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Abstract

The smartphone has become an everyday device for many people around the world

and has led to an evolution in the way we use these devices. This has led to increased

research interest in the effects of smartphone use on psychological traits, which could

have a positive impact in clinical or self-help settings by identifying positively influen-

cing variables.

In this thesis, a new model to extract behaviour information from a stream of usage is

presented. The model aligns with previous methods in the research area but focuses

on establishing a generalisable three-step process of processing user interaction to ex-

tract new user behaviour knowledge. This introduces a structured approach to smart-

phone usage evaluation and enables the implementation of customisable applications.

It also creates a baseline to compare previously defined metrics which describe smart-

phone usage. Usage derived from metrics which could be considered high-level such as

screen-on time is self-evident and therefore are common measure to distinguish usage

between users. However, within usage sessions, they suffer from limitations such as a

strong skew towards short bursts of usage because of how smartphones are often used.

By utilising direct interactions with the user interface (such as taps and scrolls), usage

at a lower level can be considered which can carry more elemental characteristics of

behaviour. Thus, they can be used to model behaviour more accurately, which can be

aligned with the user’s mental state to identify habits which are caused by problem-

atic use patterns. This enables the isolation of user trait classes reflecting smartphone

addiction and impulsivity.
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Chapter 1

Introduction

The smartphone has become a personal, everyday device for many around the world.

With this kind of saturation, innovations have resulted in an evolution in the way we use

these devices [13]. A rise in processing power allows running more powerful applic-

ations, games, or multiple applications at the same time. Larger and brighter screens

create surfaces that can hold more information and interactive elements. Extended bat-

tery life means devices can be used almost all day without a need for charging. Most

smartphones also operate with a constant internet connection which given the infra-

structure of many urban areas enables the possibility of information exchange at any

time. Collectively, this has resulted in a highly stimulating device being embedded in

our lives which enables not only research into how we use these devices, but also how

usage may correlate with broader latent factors such as mood, anxiety, boredom, or

stress.

The increased research interest in these effects and the types or habits of use behind

them has led to an improved understanding of how they are linked to certain behavi-

oural patterns (e.g., predictors of addictive smartphone behaviour [114] or the effect

of social media on impulsive behaviour [155]). This understanding of these issues

linked to smartphone use could have a positive impact in clinical or self-help settings,

for example with the discovery of positively influencing variables [123]. Mapping this

connection between smartphones and psychological traits is especially interesting as

this enables a degree of passively monitoring correlating factors between usage and

psychological states without specialised equipment (e.g., [22]) or other intervening
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methods such as the collection of survey data (e.g., [165, 114, 72, 28]). However, be-

cause of the multitude of combinations in the definitions of behaviour, input options,

and evolution of device capabilities available with these devices, the various techniques

used to establish these connections are fractured.

1.1 Smartphones and Behaviour

Human behaviour is a complex system which can generally be described as the con-

scious or subconscious actions and mannerisms taken towards stimuli. The form of

these responses is shaped by many factors such as personality or past experiences and

can evolve throughout one’s lifespan. Because of the variability of all these influencing

factors, capturing behaviour is a difficult task.

While it is still difficult to encapsulate behaviour, the benefit of a device like a smart-

phone is that it presents a user with a limited number of input options. This limiting

factor acts as an interface between overall behaviour and processable information to

enable a generalisation of the highly diversified use cases a smartphone can provide.

From this, is possible to look for certain psychological traits and relate them to specific

patterns in a user’s behaviour. Examples include boredom [89, 4], anxiety or stress

[30, 31], mood or emotion changes (including their impact on the user’s behaviour)

[156, 37, 58, 143, 99] and problematic use patterns [130, 114, 32].

Smartphones are interacted with for a variety of reasons and can be used to fulfil a

multitude of tasks. On the highest level, the user will have some goal (even if sub-

conscious) when using their phone. Reasons can include examples such as viewing

a notification, responding to a text message, browsing social media or taking a phone

call. Some of these interactions can be intentional and planned (e.g., drafting an email

for a scheduled meeting), while others can be circumstantial (e.g., receiving a text

message from a distant relative). All these interactions contribute towards the overall

behaviour of the user and the more hidden aspects of smartphone usage.
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1.1.1 User Interaction Events

The touchscreen of smartphones acts as an intuitive dual-purpose interface by reflect-

ing the information of the current device’s state but also allowing direct inputs with

high responsiveness. The most basic case (touch of the screen triggers event) of this

however does not describe the structure of interaction in terms of temporal and con-

textual dependencies. It is missing semantic information in the form of device state,

which is defined by factors such as the currently launched application, the target of

the event (e.g., the on-screen keyboard or a button in the application) or any preceding

events. Relying completely on non-contextual UI events would make extraction of be-

haviour challenging, therefore for a meaningful interpretation of behaviour, the device

state has an important role.

At any given point there is a multitude of interactions that a user can choose to under-

take with a smartphone (e.g., a tap, a long press, a swipe). These interactions become

more contextual events when combined with on-screen information. Pressing a button

which opens an application is physically the same as a press on the on-screen key-

board. Semantically, they achieve different goals and therefore are logically separate

actions. Other influencing information can be temporal, converting a simple press to

a long press or a swiping motion that transforms a touch into a drag can represent a

scroll or unlock event based on the device state and location of the touch. And just like

interactions are a key part of behaviour so is the lack thereof, not choosing to interact

with a device for certain amounts of time (to take a break or consider options) can be

just as relevant as opting to do so.

Lastly, there are system-specific effects that can be caused by the user or the device it-

self as a reaction to either direct interaction or externally triggered events. For example,

the screen can turn on from a screen touch, a button press or a received notification.

An application may be start from the home screen or by a redirection from another ap-

plication. While these would not be considered direct inputs of a user, they are either a

consequence of previous behaviour or an influencing factor for coming interactions.



1.1 Smartphones and Behaviour 4

Definition 1. A user interaction occurs when a user physically handles the device

and changes the devices state. Examples of this are the user unlocking the phone

or interacting with the screen (e.g., to type on the on-screen keyboard or to change

applications).

Definition 2. An event is the consequence of a state change in the smartphone as

a system. This change can be triggered in multiple ways, such as a change of it’s

own state (e.g., battery draining), an external update (e.g., received notification) or

manually via a user interaction. Each event is captured at a discrete time.

As a user interacts with their phone, any singular event is part of a sequence which can

be considered a stream:

Definition 3. An event stream is a sequence of events generated by a user. Within the

stream the events are inherently ordered by the time they occurred in.

1.1.2 Session and Task-completion Boundaries

These singular interactions become more behaviour-defining when they can be retraced

as a ‘stream of events’ with a defined start and end point, forming a bounded string of

usage interactions which is grouped. These groups and their context-dependent effects

are the observable representation of a user’s undertaking towards a shared aim or task.

This can also be understood as a session of usage, where it compromises a set of

interactions to form one or multiple tasks.

In turn, tasks can be described as the ‘operationalisation’ of a user’s goals [168]. These

goals can be a conscious choice but do not have to be. As such, they can have a clearly

defined result such as replying to an email or taking a picture but can also be less

result oriented and rather a subconscious decision to use a smartphone out of habit,

boredom or other factors (e.g. [89, 85, 110]). For example, a user might pick up their

phone to browse social media to pass time without any specific motivation other than to
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pass time. This means designing methodologies with clearly defined task boundaries

is difficult for reasons like multi-tasking behaviour, shared responsibilities of applic-

ations for the same task, and rest periods that do not conclude the previous action.

Furthermore, they encapsulate multiple wants and needs from the user combined with

often unknown external factors which are hard to capture. Because of these difficulties

in modelling tasks and the limitations of contextual information, which is capturable

from interactions, tasks are not further explicitly considered. Instead, it is possible

to utilise the perceived barriers between distinct periods of usage, as previously men-

tioned in the form of sessions. Sessions offer the benefit of defined start and end points

without needing more contextual information such as needed to model tasks. This has

been previously addressed in one of two ways:

Time-based session boundaries are a way of grouping UI events in a predefined time-

frame. This enables analysing user behaviour over different spans of time such as

minutes, hours or a whole day. In the case of longitudinal studies, this approach allows

analysing per-application metrics for screen-on time or similar metrics in a highly con-

densed form. However, by discarding the task boundaries valuable usage information

in the form of the differences in behaviour based on a user’s potential wants, needs

and motivation is lost. This shortcoming can be addressed by using more dynamic

pause-separation boundaries which infer the borders of a task by idle time. This ap-

proach (explored by [152]) identified a time threshold of 45 seconds of a user being

non-interactive (regardless of events) as the optimal point to separate task boundaries

(regardless of success). A similar idea was proposed by Ferreira et al. who noted an

additional in-between breakpoint for ‘micro-usage’ for usage which occurred in just

the first 15 seconds [34]. With this approach, there is no arbitrary separation along

time or application borders which enables more diverse and cross-application capture

of usage behaviour.

Event-based session boundaries use specific logical points of UI events to identify

task boundaries (e.g. [148, 172, 23, 52]). A focused approach can utilise the applica-
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tion state boundaries (opening and closing of an application) to capture the behaviour

specific to it. The benefits of this approach are strong encapsulation and offer very good

information when comparing behaviour between specific applications. The drawback

is that it is not possible to capture tasks that are cross-application, so it is not suitable

for a generalised model. So, instead of relying on applications or timeouts the platform

of smartphones allows capturing very specific start and end points of usage sessions by

observing the possible interactibility with the screen. Interactions start when the screen

is turned on and continue until it is turned off again. These breakpoints encapsulate any

cross-application task behaviour and also inherently include some of the time-based

boundaries in terms of longer breaks between sessions.

Those boundaries between tasks embed some of the nuances within the complex nature

of user behaviour. Utilising them adds to the improved general understanding of usage

and also can be useful for models that attempt to meaningfully distinguish between

different kinds of users. These boundaries can also help form the basis for individual

usage sessions within a constant stream of usage data from users.

The direct capture of user behaviour is difficult, a focus on capturing interactions and

their boundaries as they occur allows to store an accurate representation of a user’s

journey in form of sessions. This representation of usage does not infer any actual

behaviour patterns or habits but instead lends itself to explore them more easily. While

various forms of processing have been utilised for multiple use cases, one step to un-

derstanding the actual behaviour behind usage lies within the ability to inform of a

user’s latent mental states reflected by their smartphone use.

Overall this leads to the following definition of sessions:

Definition 4. A smartphone (usage) session is the part of an event stream which occurs

within confined boundaries of a cognitively connected sequence of interactions. This

connection can be established through boundaries of time (e.g., elapsed time without

events) or specific event (e.g., screen turned on or off). All interactions that occur

within those boundaries are part of the session. Via this definition, it is possible to split
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an event stream into distinct chunks of behaviour. In this thesis, sessions are considered

to be event-bounded (screen on to screen off).

Figure 1.1: An example of the relationship between an event (Definition 2) within

a session (Definition 4) within an event stream (Definition 3).

1.2 User Traits Reflected by Technology

The way that humans enact on their needs, wants and expectations is complex. Two

people can react completely differently to the same stimulus, or the same for com-

pletely different reasons. This observable behaviour is a continuous stream of rapidly

made conscious and subconscious decisions which does not necessarily inform intent.

While some parts are unique traits of one’s personality, there are patterns in behaviour

that are shared between individuals and can hint at certain conditions or backgrounds.

For example, Jesdabodi et al. identified 13 distinct usage states from 24 users which

cover focused topics such as communication, shopping or photography [49]. On a

large scale, Zhao et al. found 382 types of users from 106,762 users by clustering ap-

plication usage over time and identified specific types such as “Night communicators”
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or “Evening learners” [169]. Those states of usage are found between multiple users

and indicate parallels in the modes of operation of mobile devices.

The idea of this mesh of individuality and shared traits has also been applied to on-

device usage [67]. Specifically, the assumption that any action but also hesitation [61]

is important to the characteristics of a person’s behaviour.

1.2.1 Identity of User Behaviour

Identity, in this case, refers to the idea that a user’s behaviour is unique enough to

identify them among a group of others. Compared to user types, where it is desirable

to find differences between groups but identify the patterns that are shared between

users, the differences that are recorded for identity are usually fine-tuned and low-level

interactions. For example, to answer questions such as “how fast does the user type”

or “how quickly did they pick up their phone”, which are the result of physical inter-

actions, their inputs are timed precisely so they can be used to extract an individual’s

habits and mannerisms [126]. Other markers such as their physical location can be

used to further verify them [158].

On top of physical traits, there are additional virtual markers that identify one’s use.

These are more high-level traits such as application or website visits, how long or

engaged they are, or what the outcome of any given interactions was (e.g., a purchase).

This can also be understood as one’s digital footprint and is frequently utilised for

purposes of personalisation such as targeted advertising [73].

1.2.2 Shared Types of User Behaviour

While the nuances of usage can be used to uniquely identify a user, certain patterns of

use can identify mental states or user traits across groups of people. These overlaps

of behavioural patterns create the basis for understanding the relationship of the user
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to their devices. The emotional state or mood of a user (e.g., boredom, anger) can

noticeably impact the factors of behaviour, for example, Visuri et al. [156] found that

application selection is influenced by a user’s mood state.

This connection between a user’s mental state and their behaviour can further be ob-

served with more extreme cases or disorders that mediate a certain change compared

to the rest of use. Problematic behaviours such as over- (addiction) or uncontrolled

use (impulsivity) are showing patterns that permeate throughout their behaviour (e.g.,

[104, 76, 39]). This has shown that not only issues that are connected with device usage

per se but also stable user traits such as impulsivity have been found to be connected

with how users interact with their phones.

