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Artificial intelligence model for water resources management
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The channel network in Pudong New District, Shanghai,

is very complex owing to the large area of its basin, its

numerous sluice gates, complex influencing factors and

some other management issues involving water delivery,

flood prevention, floodwater drainage, navigation and

saltwater intrusion. It is generally difficult to achieve

efficient water resources management merely through

manually operating the sluice gates. Therefore, an

artificial intelligence modelling system for managing the

water resources in the channel network of Pudong New

District has been developed by combining hydrodynamic

simulation with an artificial intelligence technique. The

artificial neural network model is used to develop sluice

gate operation procedures according to the water levels

in both the outer and inner rivers. The hydrodynamic

model is used to simulate the flow discharges and water

levels based on the sluice gate operation procedures.

This modelling system has been applied successfully to

the water resources management of the Pudong channel

network. The results indicate that the modelling system

satisfactorily meets the demands for sluice gate

operation and water resources optimisation

management of the channel network and thus provides

decision-making support for integrated management of

water resources in this inland channel network.

1. INTRODUCTION

Water resources are one of the most important resources for

human life and development. The availability of surface water

resources depends, to a large extent, on the water quality. A key

component in the efficient use of available water resources is

the proper management of the existing water resources using

advanced technologies. Channel networks are a special type of

river pattern which is generally located on alluvial plains,

facilitating the exchange of the water within the channel

networks with that within adjacent rivers. Since channel

networks are usually composed of a number of interconnected

branches and the water system is generally very complex, they

bring great difficulties for water resources management. The

channel network of Pudong New District in Shanghai is an

example of this complex water system. Pudong New District is

located at the front of the alluvial plain of the Yangtze river

delta. The channel network is typical of a tidal channel network.

The water exchange between the inner rivers within the channel

network and the outer rivers is controlled by sluice gates.

Therefore, the channel network is a relatively independent water

system. There are 13 sluice gates in this channel network. In

order to make full use of these sluice gates for flood prevention,

tide blocking, water delivery, floodwater drainage and

navigation, the inner river water level needs to be controlled

within a reasonable range to ensure the life security of the

people and the economic development of Pudong New District.

Meanwhile, with a systematic control of the various sluice gates,

the water exchange of the inner rivers with the outer rivers can

be enhanced to meet the requirements set out by the local

government for improving the water quality in the inner rivers.

There are 17 main channels in this network, with a total length

of 213.3 km and an area of 7.83 km2. A sketch of the channel

network of Pudong New District is shown in Figure 1.

Only a limited number of studies on sluice gate operation have

been reported (Chinh et al., 2006; Fan et al., 2007; Li, 1999;

Lin and Su, 1996; Loof et al., 2000). Li (1999) presented an

empirical method for sluice group operation in tidal rivers. The

method is simple, but the operation scheme is possibly not

optimal. Lin and Su (1996) developed a model for flood control

regarding optimal dispatching of multi-sluice system and the

discrete differential dynamic programming linking up with

simulation technique was adopted in the model. The

application results show that the model is demonstrated and

successful, but the calculation process is complicated. Chinh et

al. (2006) used a genetic algorithm to optimise a gate

operation. Most of the sluice gate operation schemes are

obtained based on empirical methods or complicated

calculation. Thus, there is a need to develop a simpler model

for the prediction of sluice gate operation schemes.

For the Pudong channel network, which involves a very large

basin area, a number of complex influencing factors should be

considered for controlling the sluice gates. Thus it is difficult to

achieve efficient management of water resources if the sluice

gates are operated only manually. Manual operation has the

drawback of relying mainly on operational experience, which

is generally less reliable. The volume and rate of water

exchange between the inner rivers within the channel network

of Pudong New District and the outer rivers (the Yangtze river

and Huangpu river) are controlled by the sluice gates, which in

turn influence the water quality inside the channel network.

Daily operation procedures of the 13 sluice gates were

established by the sluice management department from August

2002. The operation of the sluice gates is governed by

balancing several requirements, including: flood prevention,
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floodwater drainage, water level, daily water supply and

drainage requirements. However, these requirements cause

confusion in operating sluice gates. Furthermore, such an

operation scheme is not capable of delivering optimised

allocation of the water resources. Therefore, from the point of

view of effective water resources management, it will be very

beneficial if the operational procedures of the sluice gates are

determined intelligently. The main aim of this study was to

establish an artificial intelligence modelling system for water

resource management to enhance the water resource

management efficiency in the channel network of Pudong New

District.

