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Abstract: In the process of efficient management of intelligent orchards, due to the short cycle and high intensity of 11 

fruit thinning, it is urgent to realize the automatic operation of fruit thinning in orchards. However, affected by the 12 

complex orchard environment, the color of fruit and the background are similar, and the more important problem is 13 

that the fruit is small-scale. These factors bring great challenges to fruit detection before and after the thinning period. 14 

For this reason, a detection algorithm for fruits of small green objects is proposed, namely, ODL Net. By integrating 15 

the semantic enhancement module and label assignment Center-Box, the small size problem of the target fruit is 16 

alleviated. The feature enhancement module and position enhancement module are constructed to enhance the fusion 17 

effect of features and improve the detection accuracy. To better verify the performance of the algorithm, this study 18 

takes a pear orchard as an example to produce two datasets before and after pear thinning. The experimental results 19 

show that the detection accuracy of ODL Net can reach 56.2% and 65.1% before and after the fruit thinning period, 20 

respectively, and the recall rate can reach 61.3% and 70.8%, respectively, which are significantly higher than those 21 

of other mainstream algorithms at present. The new algorithm can effectively assist the orchard automatic fruit 22 



thinning operation and provide the basis for orchard yield measurement after the fruit thinning period. This study 23 

can provide a theoretical basis for the scientific management of intelligent orchards. 24 

Keywords: ODL Net; Fruit thinning; Small fruit detection; Feature fusion 25 

 26 

1. Introduction 27 

The development of cutting-edge theories and technologies such as artificial intelligence and 28 

5G communication provides strong support for efficient agricultural production. Intelligent 29 

agriculture (Patrício and Rieder, 2018; Wu and Tsai, 2019) and orchards (Xu et al., 2023; Maheswari, 30 

et al., 2021) have gradually entered the public view, and agricultural production efficiency has been 31 

greatly improved. In the orchard production process, due to the short operation cycle and high labor 32 

intensity of fruit thinning, it is urgent to realize automatic fruit thinning in orchards. However, in 33 

the fruit thinning period, orchards present a complex environment, and the fruit color is similar to 34 

the background and is still small-scale and easily covered by branches and leaves. These factors 35 

bring great challenges to the efficient recognition of fruit during this time. The realization of the 36 

efficient detection of small fruits can assist automatic fruit thinning operations in orchards when the 37 

fruit is clustered at the early stage of fruit thinning. It can also assist the fruit yield measurement to 38 

realize the scientific management of the orchard when the fruit is in a single state in the late stage 39 

of fruit thinning. In addition, it also helps fruit farmers recalculate irrigation and fertilizer supply 40 

due to the change in fruit quantity after thinning. Taking the golden pear orchard as an example, this 41 

study focuses on the detection accuracy of small target fruits before and after pear thinning and 42 

constructs a high-precision small fruit detection algorithm. 43 

In the orchard environment, object detection has been widely used in orchards (Gongal et al., 44 



2015; Fu et al., 2020; Tang et al., 2023), such as automatic driving (Yang et al., 2021; Tey and 45 

Brindal, 2022), pest detection (Ebrahimi et al., 2017; Ngugi et al., 2021), and other operations. Its 46 

detection accuracy also restricts the production efficiency of orchards. In complex orchard 47 

environments, fruit detection has attracted many scholars’ attention and has also achieved gratifying 48 

research results. Sa (Sa et al., 2016) proposed a fruit detection algorithm based on Faster RCNN 49 

that used images obtained from two modes, color (RGB) and near-infrared (NIR), to compose multi-50 

modal information; in this paper, the algorithm was applied to the detection task of seven kinds of 51 

fruits, such as sweet pepper and rock melon. Bargoti (Bargoti, et al., 2017) proposed a tiling method 52 

for images containing more than 100 target fruits; combined with image enhancement technology, 53 

the F1-score of this new algorithm on apples and mangoes exceeded 0.9. Zhao (Zhao and Yan, 2021) 54 

proposed CenterNet for fruit detection, which implemented three backbone networks and finally 55 

confirmed CenterNet based on DLA-34 (Yu et al., 2018). In addition, Jia (Jia et al., 2021) presented 56 

an algorithm with a transformer structure, which was popular in recent years, to detect green apples 57 

in orchards. Hussain (Hussain et al., 2022) proposed a deep learning based framework for automatic 58 

detection and recognition of fruits and vegetables in complex scenes. It can help sellers identify 59 

vegetables and fruits with high similarity. Although its accuracy is as high as 96%, there is no special 60 

design for detecting small-scale fruits. Most of the above algorithms were detection algorithms 61 

proposed for specific orchard environments. These algorithms achieved relatively ideal detection 62 

results for large-scale fruits, green fruits, etc. However, they ignored the detection effect of small-63 

scale target fruits. 64 

The detection effect of small objects is easily affected by the external environment. For 65 

example, the proportion of pixels is small, so the features are difficult to effectively represent. The 66 



target itself is small-scale and easily occluded by the background, resulting in missing its recognition. 67 

In addition, the color of a small target is similar to the background, leading to incorrect identification. 68 

Small object detection is so challenging that it has attracted scholars’ attention in many fields. Rabbi 69 

(Rabbi et al., 2020) used small objects to over-sample images and enhanced each image by copying 70 

and pasting small objects many times to achieve small object detection; the detection accuracy of 71 

small objects on the MS COCO dataset was increased by 7.1 percentage points. Yang (Yang et al., 72 

2019) presented a novel multi-category rotation detector for small, cluttered and rotated objects, 73 

namely, SCRDet, in which a sampling fusion network was devised that fused multi-layer features 74 

with effective anchor sampling to improve the sensitivity to small objects. It was shown on the two 75 

remote sensing public datasets and the COCO and VOC 2007 dataset. In the area of remote sensing, 76 

Zhang (Zhang et al., 2018) proposed a network with deconvolution layers after the last convolution 77 

layer of the basic network for small object detection in remote sensing data; in an experiment on a 78 

remote sensing image dataset, the Deconv RCNN reached a much higher mean average precision 79 

than the Faster RCNN. Inspired by these different fields, research on small fruit detection has also 80 

made significant progress. Mai (Mai et al., 201) presented a multi-classifier fusion strategy for small 81 

fruits, which used three different feature levels to learn three classifiers for object classification in 82 

the proposal localization phase; at the same time, a new classifier correlation loss term was 83 

introduced to improve the detection accuracy of small objects. Tu (Tu et al., 2020) proposed an 84 

improved method based on multi-scale Faster RCNN, which used color and depth images acquired 85 

by an RGB-D camera; it was improved by combining the feature map of the shallow convolution 86 

maps from the region of interest (ROI) pool to detect small passions. Sun (Sun et al., 2022) proposed 87 

a balanced feature pyramid network (BFP Net) for small apple detection; the network balanced the 88 



information mapped to small apples from two perspectives and was verified on three fruit datasets. 89 

