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Abstract: Although object detection technology has been applied in the field of smart orchards, detecting 12 

small fruits in real orchard environments is still a great challenge due to the interference of fruit scale 13 

issues. In this study, we propose an effective detection head named SOD Head for detecting small-scale 14 

fruits in the early growth stage, aiming to enhance the monitoring of fruit growth in the early stages and 15 

achieve intelligent management of orchards. SOD Head firstly utilizes the rich semantic information in 16 

the top-level feature map to determine the vague feature position, and mapping downward to the next 17 

level, achieving layer-by-layer locating and refinement of feature information. This can avoid missing 18 

the features of small fruits that are sparse on the high-resolution feature map and reduce the interference 19 

brought by information redundancy to small-scale detection. Secondly, SOD Head performs operation 20 

of box relocation to make the prediction of the boundary boxes for small-scale fruits more stable. The 21 

experimental results show that SOD Head achieves APs of 29.5% and 39.6% on the datasets of Gold Pear 22 



before the thinning stage and MinneApple respectively. Overall, SOD Head not only has a higher 23 

detection accuracy on small-scale fruits than other algorithms, but also has good generalization and 24 

versatility. 25 

Keywords: Locating Network; Box Relocation; SOD Head; Small fruit detection 26 

 27 

1. Introduction 28 

With the development of neural networks based on deep learning, object detection has become 29 

increasingly mature, mainly including two types: algorithms with anchor-based and anchor-free. 30 

The anchor-based object detection model is a conventional approach that relies on a predefined set 31 

of anchor boxes (also known as prior boxes or suggestion boxes). These anchor boxes are defined 32 

at different scales and aspect ratios, serving as reference regions for potential target areas. The model 33 

detects and localizes objects by classifying and regressing these anchor boxes. On the other hand, 34 

the anchor-free object detection model represents a relatively new method, where the central idea is 35 

to directly predict the object's position in the image without relying on predefined anchor boxes. 36 

This approach offers a more concise framework, eliminating the need for anchor box selection and 37 

potential hassle. Moreover, it has the advantage of better adaptability to shape and size variations 38 

across various targets. Both models possess their distinct advantages and applications in object 39 

detection. Regardless of whether people choose to use an anchor-based or anchor-free approach, 40 

object detection has found widespread applications across various fields such as autonomous driving 41 

(Liu et al., 2020; Xu et al., 2023), pedestrian detection (Dollar et al., 2011; Ge et al., 2021a), and 42 

smart orchards (Patrício et al., 2018; Tang et al., 2023a). Among them, the intelligent management 43 

of orchards, such as irrigation and fertilizer supply, scientific yield measurement, etc., relies on the 44 



help of object detection technology. Currently, there have been many studies applying object 45 

detection to orchard environments, such as disease and pest detection (Ngugi et al., 2021; Singh et 46 

al., 2021), fruit counting (Gao et al., 2022; Tang et al., 2023), seed testing (Audu et al., 2021; Pareek 47 

et al., 2021) and yield prediction (Tesfaye et al., 2021; Sun et al., 2022c). However, this study aims 48 

to use object detection technology to achieve full monitoring of fruit growth stages for orchard 49 

management. This can help farmers scientifically plan irrigation and fertilizer supply in the orchard 50 

and make scientific yield predictions, thus achieving the goal of intelligent orchard management. In 51 

addition, for certain fruit varieties that require thinning, early management of the fruit can help guide 52 

the fruit thinning process. During the early stages of fruit growth, the color and size of the fruit are 53 

not distinctive, making it difficult to accurately detect early-stage fruit. While in the mature stage, 54 

the surface characteristics of the fruit make them easier to detect. Therefore, this paper focuses on 55 

the fruit detection of early-stage growth. 56 

During the early growth stage of fruits, their sizes are small and their colors are green, which 57 

have low contrast with the background of the orchard. Moreover, the detection of small-scale objects 58 

is not well developed in algorithms of object detection. Currently, the detection accuracy of small-59 

scale objects is almost only half that of large-scale objects (Tong et al., 2020). Prior to the thinning 60 

period, the green small-scale fruits are densely distributed in the orchard and are heavily occluded, 61 

which makes the recognition of them even more challenging using object detection technology in 62 

orchards. Many studies have been conducted in the field of object detection to address the detection 63 

of small-scale objects (Liu et al., 2021a; Yang et al., 2022). 64 

There are several methods for detecting small objects, including effective feature fusion (Liu 65 

et al., 2018; Tan et al., 2020), optimized label assignment strategies (Ge et al., 2021b; Su et al., 66 



2022), and data augmentation (Bochkovskiy et al., 2020). Since small objects have weak presence 67 

in the image, a learnable data augmentation strategy proposed by Zoph (Zoph et al., 2020) could be 68 

used for small object detection. This study represented data augmentation as a multi-layer neural 69 

network, and optimized the data augmentation strategy by updating network parameters. 70 

Experimental results showed that this method improved detection accuracy by at least 2.3 71 

percentage points and had strong scalability. And to enrich the feature representation of objects, 72 

most algorithms use the Feature Pyramid Network (FPN) (Lin et al., 2017a) family for feature fusion, 73 

which also increases the feature representation of small objects in high-resolution images. Li (Li et 74 

al., 2019) proposed the SAT network, which used three parallel convolution networks to obtain 75 

feature maps of different scales and then fused them to enhance the ability of networks to detect 76 

objects of different scales. The SAT network also introduced a new scale attention mechanism to 77 

adaptively adjust the importance of feature maps of different scales. Experimental results showed 78 

that the SAT network achieved excellent detection performance on multiple public datasets, 79 

especially in small object detection. In terms of defining positive and negative samples in the 80 

anchors, Xu (Xu et al., 2022) proposed a label assignment strategy for detecting small objects, called 81 

Gaussian Receptive Field based Label Assignment (RFLA). This strategy used the Gaussian 82 

response of each pixel which was modeled to calculate the matching degree between candidate 83 

boxes and ground truth boxes. And then it selected positive and negative samples based on the 84 

matching degree. The RFLA outperformed competitors by four percentage points on the AI-TOD 85 

dataset (Wang et al., 2021), and it could also adapt to different datasets and detectors, which was 86 

very helpful for detecting small objects. In addition, there are other methods that can help with the 87 

detection of small objects. For example, the CASOD proposed by Lim (Lim et al., 2021) introduced 88 



a context feature extraction module and attention mechanism into the detector to enhance its 89 

response to small objects. The context feature extraction module could increase the feature 90 

representation of small objects, while the attention mechanism could adaptively adjust the detector's 91 

focus on different parts according to the object size and location. Experimental results showed that 92 

CASOD achieved an accuracy of 78.1% on the VOC dataset. 93 

With the development of the aforementioned detection algorithms, the application of object 94 

detection in fruits has also received widespread attention (Fu et al., 2020; Jia et al., 2020; Sun et al., 95 

2022a). Hussain (Hussain et al., 2022) proposed a deep learning-based framework for automatic 96 

detection and recognition of fruits and vegetables in complex scenes. It could help salespeople 97 

identify vegetables and fruits with high similarity. Although it achieved an accuracy rate of up to 98 