Over the past decade, there has been widespread interest in the

field of artificial intelligence (ASCE Task Committee, 2000a,

2000b; Jain and Srinivasuls, 2004; Campolo et al., 1999;

Lliadis and Maris, 2007). The recent advancements in artificial

intelligence technologies are making it possible to solve the

intelligent operation of sluice gates. To date, a variety of

hydrodynamic models for channel networks are available and

the modelling techniques have become quite mature (Aral et

al., 1998; Choi and Molinas, 1993; Fread, 1973; Nguyen and

Kawano, 1995; Wu et al., 2004). Therefore, technically, the

hydrodynamic simulation for channel networks has not been a

major problem.

Combining hydrodynamic simulation with an artificial

intelligence technique, an integrated modelling system for

managing the water resources in the channel network of

Pudong New District is proposed in this study. According to the

operational principles of the sluice gates, an artificial neural

network (ANN) model for sluice gate operation of the channel

network has been set up. A hydrodynamic model for channel

networks has been established based on numerically solving

Saint-Venant equations. The

ANN model is used to

develop the sluice gate

operation procedures

according to the water levels

in both the outer and inner

rivers. The hydrodynamic

model is used for the

prediction of the water levels

and flow discharges based on

the sluice gate operation

procedures. The results

indicate that the artificial

intelligence modelling system

can be used as a basis for

decision making in managing

the water resources in the

channel network of Pudong

New District.

2. ARTIFICIAL

INTELLIGENCE

MODELLING SYSTEM

The artificial intelligence

modelling system developed

for managing the water

resources in channel

networks consists of a

database, an ANN sluice gate operation model and a

hydrodynamic model. A schematic view of the modelling

system is shown in Figure 2. The function of the database

obtained by generalising past successful sluice gate operation

schemes is used to provide learning samples for training the

sluice gate operation model. The trained sluice gate operation

model is used to provide the sluice gate operation procedures

based on the water levels at both the outer and inner rivers,

and the hydrodynamic model is used to simulate the flow

within the whole channel network. According to the simulation

results, the local water engineers and managers can acquire

detailed information on the water levels in the inner rivers, the

quantity of water delivery and drainage and so on.

2.1. Hydrodynamic model

2.1.1. Governing equations. The governing equations of

unsteady flow in channel networks are the continuity equation

and the momentum equation, which are based on the

conservation of mass and momentum principles. At the

channel junctions, in addition to these equations, two

equations for the conservation of mass and energy are needed.

The governing equations for simulating unsteady one-

dimension flows in the individual channel segments are known

as Saint-Venant equations (Liggett, 1975) and are given as
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Figure 1. Sketch of the channel network of Pudong New District
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where Q is the discharge, h is the water surface elevation

above a datum, A is the cross-sectional area, x and t are the

spatial and temporal coordinates, q is the side discharge per

unit channel length (lateral inflow is positive, lateral outflow is

negative), Æ is the correction factor owing to the non-

uniformity of velocity distribution in the cross section, g is the

gravitational acceleration and Sf is the friction slope. For

turbulent flows the friction slope Sf can be estimated by using

Manning’s formula

Sf ¼
n2Q Qj j
A2R4=3

3

where n is the Manning roughness coefficient, R is the

hydraulic radius, defined as R ¼ A=P, with P being the wetted

perimeter.

At a channel junction, assuming no change in storage volume

within the junction, the continuity equation can be written as

(Yen, 1979)

X
Q i ¼

X
Qo4

and when the flows in all branches joining at the junction are

sub-critical, the equation of energy conservation can be

approximated by a kinematic compatibility condition, given as

(Akan and Yen, 1981)

zi ¼ zo5

In Equations 4 and 5, subscripts i and o stand for the incoming

and out-flowing branches respectively.

