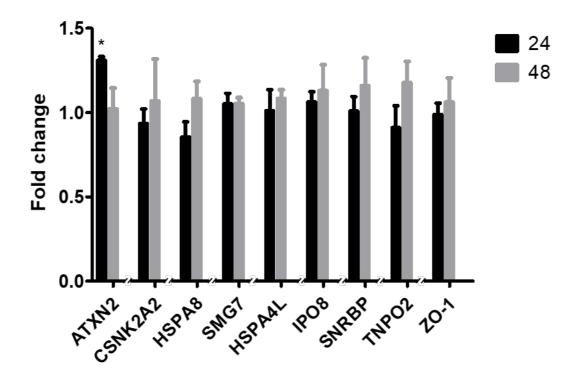
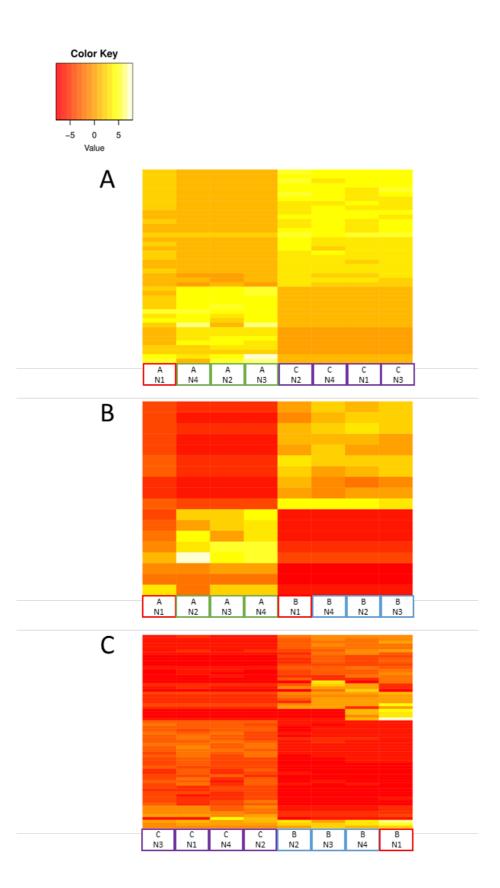

Tittle

Indacaterol inhibits collective cell migration and IGDQ-mediated single cell migration in metastatic breast cancer MDA-MB-231 cells

Authors


Sophie AYAMA-CANDEN, Rodolfo TONDO, Martha Liliana PINEROS LEYTON, Noëlle NINANE, Catherine DEMAZY, Marc DIEU, Antoine FATTACCIOLI, Aude SAUVAGE, Tijani TABARRANT, Stéphane LUCAS, Davide BONIFAZI, Carine MICHIELS

Additional files


Additional file 1: Cell viability of MDA-MB-231 cells incubated with 15 μM of indacaterol.

MTT cytotoxicity assay using 0 to 40 μ M of indacaterol for 24h or 48h. Statistical significance was determined by two-way ANOVA (mean ± 1 SD of three independent experiments) **p < 0.01).

Additional file 2: mRNA levels of genes of interest, obtained from the multi-omic analysis, in MDA-MB-231 cells incubated or not with indacaterol.

mRNA levels were measured by RT-qPCR after 24h and 48h of 15 μ M indacaterol incubation, α -tubulin was used as housekeeping gene (CTL-Tub), results are expressed in fold change after being normalized to the untreated control cells. Statistical significance was determined by two-way ANOVA (mean ± 1 SD of three independent experiments) (*p < 0.05).

Additional file 3: Heatmap representing RNAseq global gene expression for each replicate (N) and their segregation by similarity. A: static/proliferating phenotype; B: late migrating phenotype; C: migrating phenotype.

Additional table 1: Target gene counts, p-value and Log2 fold change obtained from RNAseq data analysis using A. Differential expression tool (Illumina), B. RNA-Express tool (Illumina) and from proteomic data using C. Scaffold tool. Significant p-values are in bold, gene/protein upregulated in green and downregulated in red.

