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Abstract 53 

Environmental regulations on landfills contain detailed instructions for the monitoring of 54 

pollution from leachate on water, air, and soil.  However, references to the impact of landfills 55 

on the landscape and the need to monitor the surrounding vegetation are described only in 56 

general terms. Studies have indicated that near-surface pollution events, which are not 57 

necessarily captured by existing regulatory monitoring schemes, have affected the vegetation 58 

in the vicinity of landfills. Indications for the effects of pollution emanating from landfills 59 

include the retreat of sensitive and native plant species, the abundance of halophytes or 60 

nitrophilous plants, and the prevalence of other invasive plant species, which can spread to 61 

adjacent ecosystems. To the best of the authors’ knowledge, a comprehensive synthesis of 62 

landfill plant-based biomonitoring results has not yet been reported. The advantage of 63 

biomonitoring lies in its ability to assess the quality of the environment as perceived by living 64 

organisms. This would facilitate the determination of the response of plants to departures from 65 

natural conditions, detection of trends occurring in ecosystems, and adoption of management 66 

practices to prevent or mitigate degradation of the environment. Thus, to detect such effects on 67 

the flora surrounding a landfill, this article recommends that biomonitoring is utilized in 68 

environmental regulations to complement existing monitoring techniques. 69 

 70 

Keywords: Landfills; Biomonitoring; Municipal solid waste regulations; Vegetation impacts 71 

from pollution; Active biomonitoring; Passive biomonitoring 72 

 73 

1. Introduction 74 

Despite significant efforts to recycle and compost municipal solid waste (MSW) the amount of 75 

MSW generated continues to increase globally. Although MSW management practices have 76 

made significant progress over the last 60 years, the problem of MSW disposal, instead of being 77 

alleviated, has become more severe. As indicated by Paleologos et al. (2016) this increase in 78 
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MSW over the years cannot be simply attributed to the population increase, but it is more 79 

complex, the result of modern lifestyle factors. It is therefore apparent that although modern 80 

MSW management practices can partially mitigate the effect of modern habits of consumerism, 81 

to reverse the trends of increased MSW, a significant change in material utilization and waste 82 

generation needs to take place, as envisioned by the circular economy approach. Given that 83 

landfilling is still the prevalent way of disposing MSW in advanced countries, and the only way 84 

of waste disposal in less developed ones, and the fact that existing landfilled waste will continue 85 

to decompose for several decades, while engineered measures at the landfill will deteriorate, 86 

and also that, globally, the generated per capita MSW rate is projected by the World Bank to 87 

increase from 1.2 kg/person/day to 1.42 kg/person/day by 2025 (Hoornweg & Bhada-Tata, 88 

2012), monitoring and taking measures to reduce the impact of landfills on the environment 89 

becomes of paramount importance (Koda, 2012). 90 

 91 

Municipal solid waste landfill facilities’ (MSWLF) technical specifications, liability 92 

requirements, protection of public health and the environment, monitoring, enforcement and 93 

penalties, remediation, and post-closure care and redevelopment of landfilled sites have been 94 

the focus of several laws, policies, regulations, and practices worldwide (Mohamed & 95 

Paleologos, 2017; Vaverková, 2018; Koda et al., 2021). Enhanced landfill mining (LFM), the 96 

utilization of generated residues, popularly known as landfill mined residues (LMRs), has 97 

emerged as a practice to recover useful materials, such as landfill-mined-soil-like-fractions 98 

(LFMSF), combustibles/synthetic polymers (plastics, textiles and rubber waste), and 99 

recyclables, such as glass, metals, construction and demolition (C&D) waste, and wood waste 100 

(Hernández Parrodi et al., 2018; Mohammad et al., 2021; Goli et al., 2022b). 101 

 102 

Monitoring the ecological status of the area around a landfill has drawn little attention both in 103 

the US and European landfill regulations.  Given that the siting of a landfill follows the selection 104 
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of a site where an aquifer system is found at a depth, it cannot be argued that groundwater 105 

monitoring wells can provide information on pollution incidents close to the ground surface, 106 

which may affect the flora and fauna of the area surrounding the landfill. Additionally, ambient 107 

air monitoring at landfills concentrates on CH4, CO2, non-methane organic compounds 108 

(NMOC), volatile organic compounds (VOC), hydrogen sulfide, particulate matter (PM), and 109 

emissions from combustion products of LFG (flares, engines, etc.), such as NOx, and CO (EC, 110 

1999, Annex III; US EPA, 1999, 2008). Although, there may exist toxicological and 111 

epidemiological studies on the effects of several of those gases on human health, relationships 112 

with the wellbeing, growth, and development of plants are at best tentative. Finally, despite 113 

measures, precipitation and lateral water inflows enter a landfill body hence, they contribute to 114 

pollutant migration through the unsaturated zone. Figure 1 from MSWLF sites clearly shows 115 

the presence of vegetation at these locations and summarizes also the threats from landfills to 116 

the environment. It seems that biomonitoring - the practice of monitoring the impact of landfills 117 

on the health of organisms and ecosystems, as well as the structure and function of the 118 

surrounding landfill landscape - is an area where current landfill regulations need to be updated 119 

(Vaverková, 2019; Vaverková et al, 2019 a, b; Vaverková et al., 2020; Vaverková et al., 2022). 120 

 121 

The development of bioindication methods dates to the beginning of the 20th century. In the 122 