96%, it did not specifically design a detection method for small-scale fruits. Mai (Mai et al., 2018) 99 

proposed a multi-classifier fusion strategy and a correlation loss term for the classifiers. The 100 

classifiers used features from three different levels to learn three classifiers for object classification. 101 

The loss term helped the network better learn the feature differences between fruit targets. Although 102 

the detection accuracy was improved, the improvement on small-scale fruit detection was not 103 

significant. Koirala (Koirala et al., 2019) proposed MangoYOLO for fast detection of mangoes in 104 

tree crown images. The authors accelerated the detection speed while ensuring accuracy, achieving 105 

8 ms per pixel image with the size of 512×512. Although both its speed and accuracy were improved, 106 

this was mainly due to the distinctive color and shape features of mangoes, which made them easily 107 

distinguishable from the background. In contrast, MangoYOLO could not handle small green fruits 108 

that were difficult to distinguish from the background during early growth. Sun (Sun et al., 2022b) 109 

proposed GHFormer Net for detecting small-scale apples and hawthorn fruits in low-light 110 



conditions. GHFormer Net adopted Transformer-based PVTv2-B1 as the backbone and introduced 111 

two loss terms to adapt to low-light conditions. The experimental results showed that it achieved 112 

more accurate detection of small-scale fruits. However, it had a relatively large computational cost 113 

and requires certain computational resources. Although fruit detection has made some progress in 114 

recent years, detecting small-scale fruits in real orchard environments remains challenging. 115 

Moreover, there is currently a lack of research on the detection of small-scale green fruits in early 116 

growth stages. In this context, this study aims to propose a detection algorithm specifically designed 117 

for the features of early-stage fruits in real orchard environments. This algorithm is intended for 118 

monitoring the early growth status of fruits to achieve intelligent management of orchards. 119 

This study proposes a universal detection head for detecting small objects named SOD Head. 120 

It maps the position information of features from the features of top-level features to bottom-level, 121 

and the feature information at these positions in the feature maps is used for classification and 122 

regression. This approach largely avoids the interference of redundant information in low-level 123 

feature maps on small object features when directly detecting the entire feature map. In addition, 124 

when the bounding box is very small, even slight adjustments may greatly affect the overlapping 125 

part with the real box, resulting in significant fluctuations in metrics such as Intersection over Union 126 

(Rezatofighi, et al., 2019). To address this issue and make predictions for small objects more stable, 127 

this study adds the operation of “box relocation” to the regression branch. Overall, the main 128 

contributions of this paper are as follows: 129 

(1) This study introduces a novel detection head, specifically designed for small fruits, known 130 

as SOD Head. To address the challenge posed by the sparse distribution of small fruits in low-level 131 

feature maps, SOD Head strategically maps feature information from the top-level feature map to 132 



lower levels, enabling fruits localization from top to bottom. By adopting this approach, it 133 

circumvent the issue of missing small fruit features caused by redundant information while 134 

computing the entire low-level feature map. 135 

(2) In order to achieve more precise localization of small fruits, this study introduces an 136 

operation called "box relocation." This operation involves a second regression step on the bounding 137 

boxes, effectively increasing the learning capacity of the network. By implementing box relocation, 138 

the sensitivity to small adjustments in the bounding box is reduced, resulting in more stable and 139 

accurate detection of small fruits within the SOD Head. 140 

(3) The experimental results illustrate that SOD Head attains superior detection accuracy for 141 

small fruits in both the Gold Pear and MinneApple datasets, achieving accuracy rates of 29.5% and 142 

39.6%, respectively. These accuracy rates surpass those achieved by classical detection algorithms 143 

in recent years. Furthermore, SOD Head exhibits remarkable versatility and generalization 144 

capabilities, demonstrating its proficiency in complementing various backbones for downstream 145 

detection tasks. 146 

The structure of this paper is as follows: Section 2 introduces the dataset used in this study, 147 

including the process from acquisition to preparation. Section 3 provides the complete methods, 148 

including a detailed description of the SOD Head, which consists of a network for object localization 149 

layer by layer, and detection and regression branches with the added operation of box relocation, 150 

and losses for the whole algorithm. Section 4 describes the experiments, including the comparison 151 

experiments, and ablation studies. Section 5 summarizes and discusses the research findings and 152 

conclusions of this study. 153 

2. Datasets 154 



This study proposes SOD Head, a novel approach designed to address the challenges posed by 155 

the small scale of fruits during the early growth stage, enabling efficient monitoring of the early 156 

growth fruits in orchards. The primary focus of this study is the early growth stage of gold pear, 157 

which requires fruit thinning to optimize its development. To create a suitable dataset and simulate 158 

real working conditions in orchards, we collected images of gold pears during the thinning period. 159 

Statistical analysis revealed that gold pears during this stage exhibit small-scale characteristics, 160 

making them an ideal target for precise detection in this study. Conversely, the public dataset 161 

MinneApple (Häni et al., 2020) comprises images of mature apples, which are not representative of 162 

small-scale fruits during the early growth stage. Nevertheless, due to the small-scale of fruit in the 163 

long-distance images, we utilize the MinneApple dataset to evaluate the detection performance of 164 

SOD Head on small-scale fruits and demonstrate the algorithm's generalization capabilities in 165 

orchard environments. It is essential to highlight that this study adopts the scale division criteria 166 

used in the COCO dataset. Accordingly, objects occupying less than 0.25% of the total pixels are 167 

classified as small-scale, those covering more than 2.25% are categorized as large-scale, and objects 168 

falling between these percentages are considered medium-scale. 169 

2.1 Dataset of Gold Pear 170 

This study aims to achieve effective monitoring of fruit growth throughout all stages by precise 171 

detection of small-scale fruits, thereby helping farmers of realize intelligent management of 172 

orchards. Based on this, we captured and produced a dataset of gold pears before thinning, which 173 

was used to test the feasibility of the algorithm. The fruits during this period are characterized by 174 

small size and green color, which can represent the state of other fruits in the early growth stage to 175 

some extent. The Golden Pear dataset was captured using a mobile phone, with dimensions of 176 



3024×4032 (width×height). The images were all captured at RiSheng Gold Pear Professional 177 

Cooperative in Jiaozhou, Qingdao, Shandong Province. In order to fully simulated the orchard 178 

environment for the algorithm, we captured gold pear images at different angles (far and near) and 179 

different lighting conditions (front and backlit), as shown in Figure 1. This is to simulate the varying 180 

viewpoints of robots operating in the orchard. The intention behind this approach is to ensure that 181 

the perspective of the picking robot aligns closely with the fruit, while for yield estimation purposes, 182 

a relatively extended perspective is employed to efficiently detect complete orchards. 183 

    

    

Fig 1. Images of fruits and their corresponding annotation information (in orange boxes) in Gold Pear. 184 

