
under-voltage violations at the end buses in MG2 and MG3. In 
Case 2, when the network constraints are considered, the 
lower bound constraint of the bus voltage is satisfied, as 
shown in Fig. 10(b). In Case 3, when the network chance 
constraints are considered, the minimum values of the buses 
voltage in 22–24 hours are further increased, as shown in Fig. 
10(c). This provides a downward adjustment margin to ensure 
that the network constraints are still satisfied when the reserve 
is scheduled to balance the forecast errors at the real-time 
stage. 
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Fig. 10. Results of MMG bus voltage (a) Case 1 (b) Case 2 (c) Case 3. 

In fact, the network constraints of the MMG are satisfied by 
SOP2 generating reactive power to MG2 and MG3 in Cases 2 
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and 3. The specific results of the reactive power generated by 
SOP2 at 22–24 hours in three Cases are shown in Fig. 11.  

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

22 23 24 22 23 24 22 23 24
Time (h)

Po
w

er
 (M

V
A

R
)

Case1 Case2 Case3
SOP2 to MG2
SOP2 to MG3

Fig. 11. Results of the reactive power generated by SOP2 at 22–24 hours.  

In Case 1, since the network constraints of the MMG are 
not considered, SOP2 does not output reactive power, which 
causes the bus voltage violates the lower bound, as shown in 
Fig. 10(a). In Cases 2 and 3, SOP2 generates reactive power to 
MG2 and MG3 at 22 hours and 22-24 hours, respectively, for 
increasing the voltage magnitude at the end buses to satisfy 
the network constraint of the MMG. In addition, SOP2 outputs 
more reactive power in Case 3 than in Case 2. This is because 
in Case 3, SOP2 needs to generate more reactive power to 
increase the bus voltage amplitude further to meet the chance 
constraint for the limitation of bus voltage. 

The operating cost of MGs in the three Cases are shown in 
Table 6. 

Table 6 
Operating cost in the three Cases. 
Cost ($) Case 1 Case 2 Case 3 
MG1 1177.86 1178.15 1178.07 
MG2 2215.75 2216.07 2215.69 
MG3 1529.57 1530.63 1531.60 
Total cost 4923.19 4924.85 4925.36 

As shown in Table 6, there are only slight differences in the 
operating costs of MGs in the three Cases. In Cases 2 and 3, 
the network constraints of the MMG are satisfied through the 
reactive power output of SOP2, and they do not affect the P2P 
energy (i.e., active power) trading results between MGs. In 
addition, the total cost of Case 2 increases slightly compared 
to Case 1, and the total cost of Case 3 increases compared to 
Case 2. This is because the increased output reactive power of 
SOP2 results in more active power losses, leading to a slightly 
higher total cost for the MMG. It is worth noting that while the 
economic outcomes of P2P energy trading among MMG show 
only minimal differences across the three cases, the scheduling 
results for Cases 1 and 2, in fact, fail to meet the MGO's 
operational constraints. In contrast, the scheduling results 
obtained in Case 3 effectively satisfy the MGO's operational 
constraints while considering prediction errors, showcasing 
the superiority of the method proposed in this paper. 

(5) The impact of confidence level
The changes in reserve demand and operating costs of the

MMG with various confidence levels are shown in Fig. 12 and 
Fig. 13, respectively. 
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Fig. 12. The reserve demand of the MMG. 
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Fig. 13. The operating costs of the MMG. 

 In Fig. 12, as the confidence level increases, the MMG 
require more upward and downward reserve demand to satisfy 
the chance constraints. Correspondingly, the operating costs of 
the MMG also increase with the confidence level, as shown in 
Fig. 13. This increase is due to the reduction in day-ahead 
dispatchable flexibilities of DGs and BSs, coupled with the 
need for additional reserves. By choosing the appropriate 
confidence level, operators can control the conservativeness of 
the day-ahead dispatch strategy. 

5. Conclusion

In this paper, a decentralized P2P energy trading strategy
for a MMG is proposed. Firstly, the practical network 
constraints within the MGs are taken into consideration, and a 
joint energy and reserve economic dispatch model is 
established for an individual MG. In response to forecast 
errors of renewable energy generation and load demand, 
chance constraints regarding bus voltages and reserve capacity 
limits have been introduced. To meet the confidence level of 
chance constraints more accurately, the probability 
distribution characteristics of forecast errors have been 
captured using the versatile distribution in a data-driven 
manner. This approach avoids making premature assumptions 
about the probability distribution. Then, an interconnected 
MMG is constructed using SOPs. Nash bargaining game 
theory is then utilized to establish the P2P energy trading 
model for the MMG. Furthermore, this model is equivalently 
decomposed into two sub-problems: the P2P energy trading 
problem and the payment bargaining problem, which are 
solved in sequence. Moreover, to ensure the data privacy of 
MGOs, the ADMM algorithm is adopted to solve the two sub-
problems. By employing the method proposed in this paper to 
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formulate P2P energy trading strategies in an MMG, the 
operational costs of the MMG are reduced. Simultaneously, all 
MGs can benefit from P2P energy trading, and the obtained 
risk-averse scheduling result can effectively adhere to internal 
network constraints, mitigating the impact of forecast errors 
on MG operating limitations. 

MMG containing three MGs is constructed based on the 
IEEE 123-bus distribution network for simulation. The results 
show that the operating costs of the MMG decreases by 9.92% 
and reasonable distribution of total benefits among MGs is 
achieved. Hence, each MG has sufficient incentives to 
participate in P2P trading. In addition, the economic schedules 
of energy and reserve for each MG are obtained while 
ensuring the robustness of reserve capacity and bus voltage 
constraints against forecast errors. Finally, the impacts of 
confidence level on reserve demand and operating costs are 
analyzed. 

This paper focuses on energy trading between MGs, and the 
optimal P2P trading strategy of both energy and reserve can be 
further studied in the future. Moreover, the optimal design and 
planning of MMG is a promising topic that can also be 
explored in future research. 
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