1960s, interest of the scientific community in issues related to the reactions of living organisms 123 

to pollutants increased (Pott & Turpin, 1996; Holt & Miller, 2011). The use of bio-indicators 124 

has emerged as a valuable tool for assessing the impact of landfills and other pollution sites on 125 

the environment. Bio-indicators are identified through differentiation of response methods, 126 

such as changes in color, shape, and size of the organism, initial reaction to pollution, and 127 

correlation of population size with type of pollutant (Mahmood et al., 2019; Korbut et al., 2021). 128 

 129 
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Although bioindicators are used to assess the quality of air, soil, and water in many scientific 130 

publications, only few studies have focused on their application in landfills. The current article 131 

addresses biomonitoring as a technique in the context of geoenvironmental pollution caused by 132 

landfills by considering the principles, potential, and future perspectives of biomonitoring. 133 

Emphasis is placed on the plant species that are used in environmental surveys to evaluate 134 

anthropogenic pollution. Furthermore, this paper describes commonly used candidates for 135 

biomonitoring in the field of environmental pollution, with a special emphasis on the landfill 136 

environment. To the best of the authors' knowledge, no comprehensive review has been 137 

published to date that would describe the biomonitoring of landfill vegetation. The current 138 

article aims to close this research gap and to provide suggestions for amending monitoring 139 

regulatory requirements.  140 

 141 

2. Bioindication and bioindicators 142 

Bioindication, the determination of changes in the environment by means of biological 143 

indicators, which include plants (phytoindicators) or animals (zooindicators), or even whole 144 

biocoenoses, is one of the methods used to monitor industrial pollution and environmental 145 

contamination (Wolterbeek, 2002; Parmar et al., 2016; Al-Alam et al., 2019). Knowledge of 146 

the life requirements of fungi, plants, and animals, as well as their tolerance to different external 147 

factors, allows the study of the state of the environment (Begu, 2014; Parmar et al., 2016; Urbat 148 

et al., 2004; Yu et al., 2018). Thus, the responses of living organisms to positive or negative 149 

environmental changes can be used in environmental pollution assessments. 150 

 151 

2.1. Information value of plants (phytoindicaton) 152 

The earliest application of phytoindication as a diagnostic tool to assess the abiotic conditions 153 

in an environment involved identifying the presence or absence of plant species with known 154 

ecological and site-specific requirements (Zadorozhna, 2017; Kunakh & Fedyay, 2020). It has 155 
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been demonstrated that the ecological amplitude (range of tolerance) of plant communities is 156 

as a rule greater than that by individual species. Thus, several studies (e.g., Zverev, 2014; Holyk 157 

& Goncharenko, 2017) have indicated that communities appear to be more sensitive indicators 158 

of environmental conditions than are individual species.  159 

 160 

Phytoindication employs plants as bioindicators to track alterations in the environment, serving 161 

not only to diagnose habitat conditions (including climate, soil factors, and hydrological 162 

conditions) but also to determine the type and intensity of human activities affecting such 163 

plants, such as the presence of landfills (Zhukov and Potapenko, 2017; Glibovytska & 164 

Mykhailiuk 2020). Phytosociological analysis (analyzing plants) in a certain area is important 165 

when studying the environment on a large scale, such as whole landscapes or ecosystems 166 

(Gianguzzi and Bazan, 2020; Ighbareyeh et al., 2021).  167 

 168 

Existing scientific work has primarily focused on the relationship between vegetation and 169 

environmental conditions that are not influenced by human activities. However, environmental 170 

conditions may gradually change due to human activities, resulting in the entry of a wide range 171 

of pollutants into the environment and leading to changes in living conditions ultimately 172 

affecting vegetation. Plants have several mechanisms for adapting to anthropogenic pollution 173 

(Winkler et al., 2022; Winkler et al., 2023). Vegetation responds to pollution first by retreating 174 

sensitive plant species, and then by new species, which are resistant to the presence of 175 

pollutants, penetrating the vegetation over time. Vegetation responds to the degree of toxicity 176 

by changing its species composition (Koda et al., 2022). The effects of anthropogenic pollution 177 

on vegetation is complex. The influence of diverse pollutants on plants and the synergistic and 178 

antagonistic relationships between different chemicals make the interpretation of the results 179 

problematic. The changes in the species composition of vegetation in the vicinity of a landfill 180 

is the first sign that indicates the presence and degree of toxicity of pollutants. 181 
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 182 

Landfill sites with leachate seepage are characterized by high salinity. Biomonitoring of plant 183 

communities in leachate seepage points represent a new approach to the assessment of the actual 184 

condition of a landfill (Koda et al., 2022). The presence of pollutants in leachate increases soil 185 

salinity, which translates to a higher abundance of halophytes (plants that naturally inhabit 186 

saline environments, such as salt marshes, salt flats, and steppes) in the vegetation (Ellenberg 187 

et al., 1991; Chytrý et al., 2018; Koda et al., 2022).  188 

 189 

N compounds and other nutrients (P, K, Mg, etc.) are also released from MSW at high rates, as 190 

reported by Ellenberg et al. (1991) and Chytrý et al. (2018). Elevated N and other nutrient 191 

contents were reflected by the presence of a higher proportion of nitrophilous plant species. The 192 

abundance of readily available nutrients leads to a higher proportion of species employing 193 

ruderal life strategies. The rate of change in the environment due to the presence of pollutants 194 

here is indicated primarily by the abundance of diaspores of nitrophilous species in the vicinity 195 

of the pollution. 196 

 197 

2.2. Screening of living organisms used as bioindicators 198 

Biological indicators have been widely used to assess the degree of environmental pollution 199 