This study used the tool of LabelMe to process the captured images, which marked fruits using 185 

rectangular boxes. The portion inside the box is considered foreground, while the remainder is 186 

considered background. The dataset contained only one class, named "pear". Each image was 187 

labeled and generated a json format file containing the fruit information. The annotated images were 188 

shown in the Figure 1, where the orange rectangle indicated the labeled box and the fruit to be 189 



detected was inside the box. We captured and labeled 1549 images, which were divided into a 190 

training set and a validation set in a 7:3 ratio. The training set consists of 1084 images, and the test 191 

set consists of 465 images. The number of fruits of different scales in the dataset is shown in Table 192 

1. It can be seen that most of the fruits in the Gold Pear dataset are small in size, accounting for 193 

almost half of the total fruit number. The next most common size is medium-sized fruit, accounting 194 

for 35.55% of the total, while the number of large-sized fruit is the least. 195 

Table 1. The statistics of fruit quantities with different scales in the Gold Pear dataset. 196 

 small fruits middle fruits large fruits total fruits 

train dataset 3122 2307 1001 6430 

val dataset 1305 944 465 2714 

total  4427 (48.41%) 3251 (35.55%) 1466 (16.04%) 9144 

2.2 Public dataset of MinneApple 197 

The publicly available dataset, MinneApple, was used to test the generalization performance 198 

of SOD Head. It is an apple dataset for detection and segmentation, which mainly contains distant 199 

images as shown in Figure 2. And it is a publicly available dataset with dimensions of 720×1280 200 

(width×height). The fruits in the dataset are of two colors, red and green. There are 670 images used 201 

for detection, which were divided into 603 training images and 67 validation images. 202 



    

    

Fig 2. Images of fruits and their corresponding annotation information (in orange boxes) in MinneApple . 203 

This study performed multi-scale statistics on the number of fruits in the images used for 204 

detection, as shown in Table 2. It can be seen that MinneApple used for detection contains almost 205 

exclusively small-scale fruits. It is worth noting that the small-scale fruits in MinneApple are most 206 

likely caused by the distant shooting, while the fruit scales in the Gold Pear are real. Therefore, the 207 

dataset of Gold Pear is better suited to represent the early growth stages of fruits, while MinneApple 208 

is only used to test the detection performance of small-scale fruits in the algorithm. 209 

Table 2. The statistics of fruit quantities with different scales in the MinneApple dataset. 210 

 small fruits middle fruits large fruits total fruits 

train dataset 25177 72 0 25249 

val dataset 2925 9 0 2934 



total  28102 (99.71%) 81 (0.29%) 0 28183 

 211 

3. Methods 212 

To accurately detect small green fruits in the early growth stages in orchards, a general and 213 

state-of-art detection head is proposed in this study, as shown in Figure 3. The detection targets of 214 

the SOD head are multi-scale feature maps that have undergone feature extraction and fusion. The 215 

SOD head firstly constructs a network for locating small fruits from top to bottom in layers of feature 216 

maps, which refines the fuzzy feature content layer by layer based on the rich semantic information 217 

of the top-level feature map. The refinement is achieved by mapping the feature position of the 218 

upper layer to obtain the feature content of the lower layer (as shown in orange parts in Figure 3), 219 

which is used for subsequent classification and regression. In order to predict the boundary box of 220 

small-scale fruits more accurately and stably, an operation named “box relocation” is added to the 221 

box regression process. It increases the learning contents of the network and achieves second 222 

regression of boxes. 223 

 224 

Fig 3. The overall structure diagram of the SOD Head. 225 

 226 

3.1 Backbone 227 

In this study, the SOD Head used two classic backbone networks of different types, namely 228 



Resnet50 (He et al., 2016) and Swin Transformer (Liu et al., 2021b), to verify its performance as a 229 

downstream task processor. Figure 3 illustrates the process of multi-scale feature maps extraction 230 

and fusion using Resnet50 and FPN as an example. 231 

Resnet50 is a classical deep convolutional neural network composed of residual structures. The 232 

residual structure consists of two convolutional layers and a skip connection that directly adds the 233 

input of the two convolutional layers. If the output of the first convolutional layer is the same as the 234 

output of the second, the skip connection will pass a zero vector, which does not affect the 235 

subsequent computation. If there is information that needs to be back-propagated, this zero vector 236 

will be destroyed, retaining the gradient from the earlier part of the computation to the later part. 237 

Resnet50 increases the depth of the network while preventing the problems of gradient vanishing 238 

and exploding through skip connections. With the residual structure, Resnet50 can be deeper and 239 

more accurate than previous neural networks, making it widely used as a backbone network for 240 

feature extraction in fields such as image classification and object detection. 241 

Swin Transformer is different from other transformer-based algorithms applied in computer 242 

vision (Dosovitskiy et al., 2020), as it can extract features of different scales for downstream tasks. 243 

Specifically, Swin Transformer decomposes the image into different blocks and applies a window-244 

based self-attention mechanism independently on each block. This window-based mode reduces the 245 

exponential growth of computational complexity with respect to image size to linear growth, 246 

significantly lowering computational requirements. Additionally, it achieves multi-scale feature 247 

extraction through patch merging operations. These characteristics make it highly scalable and a 248 

useful backbone network for other vision tasks. 249 

The four different scale feature maps output by the backbone network are represented by Res2-250 



Res5, which are then fed into the FPN for feature fusion. In this study, four additional 3×3 251 

convolutional layers are added after each FPN layer to further extract features for downstream tasks 252 

such as classification and regression, without changing the size of the feature maps. Only the 253 

architectures of the first four layers are shown in the Figure 3, and the structure of the fifth layer is 254 

the same as the previous ones. 255 

3.2 Small Objects Detection Head 256 

The SOD Head mainly consists of two parts: a network for locating small fruits from top to 257 

bottom in layers of feature maps and a branch prediction network with box relocation. This section 258 

mainly introduces the network, and box relocation is described in detail in Section 3.3. 259 

As is well known, multi-scale detection networks based on deep learning detect small objects 260 

in low-level feature maps and large objects in high-level feature maps, because low-level feature 261 

maps have higher resolution. However, the distribution of small objects on high-resolution feature 262 

maps is sparse due to their small size, which causes redundancy in information. In other words, most 263 

of the information on high-resolution feature maps belongs to the background rather than the object 264 

to be detected. In this case, down-sampling of the image is a common solution to this problem. The 265 

successive down-sampling of feature maps actually enhances the semantic information of maps, but 266 

inevitably leads to a loss of some positional information due to the decrease in resolution. This is 267 

why feature fusion (Wu et al., 2020) is necessary, which fuses the positional information from low-268 

level feature maps with the semantic information from high-level feature maps. In other words, the 269 

top-level feature map contains all the feature information of objects, albeit relatively blurred due to 270 

the resolution limitation. Therefore, to avoid the interference caused by the sparse distribution of 271 

small object features in low-level feature maps on detection, this study constructs a network in the 272 



detection head that locates objects layer by layer from top to bottom. The core idea is to refine the 273 

blurred but complete feature information in the top-level feature map layer by layer downwards for 274 

subsequent classification and regression. The layer structure of the network is shown in Figure 4. 275 

         276 

Fig 4. The layer structure of locating network. 277 

Figure 4 presents a layer-by-layer demonstration of the feature localization network, 278 

showcasing how the network filters feature regions progressively from top to bottom. Nl represents 279 

a layer in a multi-scale feature map. It undergoes a dilated convolution with an output channel 280 

number of 1, resulting in the merged values of tensors at each position, forming a score matrix. 281 

Strictly speaking, this score matrix determines the position of features and serves as a special feature 282 

map N
!