A Gene name	Gene symbol	C	ount - RNAExpre	55	p-1	value - RNAExpr	255	Log2 Fold	change - RNAE	xpress
A	Gene symbol	А	В	с	A vs B	A vs C	B vs C	A vs B	A vs C	B vs C
Ataxin 2	ATXN2	59,33	68,00	48,75	0,785	0,587	0,274	0,11	-0,20	-0,36
Casein kinase 2 alpha 2	CSNK2A2	34,00	13,67	21,75	0,029	0,285	0,185	-0,93	-0,41	0,53
Heat shock protein family A (Hsp70) member 8	HSPA8	68,67	82,00	50,25	0,631	0,205	0,057	0,18	-0,40	-0,61
RNA binding fox-1 homolog 1	RBFOX1	37,67	56,33	39,25	0,428	0,953	0,313	0,34	-0,02	-0,39
SMG7 nonsense mediated mRNA decay factor	SMG7	70,67	97,00	90,50	0,474	0,556	0,813	0,29	0,21	-0,08
Protein name	Protein	o	ount - RNAExpre	55	p-1	value - RNAExpr	ess	Log2 Fold	change - RNAE	xpress
Proteinname	symbol	А	В	с	A vs B	A vs C	B vs C	A vs B	A vs C	B vs C
Casein kinase 2 alpha 2	CSNK2A2	34,00	13,67	21,75	0,029	0,285	0,185	-0,93	-0,41	0,53
Heat shock protein family A (Hsp70) member 4 like	HSPA4L	50,00	49,67	41,50	0,797	0,506	0,617	-0,11	-0,25	-0,17
Importin 8	IPO8	79,00	86,67	74,25	0,959	0,781	0,705	0,02	-0,10	-0,13
Small nuclear ribonucleoprote in polypeptides B and B1	SNRPB	21,00	24,00	13,75	0,881	0,431	0,268	0,07	-0,31	-0,46
Serine and arginine rich splicing factor 6	SRSF6	74,33	70,67	71,75	0,741	0,757	0,911	-0,13	-0,10	0,03
Transportin 2	TNPO2	63,33	35,00	98,75	0,261	0,216	0,005	-0,49	0,49	1,12E+14
B Gene name	Gene symbol		Count - DE			p-value - DE			Fold change - D	
		A	В	с	A vs B	A vs C	B vs C	A vs B	A vs C	B vs C
Ataxin 2	ATXN2	27,541	33,775	12,755	0,001	0,002	0,996	7,14E+14	6,39E+14	-0,75
Casein kinase 2 alpha 2	CSNK2A2	30,877	25,910	34,546	1,000	1,000	1,000	-1,42E+14	-8,67E-01	0,55
Heat shock protein family A (Hsp70) member 8	HSPA8	44,458	33,452	45,453	1,000	0,001	0,996	-1,35E+14	-,	-6,66E+14
RNA binding fox-1 homolog 1	RBFOX1	27,107	23,527	20,964	NaN	0,845	0,001	-3,47E+14	,	6,62E+13
SMG7 nonsense mediated mRNA decay factor	SMG7	36,503	42,291	43,726	1,000	0,001	1,000	6,71E+14	7,42E+14	0,71
Protein name	Protein		Count - DE			p-value - DE			Fold change - D	
	symbol	A	В	с	A vs B	A vs C	B vs C	A vs B	A vs C	B vs C
Casein kinase 2 alpha 2	CSNK2A2	30,877	25,910	34,546	1,000	1,000	1,000	-1,42E+14	-0,87	0,55
Heat shock protein family A (Hsp70) member 4 like	HSPA4L	53,882	29,542	15,962	Outlier	0,721	0,832	Outlier	,	6,04E+14
Importin 8	IPO8	51,815	23,270	27,460	0,802	1,000	1,000	0,25	0,36	0,10
Small nuclear ribonucleoprotein polypeptides B and B1		14,270	17,985	38,447	0,952	1,000	1,000	0,20	-0,33	-0,51
Serine and arginine rich splicing factor 6	SRSF6	64,027	70,601	44,353	0,799	NaN	0,820	0,85	,	-8,06E+14
Transportin 2	TNPO2	31,617	47,419	44,273	0,668	1,000	1,000	-0,73	-0,28	0,45
C Gene name	Gene symbol	Spec	tral count - Prote	eomic	p-value -	Proteomic	Fold change	e - Proteomic	Log2 Fold (Protec	
C Sentenant	,	shCTL	shITGA5	shITGB3	shITGA5	shITGB3	shITGA5	shITGB3	shITGA5	shITGB3