The underlying factors which influence the patterns of behaviour have been explored

by utilising various methods of data capture and processing. In most cases, they focus

on establishing relationships between features of usage (frequently on a high level

such as screen-on time) and a user’s behaviour, which has resulted in a vast pool of

methods and connections. This motivates a comparison to deepen the understanding of

the relationship between these captured features and user mental states. Furthermore,

it hints towards a gap in the formality of processing captured smartphone data and its

application.

The following terms form a basis for this:

Definition 5. Low-level features are events which occur at the closest border between

user and device. They occur at a discrete time and do not envelop other events. These

include direct interactions with the user interface (e.g., taps or scrolls), the device itself

(e.g., a change in battery state) or other semantically atomic events (e.g., application

switches or push notifications).

Definition 6. High-level features summarise behaviour over a bounded amount of time.

This means they are inherently just the passed time between two points in time (e.g., the

screen-on time bounded by timeouts or events) or an aggregation of events that occur
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within that bound. For example, summative features such as the count of application

switches that occurred within a session.

1.3 Research Direction

Previously, smartphone behaviour research has mainly focused on derived features

such as recorded screen-on time, but these features generalise the intricacies of hu-

man behaviour to a single dimension such as time. These features create an important

baseline that allows understanding how they are influenced by a user’s traits, how-

ever, they are limited in their ability to capture the specific nuances of how the user is

interacting with the device.

In this, there is a high volume of information encapsulated in this stream of direct

interaction data. This approach has been used in isolated cases before, such as tracking

scrolling [146]. However, this motivates the exploration of this space and finding new

methods to pervasively model and utilise all of the inputs of users towards a better

understanding of types and habits of usage.

Smartphones are used every day by many, but the way they are handled can span a

plethora of use cases. These and other underlying contextual factors of smartphone

use contribute to a net of mental dependencies. This complexity makes it difficult to

create a general understanding of the area.

The culmination of these key concepts in the literature, the limitations of those current

methods and the missing links with direct user-interface interactions lead to the fol-

lowing aim of this thesis: Modelling smartphone user-interface interactions to capture

unseen characteristics of behaviour in usage sessions and utilise those signals that

correlate with latent user mental states.
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1.4 Contributions

In the pursuit of this goal, this thesis makes the following contributions:

C1 Identification of issues with current common methods for representing user

behavior, which tend to focus on single, isolated features and high-level char-

acteristics. Explaining the variance in user behaviour by focusing on isolated

features fails to capture usage complexity. Screen-on time and others have been

commonly used to establish links between usage and behaviour. However, they

are too simple and symptomatic instead of being reflective of actual intricacies in

behaviour.

C2 The proposal of the Behaviour-From-Usage-Stream model which represents

a formal framework to process and evaluate user behaviour data. The model

demonstrates how to encode the stream of input events generated by a user into a

vectorised format representing a rich data space which can be used for information

gain such as inferring stable user traits. This is meant to fill in the gaps of the

literature which make it difficult to compare multiple studies because of diverging

data collection methods and evaluation methodologies. Through its adaptability

the BFUS model can be used with any input features (e.g., high-level, low-level)

or evaluation methods and because steps can be adjusted or exchanged while keep-

ing the rest of the model fixed it enables the possibility of comparing features or

methods for their individual parts.

C3 A case study of UI event based user behaviour capture being powerful enough

to distinguish users based on psychological traits such as addiction or impuls-

ivity. Given an independent variable, the BFUS model is validated by predicting

user traits from just the transformed event stream of a given user. In this, a novel

approach utilises NLP-embedded weighting and vectorisation techniques to cap-

ture the nuances of user behaviour. Low-level features are evaluated against more
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commonly used high-level features to show how they can improve prediction ac-

curacy for user labels.

1.5 Thesis Structure

The remainder of this thesis follows the Contributions outlined in Section 1.4:

An introduction to the key concepts and supporting literature follows in Chapter 2. This

includes a review of the various themes and applications of user behaviour research, a

brief discussion of statistical powers and an overview of the dataset which is used as

the main source.

In Chapter 3 common behaviour metrics that can be used to distinguish types of user

behaviour sessions are presented. These, often summative, features are critically as-

sessed on their capabilities of effectively representing their respective sessions which

contributes towards the C1. It then continues to establish the BFUS model with its

three-step process. This is expanded on by applying the model with a novel vectorisa-

tion methodology for behaviour capture by considering the co-occurrence and weight

of physical and logical interface interactions. This contributes towards C2.

Chapter 4 applies the BFUS model with summative and isolated features to detect a

user’s predisposition to psychological traits and how they influence user behaviour.

This chapter shows that these features are not apt for separating groups of users prop-

erly. Additionally, it motivates the interest in finding methods that can separate groups

of users with certain traits. This contributes towards C1 and C3.

Following, Chapter 5 demonstrates how given a correctly tuned methodology user

traits can be detected using a transformed usage event stream. It highlights how user-

interface interactions are more strongly influenced by these traits compared to sum-

mative features. This contributes towards C3.

This leads to Chapter 6 which discusses how the user-session relationship can play a
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big role in any real-world evaluation. Additionally, it discusses the feasibility of a psy-

chological interpretation of results from the previous chapters. This further contributes

to the BFUS model’s potential adaptability (C2) and shows additional perspectives on

the effects of user traits on usage on a low-level, contributing to C3.

The thesis concludes in Chapter 7, where a summary of all findings and contributions

is presented. It also outlines potential future work that could extend the findings of this

thesis. Finally, the thesis ends with an overall critical assessment and conclusion.

Parts of this thesis have previously been peer-reviewed and published (assuming minor

alterations to ensure consistency and fit the overall narrative). In particular, parts of

Chapter 3 have previously been published in © 2021 IEEE, International Conference

on Pervasive Computing and Communications (PerCom) [35]. SA-related parts have

largely been published in © 2022 Elsevier, Pervasive and Mobile Computing [36].

Impulsivity-related parts are largely included in a research paper currently posed to be

submitted and peer-reviewed.
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Chapter 2

Background

Smartphone usage is a broad field of research which targets different aspects of the

device, its users and their relationship. Li et al. [77] defined the different main contexts

of the literature as:

• “App”, includes applications and their categories as a whole, and how they are

connected to entire ecosystems, e.g. their evolution within app stores.

• “Smartphone”, is the domain with the device’s capabilities and requirements at

its centre, e.g. how sensor data influences usage with influences such as battery

drain or network traffic.

• “User”, describes the domain which explores the interplay of user characteristics

and usage, which can be used for profiling purposes on a group (e.g., attributes

such as gender or age) or individual (e.g., tracing of a digital footprint) level.

In combination, these observe how shifts in the usage of smartphones affect the eco-

system at scale. This encompasses trend data such as application and network use in

the total population of smartphone users and also includes how influencing factors such

as battery drain, network traffic or discoverability (through categories) of applications

change their perception and desirability of use from an economic point of view. Fol-

lowing this definition usage may be collected via cell towers or logged by an external

authority. For example, call logs from a network provider may be analysed to identify
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trends for entire regions [134]. For the most part, the focus of the survey is on monit-

oring these macro-trends of smartphone usage and how the market is changed through

them, therefore it is recommended for those cases of interest.

However, as the survey is mostly focused on usage in the context of those macro trends,

it only touches on some aspects of user behaviour and its relationship with differ-

ent demographics (user profiling) and on the individual (user identification) level but

misses some key components of what constitutes behaviour for individuals. User be-

haviour in this context is dictated by a variety of features that affect people directly

(e.g., how long they use their phone) and how this is influencing (or influenced by)

their decision-making process. So, while smartphone usage on this level is mostly en-

capsulated in the definition of “User” by Li et al. there is no strict separation between

it and “App” or “Smartphone” when considering what constitutes behaviour overall.

For example, some information such as application switching patterns or sensor data

of the smartphone can be contributing influences on the behaviour of users.

This chapter will focus on this link between the smartphone and user-centric aspects

of behaviour. It will expand Li et al.’s survey with additional literature concerning the

various possibilities of capturing and encapsulating device behaviour and how it can

be utilised to inform of personal and intrinsic user habits, patterns, or attributes. Fur-

thermore, it will discuss how smartphones are reflective of users’ mental states beyond

personality and show how users can be affected by their mood, boredom or cases of

problematic use such as addiction and impulsivity. Finally, it presents necessary back-

ground information on effect sizes, natural language processing, and datasets, which

will be repeatedly used throughout this thesis.

2.1 Related Work

Figure 2.1 shows the relationships between the parts of the structure proposed for app

usage research by Li et al. The most related parts and the focus in this thesis are
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Figure 2.1: The structure of app usage research as identified by Li et al [77]. Parts

which are relevant to this thesis are highlighted, the intensity of the highlight

corresponds to how strongly this thesis ties into the respective research area.

on the ‘User’ and ‘App’ dimensions. The Smartphone dimension which focuses on

energy drain and large scale application traffic is not relevant to user-centric behaviour

research of user groups or individuals and will not be covered in detail.

Behaviour in smartphones has been encapsulated by many different approaches. This is

partly due to the evolution of the smartphone as a device but also because of different

interpretations of what constitutes “use”. For behaviour research it is interesting to

consider the effect of apps on the user and how a user expresses themselves in different

kinds of applications. Contexts from sensors and social surroundings have been studied

and found to be influential, however we want to investigate behaviour and its effect on

usage at a lower level.

2.1.1 Usage Contexts

One aspect of defining usage has been the identification of how the changes in the

smartphone’s state but also the user’s surrounding environment influences their de-

cision making processes. For this reason, researchers often collect data from many dif-
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ferent sensors to find correlations between a user’s behaviour and their context. While

methodologies frequently overlap, this can be split into the following three categories:

Usage or Application Context Nowadays the use of a smartphone has far exceeded

the original use cases of mobile phones which were mostly just communication. They

can be used for a large range of use cases now, including productivity apps for tasks

such as document drafting or task management, entertainment such as playing games

or browsing social media and many more. Therefore, which applications are used

is very commonly collected as part of the full user behaviour assessment since their

content and interactions are often considered distinct. This usage context describes the

users engagement with the content of their device. The focus is specifically on which

application they are using and how they have interacted with them. Since they can

offer vastly different functionality grouping the behaviour of all applications together

can discard a lot of the available nuance. For example, Deng et al. found that time

spent in applications can be vastly different across categories, over a 7-day period the

daily use of social applications (e.g., facebook or instagram, 44 minutes) was almost

double that of using web browsers (25 minutes) [25].

Phone calls and text messaging used to be the main use case for mobile phones before

smartphones became ubiquitous and enabled a wider breadth of functionality through

various kinds of applications. However, those base functions are still an important

feature of smartphones. Their frequency of occurrence and length of use can give

insight into the patterns and habits of users (e.g. [90, 68]).

In general, applications (and their categories) have become more and more important

with the rise of mobile device ubiquity. The emergence of smartphones means that non-

voice applications have become more and more accessible as. In 2010, as phones had

started to be capable for multi-purpose tasks, Rahmati and Zhong equipped participants

with the same mobile phones over a 4 month period. They found that users were

interacting with a large mix of phone applications regardless of location or vicinity

to PCs. The also found that the devices would be used for many purposes including
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accessing information but also socialising [122]. Rahmati et al. followed this up by

showing that the previous usage context of a user influences app selection heavily, but

only the directly proceeding app used may be of actual importance [121].

Prediction and recommendation of applications specifically based on the usage context

is a common use case [118, 169, 142, 29, 131, 47, 11]. Parate et al. trained a model for

predicting and preloading applications based on 7,630 devices in the wild and validated

it with a 22-user control group. By utilising a sequence of prior used applications they

were able to predict a user’s next app within 5 choices with an 81.89% accuracy [113].

Furthermore, based on a 2019 study Turner et al. suggest that application switching

occurs as a part of a larger network and while there are overlaps in frequency for

commonly used applications, that these switching networks are highly dependent on

the individual since the networks show high variability in their edit-distance (M=0.89,

SD=0.06) [149].

Zhao et al. conducted a study using the application history of 106,672 Android users

and noticed that applications usage is influenced by factors such as gender, age or

income. By analysing the application descriptions they were able to infer differences

between groups of application. For example, they found that male users (p=0.0049)

were 10 times more likely to use ‘gaming’ applications than female users (p=0.0005) or

that applications which allow customisation of the lock screen and launcher were a lot

more used by younger users (age 0-17, p=0.012) than older users (age 35+, p=0.0003)

[171].

As such and continuing within this thesis they are defined as follows:

Definition 7. Applications in the context of a smartphone are individual pieces of soft-

ware which usually cover one specific purpose. Every action performed on a smart-

phone occurs within an application, which means that even standard or pre-installed

functionality like the ‘phone’ or ‘messages’ are applications. Even the home screen

(often called “launcher” within Android) counts as an application.

Definition 8. The category (of an application) is a tool to label and group it with other
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applications of similar or adjacent functionality. An application category is usually

required to be defined by the application store (e.g., the Google Play Store) where the

application can be downloaded.

Sensor Context Another aspect which can influence usage is the surroundings of the

smartphones itself. This can also be referred to as the sensor context. Over time

smartphones have been equipped with more ways to understand their environment and

how they are being used within it, including their orientation, location, time and more.

Therefore the sensor context includes any data which can be sensed by the smartphone

itself and is then frequently used to establish classes of usage and compare them as an

influence on a user’s behaviour.

The location of a user can be retrieved using GPS or location via Wi-Fi networks

and tracking the physical location enables the retrieval of movement throughout their

life, establishing typical locations such as work, home and other common locations.

Soikkeli et al. found that users are using their phones for longer per session at home

(M=321s) than in the office (M=234s) or ‘Elsewhere’ (M=209s). However, they actu-

ally generate the least sessions per hour when at home compared to the others, showing

that there is clear differences in how often and much the devices are used in different

location contexts. Additionally, analysing a user’s location in relation to other usage

data such as use duration or frequency can inform about habits that are bound to spe-

cific locations. Using data from 140 devices over a 3 week period, Karkoski et al.

discovered that users used communication tools such as email and SMS with higher

intensity (more frequently and for longer) than in any other location context (such as

at ‘Home’ or ‘Elsewhere’) [55].