(Wolterbeek, 2002; Holt and Miller, 2011; Parmar et al., 2016; Adams et al., 2018; Azizi et al., 200 

2018; Al-Alam et al., 2019). The criteria that can facilitate the suitability of living organisms 201 

as bioindicators are as follows: (i) relatively sedentary lifestyle (stationary) of selected 202 

organisms to meet the requirement of representativeness of the studied ecosystem (collecting 203 

specimens); (ii) wide geographical distribution for easy identification and collection of samples; 204 

(iii) potential to collect a representative sample of material; (iv) a certain tolerance of the 205 

selected organisms to pollutants (heavy metals (HM), organic compounds); (v) easy transport 206 

of organisms to the laboratory, and (vi) stability of the population of the selected organisms, 207 
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which would allow repeated sampling during a long period of time (research of trends) (Farias 208 

et al., 2018; Fossi et al., 2018; Vitanović et al. 2018; Manickavasagam et al., 2019; Puig-209 

Gironès and Real, 2022). The advantages and disadvantages of using plants as bioindicators are 210 

summarized in S1. 211 

 212 

The use of vegetation in biomonitoring is limited mainly by the slowness in species composition 213 

changes compared to animals or microorganisms. The analysis can be further complicated 214 

because the variety of waste and pollutants affect vegetation by acting as polyfunctional factors 215 

with complex inter-relationships. Nevertheless, there are opportunities to use vegetation around 216 

an MSWLF to identify leachate infiltration sites (Koda et al., 2022), while Winkler et al. (2021) 217 

have pointed out that soil degradation can be inferred from the composition of vegetation 218 

growing in MSWLF. Changes in conditions on the surface and inside the landfill present a 219 

significant challenge for vegetation, which must respond accordingly during succession 220 

(Álvarez-López et al., 2020). 221 

 222 

Winkler et al. (2021) have noted that certain nitrophilous plant species, such as Atriplex 223 

sagittata, Chenopodium album, Setaria viridis, Apera spica-venti, Urtica dioica, Sambucus 224 

nigra, Phragmites australis, Rubus sp., Elytrigia repens, Lolium perenne, Bromus inermis, and 225 

others, are permanent members of landfill vegetation. Moreover, there is a notable trend 226 

towards an increase in the total number of species in landfill environments, driven in part by 227 

the growing prevalence of invasive species and neophytes, such as Calamagrostis epigejos, 228 

Acer negundo, Conium maculatum, Solidago canadensis, and others. Additionally, there is a 229 

trend of hydrophilous plant species such as Phalaris arundinacea, Alnus glutinosa, Salix alba, 230 

Typha latifolia, Populus canescens, Typha angustifolia, and others, being withdrawn from these 231 

environments (Winkler et al., 2021). 232 

 233 
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Vaverková and Koda (2023) focused on the geological, environmental, and ecological impacts 234 

of landfills. Plants, especially invasive plants, have the potential to adapt to various and ever-235 

changing environmental conditions, as noted also by Winkler et al. (2023). The composition of 236 

vegetation on landfill surfaces often reflects the soil degradation caused by a landfill (Mao et 237 

al., (2018)). Landfill sites tend to harbor a diverse range of plant species, which are not 238 

commonly found in native vegetation, and are dominated by synanthropic flora, plant species 239 

that thrive in association with human activities (Koda et al. (2013), Bryant et al. (2017), 240 

Vaverková et al. (2019a)). Thus, development of new plant communities, consisting mainly of 241 

neophytes and invasive plant species, is favored by the anthropogenic conditions of landfills 242 

(Wania et al. (2006), Vaverková et al. (2019a) and Winkler et al. (2021), Vaverková and Koda 243 

(2023)). 244 

 245 

2.3. Bioindicators classification 246 

Plant indicators are classified into several groups: passive, active (exposure), accumulation, and 247 

reactive. In order to identify and quantify species composition of vegetation sampling is done 248 

with the following approaches. Transect sampling involves laying out a linear transect across 249 

the study area and recording all plant species and their abundance along the transect. This allows 250 

for the identification of changes in species composition across a gradient. Phytocenological 251 

relevés (vegetation plot) is a standardized method used to record and describe the plant species 252 

and their abundance in a specific area. It involves selecting a representative sample area and 253 

systematically recording the species and their cover or abundance. The information collected 254 

through phytocenological relevé can be used to identify the plant community, estimate species 255 

diversity and richness, assess vegetation dynamics, and compare vegetation composition among 256 

different sites. Finally, collected field specimens can be analysed using various analytical 257 

techniques, depending on the specific biomarker of interest. These include spectroscopy, 258 

chromatography, elemental analysis, and enzyme-linked immunosorbent assay. After 259 
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quantification, the data are analyzed using statistical methods to determine the significance of 260 

the biomarker and to identify correlations between biomarkers and environmental pollution. 261 