2.1.2. Solution methods. In the current model, the four-point

linear implicit Preissmann finite-difference method (Samuels

and Skeels, 1990) is employed for the spatial and temporal

discretisations of the equations, while the generalised Newton–

Raphson method (Amein and Fang, 1970) is applied to solve

the resulting non-linear algebraic equations. The formulations

and procedures used for

discretising the governing

equation are available in

many references (Amein and

Chu, 1975; Wu et al., 2005;

Xu et al., 2001), thus they

will not be repeated here.

2.1.3. Treatment of looped

channel networks. Channels

and their nodes are

numbered, while channel

junctions are not numbered

in the model. Hence there is

no need to solve the water

levels of junction nodes at

the beginning. The

numbering of channels starts

from main channels, and

then branches and finally looped channels. Likewise, the

solving process follows such sequence: main channels first,

branches second and finally looped channels. The coupling

matrix is used to store information about the connection of the

channels, branch confluence and channel boundary conditions.

2.1.4. Relaxation algorithm. A relaxation algorithm is used to

simulate lateral discharges from branches. Using this algorithm,

a complex channel network is treated as a series of individual

channel segments, with each channel segment being solved

separately. Discharges from other segments are treated as

lateral flows by first giving estimated values and then

gradually updating these values using an iterative method. Let

us take the channel network shown in Figure 3 as an example.

First, the flows in the three main channels R1, R2 and R3 are

solved. When solving R1, estimated discharges (qei) that flow

into channel R1 from branches R4, R5, R8, R9, R12 and R13

are given. According to qei and the upstream and downstream

boundary conditions, water level and discharge of each cross-

section of channel R1 can be obtained. The water levels at the

Input monitoring data Training

DatabaseSluice gate operation model

Obtaining operation procedures

Hydrodynamic model for unsteady flows in channel networks

Output results

Figure 2. Framework of artificial intelligence modelling system for water resources management
in channel networks

Main R1 Main R2 Main R3

Branch R4 Branch R5 Branch R6 Branch R7

Branch R8 Branch R9 Branch R10 Branch R11

Branch R12 Branch R13 Branch R14 Branch R15

Figure 3. Diagrammatic sketch of looped channel
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junctions are then used as downstream boundary conditions for

those connected branches. The water levels and velocities in

these branches can be obtained based on their corresponding

outer boundary conditions. When solving looped channels,

water levels at junctions linking with other branches are acted

as boundary conditions. Lateral discharges (qci) flowing into

main channels from side branches can then be determined

based on the water level differences. New estimated lateral

discharges are obtained using

qni ¼ Æqci þ 1� Æð Þqei6

where Æ is the relaxation factor (0 , Æ < 1).

This process is repeated until the convergence condition is

satisfied

jqci � qeij , �7

where � is a permitted error.

2.2. ANN model for sluice gate operation

2.2.1. Artificial neural networks (ANNs). An ANN is a

mathematical model based on some features of human brain

and nervous system storing and dealing with information. It

has an ability to capture a relationship from giving patterns,

and hence is suitable for application in the solution of complex

problems, such as classification, non-linear modelling,

forecasting, fitting, control and identification (Dibike and

Solomatlne, 2001; Florentina et al., 1999).

The research of Kolmogorov et al. (Zhao, 1999) shows that a

continuous function can be represented by a three-layer, feed-

forward network. The back-propagation network (BPN) is one

of the most popular feed-forward networks in ANNs. The BPN

has the advantages of a simple structure, mature algorithm and

powerful function, so it becomes a useful technique for solving

hydroscience problems. A three-layer BPN consists of an input

layer, an output layer and a hidden layer, as shown in Figure 4.

In BPN, the input quantities (xi) are fed into the input layer

neurons that, in turn, are passed onto the hidden layer neurons

(hi) after multiplication by connecting to weights (Wij). A

hidden layer neuron adds up the weighted input received from

each input neuron (xiWij) and associates it with a bias (b j) (i.e.

s j ¼
P

xiWij � b j ). The result (s j) is then passed on through a

non-linear transfer function

to produce an output (e.g.

sigmoid function;

f (s j) ¼ 1=(1þ e�s j ) ). The

output neurons do the same

as the hidden neurons. The

back-propagation algorithm

finds the optimal weights by

minimising a predetermined

error function (ASCE Task

Committee, 2000a). A

gradient descent method is

often used to modify the

network weights. At the

beginning of the training, the weights are initialised usually

with a set of small random values. Training is stopped when

the error is less than a preset value. The details of ANN are

available in the literature (ASCE Task Committee, 2000a; Wu et

al., 2005).