Similarly, movement sensors such as the accelerometer, gyroscope or magnetometer

are used to register a user’s movement which can have direct effects on them using

their phone. From these sensors Zhuo et al. were able to to detect a users activity

(typing, scrolling or watching videos) and the users activity status (walking, standing

or sitting down) with a 75% accuracy [173]. In conjunction with other sensors such as
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GPS, it can also be used to detect if the user is being transported and which routes are

being taken. Nawaz and Masocolo were able to detect whether they were driving a car

and enrich this with the specific routes they were taking [102]. The battery can also

be used to infer some characteristics about their usage. Higher efforts in computation

cause the battery to deplete faster, meaning that in certain situations users can become

conscious of their battery usage. This means user behaviour changes in certain states

of the battery such as when it is at low power or plugged in and charging. Kang et al.

found that by analysing time spent in calls or using data they were able to observe a

user trying to conserve battery influence their usual habits [54].

Network status can be relevant for apps that require an active internet connection. The

differences between being connected to a cell or Wi-Fi network, or having strong com-

pared to low signal strength impacts waiting times and responsiveness. With data of-

ten being limited by mobile network providers, these changes can influence a user’s

decision-making regarding which applications to use (and to which extent). Srinivasan

et al. derived usage rules for individual users based on multiple factors such as time

spent, app patterns and signal strength. They found that some of their rules only applied

when connected to WiFi or cellular [137].

Social Context Since smartphones are devices that can be carried anywhere by a per-

son, the social environment it is used in can become a relevant datapoint when con-

sidering how a user interacts with it. Ferreira et al. showed that based on the four

different social settings ‘Alone’, ‘With friends’, ‘With strangers’ and ‘Other’, over

80% of micro-usage sessions (15 seconds or less) occurred when the user was alone

[34]. Furthermore, Papapetrou and Roussos detected three distinct clusters of usage

which they attributed to be ‘professional’, ‘family’ and ‘leisure’ activity [112]. Over-

lapping with detecting whether a user is ‘at home’ or ‘at work’ based on their location,

Srinivasan et al. have shown that users have diverging usage patterns in those different

social contexts [138].

The dependence of usage on a user’s social (or non-social) context has also been ex-
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plored by studies surrounding problematic or addictive use. For example, Salehan and

Negahban found a link between social networking applications and phone addiction

[125]. However, later Elhai et al. investigated the link between ‘social use’ and ‘pro-

cess use’ (e.g., "news consumption, entertainment, relaxation") again and found that

process use is actually more indicative of addiction than social use [31]. This expands

on their previous work that smartphone addiction is caused by a need for social fulfil-

ment but might not directly be correlated with the usage of those application [30]. This

shows that the user’s social context can have an impact in how or why a smartphone is

used. However, it is difficult to interpret the combination of signals which is introduced

through the complexities behind user behaviour and the network of social needs.

Time represents a special case as a context. It can technically be captured as distinct

datapoints with a sensor, but that oversimplifies its impact. While it can be used for

distinct sets such as ‘Morning’ or ‘Evening’ it can also be used as a separate factor to

observe continuous change over time for any sensor. Therefore, it may be considered

a whole separate dimension of usage discovery, Li et al. classifies temporal patterns as

different to contextual patterns as the there may never be an exact distinction between

context [77]. In either case, the time of day or day of the week are metrics frequently

used to establish differences in behaviour for temporally distinct periods. Böhmer

et al. found that session length and frequency of app use were different at different

points of the day such as morning, evening or night [18]. Further, using multiple

metrics including app duration and frequency, messages, website visits and location

data LiKamWa et al. were able to build a predictive mood model on a smartphone

which included findings such as a worse mood on weekdays compared to weekends

[79].

This section detailed the different contexts that are relevant for smartphone usage and

how they have been used previously for understanding user behaviour. Of note are

particularly that contexts can be used to meaningfully distinguish different modes of

usage. However, for many of these contexts the underlying features are high-level
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features such as screen-on time or time spent in applications or their use frequency.

Low-level features are only used rarely, perhaps because it’s harder to capture data in

such detail. This means using these high-level features is currently often considered the

baseline for how usage is defined. It may be worth reconsidering this usage baseline in

the first place even without added contexts such as sensors or social constructs.

2.1.2 User Types And Use Patterns

These context of smartphones have improved the understanding of how smartphones

and their application are used on a general level. Those differences in usage stem from

the individual users that handle their phones, there is a large variety of people with

different characters, living in different environments and with different backgrounds.

The identity of any individual user mixed with shared attributes between specific types

of users contribute to a large variety of how how behaviour is expressed in the form of

usage. These user types can be understood as groups within all smartphone users that

show collective patterns and habits in their usage. One way to identify these groups

is through their descriptive usage demographics, which are generally linked with di-

gital traces [67]. This includes attributes such as gender (e.g., [7, 65, 170, 87]), age

(e.g., [7, 87]), income [170] or marital status [87]. Users with different cultural back-

grounds also have been found to have differentiating usage characteristics surrounding

smartphone use [117, 80].

Another concept for user types is behaviour-driven and shares characteristics with

those of “power users” using desktop computers. In a parallel with smartphones, Kang

and Shin found that users with higher intensity (‘power user‘) are less likely to share

personal information than ‘nonpower’ users [53]. This separation into two specific

groups is otherwise less common, rather, given the diversity of platforms, users, and

phones there have been a few to dozens or hundreds of types of users found (e.g.

[169, 49, 52]). Zhao et al. found up to 382 distinct types of users based on application

use duration and frequency [169]. These groups of users do not necessarily all have a
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label to describe them directly but from their behaviour, it is possible to extract types

of usage that might differ in where, when, how often, for how long and which ap-

plications they interact with. This type of identification is a more general approach to

understanding behaviour and often helps in highlighting the diversity that users might

show not just between each other but even between their own sessions in day-to-day

use.

A more directed approach is when very specific patterns of behaviour are extracted.

This is also called “rule mining” (e.g., [101]) because the resulting sequences (rules)

follow a conditional “if-then” pattern as described by Pinder et al. [119]. In these

rules factors such as location, weekday and time, battery state and more are used to

construct a conditional for a given outcome. For instance, Srinivasan et al. found that

a user being home at night on a weekday had a high likelihood of opening Facebook

[137].

The detection of types of users or at least types of sessions has been of interest to

understand how groups of users interact with their devices. This has been largely

successful with high-level features and has shown that those features are capable to

effectively separate different kinds of users and modes of usage. This means that if

features are generally able to distinguish between different types of users they are likely

to be useful for other tasks such as predictions or classifications.

2.1.3 Reflection on Usage Definition

One of the classic metrics to observe usage is monitoring the time which is spent using

the device (e.g. [155, 123, 84, 60, 25, 115, 23]). This can be understood as the time that

the device is not off or sleeping [33], but also includes intricacies such as time spent on

the lock screen [43], time spent in certain applications (or categories thereof) [33, 104]

or time with a minimum amount of attentiveness [152]. Aside from the length of use,

a different way to consider usage is by how often actions are made. For example,
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how often an application is opened in a specific time frame. Both of these concepts,

frequency and duration of use can be applied to many contexts, such as user location,

phone calls or internet usage (e.g., [55]).

It is used a frequently because it has some nice properties in that it’s one of the easier

metrics to capture and it is relatively straightforward to interpret. Especially when

paired with other high-level features such as application launch frequency it delivers

very interpretable results. However, Oulasvirta et al. found that smartphone sessions

are often very short bursts of interactions. When investigating sessions they found

that those which are predominantly ‘touching’ focused are only 1 minute or shorter

92% of the time and when ‘scrolling’ focused shorter than 35 seconds 90% of the time

[111]. Also, Ferreira et al. found that a lot of applications are used with only very

small sequences of ‘micro-usage’. They identified that 41.5% of applications are only

used for less than 15 seconds [34]. In another study, Banovic et al. found that out of

all sessions 95% are shorter than 360 seconds [12]. This shows that interactions with

smartphones are dense and that differences in how they are used may be small. This

means that not only time may be compressed to only a few seconds of usage at a time,

but also that application switches and other high-level features have to be arranged

within those tiny bubbles of use.

Furthermore, using 30 devices and 82,620 application usages per device, Gouin-Vallerand

et al. showed that the grouping of usage based on transitions created by switching ap-

plications is not the same as those found when considering time. By analysing switch-

ing behaviour in the form of Markov-Chains is distinct from usage described by just

time spent in applications per-day (F=0.00156) and also per-hour (F=0.00117) [41].

This is reinforced by the findings for common application networks by Turner et al.

discussed earlier [149].

User behaviour may frequently be viewed through a potentially distorted lens by re-

lying on high-level features. It is possible that while they certainly represent usage at

some level, they compress important nuances. This may also be further exacerbated by
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issues such as data sourcing and evaluation while aspects of smartphones keep chan-

ging rapidly.

2.1.3.1 Diversity of Data Sources

Some of the variances in the definition of behaviour can be attributed to the different

means of acquiring information from users. Between surveying users and recording

interactions directly on the device, the latter has seen a rise in popularity recently [97].

However, there are some real challenges to recording this data directly from a user.

Since smartphones have evolved to be a companion in many people’s lives, carrying

a lot of identifying or private information, privacy and ethical related problems need

to be addressed. Additionally, there is substantial work required to design an accurate

infrastructure to capture the high volume of data generated by users. These automatic

collections might either happen as part of an application with another use case, as a

result of a direct recruitment effort or sometimes even in a fully controlled environment

to establish a specific context.

A significant contrast in the collection might be presented by the difference between

popular operating systems. Given the market, nowadays the most popular systems are

Google’s Android and Apple’s iOS. Because of system restrictions of the latter, it usu-

ally has data collected by survey only (e.g., [155]). Studies that do have generated

user data either did so on old operating system versions when the system was still less

restricted (e.g. [145]) or completely focus on the collection of in-application data (e.g.,

through the help of a library that developers have to add to their individual applica-

tions [153]). While focusing on single applications can be an interesting approach for

certain cases such as marketing, it loses a lot of the general use information, similar

to constraining sessions to application sessions as discussed in or these reasons, the

most common platform to collect data from is Android, which imposes none of these

restrictions.

With a field moving as fast as the development of smartphones a consideration of how

subsec:task-boundaries#..F
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devices might have changed over time is also needed. What qualified as a smart-

phone a decade or two ago is a completely different user experience from what is used

nowadays. This is a motivating factor for an adaptive model of smartphone usage ana-

lysis which is not locked to specific collection and processing methods. These show

vast differences between devices and influences when it comes to the collection of the

high-level metrics surrounding usage. Combined with the indecisiveness in the literat-

ure of which features accurately encapsulate behaviour leads to the question of whether

these features characterise the complexity of user behaviour accurately.

This is further exacerbated by the differences between survey-only behaviour capture

(e.g. [161, 4]) to on-device capture (e.g. [104]). On-device logs or monitoring apps

provide detailed and accurate information about how a smartphone is being used, while

surveys rely on self-reported information from participants, which can be prone to bias

and inaccuracy. Additionally, survey responses are often based on a limited scope

(such as a 6-point Likert scale, e.g. [161]) and may not capture the full range of in-

fluences present when evaluating smartphone usage behaviour. Accurately comparing

the data gathered from these approaches is difficult, and it hinders the ability to draw

meaningful conclusions about smartphone usage patterns.

The diversity in collection and definition of usage behaviour was partly sparked due

to the vast differences in how this information can be processed. Research has un-

folded surrounding modelling smartphone behaviour as a data complexity problem.

Therefore, making these actions interpretable and comparable as part of understanding

a user’s behaviour relies on a formal description of what behaviour is. Multiple con-

cepts and techniques have been discovered to quantify smartphone usage but because

of the complexities inherent in human behaviour, there is no unifying solution that is

generally accepted.
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2.1.3.2 The Case for Low-level Features

If high-level features may cause issues with compression and perhaps obscure the root

complexities of behaviour there may be better ways to capture usage. Previously, some

actions or events have been observed specifically because smartphones offer unique

ways of interacting with them. Drag-and-drop or swipe actions on a touch screen dif-

fer strongly from interactions that would be possible with buttons or switches. Alqarni

et al. was able to identify common swiping patterns and gestures with a 74.97% ac-

curacy and identify users based on their keystroke pattern with a 63.72% accuracy [6].

Gooding et al. used scrolling data to distinguish text readability between languages and

found that users interact differently with ‘advanced’ or ‘elementary’ texts and also that

when scoring their comprehension of these texts faster scrolling generally correlated

with worse results [40]. Also utilising touch and scrolling events, Yu et al. identified

their impact on energy as a consequenceand proposed changes to adaptable frame rate

models that would not impact the user but improve energy efficiency [167].

Mehrotra et al. included events such as tap and long tap and found that how physically

active a user is was not a statistically significant influence on how long they used their

phone, but was significant for how many applications switches they had made and on

how many times they tapped the screen [90]. By focusing on just the keyboard, Ghosh

et al. were able to predict a users emotional state from taps and swipes with an accuracy

of 70% [37].

Low-level events have seen consideration in the literature previously, but the default

is often still their high-level counterparts. Partially this may be because there is no

consensus on which one to use and because there is no direct comparison in how they

perform next to each other. Introducing a model which can compare low-level and

high-level features directly may help understand their respective differences and po-

tential advantages.
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2.1.4 Smartphone Behaviour Informing User Traits

Another aspect of smartphone behaviour research explores the interactions of smart-

phones and psychological traits (and their psychological effects in day-to-day use).