 262 

Passive bioindication use the ability of selective damage to a plant’s parts (reaction 263 

bioindicator), or an accumulation of some substances in selected plants (accumulation 264 

bioindicator). This type of monitoring uses both cultural crops (Brassica juncea, Brassica 265 

nigra, Helianthus annuus, Sinapis alba, Triticum aestivum) and wild plants growing naturally 266 

in the area of interest (Achillea millefolium, Daucus carota, Phragmites australis, Urtica 267 

dioica, Taraxacum officinale, Tanacetum vulgare) (Polechońska et al., 2018; Benítez et al., 268 

2019; Turkyilmaz et al., 2019; Mishra & Farooq, 2022). 269 

 270 

Active monitoring is widely used throughout Europe to assess the pollution associated with 271 

heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other organic pollutants (Kosior 272 

et al., 2010; Świsłowski et al., 2021). Active biomonitoring is a process by which bioindicators 273 

are collected from relatively pristine habitats, transplanted into different environments, and 274 

used to monitor pollution. This was done by deliberately exposing bioindicators to polluted 275 

areas under study (Ndlovu et al., 2019). This method has been used in both urban and industrial 276 

setups (Capozzi et al., 2016). The technique has several advantages, such as well-defined 277 

exposure time, known elemental concentrations, flexibility in the choice of location and number 278 

of sampling sites, and homogeneity of the trapping area. The main limitation of this method is 279 

that the accumulation efficiency of bioindicators for different contaminants is unknown (Aničić 280 

et al., 2009). 281 

 282 

Still, some other methods combine passive and active bioindication procedures (Parmar et al., 283 

2016; Cozea et al., 2018; Świsłowski et al., 2021). For example, plots can be established with 284 

detailed physical and chemical soil analyses on which the selected susceptible plants are grown. 285 
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Such a procedure is particularly appropriate for capturing the movement of monitored 286 

substances in the atmosphere – soil – water complex. 287 

 288 

Accumulation bioindicators can store contaminants in their tissues, and the extent of such 289 

storage can be used to measure the concentration of contaminants in the environment (Abas, 290 

2021). Finally, reactive bioindicators take advantage of the fact that the physiological reaction 291 

of a plant to the action of a given factor is demonstrated in functional disorders, such as 292 

restricted flowering, dieback of some organs, reduction of overall plant life, or limitation of the 293 

most important life processes (Fränzle, 2006; Khalid et al., 2019; Veskoukis et al., 2019; 294 

Martínez and Barrera, 2021). Thus, reactive biomarkers indicate environmental changes or 295 

exposure to certain pollutants. For example, changes in flower colour or morphology can 296 

indicate exposure to air pollution or heavy metals. Changes in flower scents can indicate 297 

exposure to organic pollutants. Some plants may also produce fewer or no flowers in response 298 

to environmental stressors such as drought or soil pollution. The types and descriptions of plant 299 

bioindicators are summarized in S2. 300 

 301 

The indication capacity of plants relates to excitations from elements of the environment that 302 

are ecologically relevant. Thus, climatic conditions, such as, light intensity affects the species 303 

Asclepias syriaca, Helianthus annuus, and Pteridophytes; air temperature affects Artemisia 304 

tridentata, and Poaceae, and the degree of continentality influences Echinacea purpurea, and 305 

Rudbeckia hirta.  Soil characteristics, such as moisture content would provide excitations to 306 

Asclepias incarnata; acidity to Vaccinium spp., and Vaccinium macrocarpon; and nitrogen 307 

content affects Fabaceae; Trifolium spp., and Urtica dioica. Finally, fertility, pH, CEC, and 308 

nutrient retention capacity directly affect plants, which can be excellent indicators of these 309 

factors (Plit & Roo-Zielińska, 1990; Bazanov et al., 2009). For example, wildflowers occurring 310 

spontaneously at landfill sites such as lupines (Lupinus spp.), prefer well-drained, slightly acidic 311 
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soils, whereas ferns (pteridophytes) prefer moist, acidic soils with high organic matter content. 312 

It follows that knowledge of the structure of plant coverage, spatial distribution, and the 313 

quantitative and qualitative composition of plant species allows not only the determination of 314 

the actual conditions at a site, but also the environmental components that are ecologically 315 

important to them. 316 

 317 

The bioindication function of plants is also increasingly being used to check the changes caused 318 

by environmental contamination. The most used bioindicators are called indication species, that 319 

is species with a very specific range of tolerance to certain ecological factors (Mahapatra et al., 320 

2019; Nasser et al., 2020; Bayouli et al., 2021; Garg et al., 2022).  For example, Epilobium 321 

angustifolium is a plant species that is tolerant to heavy metals and nitrogen, which makes it a 322 

useful bioindicator of soil contamination. Taraxacum officinale, which is a common weed 323 

occurring at landfill sites, is sensitive to soil pH, making it a useful bioindicator of soil acidity. 324 

Another example is Viola odorata, which is sensitive to soil moisture and pH and can be used 325 

as a bioindicator for changes in water quality and soil acidity. These are examples of plant 326 

species that can be used as bioindicators of landfill conditions owing to their specific range of 327 

tolerance to certain ecological factors. 328 

 329 

Vegetation can express the variability of environmental conditions from local through zonal 330 

differentiation, and can therefore be used as an indicator in a wide range of situations, 331 

depending on needs. In places with disturbances from anthropogenic activities, studies need to 332 

concentrate on the effects not only on vegetation but also on the soil profile and the overall 333 

environment to obtain a holistic picture of the environmental effects of pollution events (Herben 334 

et al., 2016; Winkler et al., 2022). 335 

 336 
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3. Biomonitoring assessment of landfills environmental impacts 337 