′
 with a channel number of 1. When the score is above the threshold σ (set to 0.5 as a 283 

hyper-parameter in the experiment), the position is identified as the presence of an object. These 284 

positions are highlighted by the orange grid on N
!

′
: {o!} = {(x!", y!")}. Here, i represents the number 285 

of positions, and l indicates the specified feature layer. These positions are mapped down to the 286 

feature map Pl-1, producing Nl-1. During the mapping process, the feature map N
!

′
 provides 287 

positional information, while the feature map Pl-1 offers the underlying feature content. The mapping 288 

rules are depicted in Equation 1: 289 

{0!#$} = {(2x!" + a, 2y!" + b), ∀a, b ∈ (0, 1)}               (1) 290 

Where, x!", y!" represents the positional information in feature map N!%, and a, b represents the 291 



offset weights for mapping in both horizontal and vertical directions. The features at the selected 292 

positions are further used for sparse convolution to locate the objects, and map the lower-level 293 

features. In other words, this network does not detect the entire feature map using traditional 294 

methods, but rather performs classification and regression on the selected positions (marked in 295 

orange) that potentially contain objects in a layer-by-layer manner. This approach avoids the 296 

interference caused by redundant information when directly computing the low-level feature map 297 

for small object detection. The network is characterized by locating objects from top to bottom, 298 

from blurry to clear. 299 

The detection head uses an anchor-based approach to perform classification and regression on 300 

the positions selected by the top-down localization network in the feature map Nl. Both the 301 

classification and regression modules consist of four 3×3 convolutional layers followed by a final 302 

prediction layer. The algorithm ultimately performs classification and regression on the five layers 303 

of feature maps N2-N6, sharing the same set of detection parameters. The specific training 304 

procedure is explained in Section 3.4. Experimental results show that the SOD Head can serve as a 305 

universal anchor-based detection head that can be matched with different backbones for downstream 306 

detection tasks. 307 

3.3 Box Relocation 308 

During the training process, it fine-tunes the anchor boxes by regressing the offset value 309 

between them and the gt boxes. This regression process allows the algorithm to adjust the position 310 

of the anchor boxes to align them accurately with the real boxes, facilitating precise object detection 311 

during inference. Regression is a crucial step in object detection, as it helps the algorithm learn and 312 

generate accurate prediction box coordinates. However, when dealing with small-scale fruits, even 313 



slight movements of the bounding box can lead to significant fluctuations in area-based evaluation 314 

metrics like IoU. The reduced number of pixels in small objects amplifies the impact of these 315 

fluctuations, often resulting in IoU dropping drastically, even to zero, with minimal changes in the 316 

bounding box fine-tuning. Consequently, obtaining accurate bounding boxes for small-scale objects 317 

becomes challenging, and it can also affect loss calculations, thereby diminishing the algorithm's 318 

detection accuracy for small-scale fruits. While moderate bounding box adjustments prove 319 

beneficial in achieving more accurate bounding boxes for normal-scale fruits, the same magnitude 320 

of adjustments may not necessarily yield positive results for small-scale fruit detection. The Figure 321 

5 below illustrates this phenomenon, highlighting the intricate challenge posed by fine-tuning 322 

bounding boxes for small-scale objects. 323 

 

a) Normal-scale fruit  b) Small-scale fruit 

Fig 5. Comparison of boundary box regression for fruits of different scales. 324 

In Figure 5, we observe three representations: A denotes the gt box, B represents the bounding 325 

box before movement, and C shows the bounding box after regression. Remarkably, when moving 326 

the same number of pixels, the box IoU of the normal-scale fruit changes from 0.38 to 0.52, 327 

indicating an improvement in alignment with the position of the gt box. However, the IoU of the 328 

small fruit bounding box undergoes a drastic fluctuation from 0.29 to 0.13, which is not conducive 329 

to accurate detection of small-scale fruits. To address this issue and enhance the stability of bounding 330 

box predictions, this study introduces an additional operation of box relocation during the regression 331 



stage of the detection head, as illustrated in Figure 6. By incorporating this operation, the content of 332 

network regression increases, effectively mitigating the fluctuations in bounding box predictions for 333 

small-scale fruits. 334 

 335 

Fig 6. Adjustment content for box location: the blue box to the orange box. 336 

In conventional object detection algorithms, regression is typically performed on each 337 

bounding box by pairing anchors and gt boxes based on IoU. The anchor is assigned the label of the 338 

corresponding gt box, and the center offset of the anchor relative to the gt box is calculated to train 339 

the network using appropriate loss functions. However, this standard regression approach 340 

encounters difficulties in accurately detecting small-scale fruits, as slight movements of the 341 

bounding box can lead to significant fluctuations in indicators such as IoU. To address this limitation, 342 

this study introduces a new regression approach specifically designed for small-scale fruits, ensuring 343 

precise positioning of the prediction boxes. The bounding box to be regressed is represented as 344 

k(x, y) = {∆t, ∆b, ∆l, ∆r}, where (x, y) denotes the center coordinate of the box, and {∆t, ∆b, ∆l, ∆r} 345 

represents the distances from the center coordinate to the edges of the box in four directions. This 346 

representation uniquely characterizes the bounding box, as demonstrated by the blue box in Figure 347 

6. The network employs deformation convolutions to regress the blue bounding box, with the 348 

regression content being the four central coordinates located on the box. The network learns a new 349 



set of offsets to predict the updated values of these central coordinates. The Equation 2 is then 350 

utilized to determine the regression bounding box based on these updated coordinates: 351 

k′(x, y) = 9('(∆!" ,+(∆,#∆#" ),('(∆!$,+#∆.#∆#$),
('#∆!(∆!

% ,+#∆#
% ),('(∆/(∆!

& ,+#∆#
& )
:                   (2) 352 

Where {∆', , ∆'. , ∆'! , ∆'/ , ∆+, , ∆+. , ∆+! , ∆+/ } represents the offset learned by the network for 353 

different directions, and {x, y} is the center coordinate value of the original box. The boundary of 354 

the new prediction box is determined by the relocated points, as illustrated by the orange box in 355 

Figure 6. The box relocation further regresses to obtain the offset of the box in all four directions. 356 

This not only enhances the accuracy of the prediction box, but also mitigates the influence of large-357 

scale detection box regression on small-scale boxes, resulting in improved prediction stability for 358 

small-scale bounding boxes. 359 

3.4 Loss 360 

During the training process, the algorithm uses Focal Loss (Lin et al., 2017b) to calculate the 361 

classification loss, which can alleviate the problem of class imbalance to some extent. This problem 362 

is also a common issue that affects the accuracy of object detection. Focal Loss reduces the weight 363 

of samples with clearly classified categories through a scaling factor, while increasing the weight of 364 

samples with ambiguous categories. The scaling factor is shown in Equation 3: 365 