2.2.2. Establishment of ANN model for sluice gate

operation. The main factors that influence sluice gate

operation are considered to be the initial water levels of the

outer rivers Za, the average water levels of the outer rivers Zb

during water transfer process, the initial inner river water level

Zs (set to the average inner river water level before opening

sluice gates), the expected inner river water level Zt (the steady

inner river water level after closing sluice gates), the widths b

and the bottom sill elevations Z0 of sluice gates. The definition

of the average water level of the ith outer river Zbi is depicted

in Figure 5, in which Zbi is determined using the following

equations

Zbi ¼

ðT2

T1

(Zi � Zt)dt

T2 � T1
for water deliveryðT3

T2

(Zt � Zi)dt

T3 � T2
for water drainage

8>>>>>>><
>>>>>>>:

8

where Zi is the water level of the ith outer river at time t, T1
and T2 are the starting and end times when the outer river

water level becomes higher than the expected inner river water

level and T3 is the end time that the outer river water level is

lower than the expected inner river water level.

Input layer Hidden layer Output layer

x1

x2

xn

Wij Vjk

h1

h2

hp

y1

y2

yq

Figure 4. Topological structure of BPN with three layers

T1 T2 T3

Expected inner river water level Zt

Average outer river water level
for water drainage

Average outer river water
level for water delivery

Figure 5. Definition of average outer river water level
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The input variables of the operation model are identified as

follows: Za, Zb, Zs, Zt, b and Z0. The output variables of the

operation model – that is, the sluice gate operation indices –

are the opening degree E (the ratio of lifting height to

maximum lifting height) and opening time t of the

corresponding sluice gates.

Although the sluice gate operation ought to meet various

demands, such as for flood prevention, floodwater drainage,

running water supply, water quality improvement and

navigation, these operation demands are eventually satisfied

through controlling the inner river water level. Therefore, the

sluice gate operation can be divided into two models. The first

type of sluice gate operation model is the water delivery

operation model. The objective of water delivery is to maintain

inner river water level at a reasonable range, improve water

quality in the inner rivers and ensure navigation and supply of

domestic water use. Obviously, since the water quality in the

Yangtze river estuary is better than that in the HuangPu river,

water transferring mostly employs the principle of water

delivery from east and water drainage to west in Pudong New

District. Therefore the sluice gates used for water delivery are

Wuhaogou, East Zhangjiabang and Sanjiagang sluice gates.

The input variables of the water delivery operation model are:

the initial water levels of the outer rivers corresponding to the

three sluice gates Za1, Za2, Za3, the average water levels of the

outer rivers corresponding to the three sluice gates

Zb1, Zb2, Zb3, the initial inner river water level Zs, the

expected inner river water level after closing the sluice gates

Zt, the sluice widths b1, b2, b3 and the bottom sill elevations

Z01, Z02, Z03. The output variables of the operation model are

the opening degree E1, E2, E3 and opening time t1, t2, t3 of

the three sluice gates. The structure of the water delivery

operation model is depicted in Figure 6.

The second sluice gate operation model is the water drainage

operation model. The aim of the water drainage operation is to

improve the water environment in the inner rivers by

controlling sluice gates based on water quality in the inner

river, water level, tide and weather conditions, and to meet the

needs of flood prevention and floodwater drainage. There are

seven water drainage sluice gates used for water drainage:

Gaoqiao, Yangsi, Bailianjing, West Zhangjiabang, Yangjing,

Xigou and Donggou sluice gates. The input variables of the

water delivery operation model are: the initial water levels of

the outer rivers corresponding to the seven sluice gates Za1,

Za2, Za3, Za4, Za5, Za6, Za7; the average water levels of the

outer rivers corresponding to the seven sluice gates Zb1, Zb2,

Zb3, Zb4, Zb5, Zb6, Zb7; the initial inner river water level Zs;

the expected inner river water level after closing the sluice

gates Zt; the sluice widths b1, b2, b3, b4, b5, b6, b7; and the

bottom sill elevations Z01, Z02, Z03, Z04, Z05, Z06, Z07. The

output variables of the operation model are the opening degree

E1, E2, E3, E4, E5, E6, E7 and opening time t1, t2, t3, t4, t5,

t6, t7 of the seven sluice gates. The structure of the water

drainage operation model is similar to the water delivery

operation model, the difference being the number of neurons,

so it will not be repeated here.