The environmental impact of landfills has been studied using phytosociological analyses that 338 

allow proper characterization of vegetation communities and linkages of habitat-environmental 339 

factors and environmental valorization (Vaverková and Adamcová, 2012; Vaverková et al. 340 

2012 a, b). In the scientific literature, the biomonitoring of landfills has focused primarily on 341 

lichens. Lichens are symbiotic organisms composed of green algae and fungi. Their metabolism 342 

depends on mineral uptake from the atmosphere; therefore, these organisms effectively trap 343 

trace elements from the surrounding environment. They grow very slowly, do not have stomata 344 

or cuticles regulating air exchange, and accumulate contaminants over the entire surface (Paoli 345 

et al., 2015). Epiphytic lichens have been used as indicators of environmental quality because 346 

they obtain water and essential nutrients mainly from the atmosphere and not from the soil 347 

(Sujetovienė et al., 2019). Lichens are effective accumulators of pollution over an entire 348 

surface. Species diversity, bioaccumulation, and physiological status are indicators of air 349 

quality and pollution. Epiphytic lichens are used to assess air pollution around landfills (Paoli 350 

et al., 2012; Nannoni et al., 2015; Paoli et al., 2015; Sujetovienė et al., 2019), but they do not 351 

reflect the entire state of the environment in the vicinity of landfills. 352 

 353 

Loppi et al. (2021) assessed the utilization of lichens (Flavoparmelia caperata) as 354 

bioaccumulators of air-borne microplastic materials. Higher plants for biomonitoring 355 

environmental pollution, namely pollution from MSWLF, are used less than lichens. In this 356 

context, Vaverková et al. (2012a, b) performed floristic research and established a list of 357 

vascular plants occurring around a landfill in the Czech Republic (CR). The purpose of study 358 

performed by Vaverková et al. (2019a) was the long-term monitoring of the plant community 359 

(floristic survey) on a MSWLF, the identification of changes in species composition, and the 360 

evaluation of the significance of the identified plant species for the surrounding ecosystem and 361 

the assessment of the landfill’s safety. It was concluded that MSWLF create a distinct and 362 
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specific environment that affects the composition of plant species present. The results indicated 363 

that the vegetation on MSWLF is unstable and undergoes specific plant succession. As a result, 364 

continuous monitoring is necessary to track changes in species composition and to assess the 365 

impact of MSWL on the environment. 366 

 367 

Biomonitoring also helps to assess the efficiency of stabilization processes, as reported by 368 

Zapata-Carbonell et al. (2019), where a study site was subjected to tests for the stabilization of 369 

topsoil in situ using white birch. The goal of the reclamation work was to create a landscape 370 

that would be ecologically well-balanced, economically valuable, and socially acceptable. In 371 

study by Xiaoli et al. (2011), it was concluded that emissions of CH4 and CO2 from soil covered 372 

by vegetation were lower than those from soil not covered by vegetation. This not only confirms 373 

that efficient and proper biological reclamation is important to mitigate the impact of landfills 374 

on the environment but also the significance of plants in biomonitoring. S3 summarizes recent 375 

biomonitoring studies on the effects of landfills on the geoenvironment.  376 

 377 

Vaverková et. al. (2022) recommended that landfills, in addition to the mandatory monitoring 378 

of groundwater, surface waters, and of leachate and landfill gas, should be subjected to regular 379 

biomonitoring of vegetation species’ composition. A difficulty in such a task is that vegetation 380 

in the area near landfills is not stable in terms of species composition, and hence should be 381 

continually monitored. Landfills have a high potential to promote the expansion of invasive 382 

plant species, altering the species composition of vegetation in the surrounding ecosystems. 383 

These authors focused their study on the effects of management methods and environmental 384 

risks at two landfills in the CR. The vegetation in these two landfills was subjected to long-term 385 

monitoring. The vegetation analysis showed significant differences between the landfills, with 386 

the vegetation of a site showing a high prevalence in neophytes, invasive and expansive 387 

species.. This could be attributed to climatic and geomorphological differences between the two 388 
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landfills, but also to differences in landfill management. These ecologically problematic species 389 

can spread from landfills to adjacent ecosystems, gradually eliminating native plant species and 390 

degrading adjacent farmlands. The research data suggested that landfills should be regularly 391 

subjected to vegetation biomonitoring. Landfill management methods should focus on the 392 

regulation of undesirable plant species, creating conditions that would be favorable to native 393 

plant species, and providing for the restoration of filled landfill cassettes as soon as possible. 394 

 395 

Some of the species identified by Vaverková et. al. (2022) at the landfill sites, which are 396 

problematic to surrounding farmland include Arrhenatherum elatius, Calamagrostis epigejos, 397 

Impatiens parviflora and Tanacetum vulgare. In addition, at the landfill site that exhibited a 398 

large number of invasive plants, observed species included Erigeron annuus, Reynoutria 399 

japonica, Robinia pseudacacia, Senecio inaequidens, and Oenothera fallax. Attention should 400 

be paid to the species composition of landfill vegetation or to the disappearance of some species. 401 

 402 

As pointed out by Vaverková et al. (2019b), reclamation of MSWLF is a necessary step to 403 

return the area back to the landscape. Grass species are often used for re-vegetation because of 404 

their low cost (e.g., Lolium perenne, Festuca rubra, Festuca ovina, Festuca pratensis, 405 