The above algorithms achieved ideal results in solving small objects or small target fruit detection. 90 

However, these small targets were mostly "small" due to the perspective that they were not as small 91 

as the fruit in the fruit thinning period. 92 

At present, there are relatively few studies on fruit recognition during fruit thinning. At this 93 

time, the state of fruit appears as the target color is similar to the background, and the real volume 94 

of fruit is relatively small and easily blocked. To solve the above problems, this study presents ODL 95 

Net, a detection algorithm for small-scale fruit around the pear thinning period. The semantic 96 

enhancement module (SEM) and the label assignment Center-Box in this algorithm can deal with 97 

small-scale fruit detection well. In addition, the feature enhancement module (FEM) and the 98 

positional enhancement module (PEM) for feature fusion also improve the detection accuracy. The 99 

following is an explanation of the innovations in this paper: 100 

(1) This study presents ODL Net, a novel detection algorithm for small fruits around the pear 101 

thinning period. The detection accuracy in orchards is higher than that of most current detection 102 

algorithms. 103 

(2) Two pear datasets are prepared in this study, including image data before and after the pear 104 

thinning period. In this way, the detection effect of ODL Net around this period in the orchard can 105 

be accurately verified. 106 

(3) Three modules, SEM, FEM, PEM are constructed in the feature fusion network. The 107 

modules enhance the information from different angles and provide it to the downstream detection 108 

task of the ODL Net. 109 

(4) ODL Net relies on a special label assignment, Center-Box, to accurately locate small fruits. 110 



Center-Box eliminates the influence of object size on positive sample allocation, avoiding ignoring 111 

small objects. 112 

This study introduces the ODL Net, which aims to achieve precise detection of pear fruits in r113 

eal orchard environments both before and after the thinning period. The pre-114 

thinning detection of pears provides valuable insights to fruit farmers, allowing them to monitor ea115 

rly-116 

stage fruit growth. This not only facilitates the determination of optimal irrigation and fertilizer su117 

pply for orchards but also guides the thinning process. Similarly, post-118 

thinning detection of pear fruits remains crucial, providing ongoing recommendations for irrigatio119 

n and fertilizer supply to fruit farmers and enabling scientifically informed yield predictions for or120 

chards. In summary, the primary objective of this 121 

study is to enable comprehensive monitoring of fruit growth stages, encompassing both pre 122 

and post-thinning stages, thereby achieving intelligent management of orchards.  123 

The organizational structure of this article is as follows: Section 1 describes this research 124 

purpose and related work in the current field. The second section is the production process of the 125 

two datasets. Section 3 details the composition of the ODL Net, as well as the structure and functions 126 

of each component. The experimental details, data and results are shown in Section 4, including 127 

contrast and ablation experiments. The summary and expectation of the overall research content is 128 

presented in Section 5. 129 

2. Datasets 130 

In this study, two datasets were produced, corresponding to the period before and after pear 131 

thinning. The object of the datasets was the golden pear around the fruit thinning period, which was 132 



characterized by its small-scale and full green color. The following is an introduction to the data 133 

collection and production process. 134 

2.1 Data Acquisition 135 

The objective of this study is to detect the fruit before and after the pear thinning period in 136 

orchards to provide thinning guidance for fruit farmers and realize intelligent orchard management. 137 

To achieve this goal, two pear datasets were made before and after the pear thinning period to test 138 

the feasibility of the ODL Net. The datasets were all taken from the RiSheng Golden Pear 139 

Professional Cooperative of Jiaozhou, Qingdao City, Shandong Province. The images taken were 140 

saved as.jpg, 24-bit color. As shown in Figure 1, the fruit was characterized by its small-scale and 141 

green color around the pear thinning period. It can be seen from the figure that the fruit density 142 

before thinning is higher than that after thinning, so detection before thinning is more difficult. 143 

    

    

a) images before thinning period b) images after thinning period 

Fig. 1. Images around the pear thinning period in datasets 144 

2.2 Data Processing 145 

LabelMe was used to process the images taken. It used boxes to mark the target, with the 146 



marked closed part as the foreground, labeled "pear", and the remaining part as the background. 147 

Annotated images were automatically generated into.json files containing coordinates and label 148 

information. The final datasets were divided according to a ratio of 7:3. The dataset before pear 149 

thinning included 1549 images, with 1084 images in the training set and 465 images in the test set. 150 

The dataset after pear thinning included 891 images, with 623 images in the training set and 268 151 

images in the test set. We also calculated statistics on the object scale of the dataset, and the 152 

information is shown in Table 1. 153 

Table 1. Statistics of pear fruit scale 154 

 small-scale middle-scale large-scale images 

dataset before thinning 4427 (48.41%) 3251 (35.55%) 1466 (16.04%) 1549 

dataset after thinning 972 (45.13%) 641 (29.76%) 541 (25.11%) 891 

It should be noted that COCO format datasets usually define objects with area pixels less than 155 

32×32 as small-scale targets, objects with area pixels greater than 96×96 as large-scale targets, and 156 

objects between them are defined as medium-scale targets. However, the image size of the pear 157 

datasets we shot is 3024×4032 pixels, which is bigger than the image size of 640×640 pixels in the 158 

COCO dataset. Therefore, this study takes the pixel area as the standard and redefines the scale 159 

range according to the multiple relationships of areas. Objects with pixels less than 174×174 are 160 

small-scale targets, objects with pixels greater than 523×523 are large-scale targets, and objects in 161 

between are defined as medium-scale targets. As seen from Table 1, large-scale objects have the 162 

least amount. Intermediate-scale objects are the most numerous, accounting for more than half of 163 

the fruit. The fruit coordinates and sizes in the datasets are visualized as shown in Figure 2. The 164 

coordinate diagram shows that the fruit density after thinning is much lower than that before 165 



thinning. The fruit size before fruit thinning was smaller, concentrated within 0.1. 166 

 Coordinate Size 

before thinning 

  

after thinning 

  

Fig. 2. Statistics of pears in datasets 167 

3. ODL Net Detection Model 168 

ODL Net includes two parts: the backbone and detection head. The backbone network consists 169 

of feature extraction (bottom-up) and feature fusion (top-down). Three enhancement modules are 170 

built in the backbone for more effective feature fusion and small fruit feature capture. In the 171 

detection head, this study uses a label assignment that ignores fruit size to strengthen the detection 172 

of small objects. The overall structure of the algorithm is shown in Figure 3. 173 