Finally, operation parameter settings in different operation

demands should be mentioned. Based on the existing operation

schemes, the sluice gate operation models are trained for

different operation purposes. When applying the model, the

water level in the inner rivers has to be in the range of 2.3 m

to 2.6 m in the non-flood season, and 2.6 m to 2.8 m in the

flood season respectively. The operation route of sluice gates is

shown in Figure 7.

3. MODEL VALIDATION

In order to check the reliability of the artificial intelligence

modelling system for water resource management of channel

networks presented in this study, the system has been applied

to the water transferring experiments in the channel network

of Pudong New District. The ANN model of the sluice gate

operation was obtained by learning the training samples in the

database and then was used to develop an operation procedure

for the testing cases. With the established operation procedure,

the hydrodynamic model was used to simulate the flow in the

channel network and the predicted results were compared with

the measured results.

3.1. Prototype water transferring experiment

In this study, a water transferring experiment was carried out

in the channel network of Pudong New District. The

experimental data were employed to calibrate and validate the

hydrodynamic model and the sluice gate operation model.

The experiment was undertaken on 24 September 2003, with

the experimental area containing a reach of the Yangtze

estuary, Huangpu river and the Pudong river network. Water

levels, flow discharges and the opening time and opening

degree of the sluice gates were recorded. Data from six gauging

stations and ten discharge stations within the Pudong channel

network were collected.

3.2. Calibration and validation of hydrodynamic model

The calibration and validation data for the hydrodynamic

model comprise the measured water levels from the inner rivers

and the total quantity of water delivery and drainage through

the sluice gates on 24 September 2003. First, the calibration of

the channel roughness and the parameters of the discharge

E1

t1

E2

E3

t2

t3

Za1

Za2

Za3

Zb1

Zb2

Zb3

Zs

Zt

b1

b2

b3

Z01

Z02

Z03

Figure 6. Structure of water delivery operation model
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formulae of the sluice gates were carried out. The roughness of

the channels was determined by comparing the computed and

measured water level distributions at the gauging stations in

the channel network. Meanwhile, the parameters of the

discharge formulae of the sluice gates were obtained by

adjusting the computed values of water delivery and drainage

to make them close to the measurement values.

3.2.1. Quantity of water delivery and drainage. The validation

results for water delivery and drainage are given in Table 1. It

shows that the model predicted values for water delivery and

drainage agree with the measurements, with the relative error

being generally less than 10%.

3.2.2. Water levels at gauging stations. There are six gauging

stations in the channel network, shown in Figure 1, located at

Xiantangbang, Shijiazhai, Jinjiazhai, Sanba rivers of the

Luoshan road, Dawan and Zhaoqiao. Figure 8 shows a

comparison between the measured and predicted water levels at

the six stations. The model predicted water level distributions

fit generally well with the measurements, with the maximum

deviation being 0.1 m.

The validation results show that the hydrodynamic model has

relatively high accuracy and can be used to simulate the flow

and the water quantity of water delivery and drainage in the

channel network of Pudong New District.

3.3. Training and validation of sluice gate operation

model

3.3.1. Training of sluice gate operation model. In developing

BPN models, the sigmoid function was used as the activation

function at both hidden and output layers, and the popular

back-propagation algorithm (Wang et al., 2000) was employed

to train the network. All of the variables are standardised by

x9 ¼ x � xmin

xmax � xmin
Æþ �9

Zs 3·0 m ?�

Zs 2·8 m ?�

Opening all sluice
gates for floodwater
drainage

Manually opening
some sluice gates for
floodwater drainage

Sluice gate operation

objective Zt

Sluice gate operation
modes

Employing water
delivery operation

Water delivery

Water drainage

Employing water
delivery operation
model

Employing water
drainage operation
model

Figure 7. Operation route of sluice gates

Sluice Quantity of water delivery and drainage

Measured value:
104m3

Calculated value:
104m3

Relative error: %

Sanjiagang 114.6 103.4 �9.8
East Zhangjiabang 112.3 102.1 �9.1
Wuhaogou 31.8 29.3 �7.9
Gaoqiao 20.8 18.8 �9.6
Yangsi 58.5 52.1 �10.9
Bailianjing 67.5 67.7 0.3
West Zhangjiabang 46.8 50.8 8.5
Yangjing 49.7 46.7 �6.0
Xigou 49.0 53.8 9.8
Donggou 70.2 63.5 �9.5