FL(p,) = −α,(1 − p,)0log(p,)                          (3) 366 

Where, p, represents the confidence of the sample, and (1 − p,)0 can reduce the contribution of 367 

easily classified samples to the loss. γ represents the weight factor of those difficult-to-classify 368 

samples, γ ∈ [0, 5]. α, is a balancing factor that can alleviate the imbalance between positive and 369 

negative samples. With this scaling factor, samples with excessively high or low confidence will not 370 

have a significant impact on the loss. For anchor boxes judged as positive samples, the algorithm 371 



uses SmoothL1Loss to calculate the regression loss, as shown in Equation 4: 372 

loss(x, y) = $

1
∑ G0.5(y" − f(x"))2, if	|y" − f(x")| < 1

|y" − f(x")| − 0.5, otherwise
1
"3$               (4) 373 

In which, y" represents the ground truth value, f(x") represents the predicted value by the network. 374 

SmoothL1Loss belongs to a piecewise function: when the error between the predicted value and the 375 

ground truth value is small, it reduces the impact of the error; when the error is large, it makes the 376 

gradient value small enough to prevent gradient explosion. 377 

The network used for object localization in the SOD Head is also trained with the Focal Loss 378 

function. Prior to computation, the feature maps are re-encoded in the following manner. Firstly, the 379 

distance from all positions on the feature map to the ground truth box is calculated: 380 

Distance((x, y), (x∗, y∗)). Then, if the distance is less than a hyper-parameter s, then the position is 381 

encoded as “1”; if the distance is greater than s, the position is encoded as “0”. The Focal Loss 382 

calculation is then performed based on this encoding: 383 

FL = G−(1 − pT)
0log(pT), if	y = 1

−pT0log(1 − pT),					if	y = 0                         (5) 384 

In order to better illustrate the calculation process based on this encoding method, the segmented 385 

form of Focal Loss is used in Equation 5. Here, y represents the encoding value of each pixel, and 386 

s is set to the scale of the smallest anchor box on the feature map of that layer in the experiment. 387 

4. Experiments 388 

4.1 Training 389 

The experiments were conducted on a server equipped with Ubuntu 16.04 operating system. 390 

The algorithm was built based on PyTorch and trained on an NVIDIA Tesla V100 GPU. The batch 391 

size was set to 8, the initial learning rate was set to 0.001, and a weight decay of 0.0001 was used 392 

to prevent over-fitting. The algorithm was trained 4000 iterations.  393 



Average Precision (AP) serves as an indicator to gauge the accuracy of object detection 394 

algorithms for different categories, with its calculation method outlined in Equation 6. And APs and 395 

AP75 are widely used evaluation metrics in object detection to assess algorithm accuracy and 396 

performance across different target categories. AP75 is a specialized version of AP that measures 397 

average accuracy at an IoU of 0.75. In other words, when calculating AP75, the detection result is 398 

considered correct only when the IoU between the detected box and the real label box is greater than 399 

or equal to 0.75. Specifically, APs calculates the detection accuracy of small-scale objects, which is 400 

of particular significance for SOD Head, as it is designed for detecting small-scale fruits. So 401 

evaluating the algorithm's performance on small-scale fruits, denoted as APs, is crucial for accurate 402 

assessment. The same applies to AP50, APm and APl. 403 

AP = ∫ P(R)dR$

5
                          (6) 404 

Where P represents the ratio of predicted positive samples to the number of true positive samples, 405 

and R represents the proportion of true positive samples correctly predicted by the algorithm, 406 

calculated as shown in Equations 7 and 8.   407 

Pr e cision = 67

67(87
× 100%                       (7) 408 

Re c all = 67

67(89
× 100%                         (8) 409 

In the calculations above, True Positive (TP) represents the number of detection boxes with 410 

IoU greater than the set IoU_threshold; False Positive (FP) represents the number of detection boxes 411 

with IoU less than the IoU_threshold or the number of redundant detection boxes generated for the 412 

same target; and False Negative (FN) represents the number of undetected targets. In this experiment, 413 

it sets the IoU_threshold to 0.5, a commonly chosen as it provides a relatively lenient criterion when 414 

evaluating object detection algorithms. This means the algorithm can still be considered correct even 415 



with a certain degree of overlap between the predicted bounding box and the actual bounding box. 416 

The choice of 0.5 as the threshold is based on empirical observations and is prevalent in classic 417 

object detection algorithms like Faster RCNN (Mai et al., 2018), YOLO (Bochkovskiy et al., 2020), 418 

and others. 419 

4.2 Ablation Studies 420 

The effect of box relocation is validated on two datasets in this study, as shown in Table 3. The 421 

effect is more pronounced on the dataset of Gold Pear. Although there is a slight decrease in AP, 422 

which may be due to the decrease in detection accuracy of medium and large-scale fruits, it increases 423 

the detection accuracy of small-sized fruits by 0.7 percentage points. However, for the MinneApple, 424 

which has more than 99% small-scale fruits, the effect is not very significant, with only about a 0.1 425 

percentage point improvement. We speculate that this is because the fruits to be detected in 426 

MinneApple are almost indistinguishable in scale due to the distant shooting, and therefore box 427 

relocation does not significantly improve detection accuracy. This ablation study helps us clarify 428 

the usage conditions and environment of box relocation, and can provide effective assistance for the 429 

detection of small-sized fruits in specific environments. 430 

Table 3. Results of box relocation. 431 

 box relocation AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%) 

Gold Pear 

× 51.60 82.52 53.23 26.70 66.46 80.58 

√ 51.26 82.72 53.51 27.42 65.56 80.14 

MinneApple 

× 39.45 79.84 33.88 39.49 30.92 -1.0 

√ 39.56 80.62 34.69 39.55 29.01 -1.0 

 432 



4.3 Comparison Experiments 433 

The accuracy of the SOD Head is verified on two datasets as follows. 434 

4.3.1 Experiments on Gold Pear 435 

 In order to verify the detection performance of the SOD Head, this study firstly compared it 436 

with classical and advanced detection algorithms, such as Double-Head (Wu et al., 2020), FoveaBox 437 

(Kong et al., 2020), Faster RCNN (Mai et al., 2018), Grid RCNN (Lu et al., 2019), Libra RCNN 438 

(Pang et al., 2019), Trident (Li et al., 2019) on the dataset of Gold Pear. It is important to emphasize 439 

that SOD Head is specifically designed for detecting small-scale fruits. Therefore, we place 440 

particular emphasis on the value of APs, as it accurately reflects the algorithm's detection accuracy 441 

for small-scale fruits. The experimental results are shown in Table 4.  442 

Table 4. Comparison of algorithms on Gold Pear. 443 

 AP (%) AP50 (%) AP75 (%) APs (%) APm (%) APl (%) 