 174 



Fig. 3. The overall structure diagram of ODL Net 175 

 Note: ODL Net mainly includes two parts: the backbone and the detection head. 176 

3.1 Image Enhancement 177 

To enhance the learning ability of the network, the algorithm enhances the image for the input. 178 

Before the input is used for training, they are first scaled to 640×640 pixels. The scaled images are 179 

enhanced in four ways: random rotation, saturation transformation, random affine transformation 180 

and random stitching. An example of data enhancement is shown in Figure 4. The random rotation 181 

operation randomly rotates the original image by 90°. The random saturation transform changes the 182 

hue and saturation value of the input to simulate different light conditions in the orchard. Random 183 

affine transformation includes random translation, scaling and rotation. The translation, scaling, and 184 

rotation factors are set to 0.0625, 0.5, and 45 degrees, respectively. Finally, 4 images are randomly 185 

selected for mosaic processing. The image enhancement operation expands the learning range of 186 

the neural network to better learn the fruit feature. 187 

Fig. 4. Image enhancement display 188 

3.2 Feature Extraction 189 

The feature extraction network mainly includes CBS, CSP and SPPF modules, and its 190 

architecture is shown in Figure 5. The figure shows the extraction process of feature maps in each 191 

layer and the specific structure of each module. 192 

     

a) original image b) random rotation 
c) saturation 

transformation 

d) random affine 

transformation 
e) random stitching 



 193 

Fig. 5. Diagram of the feature extraction network 194 

The convolution layer, batch normalization layer and activation function leaky ReLU are 195 

encapsulated in the CBL of YOLOV5. The ability of the activation function is nonlinear in the neural 196 

network, which is replaced by SiLU (Elfwing et al., 2018) in this study, and the module is named 197 

CBS. SiLU is defined as the activation of network function approximation in reinforcement learning. 198 

It is a weighted linear combination of sigmoid, whose function expression is SiLU(x) = !

"#$!
. Leaky 199 

ReLU solves the problem of zero ReLU output, but it is still nearly linear. As shown in Figure 6, 200 

unlike Leaky ReLU, SiLU is not monotonically increasing but has a minimum value. This makes it 201 

self-stable, thus inhibiting the learning of a large number of weights. It can nonlinear neural 202 

networks better than Leaky ReLU, thus improving the expression ability of networks to models and 203 

solving problems that linear models are not equipped to deal with. 204 



 205 

Fig. 6. Contrast graph of SiLU and Leaky ReLU curves 206 

The CSP divides the input into two branches. The number of channels is halved by the 207 

convolution operation, and one of the branches is subject to a multi-layer residual operation (i.e., 208 

double-layer convolution residual component). Then, two branches are concatenated to make the 209 

input and output the same size. Finally, a CBS module is placed to further process feature 210 

information, which enables the feature extraction network to learn more fruit features. The SPPF 211 

pools the features passing through the CBS three times and concatenates the four groups of features. 212 

SPPF specifies one convolution kernel, and the output of each pooling layer is used as the input of 213 

the next pooling, which is faster than specifying three. Similar to the CSP, the last step of SPPF is 214 

still the CBS module. The SPPF increases the feature representation ability of the feature maps. 215 

As shown in Figure 5, feature map C5 is processed by C6 through two stacked CBS modules, 216 

whose main step is convolution operations. Both operations of C4 and C3 are the same, passing 217 

through a CSP and a CBS module. The top-level feature map C2 is obtained by C3 through the CSP 218 

and SPPF modules in series, which enhances the expression of the algorithm for small objects. The 219 

feature extraction network generates six feature layers, denoted from bottom to top by C6-C2. 220 

However, only the upper five layers are used for feature fusion. The remaining layer is used to 221 

deepen the network and obtain richer feature information. 222 



3.3 Feature Fusion 223 

Feature fusion includes horizontal and vertical fusion. Horizontal fusion adds three different 224 

enhancement modules, which can also be used in the feature fusion phase of any other algorithm. 225 

Top-down fusion combines the CSP and CBS modules in the feature extraction network and uses 226 

the sampling and concatenation operations to fuse the adjacent feature maps. The following 227 

describes the overall architecture of the three modules and the feature fusion network. 228 

3.3.1 Semantic Enhancement Module (SEM) 229 

Recently, there have been two main structures for image feature processing: Convolutional 230 

Neural Network (CNN) and Transformer, which have different core concepts. CNN focuses on the 231 

correlation between two-dimensional local data. With the deepening of layers, its focus area will be 232 

wider. This makes it suitable for image processing, especially layer-by-layer processing of images 233 

(Lin et al., 2017; Liu et al., 2018). However, it cannot capture long-distance information and is 234 

limited by the receptive field. A common solution to this problem is to increase the depth of the 235 

neural network. This approach can indeed obtain more global information, but it will lead to gradient 236 

instability, network degradation and other problems. 237 

At this time, transformers are widely used in the field of computer vision by virtue of their 238 

excellent spatial modeling ability (Zhu et al., 2020; Liu et al., 2021; Liu et al., 2022). The multi-239 

head attention mechanism in the visual transformer captures richer information and relationships of 240 

features. However, the limitation of Transformer is that it cannot take advantage of the prior 241 

knowledge of scale, translation invariance and feature locality of the image itself, which makes it 242 

necessary to use a large amount of data for training. In addition, the main reason why the transformer 243 

structure cannot replace CNN at present is computational efficiency due to its sequential input 244 



format. In natural language processing, the sequence length of the WMT 2014 English-German 245 

dataset containing 50 million words and 2 million sentences is only 25. The code length is increased 246 

to 3136 when the image resolution of the common ImageNet dataset is 224, and the segmented 247 

image block size is defined as 4×4.  248 

In this study, to detect small-scale fruits, the pixels in the dataset will be higher, and the 249 

corresponding coding length will be multiplied, which is difficult for computational memory. In 250 

consideration of the above factors, this study only constructs a semantic enhancement module with 251 

the help of a transformer structure. It does not involve the hierarchical association of feature maps 252 

but is applied to a feature map itself to enhance its semantic information. The specific structure of 253 

the SEM is shown in Figure 7. 254 

  255 

Fig. 7. Diagram of the semantic enhancement module structure 256 

The feature map obtained through the feature extraction network is divided into many patches, 257 

generating sequences for position embedding. Then, three structural layers consisting of the norm 258 

layer, multihead attention and feed-forward network (FFN) are used to enrich the semantic 259 

information. Finally, the sequence is restored to a feature map of the same size through the Reshape 260 



operation. In the process above, the traditional multihead attention is replaced by pooling-MHSA, 261 

whose structure is shown in the right dotted line box in Figure 7. 262 

The input sequence X is reshaped into the feature map format when it enters the pooling-263 