C Gene name Gene symbol		Spectral count - Proteomic		p-value - Proteomic		Fold change - Proteomic		Proteomic		
		shCTL	shITGA5	shITGB3	shITGA5	shITGB3	shITGA5	shITGB3	shITGA5	shITGB3
Ataxin 2	ATXN2	4,00	3,67	4,67	0,990	0,670	1,00	1,20	0,00	0,26
Casein kinase 2 alpha 2	CSNK2A2	5,67	3,00	3,33	0,031	0,054	0,60	0,60	-0,74	-0,74
Heat shock protein family A (Hsp70) member 8	HSPA8	300,67	310,33	302,00	0,150	0,720	1,10	1,00	0,14	0,00
RNA binding fox-1 homolog 1	RBFOX1	NA	NA	NA	NA	NA	NA	NA	NA	NA
SMG7 nonsense mediated mRNA decay factor	SMG7	NA	NA	NA	NA	NA	NA	NA	NA	NA
Protein name	Protein			p-value - Proteomic		Fold change - Proteomic		Log2 Fold change - Proteomic		
	symbol	shCTL	shITGA5	shITGB3	shITGA5	shITGB3	shITGA5	shITGB3	shITGA5	shITGB3
Casein kinase 2 alpha 2	CSNK2A2	5,67	3,00	3,33	0,031	0,054	0,60	0,60	-0,74	-0,74
Heat shock protein family A (Hsp70) member 4 like	HSPA4L	21,33	26,33	25,67	0,016	0,048	1,40	1,30	0,49	0,38
Importin 8	IPO8	5,00	2,67	3,00	0,024	0,048	0,60	0,60	-0,74	-0,74
Small nuclear ribonucleoprotein polypeptides B and B1	SNRPB	19,00	13,33	13,33	0,066	0,035	0,80	0,70	-0,32	-0,51
Serine and arginine rich splicing factor 6	SRSF6	5,33	8,33	6,67	0,063	0,018	1,70	1,30	0,77	0,38
Transportin 2	TNPO2	9,00	5,33	6,00	0,087	0,067	0,70	0,70	-0,51	-0,51

Additional table 2: Selected gene descriptions

Gene name	Gene symbol	Gene description and role in cancer			
Ataxin 2	ATXN2	Ataxin 2 (ATXN2 – GO category "RNA localization" – RNAseq			
		data) was found upregulated in late migrating cells (FC=			
		7,14E+14) and in migrating cells (FC= 6,39E+14). ATXN2 is			
		involved in negative regulation of EGFR endocytosis and as a			
		RNA-binding protein by regulating their stability. It is			
		implicated in spinocerebellar ataxias type II (SCA2) and			
		amyotrophic lateral sclerosis (ALS)^{41,42}. ATXN2 was recently			
		shown to regulate ITGB3 expression, inducing the			
		accumulation of this integrin in cytoplasm of platelets from			
		mice deficient for Atxn2, hence provoking the reduction of			
		their α IIb β 3 integrin-mediated aggregation capacity ⁴³ . ATXN2			
		is also considered as an unfavorable prognostic marker in liver			
		cancer ¹⁹ .			
Casein kinase 2 alpha 2	CSNK2A2	Casein kinase 2 alpha 2 (CSNK2A2 – GO categories "Protein			
		folding", "Protein targeting" and "Etablishment of protein			
		localization to organelle" – RNAseq and proteomic data) was			
		found down regulated in late migrating cells (FC= -0.93) and in			
		both shITGA5 (FC= -0.74) and shITGB3 cells (FC= -0.74).			
		CSNK2A2 encodes for the catalytic subunit of the			
		serine/threonine protein casein kinase 2 (CK2). CK2 is involved			
		in multiple cellular processes such as cell cycle, apoptosis and			
		transcription. The later is explained by the direct			
		phosphorylation of RNA polymerases I, II, III and IV but also of			
		numerous transcription factors (STAT1/3, JUN, FOS, MYC,			
		BRCA1) ^{44,45,46} . CK2 alpha subunits were described to favor cell			
		adhesion through Akt-GSK3 β axis in GN11 neuronal cell line.			
		CSNK2A2 is also considered as an unfavorable prognostic			
		marker in head and neck and liver cancers ¹⁹ .			
Heat shock protein family A	HSPA8	Heat shock protein family A (Hsp70) member 8 (HSPA8 – GO			
(Hsp70) member 8		categories "Protein folding" and "RNA splicing" – RNAseq data)			
		was found downregulated in migrating cells (FC= -8,01E+14).			
		HSPA8 is a chaperone protein involved into multiple cellular			
		processes, notably in protein folding and degradation			
		regulation. It carries an ATPase activity and is involved in			