Table 1. Comparison between predicted and measured water delivery and drainage values
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where x9 is the standardised variable; xmin is the minimum

value in the data set; xmax is the maximum value in the data

set; x is the original variable; Æ is a parameter between 0 and

1, here Æ is set to 0.9; and � ¼ (1� Æ)=2. In order to determine

the number of neurons in the hidden layer, a trial-and-error

procedure was used. The number of neurons in the hidden

layer was varied from 1 to 20, and for each value of the

number of hidden neurons, the BPA was used to minimise the

total error at the output layer. Previous successful sluice gate

operations for water delivery and drainage were used as

learning samples. The number of the training samples used was

230 for the water delivery operation, and 200 for the water

drainage operation (Tang et al., 2004). The optimum number of

hidden neurons was found to be 4 and 3 for water delivery and

drainage operation, respectively. Therefore, the architectures of

14–4–6 and 30–3–14 were found to be the best to capture the

input–output relationships inherent in the data under

consideration for water delivery and drainage operation

respectively. Figure 9 shows the measured opening data against

the corresponding ANN-predicted output data at the ending of

training. As can be seen, the two ANN models both

successfully predicted the measured data. In order objectively

to evaluate the model performance, the most commonly

employed error measures, such as the root-mean-square error

(RMSE) and the coefficient of determination (R2) were

calculated for Figure 9. The RMSE and R2 are defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xl

i¼1

qmi
� qpið Þ2

l

vuuuut10

R2 ¼

Xl

i¼1

qmi
� qm

� �
qpi � qp
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

i¼1

qmi
� qm

� �2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

i¼1

qpi
� qp

� �2
vuut

11

q ¼
Xn

i¼1

qi ¼
Xn

i¼1

Ei
0:5 t i12

where qm is the measured value of q, qm is the measured mean

value of q, qp is the predicted value of q, qp is the predicted

mean value of q, l is the total number of sample and n is the

number of operation sluice gates. For Figure 9(a), RMSE and R2

are computed as equal to 0.457 h and 0.990, respectively; for

Figure 9(b), RMSE and R2 are, respectively, computed as equal

to 1.101 h, and 0.992, implying the successful training of the

ANN model.
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Figure 8. Comparison of measured and simulated water level distributions at: (a) Jinjiazhai station; (b) Zhaoqiao station;
(c) Xiantangbang station; (d) Shijiazhai station; (e) Sanba river station; (f) Dawan station
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3.3.2. Validation of sluice gate operation model. The trained

ANN model is validated using the data from the water

transferring experiment and database. The number of the

testing samples used was 100 for the water delivery operation

(including a set of water transferring experiment data and 99

sets of existing data from database), and 96 for the water

drainage operation (including a set of water transferring

experiment data and 95 sets of existing data from database).

Comparison of predicted and measured values is shown in

Figure 10. The values of RMSE ¼ 0.560 h, R2 ¼ 0:982 for water

delivery operation model and RMSE ¼ 1.335 h, R2 ¼ 0:987 for

the water drainage operation model imply a satisfactory

performance of the developed ANN model. For the water

transferring experiment, the predicted results of the operation

indices of the sluice gates for the water delivery and drainage

operation schemes are shown in Table 2 and Figure 11

respectively. For the water delivery, the expected inner river

water level is 2.748 m, while the predicted value is 2.735 m; for

the water drainage, the expected and predicted inner river

water levels are 2.261 m and 2.291 m respectively. It is shown

that the model largely meets the expected demands. It is clear

that when the acquired operation database meets the operation

demands, the operation model can give a reasonable operation

scheme. With such an operation scheme, the expected inner

river water level can be achieved.