MHSA. The reshaped feature map is still represented as X for the convenience of understanding the 264 

input. Multiple average pooling layers of different sizes are applied to X to generate a feature map 265 

A% of different contents: 266 

A% = AvgPool&(X)		                                      (1) 267 

Where i=1, 2, 3, 4. J stands for pool size, j = ( '

()*%+,
× -

()*%+,
). H, W represents the size of the input 268 

feature map, ratios=[1, 2, 5, 10]. Next, the feature map is sent to the convolution layer for relative 269 

position coding: 270 

A%. = Conv(A%) + A%                        (2) 271 

The encoded feature maps are stacked: 272 

A = LayerNorm(Concat(A". , 	A/. , A0. , A1. ))	               (3) 273 

The stacked feature maps A carry more context information in feature map X, which can replace X 274 

as the input of the subsequent multihead self-attention. The size of pooled feature maps is smaller, 275 

so the generation of K and V matrices is smaller than that of traditional ones, which means that the 276 

Pooling-MHSA is more efficient. It can be expressed as Equation 4 and Equation 5: 277 

(Q, K, V) = (XW2, AW3, AW4)                   (4) 278 

X5)** = Softmax(6×8"
√:	8

) × V                    (5) 279 

The feed-forward network is an important part of the SEM. The traditional transformer 280 

structure uses the fully connected layer as the feed-forward network. To integrate the nearest 281 

neighbor relationships between features, convolution structures are combined to process sequences. 282 



First, the sequence after the cross-layer residual structure is reconstructed into a feature map by the 283 

ToImage function: 284 

X5)**< = ToImage(NormLayer(X5)** + X))             (6) 285 

Then, through the two-level convolution matrix in Equation 7 and Equation 8: 286 

X. = Hardswish(X5)**< 	W")                     (7) 287 

X/ = Hardswish(Conv(X.))W/                   (8) 288 

Where W" ,W/  represents the size of the 1×1 weight matrix, and Hardswish is the activation 289 

function. Finally, the feature map through the feed-forward network is converted into a sequence 290 

format by the function ToSeq and is given to the structure layer in series or the reshaping layer for 291 

subsequent operations: 292 

X+=* = ToSeq(X/)                         (9) 293 

The semantic enhancement module refers to the Transformer structure and constructs the 294 

Pooling-MHSA and a new feed-forward neural network to enhance semantic information. The 295 

structure composed of NormLayer, Pooling-MHSA, and FFN is stacked three layers deep. The SEM 296 

is applied to the top-level feature map in the ODL Net. This is because the top-level feature map 297 

often contains more abstract and semantic features, and applying semantic enhancement operations 298 

to it can further extract higher-level semantic features. Moreover, applying SEM to the top-level 299 

feature map can expand the receptive field, i.e., increase the observation range of each feature point 300 

on the input image. Additionally, the self-attention mechanism in SEM helps the algorithm better 301 

understand the contextual information and global structure of the targets. In summary, the 302 

application of SEM to the top-level feature map can enhance the receptive field, feature extraction 303 

capability, and object localization accuracy of ODL Net, thereby improving the performance and 304 



effectiveness of object detection. The experiments also demonstrate that when it is applied to the 305 

top-level feature map, ODL Net achieves the highest detection accuracy, as shown in section 3.2.2 306 

of the experimental results. Furthermore, the module can be independently applied and inserted at 307 

suitable positions, including downstream tasks, within the neural network. 308 

3.3.2 Feature Fusion Network 309 

The feature fusion network constructs three different enhancement modules to enhance the 310 

information of the feature map before fusion in different aspects. In addition, CBS and CSP modules 311 

are used for feature integration when adjacent feature maps are fused. Figure 8 shows the structure 312 

diagram of the feature fusion network, in which H ×W represents the size of the feature map and 313 

C represents the number of channels. 314 

 315 

Fig. 8. Diagram of the feature fusion network 316 

As shown in Figure 8 above, the feature enhancement module consists mainly of two nested 317 

residual structures. The input feature map is first reduced by a 1×1 convolution to reduce the number 318 

of channels to half of the original number and then further processed by average pooling and 319 

convolution operations with sizes of 2×2 and 3×3, respectively. This step also makes the feature 320 



map size half of the input, as well as the number of channels. Then, it restores the size through the 321 

upsampling operation and adds it to the feature map before pooling. It is then restored to size by an 322 

upsampling operation and added to the feature map before pooling. The last step is to restore the 323 

number of channels by stacking the feature maps after addition and before pooling. In the process 324 

of halving the resolution of the feature map, more object features will be amplified and extracted by 325 

the network. When the image size is restored, the image information will be updated. The cross-326 

layer addition and stacking operation in the FEM effectively avoids the loss of information during 327 

image size changes and achieves the function of feature enhancement as a whole. 328 

There are also two branches in the Position Enhancement Module (PEM). As shown in Figure 329 

8, the upper branch is set with a convolution layer to further extract features on the basis of keeping 330 

the size and channel number unchanged. The convolution has a size of 3×3, with a stride and 331 

padding of 1. The other branch sets the self-attention mechanism, where N represents the number 332 

of attention heads. The PEM mainly enriches the location information through a self-attention 333 

mechanism. It provides an effective modeling method through the triplet of Key, Query and Value 334 

and obtains greater receptive field and context information by capturing global information. Finally, 335 

the captured information will be added with the convolution features to achieve position 336 

enhancement. 337 

The following describes the position of modules in the feature fusion network. Obviously, the 338 

lower-level feature map brings higher resolution, which means it carries more location information. 339 

Therefore, the Position Enhancement Module is added in the fusion process of the lowest feature 340 

map to supplement the context information. The feature maps in the middle of the two layers are 341 

responsible for extracting features. The fusion of these two layers focuses on whether the features 342 



are effectively extracted. Therefore, the Feature Enhancement Module is added to the fusion process 343 

of P2-P4. Chen (Chen et al., 2021) proved through experiments that the top-level feature map carries 344 

the most abundant semantic information among the feature maps generated by the feature extraction 345 

network. In addition, the memory requirements of the semantic enhancement module also limit its 346 

application scope, so it is added in the process of the top-level feature map C2-P2. To maximize the 347 

function of the SEM, this study discusses its reasonable position in the feature fusion network. The 348 

experimental data are shown in section 4.3, and the results show that it is best to add SEM to the 349 

top layer. The effects of the FEM and PEM are also shown in the same section. The feature fusion 350 

network enables ODL Net to fully capture the object features. The enhancement of location and 351 

semantic information greatly improved the sensitivity of the algorithm to the feature, which is 352 

conducive to the detection of fruit before and after the pear thinning stage. 353 