Arrthenatherum elatius, Poa pratensis, Cynosurus eristatus, Bromus inermis, and Bromus 406 

erectus). However, plants can be a significant source of air pollution, mainly because of 407 

allergenic pollen. Long-term monitoring was conducted at three landfill sites in the CR from 408 

2008 to 2018, where 298 plant species producing allergens were identified. Most allergenic 409 

pollen-producing species were common to all studied sites, demonstrating that landfill 410 

vegetation can be a significant source of allergenic pollen. It was also shown that plants 411 

appearing in landfills could be used for biomonitoring of air quality and its impact on human 412 

health. 413 

 414 
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Koda et al. (2022) studied the relationship between vegetation composition and leachate 415 

seepage points to determine the potential for the utilization of certain species in the assessment 416 

of the applied mineral sealing on landfill surfaces. The results confirmed that the presence of 417 

leachates altered plant species composition, increasing the representation of species tolerant to 418 

salinization, and decreasing the share of glycophytes in the leachate seepage points. Based on 419 

the relationship between glycophytes and salinization-tolerant plant species, a work procedure 420 

and index of leachate vegetation were created, which provided rapid identification of leachate 421 

seepage points. The results of these studies can be applied to reclamation works on landfills. 422 

 423 

Plant indicators can be helpful in determining local environmental conditions and the optimum 424 

use of land resources for forests, pastures, and agricultural crops. The occurrence, nature, and 425 

behavior of plants are indicators of the combined effects of all factors in a habitat. It should be 426 

emphasized that plants are inappropriate quantitative tools. Based on bioindicators, it is not 427 

possible to determine the absolute value of a particular variable of the environment; however, 428 

bioindicators can draw attention, for example, to the need to enhance the availability of nutrients 429 

or the occurrence of pollutants at first sight. The advantages and disadvantages of plant 430 

bioindicators are that they provide an expression of the complex interaction of multiple 431 

environmental factors, and usually after a prolonged period of exposure. 432 

 433 

4. Biomonitoring of landfill gas emissions and of mined waste  434 

The appropriateness of a landfill for mining, which requires waste stabilization (Mohammad et 435 

al., 2021), control of landfill gas releases, such as CH4, and of the concentrations of ammonia 436 

in leachates (Lubberding et al., 2012) needs to be established first because LFM can lead to 437 

excessive release of several pollutants, such as NH3, CS2 (Wang et al., 2021), and greenhouse 438 

gases (such as CH4 and CO2) (Raga et al., 2015), as well as leachate leakage (Moretto et al., 439 

2017; Weng et al., 2015).  440 
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 441 

Thus, monitoring of CH4 and NH3 in the air near landfills and NH4
+ concentrations in the 442 

leachate, as promulgated by the US and EU landfill regulations, is recommended.  Pieri et al. 443 

(2015) found an inverse relationship between the lichen’s biodiversity index and NOx and 444 

ozone concentrations in the atmosphere. It was also observed that the lichen communities were 445 

restricted by the presence of calcareous dust. Furthermore, the investigation carried out by Frati 446 

et al. (2007) revealed that NH3 presence in the atmosphere near pig stock farms caused a shift 447 

in the neutro-nitrophytic to nitrophytic species. The growth of physconia grisea, a nitrophytic 448 

lichen, is positively correlated with airborne NH3, indicating that this species could be a useful 449 

bioindicator for assessing NH3 emissions from landfills. 450 

 451 

However, it appears that biomonitoring of landfill gas emissions and leachate releases during 452 

LFM or LFMSF, which have the potential to decompose and release gases during their 453 

utilization as landfill biocover and geotechnical fill materials, has not attracted much attention. 454 

The long-term monitoring of LFMSF performance with lichen plant species, when LFMSF is 455 

utilized as a geotechnical fill material has the potential to be a cost-effective monitoring system 456 

for decomposition-induced settlements. In addition, several studies have revealed that landfills 457 

are sinks for micro/nano plastics (MNPs) (Wowkonowicz et al., 2021; Goli et al., 2022a); 458 

hence, LFM activity can act as a pollution source for MNPs (Su et al., 2019: Goli & Singh, 459 

2023). MNPs can be adsorbed by vascular plants, exhibiting phytotoxic effects such as 460 

oxidative stress, while disturbing plant growth and photosynthesis (Yin et al., 2021). Such 461 

plants can be investigated for their suitability as species for conducting bioindication studies 462 

while evaluating the effect of MNPs present in LMRs on their post-mining utilization. Orupõld 463 

et al. (2022) conducted germination tests using lettuce (Lactuca sativa), perennial ryegrass 464 

(Lolium perenne), and timothy (Phleum pratense) seeds to evaluate the phytotoxicity of 465 

leachates from LFMSF of size <10 mm. This study concluded that timothy seeds are more 466 
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sensitive to LFMSF. Masi et al. (2014) conducted germination and root elongation tests using 467 