The collection of users experiences and feelings during their usage allows us to es-

tablish links that help to deepen the understanding between the user and device. One

of the common techniques which enables the collection of more personal user data

points is the Experience Sampling Method (ESM) [151]. As the name suggests, the

ESM is a method of sampling otherwise inaccessible information from users at various

points in time. An external signal such as a notification or sound prompts the user

to record their current state, usually in the form of a multiple choice or Likert scale

(e.g. [105, 17, 163]), and thus allows to capture what a person is thinking, feeling or

doing just by reminding them to record it. The method does not provide any survey

or questions by itself; it just establishes the framework for how data can be sampled

effectively from a user.

Through this information is possible to model how the smartphone affects certain men-

tal states such as the user’s mood reflected by emotions (happy, sad, angry) (e.g.,

[66, 156]), their level of stress (e.g., [23, 165]) or their anxiety levels in general and

social situations [30, 165]. Often this is coupled with predictive approaches of user

profiling to detect differentiating aspects within usage based on a user’s traits, or also

emotional or mental state.

While mood and emotions can steer usage, they are not necessarily indicative of prob-

lematic behaviour. It is difficult to distinguish when and how the effects of problematic

usage occur, however markers for them have been identified before. This is one of the

focus points of behaviour research, which includes the identification of factors which

may cause or lead up to uncontrolled, impulsive and problematic behaviour. This also

overlaps with the behaviour research surrounding user types, for example, addicted

users could be considered a group of users with specific aspects in their habitual usage

that can be detected.
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2.1.4.1 Digital Phenotyping and Psychoinformatics

A phenotype can be described as the observable traits or characteristics of an indi-

vidual, which are induced by a combination of their environment and genes. Digital

phenotyping describes the ability to determine a user’s phenotype from just their inter-

actions with digital devices. The term was first introduced by Torous et al. to describe

a framework for the pervasive capture, summation and processing of user data to infer

their psychological traits [144]. In this, data is captured on a (mobile) device and then

sent and stored on a remote server for further analysis.

Since digital devices have taken over such a large chunk of people’s lives, inferring user

types from their characteristics in usage has become more readily available. While the

ubiquity of devices is not a necessity for digital phenotyping, it has pushed methods

to more popularity. With computing capabilities and sensors improving steadily, the

options for a wide variety of possible data capture (as discussed in Section 2.1.3.1)

enable the collection of precise information about a user’s status. This information

enhances the understanding of user behaviour and personality from what is possible by

completely relying on surveys or in-person assessments.

Psychoinformatics is a related emerging field with a focus on utilising the vast amounts

of data available through personal digital devices. The basis for it lies within the

ability to precisely record and measure information of a user in an almost constant

stream. The distinction (or addition) to digital phenotyping is in the granularity and

volume of recorded data. Where digital phenotyping refers to the general concept of

using digital devices to infer psychological features, psychoinformatics focuses spe-

cifically on collecting as much data as possible for future rule mining [88, 97]. In

this, there have been suggestions of how this recorded data can be applied, for ex-

ample in diagnostics of problematic use patterns [96]. Various applications and studies

have employed these strategies, including Tymer [104], Menthal [8], mPulse [159],

and AWARE-Light [150].
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These areas show the potential of processing usage events, especially in large amounts.

This further motivates exploration in how effective these low-level features are at un-

covering the complexities behind usage.

2.1.4.2 Smartphone Addiction

With smartphones having such a constant impact on people’s day-to-day lives they are

faced with problematic habits which might inhibit their normal behaviour. Generally,

addiction is a case of compulsive or obsessive behaviour that continues even when

faced with the negative consequences (financially, socially, etc) of those actions. For

example, Van den Bulck has found links between smartphone addiction (SA) and its

impact on sleep and how use late at night can affect long-term tiredness in users [154].

There are different kinds of addiction and SA is often considered a ‘behavioural ad-

diction’ [21] where habits get enforced from gratification instead of as a result of e.g.,

substances. Additionally, Liu et al. found that there exist parallels of the behaviourial

issues between gaming [81] and smartphone addiction and that users with gaming

groups had a higher chance to show signs of smartphone addiction. Similarly, Be-

ranuy et al. has investigated potential links between internet addiction and problematic

phone use [15]. This was also reflected by Jin Jeong et al. where they found multiple

correlations between internet addiction SA, but they also suggested that SA’s contrib-

uting factors are harder to differentiate from those of non-addicted users compared to

the same factors when considering internet addiction [51]. This kind of addiction has

also been linked to various personality and identity traits such as anti-social behaviours

by Pivetta et al. [120].

SA is often linked with certain application categories such as social networking and

communication [135, 26, 104]. This is because there are strong assumptions about the

role of "social-seeking" behaviours that are either a result of or caused by depression,

anxiety and stress [120]. Elhai et al. also related this conceptually to the idea of "fear

of missing out" and feeling a strong obligation to be updated with their social circle at
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all times [30]. Deng et al. mirrored this in a study which found that, while there can

be many reasons why one is unable to stop using their phone, many times it is down to

keeping up their status in their relevant social circles [25].

The relationships that have been found between application categories and SA also

extend to non-social ones, Bae et al. discovered that there are correlations between

SA and entertainment applications or video games [10]. Additionally, there have been

reports of categories of applications or individual applications being identified as a

contributor to SA that do not seem immediately obvious, for example, while investig-

ating links between addiction and application categories Roberts et al. found that for

male users reading in a bible application was correlated with their likelihood of ad-

diction [124]). Park et al. discovered that there are patterns which overlap in casually

habitual and addictive use behaviours, but that when actual addictive use takes place it

has additional effects on a user’s life such as their sleep duration [114].

The Smartphone Addiction Scale (SAS) developed by Kwon et al. is a measure of an

individual’s proneness for addictive smartphone behaviour. The SAS is a self-report

questionnaire based on six factors: “daily-life disturbance, positive anticipation, with-

drawal, cyberspace-oriented relationship, overuse, and tolerance” [71]. It consists of

33 questions on a 1 (“strongly disagree”) to 6 (“strongly agree”) Likert scale, resulting

in a point range of 33-198. Its continued development led to a short version (SAS-SV)

[72] which reduced questions to 10 and defined cut-off values to identify individuals as

addicted or non-addicted. With a reduced point range of 10-60, for male participants,

this cut-off is 31, while for female participants it is 33. The exact questions can be

found in Appendix E.

2.1.4.3 Impulsivity

Impulsivity is described as a personality trait that surfaces by an uncontrolled reac-

tion to stimuli which has roots in thrill or novelty seeking behaviour but also poten-

tially self-harming disorders such as kleptomania, pyromania, borderline personality
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disorder or hyperactivity [160]. There have been multiple variants of detecting impuls-

ivity using self-reported surveys. For example, the Barratt impulsivity scale (BIS-11)

divides impulsivity into three subcategories: attentional (e.g., loss of concentration),

motor (e.g., action without thought), and non-planning impulsivity [116], while the

UPPS-P as proposed by Whiteside and Lynam identified five personality-based traits

[160]. There is no complete consensus surrounding the classification of impulsivity

but a general acceptance of different factors exists. These surveys use questions in all

categories to probe the variously identified sub traits of impulsivity.

Impulsivity has been linked with many personality disorders such as drinking [140],

gambling [27], and other substance addictions [62, 64], but has also been applied in

other fields. For example, adoption of security measures for physical health concerns

such as Covid-19 regulations has been studied in relation to impulsivity [83, 163].

Additionally, increased impulsivity has been linked to posing a greater risk to cyber-

security via e.g. private information disclosure [2, 3].

Moreira and Barbosa suggest delay discounting as an initial assessment for impulsive

behaviour [98]. Instead of probing factors individually, delay discounting employs a

more generalised attempt at identifying impulsivity as a function of real-world rewards.

Delay discounting is a measure of whether a sooner, but smaller reward is preferred to

a larger, delayed reward. It has been linked with impulsive behaviour since it reflects

multiple aspects of impulsivity such as acting without thought and non-planning.

Kirby et al. designed the Monetary Choice Questionnaire (MCQ) as a series of 27

questions designed to measure a person’s delay discounting based on monetary choices

[62]. Rewards are grouped into three separate magnitudes (small, medium, and large)

as the delay discounting decreases for larger rewards [63]. Each group contains 9 levels

of discounting defined according to a hyperbolic function. The geometric mean of the

most consistent choice for each group results in the final discounting level k for each

user. This result usually falls in the range of 0 <= k <= 0.5 where a smaller value

indicates low discounting and therefore a preference for a higher later reward, whereas
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a higher value indicates high discounting and a preference for an immediate smaller

reward. Appendix F lists the questions of the MCQ.

Given these issues of problematic and impulsive use, it would be beneficial to unlock

the patterns which coincide with these traits by only monitoring user behaviour on

their smartphone without having to impede the user’s life otherwise. Long-term, such

a system could also avoid side effects from re-prompting their condition caused by

direct interactions surrounding the user’s problematic behaviour as would be the case

with ESM methods or surveying.

2.1.5 Emerging Research Questions

In summary, smartphone usage can be quantified by a wide variety of metrics including

the time spent on apps, the number of apps used, the frequency of app usage, the

amount of data downloaded, the number of calls and messages sent, or the number of

searches conducted. They are influenced by factors such as time of day, location of

the user, the device’s battery level or signal strength. Generally, as smartphones have

evolved to adapt to the various use cases of their users, the vectors of capturable data

have increased in parallel. This is only intensified by the variety and limitations of

available methods to capture data from smartphone users.

Though all of these methods have been repeated multiple times, they commonly rely on

high-level features such as screen-on time to characterise usage. While these features

are easy to capture and understand they potentially introduce a stark layer of simplific-

ation on the actual behaviour behind the usage. This is because especially screen time

obscures all the intensity and frequency of interactions that may be taken while the

screen is on. Furthermore, features are often used in isolation (e.g., just screen-on time

or count of applications used) to infer usage behaviour which may further contribute

to a loss of nuance when evaluating a user’s behaviour. RQ1 In what ways are isolated

and high-level features such as screen-on time mischaracterising the actual complexity
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of user behaviour?

Furthermore, it may be possible to characterise usage on a more personal level by

utilising low-level features in the form of user-interaction events instead. Low-level

interactions such as taps and scrolls hold a lot of value to distinguish patterns of us-

age specific to individual users. It may be possible to utilise them to identify types

of behaviour expressed through their usage. RQ2 How can low-level user-interface

interactions be used to effectively infer user behaviour through usage?

Finally, if low-level features offer this capability it leads to another assumption sur-

rounding behaviour being influenced by a user’s traits. Traits are considered stable

within each user. This means they are a constant part of the user and should exert

influence on their decision making. Traits such as addiction or impulsivity have been

found to influence usage on a high level (e.g., screen-on time). If this is the case, they

may also embed themselves in those low-level user interactions. RQ3 To what extent

are stable user traits such as SA or impulsivity represented by a user’s events on a

smartphone?

These questions lead back to the overall aim of this thesis to capture the influences on

usage which may only be encoded in interactions on a low-level. It follows a discussion

of the requirements for the shape and kind of data which is mandatory to work with

low-level features.

2.2 Dataset Requirements and Availability

Prior research has collected data in many forms, but most data is not publicly available.

Depending on the hypotheses of the research these datasets were captured only certain

data points are available. This combined with the fast progression of the technology

means that datasets are often not granular enough.

RQ2 and RQ3 aim to model user behaviour using low-level events. Therefore, if those
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interactions were not captured in a dataset they are not suitable for processing. Addi-

tionally, since hesitation on this level might be an important factor it also is important

to have the individual capture windows as small as possible. Ideally no binning at all

takes place and all events are timestamped individually. Furthermore, semantic inform-

ation is required to establish borders between different actions such as screen events

and application launches. With this the following requirements for usable datasets are

established:

• A unique user identification (can be anonymised)

• System-wide capture (not limited to specific applications)

• Records of a representative range of low-level interactions (e.g., taps and scrolls)

• Application and category data

• Screen state (on or off)

• No or small temporal bins (at most one-second intervals)

Table 2.1 shows a list of publicly available datasets and their overlap with the require-

ments for the work in this thesis. Most of the datasets had a different focus from this

thesis and added recording of certain data (e.g., application launches) as part of their

collection for thoroughness. Only the Tymer dataset was set up with user interactions

in mind and collected events at an appropriate level. Additionally, only the Tymer and

LiveLab datasets recorded the display state and therefore could inform of usage ses-

sions between turning the screen on or off. While not directly relevant to smartphone

research, the table includes two datasets that recorded desktop usage. Those include

recorded data of low-level events such as clicks, text input and scrolling which could

be seen as a parallel to similar low-level events on a smartphone. This shows that while

rare for smartphone datasets, this level of detail has been of interest in related use cases
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Mobile datasets Year U SW AD ET SS LL

PhoneStudy* [139] 2014-2018 X X X

Carat [107] 2014-2018 X X X X

Tymer* [103] 2017 X X X X X X

TalkingData [141] 2016 X X

LiveLab [129] 2010-2011 X X X X X

MDC [75] 2009-2011 X X X X

Desktop datasets Year U SW AD ET SS LL

Behacom [127] 2019-2020 X X X ~ X

Four HCI Tasks* [92] 2012 X X X

* Available by request

Table 2.1: Public datasets and captured data in relation to the re-

quirements for this thesis. U=Unique user, SW=System-wide cap-

ture, AD=Application data, ET=Exact time capture, SS=Screen

state (on/off), LL=Low-level capture (e.g., taps, scrolls).

for user behaviour research. As the Tymer dataset offers all the required data and there-

fore will be the basis for most of the analysis in this it is explored in more detail in the

next section.

2.3 The Tymer Dataset

This dataset is a collection of data collected by the similarly named Android applic-

ation “Tymer”. The app was designed to collect a multitude of device events in the

background of a user’s regular usage. This was emphasized by the general availability

of the application on Android devices of version 4.4 or higher (the collection on iOS

was not possible because of platform restrictions). Distributing the app to users’ per-

sonal devices instead of provided, homogenous ones meant that the usage data would
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reflect their behaviour in a real-world setting.