3.4 Detection Head 354 

In this study, a detection head for small objects is constructed, which mainly relies on a special 355 

label assignment to improve the detection accuracy. This assignment eliminates attention to the size 356 

and shape of the object so that small-scale fruit will not be ignored. The detection head is mainly 357 

composed of the label assignment Center-Box and convolution layers, which are shown in Figure 358 

3. The following is a description of the label assignment, aiming at small-scale objects. 359 

3.4.1 Label Assignment 360 

Yolov5, as the baseline of this study, is an anchor-based algorithm whose sample selection 361 

method increases the number of positive samples to a certain extent. In the feature map, the two 362 

adjacent grids closest to the center point of the ground truth are selected as the prediction grids. In 363 

addition to the grid where the ground truth is located, there are at most nine anchor boxes 364 



corresponding to three grids that match it. In the matching process, the aspect ratio between the 365 

ground truth and anchor is calculated twice. If the aspect ratio is less than the specified threshold, 366 

the anchor is judged as a positive sample; otherwise, it is the background. For example, if the ground 367 

truth is matched with the 1:1 and 1:2 size anchors corresponding to the current layer and its own 368 

grid, then there are also two sizes of anchors in the nearest two grids. The number of positive 369 

samples of this ground truth in the current layer is 6, while the range of possible anchors is [0, 9], 370 

and the number of matching three feature maps is [0, 27]. The process above is shown in Figure 9. 371 

Although this label assignment is relatively advanced, which increases the number of positive 372 

samples to a certain extent, it cannot be used for small object detection. 373 

 374 

Fig. 9. The label assignment diagram of YOLOV5 375 

Note: The left side is the anchor box of three sizes corresponding to each grid, and the right side is the selection 376 

diagram of the prediction grid. 377 

To improve the detection accuracy of small objects, ODL Net uses a label assignment named 378 

Center-Box without anchors, which is specifically described in section 3.4.2. The comparison with 379 

other label assignments is shown in Figure 10. The dashed box represents the ground truth, and the 380 

orange part represents the positive sample. The two columns on the right in Figure 10 show the 381 

representative label assignments of the two types of detection algorithms. 382 



 383 

Fig. 10. Comparison of different types of label assignments 384 

The anchor-free algorithms take FCOS as the typical representative and tile the anchor points 385 

in the feature map to select positive samples. All anchor points in the ground truth after a feature 386 

map is mapped to the original map are selected to calculate the distance from the point to the ground 387 

truth: (l*, r*, t*, b*). FCOS defines the range of max(l*, r*, t*, b*) on the multi-scale feature maps to 388 

determine the scale on which the object is detected. For example, FCOS stipulates 389 

max(l∗, r∗, t∗, b∗) 	∈ [128, 256] in the top feature map, which means that this feature map is used 390 

to detect large objects. The fruit in Figure 10 does not meet this range, so there is no positive sample 391 

on the large-scale feature map in this case. Correspondingly, the fruit conforms to the detection 392 

range in the small-scale feature map, so the grid of all anchor points in the ground truth is determined 393 

as a positive sample. 394 

In the classic anchor-based algorithm, the division of positive and negative samples is 395 

completed by calculating the IoU between the ground truth and the anchor boxes. When IoU is 396 

greater than the specified threshold, this group of anchors will be determined as positive samples. 397 

However, it can be seen from the rightmost column in Figure 10 that the IoU of small objects in the 398 



large-scale feature map is zero. This is because the anchor is too different from the ground truth or 399 

even completely inside it. Therefore, the small-scale fruit can only produce positive samples in the 400 

low-level feature map. 401 

These traditional label assignments all define constraints on positive samples, which basically 402 

limits the scale range of objects that can be detected at each feature level. The assignments of other 403 

algorithms (Kong et al., 2020; Zhu et al., 2019) can also be roughly classified into these two 404 

categories. Although these two methods achieve multi-scale detection, larger objects will be 405 

allocated more positive samples, and small objects will be easily ignored. This is not conducive to 406 

the detection of small objects and makes it difficult to detect fruit around the pear thinning period. 407 

3.4.2 Center-Box 408 

To solve the above problems, ODL Net uses a "fair" label assignment (Zand et al., 2022), 409 

Center-Box. As shown on the left of Figure 10, Center-Box cancels the allocation rule of positive 410 

and negative samples and directly defines the grid where the object center is located as positive 411 

samples (marked in orange) on all levels of feature maps. This strategy prevents the size and shape 412 

of objects from dictating the assignment of labels and treats all objects equally at different levels of 413 

feature. This means that Center-Box allows the network to learn at all scales of an object, which 414 

makes the number of positive samples allocated to small-scale objects and large-scale objects the 415 

same. Therefore, the detection will not tend to large-scale objects. To match the positive sample 416 

grids, the regression target of Center-Box is defined as the distance from the diagonal vertex of the 417 

grid to the ground truth, which is shown in Figure 11 of (L, T, B, R). The coordinates of the upper 418 

left corner and the lower right corner of the ground truth are represented as (x1, y1) and (x2, y2), 419 

respectively. The coordinates of the center point are represented as (x, y). 420 



 421 

Fig. 11. Diagram of the Center-Box regression 422 

The regression target of Center-Box is the distance between the upper left corner of the grid 423 

where the center point is and the right and upper boundaries of the ground truth and the distance 424 

between the lower right corner of the grid and the left and lower boundaries of the ground truth. 425 

They are represented by (L*, T*, B*, R*), which is shown in Equation 10: 426 

⎩⎪⎨
⎪⎧L(%)∗ = (x/s% + 1) − x"(%)/s%T(%)∗ = (y/s% + 1) − y"(%)/s%R(%)∗ = x/(%)/s% − x/s%B(%)∗ = y/(%)/s% − y/s%

                  (10) 427 

Where i represents the feature scale of [1, 2, 4]. (!
,$
, A
,$
)  and (!