Double-Head 53.1 83.3 53.6 25.6 70.5 83.2 

FoveaBox 52.3 80.9 54.1 24.1 68.6 85.4 

Faster RCNN  52.0 80.5 54.2 25.6 69.4 81.9 

Grid RCNN 52.3 83.4 54.9 26.2 67.5 81.4 

Libra RCNN 53.0 82.8 54.9 27.0 68.4 83.5 

Trident  53.0 80.6 53.7 23.6 71.5 86.9 

Ours + Resnet 51.3 82.7 53.5 27.4 65.6 80.2 

Ours + Swin 52.6 85.9 53.5 29.5 66.2 79.6 

This study conducted experiments on two backbones to verify the detection performance of 444 

the proposed detection head. The results show that when Swin Transformer is used as the backbone, 445 



the SOD Head achieves higher detection accuracy, especially for small-scale fruit with an accuracy 446 

of 29.5%. The overall detection accuracy of other algorithms on the Gold Pear dataset is not 447 

significantly different from SOD Head, ranging from 52.0% to 53.0%, even higher by 0.2%-0.4% 448 

percentage points, such as Grid RCNN. However, SOD Head has the highest detection accuracy for 449 

small-scale fruits on both backbones. The APs of the proposed SOD Head combines with Swin 450 

Transformer outperforms other algorithms by at least 2.5 percentage points. Even when combined 451 

with Resnet, our algorithm achieves the highest APs at 27.4%, higher than other algorithms. It 452 

improves the detection accuracy of small-scale fruits by 3.3 and 1.8 percentage points compared to 453 

classic algorithms of FoveaBox and Faster RCNN, respectively. Although Trident achieves the 454 

highest detection accuracy at 53.0%, its performance in detecting small-scale fruits is poor, only 455 

23.6%. This may be due to its structure that takes a single-scale feature map as input. While Grid 456 

RCNN and Libra RCNN achieve higher overall detection accuracy than SOD Head with Resnet, 457 

their APs are at least 0.4 percentage points lower.  458 

In a word, Table 4 clearly shows that regardless of the combined backbone network, SOD Head 459 

outperforms other algorithms in terms of detection accuracy for small-scale fruits, with a superiority 460 

of at least 0.4% percentage points. The detection accuracy of SOD Head combined with Swin 461 

Transformer for small scales can reach an impressive 29.5%, whereas other algorithms achieve only 462 

27.0% accuracy. This outstanding performance showcases SOD Head's exceptional ability to detect 463 

small-scale fruits. Furthermore, as a general detection head, SOD Head's accuracy continues to 464 

improve with the evolution of the backbone network. For instance, when other configurations 465 

remain unchanged, using Swin Transformer as the backbone further enhances detection accuracy, 466 

demonstrating the adaptability and potential for improvement in SOD Head's performance across 467 



different network configurations. 468 

Figure 7 shows the loss curves of these algorithms above during training on the dataset of Gold 469 

Pear. From the change of loss, it can be observed that SOD Head with Swin Transformer not only 470 

converges quickly to the minimum value, but also has the smallest oscillation amplitude. Compared 471 

with using Resnet as the backbone, it has a faster decrease in loss, especially in the first 500 472 

iterations. This also indicates that when Swin Transformer is used as the backbone on the Gold Pear 473 

dataset, SOD Head performs better and is more reliable. In contrast, Double-Head and Trident 474 

RCNN have larger oscillation amplitudes and their convergence process is not stable enough. This 475 

may be due to the algorithms not being suitable for detecting small objects. 476 



 477 

Fig 7. Total_Loss curves of algorithms on Gold Pear dataset.  478 

4.3.2 Experiments on MinneApple 479 

This study also evaluates the generalization performance of SOD Head using a publicly 480 

available dataset, MinneApple. The experimental results are shown in Table 5. Since more than 99% 481 



of the fruits in the dataset are small objects, the values of APs and AP are similar under such 482 

circumstances. 483 

Table 5. Comparison of algorithms on MinneApple.                                                                                                                             484 

 AP (%) AP50 (%) AP75 (%) APs (%) 

Double-Head 37.8 76.6 32.9 36.6 

FoveaBox  32.7 73.7 22.6 32.7 

Faster RCNN 37.3 79.8 29.7 35.5 

Grid RCNN 38.5 79.9 32.9 37.1 

Libra RCNN 36.4 70.5 33.2 36.4 

Trident  36.3 77.9 27.6 34.7 

Ours + Resnet 39.6 80.6 34.7 39.6 

Ours + Swin 37.2 79.6 29.8 37.3 

 485 

From Table 5, it can be seen that the SOD Head has the highest APs, especially when combined 486 

with Resnet, achieving a detection accuracy of 39.6% for small-scale fruits, which is at least 2.5 487 

percentage points higher than other algorithms. When using Swin Transformer as the backbone, the 488 

detection accuracy of SOD Head for small-scale fruits has slightly decreased to 37.3% (but still 489 

higher than APs of other algorithms). This is the opposite of the training results on the Gold Pear 490 

dataset. We speculate that this is due to the number of small-scale fruits in the dataset and the 491 

structural characteristics of the backbone network. Small-scale fruits account for 48.4% of the total 492 

fruits in the Gold Pear dataset, while there are more than 99% small-scale fruits in MinneApple. 493 

That is, there is almost no difference or division of scales in MinneApple. In addition, Swin 494 



Transformer can handle longer-range dependencies, which may lead to better capture of small-scale 495 

fruit features when used as a backbone network on the Gold Pear dataset. On the other hand, Resnet 496 

has better shallow feature representation ability, which makes it better at handling more small-scale 497 

fruits on the MinneApple dataset. In addition, the detection accuracy of FoveaBox is low on both 498 

datasets, which may be due to its anchor generation method not being suitable for detecting small-499 

scale objects. 500 

The loss curves of the algorithms during the training process on the MinneApple dataset are 501 

shown in Figure 8. 502 



 503 

Fig 8. Total_Loss curves of algorithms on MinneApple. 504 

From the loss curves, it can be seen that the SOD Head with Resnet as the backbone has a 505 

faster decrease in loss in the first 500 iterations. After 500 iterations, the convergence of the two 506 

backbones is comparable. Similar to the performance on the Gold Pear dataset, the oscillation 507 



amplitude of Double-Head and Trident RCNN is still significant. 508 

4.4 Results and Discussion 509 

4.4.1 Visualization of Detection Results 510 

In this section, we selected four images from two datasets to demonstrate the detection 511 

performance of the algorithm in real-world scenarios, as shown in Figures 9 and 11. As can be seen 512 

from the original image in Figure 9 a), during the early growth stage (before the thinning period) of 513 

Gold Pear, the size of the fruit is small. Moreover, the orchard is dense with branches and leaves, 514 

and the color and volume of the fruit are not conducive to detection. Most of the pixels in the 515 

captured images are redundant information such as branches and leaves, and the distribution of the 516 

fruit in the image is very sparse. To address this issue, SOD Head constructs a network that locates 517 

feature information layer by layer. It uses a mapping method that combines position and content to 518 

obtain the feature positions layer by layer from the topmost feature map, and then performs 519 

classification and regression on these positions. Moreover, with the help of box relocation operation, 520 

the regression process of small-scale bounding boxes can be more stable. 521 

 

a) Original images 

 

b) Ours 



 

c) Double-Head  

 

d) FoveaBox 

 

e) Faster RCNN 

 

f) Grid RCNN 

 

g) Libra RCNN 

 



h) Trident 

Fig 9. Comparison of detection images on Gold Pear. 522 

Figure 9 b) shows the detection results of our algorithm on the Gold Pear. It can be seen that 523 