Over a period of 8 weeks, it collected usage data from 64 users (see Appendix A).

Written informed consent was provided by all participants and the study was approved

by the ethics committee of the School of Psychology, Cardiff University. The dataset

was collected in 2015 and has been utilised for previous studies of a related nature as

this thesis [104, 105, 149].

A total of 82,242,309 individual events were recorded. The dataset comprises multiple

types of events that encompass a wide variety of physical interactions a user can take

with their phone. As shown in Table 2.2, some events are interactions that are always

invoked by the user such as taps, scrolls, or typing while some can occur after external

events such as received notifications or the battery falling to low levels. The dataset

also captured the participants scores for the SAS and MCQ in briefing and debriefing

sessions.

Figure 2.2 is an example of usage from a single user throughout the collection period.

Each ring is the equivalent of one day of usage. This reflects patterns of non-activity

during night-time (circa 1am - 8am) and most activity during the late evening (circa

9pm - 11pm). This demonstrates how some habits and patterns of a user are imprinted

in the usage history of their smartphone, but also that a lot of noise exists in the data.

2.3.1 Pre-processing and Inferred Data

The data is mostly left untouched for analysis as part of the thesis. This is to ensure that

the model works on the actual inputs of a user. By doing so there is minimal decisions

being made about the input data from any given user. However, because the original

data collection was run on user’s personal devices and had to be uploaded to an online

server some issues with data duplication and inconsistent event capture did occur in

some cases.

Firstly, any duplicate events in the dataset were removed - defined as events with the
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Figure 2.2: A sample of smartphone usage for a single user throughout the collec-

tion period. Each ring represents one day, this user totalled 47 days. Periods of

screen-on time are highlighted. The data is arranged to reflect a 24-hour analogue

clock.

same user, timestamp, and event type. Screen-off endpoints were inferred for any ses-

sion that missed this event naturally. Application switches were not captured directly

but only general system level window state changes. From these it is possible to com-

pute application switches by comparing the change in application package the event

is related to, for example only when the package between two window events changes
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was the app changed. This enables to infer the application for every event that occurred

between these two.

Scrolling was captured via the detection of UI events scrolling off-screen, while this

does reflect the action of scrolling it massively overstates the amount of scrolling a user

has initiated. To align this with a more natural idea of scrolling events triggered by a

user we remove all scroll interactions that are preceded by another scrolling event in

a time window of 200ms. This corresponds with a lower bound to what a user would

commonly be able to process and react to [50].

2.3.2 Statistical Analysis

A statistical test is a method of posing a hypothesis and a null hypothesis which, if

rejected, leads to acceptance of the original hypothesis. Statistical tests commonly are

defined to report statistical significance based on an alpha threshold for their reported p-

value. The normal threshold for alpha is 0.05 and this (given appropriately constructed

tests) results in formally acceptable results.

However, when working with large sample sizes, statistical tests tend to show even

small differences as statistically significant. At this point the p-value can become de-

ceiving as statistical significance does not necessarily reflect how strong the effect is.

The effect size can supplement the mere existence of significance with a rating of how

prevalent the effect is. Therefore, the effect size is frequently reported alongside the

p-value to enable comparison of magnitude between multiple significant results. Ad-

ditionally, when multiple tests can enable to measure the correlation (or separation)

of two samples, the effect size can be used to evaluate method effectiveness beyond

significance.

In this thesis we report the results of non-parametric tests (such as the Kruskal-Wallis

or Mann-Whitney U tests) to compare the effectiveness of different usage features.

This is achieved using the effect size of these tests.



2.3 The Tymer Dataset 40

2.3.2.1 Effect Sizes of Non-parametric Tests

While the conversion of effect sizes between tests is not strictly necessary to compare

results it has advantages to know how the statistical power between tests compares.

This is not to probe the many tests for the best results but rather can inform slightly

different methodologies compare to each other. For example, how different sampling

techniques which derive their data from the same source can influence results.

Given z as a z-test statistic it is possible to calculate Pearson’s r statistic result and d

as defined by Cohen [24], which is a common effect size figure:

r =
|z|√
N

(2.1)

d =
2× r√
1− r2

(2.2)

Some tests such as the Kruskal-Wallis test by ranks calculate the z statistic by default

for further internal calculation. Other tests require to derive z from their own test

statistic manually. Such a case is the Mann-Whitney U test, here given nx is the size

of a sample and U is the test statistic it is possible to derive z as follows:

z =
U − n1×n2

2
− 0.5√

n1×n2×(N+1)
12

(2.3)

To compare effect sizes between tests we add the area under curve (AUC) effect size to

the usually reported statistics and p-values. The AUC, as a common effect size metric

[91], will allow us to not only compare performance between similar tests but also

between tests with similar causal relationships.

The AUC score ranges from 0 to 1, where given two sets of data it describes the pre-

dictive capabilities of a chosen variable or model. The bounding values 0 and 1 cor-

respond to a strong (negative or positive) diagnostic ability and 0.5 to no diagnostic

ability. While AUC values have no strict boundaries they can be categorised by rule

of thumb [1]: poor for 0.5<=AUC<0.7, acceptable for 0.7<=AUC<0.8, excellent for

0.8<=AUC<0.9 and outstanding for AUC>=0.9.
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Given d the AUC can be formally derived [42, 19]. This can be achieved by letting φ

be the normal cumulative distribution function so that the score can be calculated as:

AUC = φ
d√
2

(2.4)

The AUC will be used for comparisons in multiple tables of this thesis, it will mark red

for poor (0.5<=AUC<0.7), yellow for acceptable (0.7<=AUC<0.8), light green for

excellent (0.8<=AUC<0.9) and neon green for outstanding (AUC>=0.9). To make

distinctions more visible the colour scale applies to the values as if they were rounded

to their next single digit.

2.4 Conclusions

Understanding a user’s smartphone behaviour allows us to explore how they respond to

different stimuli and how those responses can be used to improve their lives in a variety

of fields. It enables the possibility of making more informed decisions and developing

more effective strategies for tackling issues such as problematic smartphone use.

The literature describes many ways to utilise the input, sensor and context data of

smartphones to capture and process behaviour information. However, many parts of it

are either different or incomplete which reduces confidence in any individual approach.

This is intensified by literature that challenges or conflicts with previous approaches.

The cause of this is partly due to the natural progression of improved methodologies

but a large part is also due to the rapid evolution of smartphone capabilities themselves.

The improved processing and networking features allow for capturing large amounts

of time-accurate data. Identifying the potential issues with outdated techniques and

also the potential application of a new approach is going to be explored as part of RQ1

and RQ2.
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This thesis will align some of the loose ends in the current literature and iterates on the

common themes to improve the accuracy of decoding behaviour. The aim is to create

a basis for smartphone behaviour research which can be used to identify the various

types, habits and patterns of users. It also aims to utilise this information to make

accurate predictions about a user’s mental state and traits to answer RQ3.

In the following chapter, the limitations of current approaches are discussed and eval-

uated. Based on those limits a new model for behaviour capture is formed. This model

is then used to dissect the Tymer dataset and identify various types of users.
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Event type N Description

Scrolling 48,479,672 Triggered when UI elements were scrolled on

or off the screen following user input.

Typing 11,841,853 Text input into input fields.

Text selection 11,596,910 Selection of text.

Tap 4,048,481 A single tap on a user interface view element

such as a Button.

Window state change 3,081,043 A change in the internal window state.

Notification 2,480,356 A push notification was received.

Screen events 412,366 The screen turned on or off. The screen can

turn on from interactions or notifications. The

screen can turn off via timeout or a manual

lock.

Unlock 221,617 A manual invocation of the screen getting un-

locked. This refers to navigating from the lock

screen to the device’s home screen or last-used

application. Typically, this requires the input

of a passcode.

Power connection 42,173 The phone started charging or was disconnec-

ted from power.

Long tap 28,530 A press that continues for a long enough time

to invoke an alternative event.

Battery state 6,344 The battery charge depleted to low levels or

charged back up.

Device power 2,964 The device was turned on or off.

Table 2.2: The low-level event types that were collected by the Tymer application

and the number of times each event occurred. Each event has a precise timestamp

of when it occurred and from the window state it is possible to infer which applic-

ation it occurred in.
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Chapter 3

Measuring the Relevance of UI events

One of the challenges of defining user behaviour is in reducing the complexity of the

wide range of functionality that is behind smartphone use to traceable levels. The

smartphone allows capturing both high-level information about usage as well as every

low-level interaction. This exposes a lot of collectable detail in the available data but

presents a challenge of determining what information is useful for supporting different

tasks. For some use cases it may be useful to focus on the higher level information,

such as timings of specific device interactions (e.g. prompt timing [8, 103] or noti-

fication delays [147]) or which applications were in use (e.g. to infer the impact of

specific applications on mood [156]). Whereas for other cases, the nuances of low-

level interactions (such as UI events) may be of interest (e.g. when inferring general

user traits or personality [95]). This motivates a review of previous methods to extract

usage patterns and a deeper investigation into how usage can be defined by user be-

haviour. For example, while some users might choose to interact with their devices

more frequently or for longer, usage has been discussed to be more complex than just

timings [93, 94]. This chapter proposes a novel methodology to extract the relevance

of specific UI events in order to retain the variance in the encoded data while trans-

forming it into a more usable shape. Furthermore, it demonstrates the success of this

methodology in distinguishing various groups of usage from these events.

Part of the current landscape for smartphone behaviour research is the identification of

features which are expected to contribute towards an independent variable (e.g. [130]).

As stated before, these include features such as screen-on time or app-switching be-
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(a) Log screen-on time (b) Log unlock time

Figure 3.1: Screen-on time and unlock time in seconds.

haviour. The effect of these features is then observed in isolation to understand how

a user’s context might influence them. Limiting the scope to just a single influence,

rather than a combination of metrics, heavily reduces the variance that can be captured

using modern methods of monitoring. This shows a discrepancy considering that the

complexities of usage behaviour are understood to be dependent on a whole net of

interconnecting mental dependencies. Thus, it motivates the identification and formal-

isation of the limits of behaviour modelling using a constrained feature scope.

3.1 Limitations of Isolated Features to Represent Us-

age

Certain aspects of usage frequently reappear as features when the identification of sim-

ilarities in smartphone behaviour is desired. These are commonly high-level summat-

ive features that have been the focus of research efforts. This section details these key

features and how they can be used to represent usage. Some of their properties reveal

how they have inherently limiting attributes which make their use as features problem-

atic. These issues with isolated key summative features then mark the entry point for a

discussion and reconsideration of isolated features in general.

One of the most common features used for distinguishing session behaviour is the
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screen-on time (e.g. [25, 172, 169, 26, 49]), which presents a convenient and obvious

point to analyse user behaviour for several reasons. Not only does it reflect the tem-

poral usage directly in a very understandable format (i.e., seconds/minutes), but it can

also be split in a multitude of ways to extract other factors such as time spent in spe-

cific applications or categories thereof. Additionally, it is consistent and not selective

for certain users, i.e. it will be produced by every user, every time they use their device.

Because of the short bursts of interactions common for smartphones [111] the distri-

bution of screen-on time per session is heavily weighted towards very short sessions as

seen in Figure 3.1. This and all the following results from here are based on the Tymer

dataset.

The context of whether the device is in a locked state has been discussed as an influence

on user behaviour, for example, the length of a usage session is influenced by the

devices lock state [45, 46]. Users may opt to just glance at information from a device or

it could have been turned on from a received notification. This can be a valuable piece

of information when trying to understand smartphone-specific use patterns. Derived

from the moment of an unlock is the time taken to unlock (the time from the point

of the screen turning on until a manual unlock event), which is like screen-on time in

that it shares many of those properties apart from being present in every use. Unlocks

typically only occur at the very start of any usage session (as reflected by Figure 3.1).

Given this distribution, the hesitation of a slow unlock could be interpreted differently

than the intent behind an immediate interaction [43].

Application transitions [68, 41], networks and re-visitation patterns [52] represent a

different aspect of usage. These can be used to unravel the way different categories of

applications interplay and how smartphones are used as a whole to accomplish different

tasks. The simplest way of capturing application transitions is by counting how many

applications were used throughout a session of use.

While the differences in these features mean to distinguish groups of behaviour from

each other, they only partly capture the nuance present in the patterns that make up be-
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haviour. These features can misrepresent the variance in actual usage. In an example

scenario, a user opens a document-based application to write an essay, another does the

same to read an article and a third opens the application but just leaves the application

open without any input or interaction. Although the same application was used for sim-

ilar lengths of time in each scenario, the actual interactions were completely different.

When viewing these interactions from the lens of isolated features such as screen-on

time or application switches they would show similar signals. Constructing alternate

features such as ‘count of keystrokes’ might enable to describe the differences in this

scenario but this will show issues in cross-category or non-typing based scenarios.

From this the following limitations are identified:

L1 The variability of usage is misrepresented by single features because they can

only capture specific aspects of the entirety which make up behaviour on a smart-

phone.

L2 Sessions are skewed towards short bursts of interactions [111] which means that

features which are inherently bound to the length and interactiveness of a usage

session experience the same skew. This results in it not being possible to properly

split single features into appropriate groups of usage, e.g. by considering same-

length cut-off points.

Some approaches in the literature have already engaged with these issues by gathering

and processing large amounts of user-generated data. This has also included various

approaches of models predicting external variables based on multiple features [9, 70].

However, an adaptive, general-use model which makes it possible to address these

limitations and accurately encapsulate usage has yet to be defined in the literature.
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3.2 The Behaviour-From-Usage-Stream (BFUS) Model

The Behaviour-From-Usage-Stream model is proposed in which finer-grained beha-

viour in the form of a stream of user interactions can be used to model the complexities

of usage. Previous approaches have been scattered between correlations with time or

count-based features (e.g., with features such as screen-on [25, 172], unlock state [45]

or event counts [104]) without formalising a method that can evolve with the capabil-

ities of smartphones and thus available data.