,$
+ 1, A

,$
+ 1)  in Equation 10 428 

represent the coordinates in the upper left and lower right corners of the grid, respectively. Further 429 

explanation is that L(%)∗ + R(%)∗ = (x/(%) − x"(%)) + 1, T(%)∗ + B(%)∗ = (y/(%) − y"(%)) + 1, where x/(%) −430 

x"(%) = w% = B

,$
, and y/(%) − y"(%) = h% = C

,$
. w and h represent the size of the ground truth in the 431 

original image, and w%  and h%  represent the width and height of the ground truth on scale i, 432 

respectively. 433 

The learning process of the regression target is shown in Equation 11: 434 



⎩⎪⎨
⎪⎧L(%) = (α × Sigmoid(l))/ ∗ 2%T(%) = (α × Sigmoid(t))/ ∗ 2%R(%) = (α × Sigmoid(r))/ ∗ 2%B(%) = (α × Sigmoid(b))/ ∗ 2%

               (11) 435 

Where (l, t, r, b) represent the predicted values in network for the distance in four directions, and 436 

their values are controlled between 0 and 1 by the sigmoid function. i ∈ {1, 2, 4}, represents the 437 

scale of different feature maps, and 2i is used to distinguish different scales in the learning 438 

process.𝛼is a range constant used to expand the detection coverage. It is set as 1.0 in the experiment 439 

because of the small size of most objects around the pear thinning period, and it can be adjusted 440 

according to the size of the object in other studies. (L(%), T(%), R(%), B(%)) is the predicted result on 441 

the i-th layer of feature map. This predicted distance is used to compare with the real distance and 442 

adjust the network parameters according to loss function for learning. 443 

The Center-Box approach does not specifically aim to detect fruits of corresponding sizes on 444 

feature maps of different scales, but rather ensures that fruits can be learned on feature maps of all 445 

scales where they exist. It directly assigns the grid cell containing the center of the fruit as a positive 446 

sample and regresses the distances from the top-left to the bottom-right corners of the grid cell to 447 

the true box. This strategy allows for an equal number of positive samples to be assigned to both 448 

large-scale and small-scale fruits, enabling the ODL Net to treat the detection of fruits at different 449 

scales equally. Consequently, this implicitly enhances the detection capability of the ODL Net for 450 

small-scale fruits. In the real working environment of the ODL Net, as supported by the statistical 451 

information provided in Section 2, small-scale fruits constitute nearly half of the overall quantity. 452 

Hence, the scale-agnostic nature of the Center-Box approach empowers the ODL Net to deliver 453 

satisfactory performance in detection tasks before and after thinning in pear orchards. 454 

3.5 Loss Function 455 



The loss function of ODL Net consists of three parts: classification loss, confidence loss and 456 

bounding box loss. The network loss is the weighted sum of the above three, which is shown in 457 

Equation 12. The impact of each loss can be adjusted by weight λ. 458 

Loss = λ"LDE, + λ/LD+FG + λ0L+H&                (12) 459 

3.5.1 Classification and Confidence Loss 460 

For detection tasks in the pear orchard, only "pear" is the category of prediction tag output 461 

from the network. At this point, the common binary cross entropy loss BCE with logit loss is used 462 

as the classification loss: 463 

y% = Sigmoid(x%) = "

"I$%!$
                   (13) 464 

LDE, = −∑ y%∗log(y%) + (1 − y%∗)log(1 − y%)J
FK"           (14) 465 

Where x%represents the predicted value of the current category. y% represents the probability of the 466 

current category obtained after activating the function. y%∗ is the true value of the class, expressed 467 

as 0 or 1. 468 

The confidence level of the prediction box indicates its reliability. The higher the value, the 469 

more reliable the prediction box is, and the closer it is to the ground truth. The confidence loss is 470 

the same type as the classification loss, using the binary cross entropy loss. It should be noted that 471 

the total confidence loss is obtained by weighted addition of the confidence losses on the three 472 

prediction branches: 473 

LD+FG = β"LD+FGL + β/LD+FGM + β0LD+FGN                 (15) 474 

Where β", β/, β0  represents the influence of the confidence loss of the feature map with the 475 

resolution from high to low. The weight is set to (5.0, 1.0, 0.5) in the experiment to improve the 476 

detection accuracy of small fruits. Because small-scale objects are detected on the high-resolution 477 



feature map, β" is adjusted higher to facilitate small fruit detection. 478 

3.5.2 Bounding Box Loss 479 

The goal in the process of boundary box regression is to minimize the distance between the 480 

prediction box and the ground truth. For the relative position of the bounding boxes, the classic 481 

method is to calculate the IoU value of the two boxes. IoU is usually used to express the coincident 482 

area of two object positions. On this basis, many more advanced methods have been proposed 483 

(Rezatofighi et al., 2019; Zheng et al., 2020). For example, DIoU takes into account the distance 484 

between the ground truth and the prediction box, the overlap rate and the scale: 485 

DIoU = IoU − O&(H,H'()

D&
                    (16) 486 

Where b, bQ*  represents the center of the prediction box and the ground truth, respectively. 487 

ρ(b, bQ*) represents the Euclidean distance between two central points. The symbol c represents 488 

the diagonal distance of the smallest area that can contain both boxes. 489 

In this study, to cooperate with the Center-Box, a loss method with scale invariance is proposed. 490 

The goal in the regression process is to minimize the distance between the prediction box and the 491 

ground truth. As explained in Section 3.4.2, each box is represented by four distances. Therefore, it 492 

is the  hope of this study that the distance in four directions can be taken into account in the loss 493 

of the bounding box, which is shown in Figure 12. 494 



 495 

Fig. 12. Calculation diagram of bounding box loss 496 

In the loss of bounding boxes, the overlapping area (yellow box), non-overlapping area and 497 

minimum inclusion area (red box) are all considered. They are expressed in square Euclidean 498 

Distance as Equation 17: 499 

h S" = (L∗ − L)/ + (T∗ − T)/ + (R∗ − R)/ + (B∗ − B)/S/ = (min(L∗, L) + min(R∗, R) − 1)/ + (min(T∗, T) + min(B∗, B) − 1)/S = (max(L∗, L) + max(R∗, R) − 1)/ + (max(T∗, T) + max(B∗, B) − 1)/ (17) 500 

Where (L*, T*, B*, R*) and (L, T, B, R) represent the predicted and true values, respectively. The 501 

expression of bounding box loss is as Equation 18: 502 

L+H&(L∗, T∗, R∗, B∗) = 1 − (N&#N))