4. APPLICATION

An information-based system has been developed for

managing the channel network in Pudong New District (Figure

12 and Figure 13). The system comprises primarily three

components: a geographic information system (GIS)-based

platform for managing and displaying data and model

parameter control, a numerical model for hydrodynamic

simulation; and an ANN for sluice gate operation control. A

real information-based management system for the sluice gate

operation has been realised. It is practically significant to the

establishment of the information-based system for the

implementation of the integrated management strategy of

safety, resource and environment in Pudong New District. In

the next section, two cases are shown to illustrate the

applicability of the artificial intelligence modelling system.

4.1. Case 1: intelligence operation during water

transferring experiments

Currently the operation of the sluice gates depends mainly on

experience, and it has the shortcomings of a long time and a

great difference between the inner river water level after water

transferring and the expected inner water level. The artificial

intelligence modelling system developed above can be used to

overcome the shortcomings and it has been applied to the

water transferring experiments during 19–21 September 2004
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Figure 9. Measured against predicted data at training stage for (a) water delivery operation model and (b) water drainage operation
model
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in the channel network of Pudong New District for better

managing the local water resources. In the water transferring

experiment, Xigou and Donggou sluice gates were first opened

for water drainage at 3:10 am on 19 September, then the

remaining five sluice gates for water drainage were opened in

turn. At 8:35, 8:45 and 9:00 on 19 September, Sanjiagang, East

Zhangjiabang and Wuhaogou sluice gates were opened for

water delivery respectively. According to the tide table in the

year 2004, the average water levels of the outer rivers during

water transfer were obtained. More details of the water

transferring experiment are available in Tang et al. (2004). The

initial computation time of the model was 3:10 on 19

September. As input variables of the operation model, the

initial water levels for both the inner and outer rivers, the

average water levels of the outer rivers, the expected inner

river water level, the sluice widths and the bottom sill

elevations were specified. The sluice gate operation scheme was

determined by the ANN model. The hydrodynamic model was

used to simulate the flow for the water transferring experiment,

and the simulation results were compared with the measured

data. A comparison between the calculated and measured water

volumes for the water delivery and drainage is given in Table

3, which shows that the predicted water volumes for both water

delivery and drainage are in good agreement with the

measured ones. The relative errors are generally less than 10%.

Figure 14 shows the verification of the representative water

levels of the inner rivers during the water transferring

experiment. It is evident that the computed stage hydrographs

are in good agreement with the measured hydrographs and the

absolute error is generally less than 10 cm. As a whole, the

calculated results are close to the measurements during the

water transferring experiment. Thus the artificial intelligence

modelling system can be considered as a tool for efficient

water resources management.
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Figure 10. Measured against predicted data at testing stage for (a) water delivery operation model and (b) water drainage operation
model

E1 t1: h E2 t2: h E3 t3: h

Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted

0.30 0.28 3.57 3.66 0.42 0.36 3.34 3.58 0.60 0.45 3.85 4.08

Table 2. Measured against predicted operation indices of sluice gates for water delivery operation scheme
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Za1 1·50�

Za2 1·80�

Za7 1·50�

Zb1 1·56�

Zb2 1·56�

Zb7 1·56�

Zs 2·65�

Zt 2·26�

b1 8·00�

b2 10·00�

b7 8·00�

Z01 1·35�

Z02 0·50�

Z07 0·10�

Output value Known value

E1 0·24�
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Figure 11. Measured against predicted operation indices of sluice gates for water drainage operation scheme

Figure 12. Information-based system for water resources management in Pudong New District
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4.2. Case 2: intelligence operation during a flood