One of the core assumptions of the model is that it is required to be adaptable for

multiple modes of current and future usage. Smartphones have evolved quickly over

the past decade, and it is likely that they will continue to increase their processing and

sensing capabilities in the future. Formalising a static model built around specific input

(and output) capabilities that are normal at the current point in time would likely be

superseded quickly given the rapid rate of progression of the domain. Thus, we aim to

abstract the information retrieval process away from a distinct definition of usage and

instead formalise the structure of methods that have been discovered in the literature.

From there the task for future researchers is closer to parameter selection rather than

requiring rebuilding a model of how to approach user behaviour evaluation. It also

offers flexibility towards the devices to which the model can be applied, even if the

empirically validated evidence is focused on smartphones of the current time. This

follows the fundamentals of comparative emerging research in which user types and

labels are assumed to be encoded in usage data [88, 97].

To do so the parameters of the model need to be adaptive so the model will be able

to encompass previous approaches within the literature, but restrictive enough that in-

dividual parameters can be changed which would enable a comparison between the

methods. Instead of having difficult to replicate methods for data transformation and

analysis this aims to add a more rigid (step-by-step) structure overall while maintaining

customisability for every step itself. This would enable to directly compare the results

of those modifications and iterate for the best possible selection of steps (i.e., which
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features to select, how to transform them or what method including hyper parameters

to use to evaluate them).

For example, a method could then be more easily tested with multiple alternatives by

changing just one parameter (e.g., the feature selection) while keeping the data trans-

formation and analysis exactly the same. In Section 3.4 this is used in a cluster analysis

for types of usage sessions between users and enables a direct comparison between po-

tential usage clusters found by utilising screen-on time and low-level features.

3.2.1 BFUS Model Concepts

The basis to apply this model for information extraction lies within the assumption that

a stream of well-defined events exists, generated by users during any specified usage

period. These event types (e.g., taps, scrolls or key presses) are not prescribed by the

model itself but have to be defined before the application of the model. The model

aims to allow to extract factors such as relationships and relevance from these streams,

either associated with their own user but also potentially between users.

A range of n users u1, u2, ..., un have a one-to-one relationship with event streams so

that every user produces exactly one stream of usage Su1 , Su2 , ..., Sun . For each user,

given a collection of event types E = {e1, e2, ..., em} where m is the count of types,

a full interaction event Iet can be described as an interaction with a type e and time of

occurrence t such that e ∈ E, t ∈ R, Iet = (e, t). In this, each stream is then comprised

of a list of events so that Sux = {Iet1 , Iet2 , ...} where ti <= ti+1, which means that any

event Ieti+1
always directly follows Ieti . For example, Figure 3.2 demonstrates what

such an event stream could look like when a single user generates events by interacting

with their phone.

These event streams represent the continuous interactions of a user with their device

and form the basis of the BFUS model. A three-step process is proposed to handle

their transformation and evaluation. The transformation specifically addresses previ-
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Figure 3.2: An example of a stream of events generated by a single user. The

events are labelled and marked with colours based on their types. Some specific

events that are contextually important to bounding (i.e., screen-on and unlock

time) and also pseudo events (idle) are highlighted.

ous discoveries in usage capture which introduced splitting event streams of each user

into multiple smaller sessions of usage such as events per day, within a timeframe or

between session boundaries. The second step addresses feature selection, this could be

isolated features (such as screen-on time) but addressing the limitations of Section 3.1

allows to create a fixed-size vector space for each session which can include multiple

features. The final step handles the application of any chosen method such that know-

ledge can be extracted from the data.

1 Bounding. While a stream of interactions from any user does not have to have

a defined start and end point it is possible to identify behavioural boundaries in them.

Task switching and attentiveness are related fields to this within which boundaries have

been discussed [110]. Any stream Sx can be split into multiple groups or sessions via

cut-off points that align with behaviour boundaries such as screen events, time of day

or cognitive timeouts. These groups lay the foundation of a one-to-many relationship

between users and usage sessions. This relationship enables to view behaviour as frag-
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Figure 3.3: An example of how events in a session are arranged. Includes ima-

gined task boundaries which demonstrate how events between apps can be similar

or different.

mented pieces which can be evaluated, instead of having to understand it in its entirety.

This means that when all groups Ga ⊆ Sa are ordered and added together are equival-

ent to the original stream S so that ∪Ga = Sa. For example, Figure 3.3 demonstrates

how events from a stream as introduced by Figure 3.2 could be bounded by screen

events to form individual sessions.

2 Vectorisation. For the purposes of analysis, multiple strings of events in the form

of sessions can be hard to interpret because the encoded information must be extracted

first. Therefore, BFUS proposes a system which transforms the events of each group

Gax into a fixed vector space to align the data to more standard formats which can be

processed in the last step. The space itself is not defined by BFUS but is constrained

by two conditions.

1. The vector space must be the same size for each group.

2. Every position in the vector describes a distinct feature.
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Constraining the vector space in this way introduces a homogeneous structure into

the possibly diverse and scattered series of captured events. Simultaneously, it allows

to separate information in the data to highlight specific aspects of usage that would

otherwise be difficult to summarise. For example, counting the occurrences of events

in each group constructs a vector space of length m for each group where every value

in the vector reflects the frequency of exactly one type in the data.

3 Application. Once the vector space has been established it can be used to extract

useful information. Generally, two modes of operation are applicable when using the

BFUS model.

• Internal disambiguation, which can be used to infer differences in the usage

itself. The vectors can be grouped or clustered using various methods to further

understand or separate usage. This requires no further variables and follows

more exploratory approaches (e.g., [169, 49]).

• Relationship estimation is a method which relates the data in vector groups with

one or more independent variables of their respective user. This requires that the

variables are captured from each user additionally and independently from the

event capture.

This is achievable since the previous two steps have prepared the data in such a way

that common methods of hypothesis testing are available. The BFUS model does not

enforce any of the statistical tests because the literature has shown that usage data has

so much variance based on multiple factors (such as gender, age, location, and more)

that tests are not necessarily applicable for all possible combinations.

By following these steps, the Behaviour-From-Usage-Stream model is able to trans-

form a time-sorted usage event stream in such a way to enable extracting informa-

tion that would otherwise be hidden. The model structures the approach of decod-

ing without enforcing specific methods. However, the literature has shown that some

parameters show stronger responses than others (e.g. low-level features compared to
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summative features such as screen-on time). The following section presents a few

suggestions for model parameters in each of the steps which have been identified for

decoding smartphone usage.

3.3 BFUS Suggestions for Smartphones

As discussed previously, because the nuances in behaviour are difficult to capture, the

area of research, in general, has not yet established a consensus on how to extract be-

haviour information. The BFUS model itself does not explicitly define which methods

should be used either. Instead, markers identified previously (such as screen-on time,

event count and others) have shown varying levels of effect when it comes to identify-

ing the difference in usage. Based on those, bounding and vectorisation methods can

be chosen to reflect behaviour following current research methods.

3.3.1 Utilising Screen-Event Boundaries

While group boundaries for the BFUS can be defined in multiple ways in the context of

smartphones by using application start and endpoints such as screen on and off events

[12] or cognitive timeouts [152]. Between those, both can be argued to be more applic-

able to separate sessions and the choice has been in contention in the literature [44].

However, since both can also be considered events (screen events literally, timeouts as

a ‘pseudo-event’), making them equals in theory, either approach is suitable. For ease

of computation, a screen-to-screen approach with added timeout events is suggested.

3.3.2 Utilising Methods from Natural Language Processing

Natural language processing (NLP) is a broad field of computer science and artificial

intelligence which aims to teach computers to understand and repeat human language.
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It spans many areas such as optical or speech recognition, learning syntax and grammar

or understanding the semantic relations of words and sentences.

NLP is challenging due to the complexities of human languages, not only are there

many spoken and written languages which have completely different expressions and

rules, but even internally many languages show variance based on location, dialect,

era and other influences. It is also difficult because the same words can have different

meanings depending on context. The ambiguous nature of language makes it hard for

machines to understand natural language in the same way as humans do. This creates

an amount of variation that is impossible to encode in rules written manually. Instead,

using large datasets and strong computational capabilities it is possible to analyse text

automatically for statistical patterns.

In Section 3.1 the issues of screen-on time and similar features to distinguish user beha-

viour was discussed. This includes the attempts which utilise the counts of interactions

to infer user behaviour and traits. However, this disregards the inherent complexity

of usage by focusing on the summed-up number of events which do not necessarily

co-exist equally in relation to each other (e.g. amount of scrolling vs long tap events

generated). This has an impact on how these counts can be compared to each other.

As touched upon in Section 1.1.2, interactions in sessions can be considered a highly

diverse sequence of entities making up a task (or goal). Given this, there are parallels

that can be drawn between interactions and language. Both topics deal with highly

diverse, sometimes non-logical sequences of entities (words or interactions). If a single

interaction on a smartphone is considered a word, and a session a sentence we face a

similar interest as NLP in how we want to extract how the “words” relate to other

concepts such as meaning or psychological profiles.

While the field of NLP has evolved to use highly specific models that can extract mean-

ing from written text, research revolving around smartphone behaviour rarely uses ad-

vanced models that compress high amounts of data. Attempting to build patterns and

rules from specific data points is still common.
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3.3.2.1 Re-purposing TF-IDF for Smartphone Usage

One key area of natural language information retrieval is terminology extraction. This

refers to the idea that some terms in a corpus hold more weight than others in the con-

text of what they are describing. The common application of these weighted terms

would be to find the words which have the highest relevance. For example, after re-

trieving those words you could use them as keywords or to index searches. This can be

achieved by picking the highest-scoring words or defining a cut-off point above which

all words are relevant. However, the entire vector contains a lot of information about

which words are deemed relevant in the supplied corpus.

This form of extraction can be achieved using the term frequency-inverse document

frequency (TF-IDF). It is a method of proportionally scaling the occurrences of words

in a sentence against their total occurrences in a corpus.

In detail, term frequency (TF) is the count of each word (term) in each sentence of a

corpus. To adjust for varying lengths of sentences word counts can be logarithmically

scaled to reduce the impact of very long sentences. This counting word method by itself

would only function correctly if all words in a language would have the same relevance.

However, in natural language words such as “a” or “the” are frequent because they

appear in almost every sentence but do not describe the topic.

The relevance of these words can be adjusted by applying the inverse document fre-

quency (IDF). In this, every word is tested on how frequent (or rare) it is across all

sentences. If a word appears in almost every sentence it is likely less relevant than a

word that appears in just a few key sentences.

Together, TF-IDF formally defines the score for each word w in sentence d as:

TF-IDFwd = tfwd× idfw

tfwd = 1 + log (freq(w, d))

idfw = log

(
1 + n

1 + dfw

)
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where freq(w, d) is the number of times that word w occurred in sentence d, n is the

total number of sentences and dfw is the number of sentences that contain wordw. Each

sentence d is then represented by a feature vector fw = (TF-IDFw1d, . . . ,TF-IDFwnd).

Through this process, the extraction of ‘relevancy’ for each event over time is pro-

posed. Where relevancy is defined as the importance of an event being quantified in

comparison to all other occurring events, it is possible to utilise this knowledge of co-

occurrence for further processing. This concept of terminology extraction is already

well-established in the NLP domain. While originally thought to be used in order to

process this concept of relevancy for words in a document, TF-IDF is a general-use

weighting algorithm which can be used in any use case if applicable. Therefore, to

extract the relevance of each event in each session the input needs to be aligned to fit

the TF-IDF format.

To apply TF-IDF, a corpus and multiple documents (sentences) consisting of words

are required. A parallel to usage in the form of event streams can be drawn. A corpus

is a sequence of words which is partitioned by punctuation. Each partition is one

sentence. An event stream is a sequence of events, partitioned by cognitive boundaries

(e.g. screen events or timeouts). Each of these partitions is a session. To summarise,

in the context of TF-IDF every event stream is a corpus, every session is a sentence

and every event is a word. Figure 3.3 demonstrates how a session between screen on

and off events (compare punctuation) can be interpreted to utilise the events similar

to words. The definition of TF-IDFwd can therefore change so that w describes event

types instead of words and d represents a session instead of a sentence.

The major difference between real languages and considering event types as the dic-

tionary for this transformation is that a real language’s dictionary consists of hundreds

of thousands of words whereas event types from smartphone interactions would be

significantly lower (e.g., 16 types as used in the next section). However, the size of

the dictionary should not matter in this case because of multiple factors. Firstly, the

formula of TF-IDF does not change because of a smaller dictionary, it is still possible
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to apply it in exactly the same way and achieve results that are relevant to its relative

dictionary (and corpus). It would certainly change how you would interpret the results

of individual words between a sentence from a real language and the results from the

impact of an event in an event stream. The frequencies of events would almost cer-

tainly be very different than what you would expect from a real language. However,

the basis of TF-IDF is the relative impact of words compared to other words trans-

formed within the same corpus. While the expectation within a smaller dictionary is

that words are repeated much more frequently within documents they would also be

more common within the entire corpus, which means the scaling of occurrences that

TF-IDF produces is still valid. Therefore, this difference in dictionary size is not rel-

evant as long as comparisons of TF-IDF frequency results are considered only within

the same corpus.

Furthermore it has to be considered that compared to a real language the event stream

of smartphone usage has no explicit grammar. Though, a parallel could be drawn

between the flow of language (and its erratic and hard to capture nature) and the stream

of events that are generated as part of a user’s behaviour. For example, the way taps,

keystrokes and scrolls combine in certain applications is assumed to not be completely

random but instead have patterns of recurring usage throughout. While this assumption

is not required to use TF-IDF for transforming events like words in a sentence, it does

support the concept of it being possible to extract the relative impact event types within

sessions.