N
                (18) 503 

4. Experiments 504 

The experiment is conducted on a server equipped with the Ubuntu 16.04 operating system, 505 

which is equipped with four GTX 3090 graphics cards and V11.4 CUDA. During the training, two 506 

graphics cards are used, and 16 images are set for each batch. The initial learning rate of the 507 

experiment is set to 0.005, and 0.0001 is used as the weight attenuation to prevent over-fitting. To 508 

update and calculate the network parameters and minimize the loss function, a random gradient 509 

descent (SGD) optimizer with a momentum of 0.9 is used to assist the training. Image enhancement 510 

methods are used to enrich the dataset before training to reduce over-fitting. Finally, 300 epochs are 511 



trained for the ODL Net. 512 

4.1 Evaluation Index 513 

The average precision (AP) is selected as the evaluation index of algorithm performance in the 514 

experiment. It is the area under the PR curve with recall as the horizontal axis and precision as the 515 

vertical axis. The calculate method is shown in Equation 19. Other evaluation indicators used in the 516 

experiment also belong to the same type: AP50 is the measured value of AP when the IOU threshold 517 

is 0.5; AP75 is the AP measurement value when IOU is 0.75; APs, APm and APl represent AP 518 

measurement values of small, medium and large objects, respectively. Fruit with the number of  519 

pixels less than 174×174 are defined as small-scale objects, fruit with the number of pixels greater 520 

than 523×523 are defined as large-scale objects, and fruit with the number of pixels between them 521 

are defined as medium-scale objects. The formulation of the scale range is explained in section 2.2. 522 

AP = ∫ P(R)dR
!

"
                 (19) 523 

In this definition of AP, P is represents the proportion of the number of predicted positive 524 

samples to the number of real positive samples; R represents the proportion of positive samples 525 

correctly predicted by the algorithm in the real positive samples. The calculation equations are 526 

shown in Equation 20 and Equation 21, where TP represents the number of detection frames whose 527 

intersection to parallel ratio is greater than the set threshold; FP represents the number of detection 528 

frames whose intersection ratio is less than the set threshold, or the number of redundant detection 529 

frames generated under the same target; FN indicates the number of targets not detected. 530 

Precision = R5

R5IS5
× 100%                 (20) 531 

Recall = R5

R5ISJ
× 100%                   (21) 532 

In addition, the average recall (AR) is also a supplementary evaluation index, although AP is 533 



more authoritative. AR refers to the maximum recall in a given number of detection results on each 534 

image. 535 

4.2 Comparative Experiments 536 

In this section, a comparison is made between ODL Net and classical CNN-based detection 537 

algorithms since 2020. The detection accuracy on the dataset prior to thinning the pears is presented 538 

in Table 2. Two key results are emphasized in the experiment: the overall detection accuracy of the 539 

algorithm (referred to as AP) and the detection accuracy specifically for small-scale fruits (referred 540 

to as APs). Table 2 reveals that ODL Net achieves the highest detection accuracy, reaching 56.2%, 541 

surpassing other algorithms by a margin of at least 0.5 percentage points. Among the detection 542 

algorithms developed in the past two years, AutoAssign (Zhu et al., 2020) demonstrates the closest 543 

accuracy to ODL Net for small fruits, with a mere 0.3 percentage point difference. However, its 544 

overall detection accuracy is unsatisfactory. Similarly, the AP of TOOD (Feng et al., 2021) reaches 545 

55.7%, but its performance on small fruits falls significantly behind our algorithm.  546 

From the aforementioned results, it is evident that one of the key advantages of ODL Net lies 547 

in its capability to enhance the detection accuracy of small-scale fruits without compromising its 548 

overall AP. Building upon the YOLOV5 baseline, ODL Net exhibits an increase of 1.4 percentage 549 

points in AP and a 2.1 percentage point increase in APs. In contrast, the other algorithms in Table 2, 550 

such as NAS-FCOS (Wang et al., 2020), an enhanced version of FCOS, yield considerably lower 551 

accuracy compared to ODL Net, differing by more than 3.0 percentage points. Additionally, ODL 552 

Net achieves the highest AR of 61.6% and ARs of 40.0%. 553 

Table 2. Comparative experiments on the pear dataset before thinning 554 

 AP% AP50% AP75% APs% APm% APl% AR% ARs% ARm% ARl% 



ATSS (Zhang et al., 

2020) 

50.3 79.0 50.8 22.6 72.3 85.4 56.3 33.4 77.2 89.1 

AutoAssign (Zhu et al., 

2020) 

52.8 84.2 53.3 29.0 75.6 87.6 60.8 39.3 80.5 91.3 

Double-Head RCNN 

(Wu et al., 2020) 

51.8 83.8 54.1 26.6 71.9 79.9 56.7 36.5 75.6 83.3 

NAS-FCOS (Wang et 

al., 2020) 

53.1 82.9 54.4 28.3 73.2 86.8 60.0 38.8 79.3 91.0 

TOOD (Feng et al., 

2021) 

55.7 84.7 56.4 28.7 76.8 90.2 61.6 40.0 81.3 93.3 

YOLOV5 54.8 81.6 56.3 27.2 75.8 88.9 61.2 39.8 80.5 92.4 

ODL Net 56.2 83.0 57.5 29.3 77.0 91.2 61.3 39.0 81.8 93.8 

The experimental results on the pear dataset after fruit thinning are presented in Table 3. The 555 

dataset exhibits a significantly lower fruit density compared to the pre-thinning dataset, with 556 

minimal instances of fruit overlap. In this scenario, ODL Net demonstrates a notable improvement 557 

over YOLOV5, with an increase of 2.4 percentage points in both AP and APs. Similarly, for ATSS, 558 

which exhibits relatively good performance, there is a 2.0 percentage point increase in both AP and 559 

APs. But in terms of detecting small-scale fruits after pear thinning, Double-Head RCNN and NAS-560 

FCOS achieve comparable or slightly higher detection accuracy compared to ODL Net. However, 561 

these algorithms tend to focus excessively on small objects and lack sensitivity towards objects of 562 

other scales, resulting in an AP that is 3.6-5.0 percentage points lower than ODL Net. They prioritize 563 

small object detection at the expense of AP.  564 



The experiments demonstrate that ODL Net enhances the detection accuracy of small objects 565 

while also considering the overall detection accuracy (AP) of the algorithm. This is because SEM 566 

enlarges the receptive field of the network, enabling the network to perceive fruits at all scales. In 567 

addition, effective feature fusion also enables ODL Net to capture more and richer features for 568 

accuracy detection. 569 

Table 3. Comparative experiments on the pear dataset after thinning 570 

 AP% AP50% AP75% APs% APm% APl% AR% ARs% ARm% ARl% 

ATSS (Zhang et al., 2020) 63.1 79.5 70.0 36.9 81.7 90.1 69.3 51.6 85.1 92.2 

AutoAssign (Zhu et al., 

2020) 

60.0 76.9 68.0 37.8 77.7 86.3 70.6 55.1 84.6 90.0 

Double-Head RCNN (Wu 

et al., 2020) 