Pudong New District is located at the east of Shanghai City, the

lower Huangpu river and the south of the estuary of the

Yangtze river. It is a delta region with low-lying topography

located at the east of the Yangtze river delta. Under the

influence of special geographical conditions and climatic

factors, flood prevention is very complicated and floods often

occur. Thus it is very important to follow reasonable sluice

gate operation procedures for flood prevention. Below is an

example of applying the artificial intelligence modelling

system to the channel network of Pudong New District to show

its usefulness for a flood risk control operation. The flood

occurred on 3 July 2002. The initial inner river water level was

2.95 m, and the expected inner river water level was 2.66 m,

the initial and average water levels of the outer rivers at sluice

gates for water drainage are shown in Table 4. According to

Figure 13. Operation decision subsystem

Sluice Quantity of water delivery and drainage

Measured value:
104m3

Calculated value:
104m3

Relative error: %

Sanjiagang 798.2 806.1 0.99
East Zhangjiabang 737.9 761.5 3.20
Wuhaogou 229.0 251.6 9.87
Gaoqiao 154.5 150.5 �2.59
Yangsi 361.2 354.8 �1.77
Bailianjing 414.9 444.0 7.01
West Zhangjiabang 336.9 317.7 �5.70
Yangjing 334.3 315.5 �5.62
Xigou 338.4 345.3 2.04
Donggou 434.6 386.2 �11.14

Table 3. Comparison between predicted and measured water volumes for both water delivery
and drainage
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these known parameters, the sluice gate operation schemes

shown in Table 5 were obtained from the trained ANN model

for the water drainage operation. Then the hydrodynamic

model was used to produce the discharge hydrographs at the

sluice gates and the corresponding water levels. Figure 15

presents the discharge hydrographs at the seven sluice gates

during the water drainage event. The stage hydrographs at the

six gauging stations are shown in Figure 16. It can be seen that

the average stable water level of the inner rivers is reduced to

2.68 m after the sluice gate operation, which generally meets

the expected demand. It is indicated that the inner river water

level can be controlled within a reasonable range to minimise

the loss caused by emergent disasters.

5. CONCLUSION

To overcome the existing problems in water resource

management for the channel network in Pudong New District,

an artificial intelligence modelling system was developed for

managing the water resources. The system is composed of an

ANN model for controlling sluice gates and a hydrodynamic

model for simulating flow in channel networks. Using the data

obtained from the water transferring experiment in September

2003, the ANN model of sluice gate operation was trained and

tested, and the calibration of the hydrodynamic model was also

performed. The artificial intelligence modelling system for

water resources management was then applied to the water

transferring experiments in the channel network of Pudong

New District carried out in September 2004. A good agreement

was attained between the predicted and measured water

delivery and drainage volumes and water levels. The artificial

intelligence modelling system was also applied to a flood risk

control operation in the channel network of Pudong New

District. The results indicate that the average water level of the

inner rivers can be reduced to a reasonable range. It can be

concluded that the artificial intelligence modelling system

developed in this study can meet the demands for intelligent

management of water resources for large-scale complex

channel networks, such as the channel network of Pudong New

3·2

3·0

2·8

2·6

2·4

h:
 m

Measured

Computed

0 8 16 24 32 40 48 56 64 72
t : h
(a)

3·3

3·1

2·9

2·7

2·5

h:
 m

Measured

Computed

0 8 16 24 32 40 48 56 64 72
t : h
(b)

Figure 14. Comparison between measured and calculated
stage hydrographs at: (a) Jinjiazhai station; (b) Zhaoqiao
station

Sluice Water level: m

Initial value Average value

Yangsi 2.50 2.20
Bailianjing 2.50 2.19
West Zhangjiabang 2.51 2.21
Yangjing 2.50 2.20
Xigou 2.49 2.19
Donggou 2.47 2.18
Gaoqiao 2.46 2.18

Table 4. Initial and average water levels of the outer rivers at
sluice gates for water drainage

60

50

40

30

20

10

0

Q
: m

/s3

0 0·5 1·0 1·5 2·0 2·5 3·0 3·5 4·0 4·5 5·0 5·5 6·0

t : h

Yangsi
Bailianjing
West Zhangjiabang
Yangjing
Xigou
Donggou
Gaoqiao

Figure 15. Discharge hydrographs at seven sluice gates during
water drainage
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Figure 16. Stage hydrographs at six gauging stations during
water drainage

E1 t1: h E2 t2: h E3 t3: h E4 t4: h E5 t5: h E6 t6: h E7 t7: h

0.47 5.01 0.37 5.02 0.21 5.14 0.46 4.41 0.24 5.00 0.31 5.15 0.47 5.11

Table 5. Output water drainage operation scheme
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District. This in turn can bring in useful economic and social

benefits in managing sluice gate operation, water level

controlling of the inner rivers, water volume calculation and

some other aspects.
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