To conclude, implementing TF-IDF as part of the vectorisation step in the Behaviour-

From-Usage-Stream model enables extracting the ‘relevance’ of each event in every

session. With this transformation, all low-level features can be included without caus-

ing issues by having large discrepancies in frequencies between them.
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3.3.3 Considering Vector Space Compression

One of the complications of analysing usage is how to process the constant stream of

data. Every user may produce different amounts of events, with changing densities

of usage and patterns. Even when user interactions are split into sessions, they can

drastically differ between users in terms of how much or for how long they interact

with their device. This makes it difficult to find methods to analyse usage data directly

from an event stream.

In most cases, some form of compression is necessary to analysis usage (and beha-

viour) since most regression, clustering and similar methods have requirements for the

input data (e.g., having a fixed vector space). Compression of interactions to (often

isolated) high-level features (e.g., screen-on time) is commonly done as it is simple to

process and the results are easily understood. However, this is a pretty strong form of

compression which reduces all the interactions to very simple forms, this could mean

a lot of information is lost when subsequently inferring user behaviour.

The previous section detailed how TF-IDF can be adapted to process low-level features

instead. This still represents a kind of compression in that it inherently discards the

temporal relationship of individual events. It is able to compute how impactful certain

events were to the overall session, but not how they interleave each other during usage.

A possibility would be to expand the dictionary by using n-grams, these would allow

to capture sequences of interactions rather than atomic actions.

For example, a simple session consisting of just a "tap scroll tap" could be represented

as two sequence, "tap-scroll" and "scroll-tap" instead of three individual events. For

the TF-IDF transformation it would be possible to consider these sequences as words

instead, however this inflates the input vectors by a lot. For example, the Tymer dataset

with 16 event types would result in 256 bigrams or 4096 trigrams which would all

represent an individual feature. Computing this for hundreds of thousands of sessions

is very resource intensive, and the resulting data is only useful in direct comparison
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to this specific corpus. As already discussed, TF-IDF is only a relative metric which

means its embeddings only make sense when compared within this exact corpus of n-

grams. This makes it difficult to extract a benefit from using n-grams over the atomic

events.

Other approaches such as transition matrices (markov chains) can fully represent the

flow between events in a session. This can be useful to fully visualise how events

commonly flow from one state to another. However, this can be computed overall or

for every individual session but does not encode how common transitions are across all

interactions. This is different to TF-IDF’s ability to include the importance of events

even between sessions and not just within them.

For these reasons TF-IDF seems to strike a good balance between providing the com-

pression needed for further analysis but also allows more granularity than simpler com-

pression methods by being able to transform low-level events.

3.4 Exploring Types of Usage Sessions with the BFUS

Model

The Tymer dataset presents the opportunity to apply the model in a real context. In this

section, the general pre-processing (Section 2.3.1) is followed up with some consider-

ation about the inclusion of specific events. The exploration of habits, usage patterns

and user types has propelled the understanding of how mobile devices are used (e.g.

[157, 85, 162, 110]). This can be used not just to model the behaviour of a user (e.g.

[82]) but also to detect various mental states of the user (e.g. [10, 79]). Applying the

model to the Tymer dataset should yield information about some of the latent behaviour

in the form of usage clusters.
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3.4.1 Data Preparation

The screen-on-to-off bounding step generates N=415,505 sessions. This includes n=

114,485 sessions in which no further interaction occurred. These sessions are on aver-

age only 5.97 (SD=5.86) seconds long and are most likely short-glance (e.g. for incom-

ing notifications) or accidental as they are corresponding with the 5-second automatic

screen timeout. Since they do not contribute any additional value in terms of usage

events they should be considered a type of usage session by themselves. In the context

of the model, they do not offer any information for further analysis and therefore are

excluded. The remaining sessions with usage behaviour are used as the focus to apply

the BFUS approach.

Additionally, some very long-running sessions without any real inputs that seemed to

arbitrarily end were encountered. These could be the result of issues with the collec-

tion method or part of very unusual usage patterns such as long-running navigation

software or similar usage methods. This issue is addressed by removing all sessions

that continued for longer than one hour (N=4), leaving a total of N=301,024 sessions.

Features Min Max M Mdn SD

Screen-on time 0.1 3595.8 148.3 37.3 342.7

Unlock time 0.1 3576.8 5.4 2 56.3

App switches 0 1004 5.1 3 8.8

Event count 1 104 824 317.7 22 1320.3

Category count 0 16 1.9 2 1.5

Table 3.1: Descriptive statistics of features. Screen-on time and unlock time after

screen-on in seconds [35].

Following this, all sessions are vectorised using TF-IDF as described in Section 3.3.

Before this, some enhancements to event selection are required to maximise the util-

isation of available information in the data. One aspect to consider is the temporal

relationships between events. Events are only captured when a user interacts with



3.4 Exploring Types of Usage Sessions with the BFUS Model 61

their device and there is no data when no explicit action was taken. Just as non-

communication is a form of communication in itself, in the context of capturing usage,

periods of inactivity may also provide useful information in characterising usage. This

is supported by the concept of time introducing cognitive boundaries which have been

found to have an influence on usage behaviour [152]. Therefore, a custom idle event

for any 30 second1 intervals of non-interaction was added. This also addresses the

choice of smartphone bounding as introduced in Section 3.3. Additionally, screen-on

and -off events by definition of splitting the stream of events into sessions had to occur

in every single session and would therefore not contribute any meaningful data points

for the vectorisation and were removed. The result is a 16-dimensional TF-IDF trans-

formed vector (all features included from the Tymer dataset as outlined in Table 2.2)

for each session in the dataset.

Experiment 1 summary

Aim: Explore types of users by applying the BFUS model with TF-IDF.

Input sessions: All available sessions after pre-processing (N=301,024).

Features: TF-IDF vectors created from UI events.

Output: Clusters of usage sessions which represent distinct types of usage.

3.4.2 Types of Smartphone Usage Sessions

One way of applying the BFUS model is by observing the similarities and differences

in session behaviour, this constitutes an ‘internal’ comparison of behaviour encoded in

the data. In the case of discovering ‘types’ of usage sessions, a type could be defined

by natural clusters formed by the closeness of the data. While there are multiple clus-

tering options, K-means enables to identify similar sessions around centre points with

1In Section 4.1 a discussion follows why this was amended with a short and long idle time of 1

second and 45 seconds. This was not amended for this section as the ability to detect types of sessions

did not seem to be dependent on that difference.
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Figure 3.4: K-Means clusters of all sessions for k=2,...,7 formed by the 16-

dimensional TF-IDF features after a PCA reduction to 2 dimensions. Each red

dot represents a cluster’s centre [35].

similar features. The distinction between those clusters reveals the various kinds of

sessions and how they are related. The appropriate number of clusters can be chosen

by observing the inertia (sum of squared error per cluster) elbow. The inertia elbow

shows a dip at k=3 and k=5, for demonstration purposes k=5 is going to be used as the

best approximation (see Appendix B). However, it should be noted that the elbow test

in general is not a definitive test for how many specific clusters exist and rather offers

an initial estimation point of where clusters might be less similar than with a different

configuration [57].

Visualising the 16-dimensional cluster data can be achieved by utilising a principal

component analysis (PCA) to compress the data points into a two-dimensional co-

ordinate system. This is a commonly used technique to make multivariate data more

interpretable [38]. Figure 3.4 shows the clusters and their centres when transformed in

such a way. While the majority of the data in the clusters separate from the other data

there is some overlap visible. This demonstrates how behaviour can not necessarily be
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contained by a few specific classes.

A first observation is that while users are very diverse in their overall usage, they are

consistent in their types of session, with 98.84% of users having at least one session

of each of the five types. This shows that while smartphone usage in the literature has

previously been shown to be driven by individual patterns (e.g. [136]), that additional

commonalities exist through these types of sessions.

Comparing the most important events to high-level features (Tables 3.2 and 3.3) iden-

tifies coherent patterns in each cluster:

1. Sessions whose main events are focused around text input and editing, also with

a high screen-on time, unlock time and multiple app switches (i.e. not just text

messaging).

2. Comparatively long sessions with a focus on scrolls, taps and switches between

applications, which may imply high activity for a prolonged time.

3. Very short sessions (median event count of one), with a heavy focus on app

switching, taps and notifications, consistent with glances after receiving a noti-

fication.

4. Sessions of 3-4 minutes, with low interaction/app switching, and large idle time

between events, potentially being sessions that end up idling until the screen

locks by itself.

5. Sessions with a strong focus on notifications but short on all high-level features

could be indicative of a session that is changing media and triggering an internal

notification.

Despite the process not including high-level features, the typical sessions within each

cluster also have a defining set of typical high-level features. Kruskal-Wallis H-tests

show that the distributions for each high-level feature do vary significantly across
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Event type TF-IDF Count

M SD M SD

Cluster 1 Text Box 0.50 0.15 98.07 240.03

n=98267; 34.08% Text Selections 0.45 0.21 94.26 217.91

Scrolls 0.29 0.16 168.31 817.38

Taps 0.26 0.12 204.90 462.40

App Switches 0.17 0.11 0 0

Cluster 2 Scrolls 0.31 0.29 78.75 452.7

n=105571;36.61% Taps 0.23 0.21 8.03 37.22

App Switches 0.17 0.17 0 0

Unlocks 0.17 0.24 0.76 0.56

View Selections 0.16 0.28 58.14 412.82

Cluster 3 App Switches 0.93 0.13 0 0

n=27115; 9.4% Taps 0.06 0.17 0.20 0.86

Unlocks 0.06 0.15 0.15 0.37

Notifications 0.02 0.11 0.04 0.21

App Switches 0.02 0.10 0 0

Cluster 4 Idles 0.83 0.17 6.9 12.81

n=29945; 10.38% Unlocks 0.19 0.20 0.68 0.65

App Switches 0.07 0.14 0 0

Notifications 0.05 0.14 0.33 1.61

Taps 0.05 0.12 0.67 4.11

Cluster 5 Notifications 0.81 0.19 16.30 101.70

n=27470; 9.53% App Switches 0.15 0.20 0 0

Taps 0.11 0.18 1.20 3.97

Scrolls 0.06 0.15 1.96 31.66

View Selections 0.05 0.17 6.03 67.38

Table 3.2: Frequency statistics of the top 5 TF-IDF features for each k=5 K-Means

cluster [35].
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Screen-on time Event count Switches Categories

Cluster 1 229.6 (427.4) 748 (1997.6) 8.6 (11.3) 2.55 (1.4)

Cluster 2 114.7 (290.8) 161.8 (877.5) 4.8 (7.9) 2.06 (1.5)

Cluster 3 9.3 (10.5) 2.3 (3) 1.6 (1.7) 1.1 (0.3)

Cluster 4 227.7 (396.2) 10.4 (18.8) 0.9 (2.2) 0.5 (0.9)

Cluster 5 36.7 (127.9) 28 (163) 1.5 (2.8) 0.8 (1)

Table 3.3: Mean (SD) of the high-level features in each of the k=5 K-Means cluster

[35].

clusters, (screen-on time: H = 86111.4, event count: H = 147386.8, app switches:

H = 86678.0, category count: H = 79491.7, all p < 0.01), with Dunn posthoc tests

also showing significance between all pairs for all features except cluster 4 and 5 for

event count.

3.4.3 Comparing Clusters Against Session Features

The previous section detailed how low-level events can be used to cluster towards

groups that reflect usage. But this does not yet show how they compare to high-level

features of sessions commonly used in the literature to summarise usage.

3.4.3.1 The Role of Lock-state

A way to distinguish sessions is to consider the time it takes a user to unlock (the time

from screen-on to unlock event) or if a user unlocks their phone at all [52]. A fast

unlock could be considered to be attached to a different kind of interaction, user or

session than a slow one. In our records, approximately a third of all sessions do not

have an unlock event attached to them (95,432 compared to 162,259 sessions). While

this indicates a decently sized split, when mapping the sessions across the impact data

of the TF-IDF results it seems that unlock time actually plays a much smaller, or even
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Figure 3.5: All sessions clustered by only using their high-level features (screen-on

time, event count, unlock present, application switches and count of app categor-

ies) instead of TF-IDF features, plotted using PCA and showing the individual

layers [35].

counterproductive role in grouping sessions. In the clusters the ratio of sessions having

an unlock event are as follows in order: ~84.3%, ~71.7%, ~15%, ~62.8% and ~25.7%.

In comparison, when sorting sessions by unlock time and then splitting them into 5

groups, 99.95% of all sessions and 100% of all sessions without an unlock end up in the

first of those slices. Instead, the BFUS model shows that the unlock times are diverse

in each cluster by applying a non-parametric pairwise comparison test. The Kruskal-

Wallis H-test followed by Dunn posthoc comparisons is applied to the unlock state

data, using the clusters as sample groups. A 100% null hypothesis rejection rate (i.e.

none of the samples varies significantly from any of the others) with H = 67097.67
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and p < 0.01 suggests that the lock-states are not from the same population for each

cluster.

3.4.3.2 Comparing Against High-level Features

To show the additional utility of considering user-app interaction behaviour to charac-

terize sessions, an alternative to how usage sessions could be grouped from the distribu-

tions of high-level features is examined. Firstly, Table 3.1 shows that the distributions

of individual features have long tails with similar means and medians for most features.

Splitting the distribution into group sessions using the range of the distribution results

in most sessions being contained within a single group. For example, ~96% of sessions

are placed within the same group for screen-on time. Equally, splitting the distributions

into tertiles, quartiles, or quintiles results in a high degree of similarity between most

groups of sessions. This suggests that additional granularity is necessary to capture

notable characteristics of usage and that the high-level features are not a suitable proxy

for user-app interaction behaviour.