SOD Head can accurately detect the target fruit with the help of the top-down localization network, 524 

and the predicted box scores are mostly above 0.56. Figure 10 shows the enlarged view of the 525 

detection results of SOD Head on the fruits that are difficult to detect in the images. However, other 526 

algorithms often suffer from missing or redundant detection. For example, Double-Head produces 527 

more than one redundant box in the fourth image of Figure 9 c). FoveaBox and Faster RCNN exhibit 528 

obvious missing detection in the second image of Figures 9 d) and e), respectively. 529 

 530 

Fig 10. A detection image of SOD Head. 531 

Figure 11 shows the detection results of our algorithm on MinneApple. The image contains 532 

fruits of two colors, red and green, with similar sizes. Due to the fact that the images of MinneApple 533 

image were captured from a distance, it contains more fruits and missed detection are more common 534 

among algorithms. Compared to other algorithms, SOD Head shows slightly better detection results. 535 

It produces fewer redundant boxes, and the predicted boxes have higher scores and are more 536 

accurate in terms of positioning. However, the issue of missed detection for certain types of fruits 537 

is discussed in the next section of this study. 538 



a) Original images of MinneApple 

b) Ours 

c) Double-Head 



d) FoveaBox 

e) Faster RCNN 

f) Grid RCNN 



g) Libra RCNN 

h) Trident 

Fig 11. Comparison of detection images on MinneApple. 539 

4.4.2 Discussion 540 

To enhance the clarity of the detection results, we applied a zoomed-in view to the regions 541 

containing target fruits in the second image of Figure 9, as illustrated in Figure 12. The evaluation 542 

reveals that SOD Head demonstrates exceptional accuracy by detecting all 12 fruits in the image, 543 

outperforming other algorithms, which exhibit certain limitations. Specifically, Grid RCNN 544 

identifies 10 fruits, while both Libra RCNN and Trident only manage to detect 9 fruits. The most 545 

common omission among these algorithms is the fruit located on the far left of the image. This 546 



particular fruit is obscured by leaves or overlapping with neighboring fruits, as indicated by the red 547 

box in Figure 12 a). Impressively, SOD Head successfully detects this obscured fruit, setting itself 548 

apart from the other methods.  549 

  a) Original   b) Ours  c) Double-Head d) FoveaBox 

e) Faster RCNN f) Grid RCNN g) Libra RCNN h) Trident 

Fig 12. Comparison of algorithms on enlarged part. 550 

However, it is important to note that none of the algorithms, including our own, are able to 551 

detect the fruit in the lower-left corner of the image, as highlighted by the red box in Figure 12 a). 552 

This particular fruit poses a considerable challenge for detection due to its small size and the heavy 553 

occlusion caused by branches and leaves, making it significantly more difficult to identify. Detecting 554 

fruits under such occlusion conditions presents heightened difficulty compared to detecting fully 555 

exposed fruits. The obscured fruits often exhibit blurred edges, and SOD Head tends to interpret 556 

these features as redundant information when attempting to locate them. Therefore, detecting small 557 

fruits under occlusion conditions represents a promising direction for further algorithm optimization. 558 

5. Conclusion 559 

With the rapid development of deep learning, object detection technology has become 560 

increasingly mature and widely applied in various fields. In the field of smart orchards, this study 561 



aims to overcome the problem of difficult detection caused by the small size of fruit in the early 562 

growth stage using object detection. This will help farmers monitor the growth status of fruit 563 

throughout the process, and achieve the goal of scientific yield measurement, fruit thinning guidance, 564 

and intelligent management of orchards. This study proposes a universal detection head specifically 565 

designed for small-scale objects, named SOD Head. It extracts all the features from the top-level 566 

feature map where semantic information is the richest via convolution, even though the information 567 

is blurred at this level. During the process of mapping these features down to the lower-level feature 568 

maps, the feature localization and refinement from top to bottom are achieved. This can reduce the 569 

adverse effects caused by information redundancy when detecting sparsely distributed small object 570 

features directly on high-resolution feature maps. In addition, the SOD Head also performs second-571 

stage regression on the bounding boxes, learning a new set of parameters to make the prediction of 572 

small-scale object bounding boxes more stable. The experiments were conducted on two datasets of 573 

small-sized fruits. One is the dataset of Gold Pear made by us to simulate the working environment 574 

of SOD Head in orchards. The dataset of Gold Pear is used to evaluate performance of SOD Head 575 

in detecting small-sized fruits in a real orchard environment. The publicly available dataset of 576 

MinneApple was also used to demonstrate the generalization ability of SOD Head. The experimental 577 

results demonstrate that the SOD Head, as a universal detection head, achieves the highest detection 578 

accuracy for small-scale fruits, reaching 29.5% and 39.6% on the Gold Pear before thinning and the 579 

MinneApple, respectively. It has a certain competitive edge in detecting small-scale fruits in orchard 580 

environments and can meet the needs of intelligent management of orchards. 581 

In addition to fruit size, occlusion and overlapping are also factors that affect fruit detection in 582 

real orchard environments. They exist throughout the entire growth cycle of fruits and in all sizes 583 



of fruits. If the problem of fruit occlusion can be overcome, the accuracy of fruit detection in real 584 

orchard environments can be further improved. Although SOD Head can handle occlusion to a 585 

certain extent, how to address this issue in a targeted manner poses a new direction for our future 586 

research. 587 

 588 

 Acknowledgments    589 

This work is supported by Natural Science Foundation of Shandong Province in China (No.: 590 

ZR2020MF076); National Nature Science Foundation of China (No.: 62072289); New Twentieth 591 

Items of Universities in Jinan (2021GXRC049); Taishan Scholar Program of Shandong Province in 592 

China. 593 

 594 

 References 595 

[1] Audu J, Aremu A K. Development, evaluation, and optimization of an automated device for quality detection 596 

and separation of cowpea seeds. Artificial Intelligence in Agriculture, 2021, 5: 240-251. 597 

[2] Bochkovskiy A, Wang C, Liao H. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint 598 

arXiv:2004.10934, 2020. 599 

[3] Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: An evaluation of the state of the art. IEEE Transactions 600 

on Pattern Analysis and Machine Intelligence, 2011, 34(4): 743-761. 601 

[4] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image 602 

recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 603 

[5] Fu L, Gao F, Wu J, et al. Application of consumer RGB-D cameras for fruit detection and localization in field: 604 

A critical review. Computers and Electronics in Agriculture, 2020, 177: 105687. 605 



[6] Gao F, Fang W, Sun X, et al. A novel apple fruit detection and counting methodology based on deep learning 606 

and trunk tracking in modern orchard. Computers and Electronics in Agriculture, 2022, 197: 107000. 607 

[7] Ge Z, Liu S, Li Z, et al. Ota: Optimal transport assignment for object detection. Proceedings of the IEEE/CVF 608 