61.5 80.5 72.0 40.4 75.7 83.5 66.4 52.9 77.6 85.4 

NAS-FCOS (Wang et al., 

2020) 

60.1 78.1 68.8 38.9 75.5 86.0 67.3 51.6 80.9 88.6 

TOOD (Feng et al., 2021) 62.3 79.4 67.6 37.7 61.7 88.3 68.2 48.4 69.3 91.9 

YOLOV5 62.7 77.4 68.5 36.5 80.6 88.7 69.3 51.2 86.2 91.0 

ODL Net 65.1 78.6 70.4 38.9 81.7 91.2 70.8 53.9 86.1 92.5 

4.3 Ablation Experiments 571 

Considering the experimental nature of the dataset, the ablation experiments on the pear dataset 572 

after thinning can fully and clearly show the role of each module. The experimental data are shown 573 

in Table 4. The addition of the Center-Box focuses on improving the detection accuracy of small-574 

scale objects. At this time, the accuracy of medium-scale and large-scale objects is almost 575 



unchanged. It is also the semantic enhancement module for small objects, which further improves 576 

the detection accuracy of small fruits. They can be used separately in the detection of other small 577 

objects. In addition, the feature enhancement module and the position enhancement module are very 578 

helpful in improving the overall detection accuracy. Compared with the SEM, although they are not 579 

aimed at small objects, they improve the overall detection accuracy of ODL Net. Finally, the AP and 580 

APs of ODL Net are 2.4 percentage points higher than those of the baseline algorithm. The detection 581 

accuracy of the algorithm for small-scale objects in the dataset is up to 39.3%, although the overall 582 

accuracy is not the highest at this time. 583 

Table 4. Ablation experiments on the pear dataset after the thinning period 584 

Structure 

AP% APs% APm% APl% 

Center-Box SEM PEM FEM 

× × × × 62.7 36.5 80.6 88.7 

√ × × × 63.8 38.9 80.6 89.3 

√ √ × × 64.1 39.3 80.1 89.7 

√ × √ × 64.8 38.2 81.2 88.1 

√ √ √ × 64.9 38.5 82.8 91.0 

√ √ √ √ 65.1 38.9 81.7 91.2 

What needs to be specially explained is the location of the semantic enhancement module in 585 

ODL Net. In fact, it is obvious that the top-level feature map brings the richest semantic feature. 586 

However, we still confirm the location of SEM through experiments to eliminate the impact of the 587 

pear dataset. The experimental data are shown in Table 5, which shows the accuracy of ODL Net 588 

when SEM is added at different feature map layers. At this time, ODL Net is only constructed with 589 



Object-Box and SEM, but no other modules. Table 5 shows that the accuracy of ODL Net reaches 590 

64.1% when SEM is added to the top level of the feature fusion network. The detection of small 591 

objects reaches 39.3%. Therefore, in this study, SEM is finally added to the top-level feature map 592 

C2 to enhance the detection accuracy of small-scale fruit. 593 

Table 5. Ablation experiments of the layer with SEM 594 

Layer AP AP50 AP75 APs APm APl 

C2 64.1 77.9 69.7 39.3 80.1 89.7 

C3 62.9 77.6 68.5 36.9 79.4 89.7 

C2, C3, C4 63.6 77.4 69.3 38.1 81.0 90.1 

4.4 Sample Results 595 

The detection effect of the algorithms on the pear dataset is shown in Figure 13 and Figure 14 596 

before and after fruit thinning, respectively. A representative image is selected to show the effect 597 

before the thinning period. The area with objects (marked with orange rectangle in the original 598 

image) is enlarged in all of the result images to display the detection results more intuitively. In the 599 

image before fruit thinning, there are ten fruits to be detected in the selected image of Figure 13. 600 

Box redundancy occurs in the Yolov5, AutoAssign and Double-Head RCNN. That is, there are 601 

multiple prediction boxes on a fruit, or nonexistent objects are detected. ATSS and NAS-FCOS miss 602 

approximately three numbers of the target fruit. While, TOOD successfully detected all fruits. ODL 603 

Net recognizes nine fruits with the highest scores. 604 
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Fig. 13. Comparison images of algorithms on the pear dataset before thinning 605 

The fruit density after thinning is relatively sparse, and there is basically no problem of box 606 

redundancy when detected. The decrease in fruit density also makes the detection easier. However, 607 

for the incomplete and fuzzy fruit in the lower right corner in the first image of Figure 14, most of 608 

the algorithms fail to detect it. The other two detected images after thinning are also shown in Figure 609 

14. 610 

original image 

   

ATSS 

   



AutoAssign 

   

Double-Head 

RCNN 

   

NAS-FCOS 

   

TOOD 

   

YOLOV5 

   



ODL Net 

   

Fig. 14. Comparison images of algorithms on the pear dataset after thinning 611 

The other detected images before thinning are shown in Figure 15 as examples. 612 
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Fig. 15. Comparison images of algorithms on the pear dataset around the thinning period 613 

The curves of ODL Net during training are shown in Figure 16. 614 
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Fig. 16. Curves of ODL Net during training 615 

5. Conclusion and Feature Work 616 

This study proposes a detection algorithm called ODL Net, specifically designed for detecting 617 

small-scale fruits before and after thinning in pear orchards. It enhances the detection of small 618 

objects through the SEM and the label assignment strategy called Center-Box. Additionally, the 619 

modules of FEM and PEM are constructed to further improve the overall detection performance of 620 

ODL Net. These enhancement modules can also be used individually.  621 

For fruit varieties that require thinning, the detection of fruits by ODL Net before the thinning 622 

stage can guide the thinning process. Moreover, the detection of fruits by ODL Net after thinning 623 

enables calculations for irrigation and fertilizer requirements, facilitates scientific yield 624 

measurement, and supports intelligent management of orchards. In the case of fruit varieties that do 625 

not require thinning, ODL Net provides continuous monitoring throughout the fruit growth period. 626 

Particularly in the early stages of fruit growth, where the fruit size is small and detection poses 627 

significant challenges, a high-performance detection algorithm is crucial. ODL Net, designed 628 

specifically for small-scale fruits, can partially address this issue. And It is precisely because of this 629 

characteristic that ODL Net offers significant assistance in intelligent orchard management and fills 630 

the research gap in various small-scale fruits detection during the thinning period in orchards. 631 

Although ODL Net has completed the improvement for small-scale objects, the difficulties 632 

have not been completely overcome. The complete green appearance of pear during fruit thinning 633 



still caused some difficulties in the detection work. In future studies, we hope to propose a detection 634 

algorithm for both indistinguishable green color and small size. 635 
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