Lepidum Sativum and V. faba, respectively, to evaluate the phytotoxicity of LFMSF. It was 468 

observed that the LFMSF did not adversely influence the growth of L. sativa, whereas V. faba 469 

got negatively affected with an increase in the dosage. Hence, these seeds or associated plant 470 

species show potential as biomonitoring sites where LFMSF is applied. 471 

 472 

5. Conclusions 473 

 474 

Landfill monitoring constitutes an integral part of global environmental regulations. Although 475 

groundwater, surface water, and air monitoring have received special attention, little emphasis 476 

has been placed on the effects of landfills on the vegetation surrounding a landfill’s 477 

environment. Pollution events taking place at or near a landfill’s ground surface and in close 478 

proximity to it do not appear to be captured by existing landfill monitoring schemes that either 479 

sample deep aquifers, or relatively distant surface water systems. 480 

  481 

This article focuses on the utilization of bioindicators to assess the impact of landfills on their 482 

surrounding vegetation, which can also be used as a visual representation and warning signal 483 

of near-surface pollution incidents from landfills. Research in this area, in which the authors of 484 

this paper have been active participants, has provided fruitful insights, and the major 485 

conclusions are summarized as follows. 486 

 487 

(i) Vegetation responds to pollution first by retreating sensitive plant species, and then 488 

by new species, which are resistant to specific pollutants dominating the vegetation. 489 

(ii)  The increase in soils salinity translates to a higher abundance of halophytes. 490 

(iii) High nitrogen and other nutrient contents were reflected by the presence of a higher 491 

proportion of nitrophilous plant species in the landscape. 492 
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(iv) Vegetation responds to the degree of toxicity by changing its species composition. 493 

This change in vegetation species composition near a landfill is the first sign that 494 

indicates the presence and degree of toxicity of pollutants. 495 

(v) Epiphytic lichens, which primarily obtain water and essential nutrients from the 496 

atmosphere, have proven to be good indicators of air pollution from landfills. 497 

(vi) Landfills have a high potential to promote the expansion of invasive plant species, 498 

altering the vegetation species composition in the surrounding ecosystems. 499 

(vii) Ecologically problematic species can spread from a landfill to adjacent ecosystems, 500 

gradually eliminating native plant species and degrading nearby farmland. 501 

(viii) Plant communities appear to be more sensitive indicators of environmental conditions 502 

than individual species. 503 

 504 

Extensive studies, as those presented here, and the decades-long experience of the authors of 505 

this article make it evident that landfills should be regularly subjected to vegetation monitoring. 506 

Vegetation species’ changes can assist in early detection of pollution events at a landfill, 507 

potentially identifying even preferential pollution directions, and thus helping to direct more 508 

focused sampling campaigns. The predominance of certain plant species, as reported herein, 509 

can provide a strong indication of the type of chemical pollutant that has leaked and hence assist 510 

in the selection of appropriate remediation technologies. In addition to pollution detection, 511 

biomonitoring can act as a warning sign to near-a-landfill farming activities by indicating the 512 

spread of invasive and problematic species that may end up dominating and replacing 513 

productive crops. Thus, landfill management methods should focus on controlling undesirable 514 

plant species, creating favorable conditions for native plant species, and providing early 515 

restoration of closed landfill cells. Finally, biomonitoring presents the potential for the study of 516 

vegetation at sites other than landfill-polluted sites, such as degraded land areas or urban 517 

brownfields. The ample evidence of the utility of landfill biomonitoring makes it advisable to 518 
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include it in municipal waste monitoring regulations, an act that will also give the impetus for 519 

the development of more targeted detection biomonitoring techniques. 520 

521 
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S1. Advantages and disadvantages of plants as bioindicators (Markert et al., 2003; Conti, 975 

2008). 976 

 977 

Advantages Disadvantages 

Potential of sampling over a long time period 
Necessity to consider the seasonal effect of the 

growth of plants 

Low cost of sampling process 
Growth can be disturbed by a large number of 

environmental parameters 

Easy determination of relationship between the 

concentration in tissues and depositions 

(mosses and lichens) 

Impact of environment pollution on growth 

rate makes the interpretation of result difficult 

Change in species composition in response to 

pollution 

Slowness of change, lack of scientific 

knowledge about the causes of change in 

vegetation biodiversity 

Effortless vegetation assessment process 
Specific knowledge of plant species 

identification and phytocenology 
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S2. Types and description of plant bioindicators. 994 

 995 

Type of 

indicator 
Description 

References 

Biomarkers 

Respond to subcellular biochemical, 

immunological and genetic changes (DNA 

modifications) with no visible morphological 

and physiological changes  

(Dunham et al., 2019; Jmii 

and Dewez, 2021; 

Jaskulak and Grobelak, 

2019) 

Reaction 

biomarkers 

Physiognomic degree of damage depending on 

the acting factor physiological reaction of 

plants to the action of the given factor shows in 

functional disorders such as restricted 

flowering, dieback of some organs, reduction of 

overall life or limitation of the most important 

life processes 

(Fränzle, 2006; Khalid et 

al., 2019; Veskoukis et al., 

2019; Martínez and 

Barrera, 2021). 