		regulating autophagy under hypoxia ^{47,48,49,50} . Hsp70-
		dependent activation of FAK-Src signaling was shown to be
		involved in modulating migration and invasion capacity in
		glioma cell lines ⁵¹ . HSPA8 overexpression was highlighted in
		metastatic melanoma when compared to primary
		melanomas ⁵² . Recently, data mining connected HSPA8 to a
		poor prognosis in TNBC and HPA8 expression was also found
		dysregulated in ductal carcinoma in situ and invasive breast
		cancer ^{53,54} . HSPA8 is considered as an unfavorable prognostic
		maker in colorectal and renal cancers and as favorable
		prognostic marker in liver cancer ¹⁹ .
RNA binding fox-1 homolog 1	RBFOX1	RNA binding fox-1 homolog 1 (RBFOX1 or ataxin-2-binding
		protein – GO categories "RNA localization" and "RNA splicing –
		RNAseq data) was found upregulated in migrating cells (FC=
		6,62E+13) and between late and migrating cells (FC= -0.61).
		RBFOX1 is a highly conserved protein implied in RNA and
		microRNA splicing, binding to UGCAUG RNA element, and
		involved in neuronal development, autism spectrum disorder
		and skeletal muscle development ^{55,56,57,58,59,60} . RBFOX1 was
		found to interact with ATXN2 in human neuronal cells with a
		potential role in RNA transport ⁶⁰ . RBFOX1 expression is
		sufficient to promote partial mesenchymal phenotype in breast
		cancer cells, notably by favoring filamin-B (FLNB) skipping exon
		30 variant ⁶¹ . However, RBFOX1 has not been considered as a
		biomarker in any cancer until now ¹⁹ .
SMG7 nonsense-mediated	SMG7	SMG7 nonsense-mediated mRNA decay factor (SMG7 – GO
mRNA decay factor		category "RNA localization" – RNAseq data) was found
		upregulated in migrating cells (7,42E+14). SMG7 is an essential
		element of the complex of detection and rapid degradation of
		transcripts with premature stop codons ⁶² . SMG7 also had a
		function in maintenance of telomere integrity ⁶³ . SMG7 was
		related to regulation of p53 function, notably during p53-
		mediated response to genotoxic stress by regulating p53
		stability in cancer cells ⁶⁴ . SMG7 is expressed in all cancers and
		is not considered as a biomarker ¹⁹ .