Conference on Computer Vision and Pattern Recognition. 2021b: 303-312. 609 

[8] Ge Z, Wang J, Huang X, et al. LLA: Loss-aware label assignment for dense pedestrian detection. 610 

Neurocomputing, 2021a, 462: 272-281. 611 

[9] Häni N, Roy P, Isler V. MinneApple: a benchmark dataset for apple detection and segmentation. IEEE Robotics 612 

and Automation Letters, 2020, 5(2): 852-858. 613 

[10] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proceedings of the IEEE 614 

Conference on Computer Vision and Pattern Recognition. 2016: 770-778. 615 

[11] Hussain D, Hussain I, Ismail M, et al. A simple and efficient deep learning-based framework for automatic 616 

fruit recognition. Computational Intelligence and Neuroscience, 2022, 6538117. 617 

[12] Jia W, Zhang Y, Lian J, et al. Apple harvesting robot under information technology: A review[J]. International 618 

Journal of Advanced Robotic Systems, 2020, 17(3): 925310. 619 

[13] Koirala A, Walsh K B, Wang Z, et al. Deep learning for real-time fruit detection and orchard fruit load 620 

estimation: Benchmarking of ‘MangoYOLO’. Precision Agriculture, 2019, 20: 1107-1135. 621 

[14] Kong T, Sun F, Liu H, et al. Foveabox: Beyound anchor-based object detection. IEEE Transactions on Image 622 

Processing, 2020, 29: 7389-7398. 623 

[15] Li Y, Chen Y, Wang N, et al. Scale-aware trident networks for object detection. Proceedings of the IEEE/CVF 624 

International Conference on Computer Vision. 2019: 6054-6063. 625 

[16] Lim J S, Astrid M, Yoon H J, et al. Small object detection using context and attention. International Conference 626 

on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2021: 181-186. 627 



[17] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the IEEE 628 

Conference on Computer Vision and Pattern Recognition. 2017a: 2117-2125. 629 

[18] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. Proceedings of the IEEE International 630 

Conference on Computer Vision. 2017b: 2980-2988. 631 

[19] Liu L, Lu S, Zhong R, et al. Computing systems for autonomous driving: State of the art and challenges. IEEE 632 

Internet of Things Journal, 2020, 8(8): 6469-6486. 633 

[20] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation. Proceedings of the IEEE 634 

Conference on Computer Vision and Pattern Recognition. 2018: 8759-8768. 635 

[21] Liu Y, Sun P, Wergeles N, et al. A survey and performance evaluation of deep learning methods for small object 636 

detection. Expert Systems with Applications, 2021a, 172: 114602. 637 

[22] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows. 638 

Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021b: 10012-10022. 639 

[23] Lu X, Li B, Yue Y, et al. Grid r-cnn. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 640 

Recognition. 2019: 7363-7372. 641 

[24] Mai X, Zhang H, Meng M Q H. Faster R-CNN with classifier fusion for small fruit detection. 2018 IEEE 642 

International Conference on Robotics and Automation (ICRA). IEEE, 2018: 7166-7172. 643 

[25] Ngugi L C, Abelwahab M, Abo-Zahhad M. Recent advances in image processing techniques for automated 644 

leaf pest and disease recognition–A review. Information Processing in Agriculture, 2021, 8(1): 27-51. 645 

[26] Pang J, Chen K, Shi J, et al. Libra r-cnn: Towards balanced learning for object detection. Proceedings of the 646 

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 821-830. 647 

[27] Patrício D I, Rieder R. Computer vision and artificial intelligence in precision agriculture for grain crops: A 648 

systematic review. Computers and Electronics in Agriculture, 2018, 153: 69-81. 649 



[28] Pareek C M, Tewari V K, Machavaram R, et al. Optimizing the seed-cell filling performance of an inclined 650 

plate seed metering device using integrated ANN-PSO approach. Artificial Intelligence in Agriculture, 2021, 651 

5: 1-12. 652 

[29] Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: A metric and a loss for bounding 653 

box regression. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 654 

658-666. 655 

[30] Singh P, Verma A, Alex J S R. Disease and pest infection detection in coconut tree through deep learning 656 

techniques. Computers and Electronics in Agriculture, 2021, 182: 105986. 657 

[31] Su H, He Y, Jiang R, et al. DSLA: Dynamic smooth label assignment for efficient anchor-free object detection. 658 

Pattern Recognition, 2022, 131: 108868. 659 

[32] Sun M, Xu L, Chen X, et al. BFP net: balanced feature pyramid network for small apple detection in complex 660 

orchard environment. Plant Phenomics, 2022a, 9892464. 661 

[33] Sun M, Xu L, Luo R, et al. GHFormer-Net: Towards more accurate small green apple/begonia fruit detection 662 

in the nighttime. Journal of King Saud University-Computer and Information Sciences, 2022b, 34(7): 4421-663 

4432. 664 

[34] Sun Z, Li Q, Jin S, et al. Simultaneous prediction of wheat yield and grain protein content using multitask deep 665 

learning from time-series proximal sensing. Plant Phenomics, 2022c, ID: 9757948. 666 

[35] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF 667 

Conference on Computer Vision and Pattern Recognition. 2020: 10781-10790. 668 

[36] Tang Y, Qiu J, Zhang Y, et al. Optimization strategies of fruit detection to overcome the challenge of 669 

unstructured background in field orchard environment: A review. Precision Agriculture, 2023a: 1-37. 670 

[37] Tang Y, Zhou H, Wang H, et al. Fruit detection and positioning technology for a Camellia oleifera C. Abel 671 



orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert systems with applications, 672 

2023b, 211: 118573. 673 

[38] Tesfaye A A, Osgood D, Aweke B G. Combining machine learning, space-time cloud restoration and phenology 674 

for farm-level wheat yield prediction. Artificial Intelligence in Agriculture, 2021, 5: 208-222. 675 

[39] Tong K, Wu Y, Zhou F. Recent advances in small object detection based on deep learning: A review. Image 676 

and Vision Computing, 2020, 97: 103910. 677 

[40] Wang J, Yang W, Guo H, et al. Tiny object detection in aerial images. 25th International Conference on Pattern 678 

Recognition (ICPR). IEEE, 2021: 3791-3798. 679 

[41] Wu Y, Chen Y, Yuan L, et al. Rethinking classification and localization for object detection. Proceedings of the 680 

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10186-10195. 681 

[42] Xu C, Wang J, Yang W, et al. RFLA: Gaussian receptive field based label assignment for tiny object detection. 682 

European Conference on Computer Vision, 2022: 526-543. 683 

[43] Xu X, Zhao S, Xu C, et al. Intelligent mining road object detection based on multiscale feature fusion in multi-684 

UAV networks. Drones, 2023, 7(4): 250. 685 

[44] Yang C, Huang Z, Wang N. Querydet: Cascaded sparse query for accelerating high-resolution small object 686 

detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 687 

13668-13677. 688 

[45] Zoph B, Cubuk E D, Ghiasi G, et al. Learning data augmentation strategies for object detection. European 689 

Conference on Computer Vision, 2020: 566-583. 690 