Accumulation 

bioindicators 

Accumulation in plant tissues diverse 

substances that can be valued quantitatively 

(Hinojosa-Garro et al., 

2020; Hernández-Moreno 

et al., 2021; Kaymak et 

al., 2021). 
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S3. Summary of recent biomonitoring studies regarding the effects of landfills on the geoenvironment.  1011 

Reference Location Duration Purpose Dominate 

species/bioindicators 

Summary 

(Paoli et al., 

2012) 

Central Italy 14 years Detection of 

Cd, Cr, Fe, 

and Ni 

lichens • An increase in HM in lichens was noticed 

• The diversity of lichen was reduced 

• Improved the assessment of ecological impacts 

Sujetovienė 

et al. (2019) 

Central Lithuania 3.5 month Detection of 

HM 

lichens • Accumulation of HM, except Cd, were almost the same in 

samples from landfill and control 

• Potential quantum yield was less for samples located closer to 

the pollution source 

• Lichens revealed sensitivity even to small changes in 

environmental conditions 

Nannoni et 

al. (2015) 

Cà Mascio 

landfill, Central 

Italy 

4 months Detection of 

air borne 

heavy 

elements 

Lichens (Evernia 

prunastri) 
• Lichens showed great sensitivity to serve as “early warning” 

indicators for even small environment changes 

• Severe (EC>1.75) and moderate (1.25<EC<1.75) accumulation 

of HM in lichens and damage to their cell membrane, as well as 

reduced photosynthetic efficiency. 

Loppi et al. 

(2021) 

Tuscany, central 

Italy 

- Detection of 

air borne 

microplastics 

Lichen (Flavoparmelia 

caperata) 
• Lichens collected near the landfill clearly accumulated the 

highest number of anthropogenic microfibres (147 mp/g dw) and 

fragments (79 mp/g dw) 

Vaverková et 

al. (2012a, b) 

Vaverková 

and 

Adamcová 

(2012) 

Vaverková et 

al. (2018) 

Kojetín 

bioregion, 

Štěpánovice 

landfill 

Kuchyňky, CR 

4, 6 and 8 

years 

Reclamation 

of landfill 

Native Plants  

Cladonia arbuscula, 

Juniperus communis, 

Epipactis helleborine, 

Populus tremula, 

Polygala 

chamaebuxus, Prunus 

spinosa and Crataegus 

spp., Rosa spp. 

• During the floristic research conducted in 2007 and 2010, 94 

species and 88 plant species, respectively, were detected 

• Any alarming symptoms, such as chlorosis or leaf area 

necrosis, were not noticed due to sanitary MSW landfill operation 

• The floristic research made in 2010, 2011, 2012 and 2015 

revealed respectively 88, 105, 105 and 195 vascular plant species 

that were compared with 94 plant species identified in 2007, which 

indicated that the impact of landfills on the environment can be 

minimized by appropriate management 

Auto-generated PDF by ReView Environmental Geotechnics

LandfillsF IN1.docx MainDocument RVT Review Copy Only 46



45 

 

• Health condition of plants occurring at the landfill was good, 

which in turn contributed to and indicated the health of the landfill 

site 

Zapata-

Carbonell et 

al. (2019) 

Eastern part of 

France 

  Betula pendula • Despite the high abundance of some of the nutrients necessary 

for proper plant development, such as Ca, S, Mg, P and K, the 

substrate conditions of the landfill, such as high pH, limited 

nutrients’ access to plants 

• The physical and chemical properties of the waste stored on the 

investigated landfill, such as fine texture, high mechanical 

impedance, extreme pH conditions, excessive salinity and elevated 

concentrations of metals and metalloids, were considered 

detrimental to plant growth 

Xiaoli et al. 

(2011) 

Shanghai landfill  Landfill 

cover 

Phragmites australis • Coverage (25 up to 90%), height (0.8-2.2 m) and species (5 to 

12) of the vegetation increased with increasing landfill time 

closure. This was due to decreasing landfill gas emissions and 

improved environmental conditions for vegetation growth 

Vaverková 

et al. (2019) 

Petrůvky landfill 

and Zdounky 

site, CR 

long-term landfilling 

safety 

 • MSW landfill created a very specific environment, where the 

vegetation species composition was not stable but rather a place of 

specific plants succession 

Popovych et 

al. (2021) 

Lviv landfill, 

Ukraine 

 Heat 

resistance of 

vegetation 

Artemisia vulgaris L., 

Artemisia absinthium 

L., Chenopodium 

urbicum L., Arctium 

lappa L., and Plantago 

major L. 

• The most stable species were wormwoods (Artemisia) in all 

landfill locations, and the least heat-resistant was the city 

goosefoot 

• Study confirmed that plants can be used to monitor temperature 

changes at landfills 

Winkler et 

al. (2021) 

Otwock, Poland 20 years Monitoring 

127 plant 

species 

Phalaris arundinacea, 

Alnus glutinosa, Salix 

alba, Typha latifolia, 

Populus canescens, 

Typha angustifolia 

• Assessment of vegetation composition used the method of 

phytocoenological relevés 

• Changes in the vegetation composition at the landfill between 

native plant species and neophytes, as well as the development of 

a new spectrum of plant species was noticed over time 

• Anthropogenic activities not only affected the landscape but 

also facilitated the creation of new ecosystems 
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Koda et al. 

(2022) 

Lipiny Stare, 

Poland 

6 years Leachate 

seepage 

Salt tolerant • A growing number of tolerant to salinization plant species (i.e., 

halophyte and oligohaline) and the decreasing share of 

glycophytes in places of leachate leakage demonstrated the 

diagnostic potential of plants for the identification and localization 

of leachate leakage points at the landfill  

• For fast identification of leachate leakage points, an index was 

proposed based on the relation of glycophytes to plant species 

tolerant to salinity 
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Figure 1. Vegetation at municipal solid waste sites.  1026 
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