Heat shock protein family A	HSPA4L	Heat shock protein family A (Hsp70) member 4 like (HSPA4L –
(Hsp70) member 4 like		GO category "Protein folding" – proteomic data) was found
		upregulated in both shITAG5 (FC= 0,49) and shITGB3 (FC= 0,38)
		invalidated cells. HSPA4L is a chaperone involved in protection
		against proteins aggregates. In nasopharyngeal carcinoma,
		silencing of HSPA4L mediated by miR-497 suppressed cell
		proliferation and migration and induced apoptosis ⁶⁵ . HSPA4L is
		considered as an unfavorable prognostic marker in urothelial
		cancer and as a favorable prognostic marker in renal cancer ¹⁹ .
Importin 8	IPO8	Importin 8 (IPO8 – GO category "establishment of protein
		localization to organelle" – proteomic data) was found
		downregulated in both shITAG5 (FC= -0.74) and shITGB3 (FC= -
		0.74) invalidated cells. IPO8 is a RanGTP binding protein that
		can act as an autonomous nuclear transport receptor or as part
		of the importin- α/β complex involved in nuclear import of
		proteins containing a nuclear localization signal ⁶⁶ . In TNBC and
		estrogen receptor-negative breast cancer patients, IPO8
		permits the miR551b-3p nucleus translocation, that activates
		STAT3 and Oncostatin M (OSM), favoring tumor growth and
		cell migration and invasion ⁶⁷ . IPO8 is considered as an
		unfavorable prognostic marker in liver cancer and as favorable
		prognostic marker in renal cancer ¹⁹ .
Small nuclear	SNRPB	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB
ribonucleoprotein		- GO categories " RNA splicing" and "establishment of protein
polypeptides B and B1		localization to organelle" – proteomic data) was found
		downregulated in both shITAG5 (FC= -0.32) and shITGB3 (FC= -
		0.51) invalidated cells. SNRPB is a component of small nuclear
		ribonucleoprotein spliceosomal complex and plays a role in
		pre-mRNA splicing. Single nucleotide polymorphism (SNP) of
		SNRPB (rs6138178) was commonly found in patients with
		mutations in the BRCA1 gene and its detection can be part in
		the improvement of breast cancer risk assessement ⁶⁸ . A recent
		study showed that RAB26 splicing SNRPB-mediated was
		necessary to maintain cell growth and migration capacity in
		non-small cell lung carcinoma (NSCLC) ⁶⁹ . SNRPB is considered
		as an unfavorable prognostic marker in liver cancer ¹⁹ .

Transportin 2	TNPO2	Transportin 2 (TNPO2 – GO category "establishment of protein
		localization to organelle" – proteomic data) was found
		downregulated in both shITAG5 (FC= -0.51) and shITGB3 (FC= -
		0.51) invalidated cells. TNPO2 problably plays a role in nuclear
		protein transport, in Ran-GTPase-dependent manner, and is
		also implicated in apoptosis regulation ^{70,71} . TNPO2 was also
		described to promote gastric cancer cell proliferation and
		apoptosis inhibition through DYNC1I1 dosnwstream ⁷² . TNPO2
		is considered as an unfavorable prognostic marker in
		endometrial cancer and as favorable prognostic marker in renal
		cancer ¹⁹ .

Additional table 3: Sequences of the primers used for quantitative PCR

Gene	Primer	Sequence	% GC	Tm °C	Amplicon size (bp)	
ITGB3	ITGB3-F-h	CCGTGACGAGATTGAGTCA	53	56.91	132	
	ITGB3-R-h	AGGATGGACTTTCCACTAGAA	43	55.69	152	
ITGA5	ITGA5-F-h	TGCAGTGTGAGGCTGTGTACA	52	61.91	88	
IIGAS	ITGA5-R-h	GTGGCCACCTGACGCTCT	67	62.01	00	
IPO8	IPO8-F-h	CGAATTCAGTTGCCTCACAA	45	59.84	155	
1908	IPO8-R-h	ACTGCAGGAGGTCGATTTTG	50	60.25	155	
SNRPB	SNRPB-F-h	GCACCTTCAAGGCTTTTGAC	50	59.86	166	
	SNRPB-R-h	CCCTCTACTGTCATTGAGACCA	50	59.21	100	
SRSF6	SRSF6-F-h	GAGCTGAACGGCAAGGAG	61	59.66	161	
	SRSF6-R-h	CGAACAGGTGGTCCGTATTT	50	59.85	101	
CENIKAAA	CSNK2A2-F-h	TGAGGCCCTAGATCTTCTGG	55	57.91	175	
CSNK2A2	CSNK2A2-R-h	TTCCAGTCTTCATCGTGCTG	50	57.92	175	
	HSPA4L-F-h	CCACAAGAAGGAACCATTTGA	43	56.34	102	
HSPA4L	HSPA4L-R-h	TCCATGGATGTTAACACGAACT	41	57.72	163	
TNDOO	TNPO2-F-h	CTCAACCAGCCGGAATACAT	50	57.67	105	
TNPO2	TNPO2-R-h	CTGGTAGACGGGCTCACAGT	60	61.25	165	
	HSPA8-F-h	CTCGTATCCCCAAGATTCAGA	48	56.62	100	
HSPA8	HSPA8-R-h	GTGACATCCAAGAGCAGCAA	50	58.47	169	
DDE OV4	RBEOX1-E-h	TTCGAAAATAGTGCCGATGC	45	56.89	170	
RBFOX1	RBFOX1-R-h	TAGACTGCACCCACAACTGG	55	59.6	170	
CMC7	SMG7-F-h	TAGTGCGACACCACTTCCAG	55	59.68	450	
SMG7	SMG7-R-h	AGATCAAGCGTTGCTGTCGT	50	60.32	152	
	ATXN2-F-h	AAAGACGCAGCTGAGCAAGT	50	60.53	162	
ATXN2	ATXN2-R-h	CTGGAGTTGGCTGTTGATGA	50	57.81	163	
a tubulla	Tub-178F	CCCGAGGGCACTACACCAT	63	60.00	100	
α-tubulin	Tub-323R	CAGGGAGGTGAACCCAGAAC	60	60.00	108	
	ATXN2-3-F-h	ATGATGGCACCACCAACACA	50	60.18	105	
ATXN2 var 3	ATXN2-3-R-h	GGAGCCCGTGGAAACATACA	55	60.04	105	
	ATXN2-2-F-h	TGTGGGCTAGAGATGCGACT	55	60.68	120	
ATXN2 var 2	ATXN2-2-R-h	GGGTGGCTGTGTCGTCATTA	55	60.04	129	
ATXN2 var 5	ATXN2-5-F-h	CAACTTCACCTCGGCCTCAA	55	60.25	214	
	ATXN2-5-R-h	GGCATATTTGGTACTTTACCTGC	43.48	57.82	214	
	ATXN2-tot-F-h	TGCACCCACATACTCCACAC	55	59.96	100	
ATXN2 tot	ATXN2-tot-R-h	TGGTAAATGGCTGACTGCTG	50	58.19	166	
MAP2-Total	MAP2-h-tot-F-1	CCTGGGTCTACTGCCATCAC	60	59.82	227	
WAP2-TOTAL	MAP2-h-tot-R-1	TTCAGGTCTGGCAGTGGTTG	55	60.18	227	
MAP2-Short	MAP2-h-short-F	TCCGGGGCTAGAAAGAGTGA	55	59.96	73	
WAPZ-SHOT	MAP2-h-short-R	CTTGCAGACACCTCCTCTCG	60	60.11	/3	
MAP2-	- MAP2-h-med-F ACCCTTTGAGAA		47.62	59.79	170	
Medium	MAP2-h-med-R	AGGTGGATGTGAGTGTGCAG	55 59.96		1/0	

Antibody / Probe	Reference	Species	Dilution WB	Dilution IF
Anti-integrin alpha 5	Ab150361 (Abcam)	Rabbit	1/1000	1/100
Anti-integrin beta 3	sc-365679 (Santa Cruz)	Mouse	1/1000	1/50
Anti-SRSF6	PA5-41810 (Thermo Fisher)	Rabbit	1/1000	
Anti-LAMP1	H4A3.c (Hybridoma Bank)	Mouse	-	1/100
Anti-ALIX	2171 (Cell Signalling Technology)	Rabbit	-	1/100
Anti-alpha-tubulin	T5168 (Sigma-Aldrich)	Mouse	1/10000	-
Phalloidin (F-Actin) Alexa 568 nm	A-1280 (Thermo Fisher)	-	-	1/100
Anti-mouse Alexa 568 nm	A-11004 (Thermo Fisher)	-	1/10000	1/1000
Anti-rabbit Alexa 488 nm	A-11008 (Thermo Fisher)	-	1/10000	1/1000
Hoechst	H-21491 (Thermo Fisher)	-	-	1/2000

Additional table 4: Antibodies used for western-blotting (WB) and immunofluorescence labeling (IF)

References

- Nonis, D., Schmidt, M.H.H., van de Loo, S., Eich, F., Dikic, I., Nowock, J., and Auburger, G. (2008). Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cell. Signal. *20*, 1725–1739. 10.1016/j.cellsig.2008.05.018.
- 42. Ostrowski, L.A., Hall, A.C., and Mekhail, K. (2017). Ataxin-2: From RNA control to human health and disease. Genes (Basel). *8*, 2–21. 10.3390/genes8060157.
- Hansen, M., Zeddies, S., Meinders, M., Di Summa, F., Rollmann, E., van Alphen, F.P.J., Hoogendijk, A.J., Moore, K.S., Halbach, M., Gutiérrez, L., et al. (2020). The RNA-binding protein ATXN2 is expressed during megakaryopoiesis and may control timing of gene expression. Int. J. Mol. Sci. *21*, 1–20. 10.3390/ijms21030967.
- Rozovski, U., Harris, D.M., Li, P., Liu, Z., Jain, P., Veletic, I., Ferrajoli, A., Burger, J., O'brien, S., Bose, P., et al. (2017). Constitutive phosphorylation of STAT3 by the CK2-BLNK-CD5 complex. Mol. Cancer Res. *15*, 610–618. 10.1158/1541-7786.MCR-16-0291.
- Vilk, G., Weber, J.E., Turowec, J.P., Duncan, J.S., Wu, C., Derksen, D.R., Zien, P., Sarno, S., Donella-Deana, A., Lajoie, G., et al. (2008). Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells. Cell. Signal. *20*, 1942–1951.
 10.1016/j.cellsig.2008.07.002.
- 46. O'Brien, K.A., Lemke, S.J., Cocke, K.S., Rao, R.N., and Beckmann, R.P. (1999). Casein kinase
 2 binds to and phosphorylates BRCA1. Biochem. Biophys. Res. Commun. 260, 658–664.
 10.1006/bbrc.1999.0892.
- Finka, A., Sharma, S.K., and Goloubinoff, P. (2015). Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front. Mol. Biosci. 2, 29. 10.3389/fmolb.2015.00029.
- O'Donnell, J.P., Marsh, H.M., Sondermann, H., and Sevier, C.S. (2018). Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant. Biochemistry 57, 1073–1086. 10.1021/acs.biochem.7b01005.
- Hubbi, M.E., Hu, H., Kshitiz, Ahmed, I., Levchenko, A., and Semenza, G.L. (2013). Chaperone-mediated autophagy targets hypoxia-inducible factor-1β(HIF- 1β) for lysosomal degradation. J. Biol. Chem. 288, 10703–10714. 10.1074/jbc.M112.414771.
- 50. Robert, G., Jacquel, A., and Auberger, P. (2019). Chaperone-Mediated Autophagy and Its Emerging Role in Hematological Malignancies. Cells *8*, 1260. 10.3390/cells8101260.
- 51. Sun, G., Cao, Y., Xu, Y., Huai, D., chen, P., Guo, J., Li, M., and Dai, Y. (2019). Overexpression of Hsc70 promotes proliferation, migration, and invasion of human glioma cells. J. Cell.

Biochem. 120, 10707-10714. 10.1002/jcb.28362.

- 52. Carta, F., Demuro, P.R., Zanini, C., Santona, A., Castiglia, D., D'Atri, S., Ascierto, P.A., Napolitano, M., Cossu, A., Tadolini, B., et al. (2005). Analysis of candidate genes through a proteomics-based approach in primary cell lines from malignant melanomas and their metastases. Melanoma Res. *15*, 235–244. 10.1097/00008390-200508000-00002.
- Chen, J., Liu, C., Cen, J., Liang, T., Xue, J., Zeng, H., Zhang, Z., Xu, G., Yu, C., Lu, Z., et al. (2020). KEGG-expressed genes and pathways in triple negative breast cancer. Medicine (Baltimore). 99, e19986. 10.1097/MD.000000000019986.
- Hou, L., Chen, M., Wang, M., Cui, X., Gao, Y., Xing, T., Li, J., Deng, S., Hu, J., Yang, H., et al. (2016). Systematic analyses of key genes and pathways in the development of invasive breast cancer. Gene 593, 1–12. 10.1016/j.gene.2016.08.007.
- 55. Conboy, J.G. (2017). Developmental regulation of RNA processing by Rbfox proteins. Wiley Interdiscip. Rev. RNA 8. 10.1002/wrna.1398.
- Sun, S., Zhang, Z., Fregoso, O., and Krainer, A.R. (2012). Mechanisms of activation and repression by the alternative splicing factors RBFOX1/2. RNA *18*, 274–283.
 10.1261/rna.030486.111.
- Fogel, B.L., Wexler, E., Wahnich, A., Friedrich, T., Vijayendran, C., Gao, F., Parikshak, N., Konopka, G., and Geschwind, D.H. (2012). RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum. Mol. Genet. *21*, 4171–4186. 10.1093/hmg/dds240.
- Bill, B.R., Lowe, J.K., DyBuncio, C.T., and Fogel, B.L. (2013). Orchestration of neurodevelopmental programs by RBFOX1: Implications for autism spectrum disorder. In International Review of Neurobiology (Academic Press Inc.), pp. 251–267. 10.1016/B978-0-12-418700-9.00008-3.
- 59. Hamada, N., Ito, H., Nishijo, T., Iwamoto, I., Morishita, R., Tabata, H., Momiyama, T., and Nagata, K.I. (2016). Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci. Rep. *6*. 10.1038/srep30805.
- 60. Shibata, H., Huynh, D.P., and Pulst, S.M. (2000). A novel protein with RNA-binding motifs interacts with ataxin-2. Hum. Mol. Genet. *9*, 1303–1313. 10.1093/hmg/9.9.1303.
- Li, J., Choi, P.S., Chaffer, C.L., Labella, K., Hwang, J.H., Giacomelli, A.O., Kim, J.W., Ilic, N., Doench, J.G., Ly, S.H., et al. (2018). An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. Elife *7*. 10.7554/eLife.37184.
- 62. Unterholzner, L., and Izaurralde, E. (2004). SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell *16*, 587–596. 10.1016/j.molcel.2004.10.013.
- 63. Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007). Telomeric

repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science (80-.). *318*, 798–801. 10.1126/science.1147182.

- Luo, H., Cowen, L., Yu, G., Jiang, W., and Tang, Y. (2016). SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov. *2*, 15042.
 10.1038/celldisc.2015.42.
- Wang, S., Mo, Y., Midorikawa, K., Zhang, Z., Huang, G., Ma, N., Zhao, W., Hiraku, Y., Oikawa, S., and Murata, M. (2015). The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L. Oncotarget *6*, 35893–35907.
 10.18632/oncotarget.5651.
- Görlich, D., Dabrowski, M., Bischoff, F.R., Kutay, U., Bork, P., Hartmann, E., Prehn, S., and Izaurralde, E. (1997). A novel class of RanGTP binding proteins. J. Cell Biol. *138*, 65–80. 10.1083/jcb.138.1.65.
- Parashar, D., Geethadevi, A., Aure, M.R., Mishra, J., George, J., Chen, C., Mishra, M.K., Tahiri, A., Zhao, W., Nair, B., et al. (2019). miRNA551b-3p Activates an Oncostatin Signaling Module for the Progression of Triple-Negative Breast Cancer. Cell Rep. 29, 4389-4406.e10. 10.1016/j.celrep.2019.11.085.
- Wang, X., Pankratz, V.S., Fredericksen, Z., Tarrell, R., Karaus, M., McGuffog, L., Pharaoh, P.D.P., Ponder, B.A.J., Dunning, A.M., Peock, S., et al. (2010). Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum. Mol. Genet. *19*, 2886–2897. 10.1093/hmg/ddq174.
- Liu, N., Wu, Z., Chen, A., Wang, Y., Cai, D., Zheng, J., Liu, Y., and Zhang, L. (2019). SNRPB promotes the tumorigenic potential of NSCLC in part by regulating RAB26. Cell Death Dis. *10*, 667. 10.1038/s41419-019-1929-y.
- Siomi, M.C., Eder, P.S., Kataoka, N., Wan, L., Liu, Q., and Dreyfuss, G. (1997). Transportinmediated nuclear import of heterogeneous nuclear RNP proteins. J. Cell Biol. *138*, 1181–1192. 10.1083/jcb.138.6.1181.
- Von Roretz, C., Macri, A.M., and Gallouzi, I.E. (2011). Transportin 2 regulates apoptosis through the RNA-binding protein HuR. J. Biol. Chem. 286, 25983–25991.
 10.1074/jbc.M110.216184.
- 72. Gong, L., Wen, T., Li, Z., Wang, Y., Wang, J., Che, X., Liu, Y., and Qu, X. (2019). TNPO2 operates downstream of DYNC1I1 and promotes gastric cancer cell proliferation and inhibits apoptosis. Cancer Med. *8*, 7299–7312. 10.1002/cam4.2582.