To examine this further, Figure 3.6 shows how high-level features correlate to one

another and the TF-IDF cluster each session is assigned to. Importantly, it shows that

the TF-IDF clusters overlap and span across the distributions of high-level features,

both individually and in pairs. This highlights that high-level features do not provide

a suitable proxy for user-app interaction activity and that observing this granularity of

behaviour is useful. This is demonstrated further by repeating the clustering process

discussed using a vector of all high-level features to represent a session, rather than

TF-IDF scores of the lower-level features. Figure 3.5 shows how the clusters created

by high-level features overlap poorly with the TF-IDF clusters by fixing the individual

sessions in the same position as Figure 3.4.
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Figure 3.6: Pairwise comparison of correlations between high-level features of

sessions and TF-IDF clusters (Log-Log) [35].

3.4.4 Discussion of Session Types

Applying the BFUS with K-means clustering shows that clusters with similar high-

level features can be substantially different at the event level, indicating the diversity of

smartphone usage. It avoids potential issues of bias from using raw counts by utilising

TF-IDF to increase the impact of significant events. By analysing a rich dataset, which

is unique in the level of user events that have been captured.

These results show that high-level features on their own are not sufficient to accurately
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group sessions that are indicative of the user’s cognitive goals. This is an important res-

ult, as previous analysis in the literature largely uses sessions defined by time between

screen or application events [49, 110].

While it was possible to find an initial k via the elbow method it is unlikely that the 5

clusters in this section actually describe all types of usage that exist. There are likely

more types with more nuanced differences hidden within these. Also the inherently

spherical nature of K-means clusters means that unless session usage occurs in such an

arrangement this form of clustering may not be ideal. Alternative methods of clustering

such as DBScan or hierarchical clustering do not have the same limitation with the

benefit of it being that they are able to detect clusters by distance between sessions by

itself. However, those alternatives may also not be perfect. Firstly, DBScan is much

more expensive to compute and comes with a much higher time investment because

generally it requires its parameters to be tuned for accurate results. Even after tuning

its parameters, it struggled to pick up more than one cluster in the variation of session

usage. It is possible that this is due to sessions being arranged with generally similar

features, which means that due to no strong separation between clusters the algorithm is

not able to separate clusters properly. Sessions generally not being grouped neatly into

clusters is also not unexpected because of the variability in usage overall. Therefore,

DBScan seemed difficult to use for this case because it did not allow to capture multiple

types of usage at all.

Another approach, hierarchical clustering, allows to separate clusters by utilising a

distance metric (e.g., euclidian) instead of a fixed count for clusters. This method

allows to choose closely related sessions to be included in a cluster with usage that

produced similar features vectors. However, in this case it is very sensitive to changing

the configured distance and it is possible to end up with thousands of clusters or only a

few. Additionally, for both of these methods (DBScan and hierarchical clustering) it is

required to tune parameters individually for different features (e.g., on-screen time has

to be configured differently than low-level events) which seemed counterintuitive when
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capturing naturally occurring types of usage. Therefore, the best method for analysis

of cluster differences which does not require differential parameter tuning between

high-level and low-level features was chosen to be K-means.

The results confirm that clusters based only on high-level features may misrepresent

the commonality between smartphone sessions. The additional information present

when capturing low-level events is a useful tool to infer more about a session beyond

how active a user was. Five different types of use that would not be transparent with

previous techniques are captured and can be described. In addition, these clusters

represent usage that applies to almost all users, with 63 out of 64 users in the dataset

showing at least one session in each cluster.

3.5 Conclusions

While the field surrounding the capture of user behaviour (particularly of smartphones)

has recently seen advances in terms of utilising the vast amount of data available,

a large part of the literature still utilises high-level features such as screen-on time.

While these are often easy to collect and evaluate they create a set of limitations (Sec-

tion 3.1) which restrict possible findings. Some branches such as digital phenotyping

[14, 108] or the labelled “psychoinformatics” [97] have started to recognise the value

that considering the lower level interactions can add to the understanding of usage.

In this chapter, current methods of usage characterisation were evaluated. Isolated

features, and with that commonly used features such as screen-on time, were found

to have inherent limitations (L1 and L2) when used for behaviour representation. This

supplies initial explorations into the issues posed in RQ1 and adds towards the evidence

of C1.

Additionally, a new framework called the Behaviour-From-Usage-Stream model is

proposed which is designed to transform streams of usage events. The model lays

the foundation for how user usage data can be processed in a way to extract further
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knowledge while being flexible enough to enable changes that might occur with future

data capture or advancements in vectorisation methods. By choosing the parameters

of the steps within the model properly the limitations identified in Section 3.1 can be

addressed. Section 3.3.3 discusses the balance needed for compression methods and

how using TF-IDF for session vectorisation allows the inclusion of multiple features at

the same time and alleviates issues of single features identified in L1. This builds the

main contribution for C2 and is the foundation for the following contributions in the

next chapters.

The initial utility of the model was validated by applying it to the Tymer dataset in

which it was able to create clusters of usage. By applying the model with exactly the

same steps for bounding sessions and application, the only change was introduced was

the vectorisation of variables. This revealed clusters that were not previously detect-

able using commonly applied features such as screen-on time. This shows that user-

interface interactions can be used as valid features for decoding usage as questioned

in RQ2. Furthermore, since there seems to be information hidden in those interactions

that were not detectable before this shows that the transformation of low-level features

compared to summative features may address the skew issues (L2) which are common

in session data.

In the following chapters, the model is further tested with respect to its effectiveness,

specifically in relation to stable user traits as posed in RQ3. This includes further res-

ults for its application with correlation tasks using independent variables surrounding

mental health. Additionally, the model’s robustness is tested with different kinds of

bounding and vectorisation methods.
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Chapter 4

Isolated Features for User

Classification

In the previous chapter, a new model for decoding the encapsulated usage information

from interaction event streams was proposed, alongside a demonstration of its applic-

ation to explore clusters of usage. This chapter continues the validation process of the

model which will focus on the relationships between independent variables and the

vector space created post ‘Bounding’ and ‘Vectorisation’ steps.

Observing correlations between usage behaviour and latent, psychological states has

been proposed as a means for a better understanding of changes in mental state (e.g.,

[4, 156]) as well as potentially problematic behaviour while using smartphones (e.g.,

[104, 96]). However, thus far research has predominantly focused on summative met-

rics, rather than direct interactions as discussed in Section 2.1.3. The more specific

behaviour shown in individual application categories instead of usage across all ap-

plications has also been identified to be relevant. Therefore the efficacy of isolated

features will be tested within and without categories, this is facilitated by the flexible

BFUS model since only the vectorisation step has to be adapted while bounding and

application will remain identical. Thus, in this chapter the focus will be on examining

the potential utility of using isolated features (i.e. summative and UI events) to mo-

tivate whether single-faceted features provide notable utility (e.g. scrolling as seen in

previous studies), or whether multi-modal models should be considered.
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As discussed in Section 4.2, the participants of the Tymer dataset were independently

profiled in multiple aspects of their personality and regular usage. The results of the

MCQ and SAS will be used to validate the effectiveness of the BFUS in relation to

independent variables that are representative of impulsivity and smartphone addiction

risk respectively. L3.1 in Section 3.1 has discussed the potential issues with using

isolated features to distinguish user behaviour. To validate those claims, this chapter

acts as a power analysis of isolated features in varying scenarios as part of the BFUS.

This will be continued in Chapter 5 where the isolated features will be compared to a

multi-modal transformation of usage behaviour.

4.1 Refining Event Selection

The Tymer dataset used in Section 3.4 includes events that are user instigated (e.g.,

taps, scrolls) and system-instigated (e.g., notifications, battery state changes). As the

focus of this Chapter is on exploring links with latent independent variables, the fea-

tures considered are reduced to user-instigated events.

Not all events in the data represent actual interactions invoked by the user. For example,

notifications or the battery state (while intrinsically linked with the usage of a user) are

not initially triggered by the user. Instead, they represent an external influence which

might be controlled by other individuals, the device, or other scheduled operations. In

turn, these events are removed from the vector of considered event types to maintain

integrity with actual inputs.

Also, unlock events only occur at most once per session (apart from extremely rare

cases where the phone was relocked via software without turning off the screen).

This contributes only very little additional information and therefore these are also

dismissed.

The choice of TF-IDF as a vectorisation technique prompted the choice of including a

30-second cut-off for pauses. This addition addressed some of the issues of the TF-IDF
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compression by including a time metric to the vectorisation. To align further with pre-

vious literature this was optimized to a 45-second cut-off. This aligns with the cut-off

between tasks as proposed by Van Berkel et al. to be notable for user behaviour on

their smartphone [152]. While this bump does not represent a substantial change, it

was amended to better represent these psychological boundaries between user goals.

Following this and upon reviewing the statistics of usage sessions as presented in Sec-

tion 3.1, 198,981 of 301,024 (66%) sessions did not exceed the 45-second mark. Thus,

to embed the psychological boundaries at 45 seconds, but to also retain some form of

temporal dependencies for shorter sessions and as an indicator for potential momentary

hesitation a shorter idle timeout is added at a 1-second interval.

The final events considered for vectorisation are “Tap”, “Long tap”, “Text input”, “Ap-

plication switches”, “Scrolling”, “Short Idle (1 second)”, “Long Idle (45 seconds)”.

This corresponds to an adjusted event type vector of T = {t1, ..., t7}.

4.2 Assigning Trait Labels to Sessions

As part of the Tymer study, in addition to capturing the user’s low-level interactions, the

participants were asked to complete mandatory briefings before and after the collection

period. These briefings included the SAS and MCQ. The exact questions of the sur-

veys can be found in Appendix E and Appendix F. Table 4.1 shows the distribution of

responses for the participants for the briefing, debriefing and overall. The SAS briefing

(M=26.31, SD=8.46) and debriefing (M=25.41, SD=7.37) are similar where the overall

score is M=25.86, SD=7.55. One of the participants did not complete the debriefing

session surveys so the before and after are not perfectly balanced. The log-scaled brief-

ing (M=-5.29, SD=1.53) and debriefing (M=-5.33, SD=1.5) also didn’t differ greatly.

Resulting in a geometric mean of M=-5.18, SD=1.44.

These labels are strictly captured per user, however, to analyse the impact of user traits

on a session level, labels per session are required. Capturing labels per session would
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Survey M SD Min Max

SAS-SV Briefing 26.31 8.46 11 53

Debriefing 25.41 7.37 15 48

Mean 25.86 7.55 14.5 50.5

MCQ Briefing -5.29 1.53 -8.74 -1.39

Debriefing* -5.33 1.5 -8.74 -2.65

G. Mean* -5.18 1.44 -8.74 -2.06

Table 4.1: The results of the 64 Tymer participants for the SAS-SV and the log

transformed k-values of the MCQ. Values marked with * were missing a single

reading.

not only be difficult, but from a psychological standpoint incorrect. Firstly, the logistics

of having to show the user a screen of dozens of questions every time they pick up their

phone is not realistic. Presenting the user with that many interruption will with high

certainty influence how they answer the questions (e.g., out of frustration or boredom).

Being this invasive in the real usage of a users smartphone would likely skew the data

to be unusable. More importantly though, user traits should be stable in each user, this

means that these surveys which aim to codify the nature of a user should not change

between multiple sessions. At the very least the results should not change over a small

period of time. So while, not every single session from a user encodes the signals that

would make them smartphone addicted or impulsive, it is the closest approximation

possible to detect whether or not a session may have those signals. Therefore, every

user session is labelled with the label of its corresponding user.

This still introduces a potential issue going forward, as in the first instance sessions

will be evaluated and not the users directly. While this does constitute a limitation

on the results, given the large amount of sessions per user and the traits stability in

each user, the overall picture of all sessions combined for each user should still re-

flect their usage. It also means that some level of uncertainty is introduced for every

individual session, but being aware of this uncertainty allows the further investigation
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Class Users Sessions M Mdn SD Min Max

Low (LI) 15 83189 -7.33 -6.91 0.97 -8.74 -6.35

Medium (MI) 41 160585 -5.03 -5.12 0.63 -5.99 -4.14

High (HI) 8 57250 -2.81 -2.92 0.74 -3.56 -1,39

Table 4.2: Distribution of 64 users and 301,024 sessions across the reward dis-

counting classes LI, MI, and HI and their respective log-transformed MCQ results.

in Section 6.1 to find potential ways in isolating session that show stronger signals of

addiction or impulsivity later on.

This means that on the scale of all sessions, the assignment of user labels for each

session should reflect each user’s trait correctly. However, it means that interpreting

the results for every individual session should be handled with care, as the session itself

might have none of the underlying patterns that constitute problematic use, even if it

was generated by a user that is labelled addicted or impulsive.

Experiments 2.1 and 2.2 summary

Aim: Test the efficacy of isolated features by probing them individually to check

if they could viably be used to detect impulsivity (Experiment 2.1) or SA (Experi-

ment 2.2) in users.

Input sessions: All available sessions after pre-processing (as in Chapter 3, Exper-

iment 1), also each session receives a class label based on their user’s impulsivity

or SA.

Features: High-level: Screen-on time, application switches and time to unlock

Low-level: Event counts and TF-IDF vectors created from UI events. Each are

tested without and within application categories.

Output: Effect size of the features capability to separate the sessions based on

their classes of impulsivity and SA.
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4.3 Impulsivity

Section 2.1.4.3 introduced the concepts that link smartphone use and impulsivity. While

correlations have been made (e.g., [128]), actually inferring impulsivity from direct

screen interactions has not been explored. Therefore, this section will focus on this by

applying the BFUS model with an aim to add evidence to RQ3.

Firstly, using the MCQ survey scores of the start and end of the Tymer study (see Sec-

tion 4.2), a paired t-test shows that the samples collected before (M=-5.29, SD=1.53)

and after (M=-5.33, SD=1.5) the collection period did not significantly change (p=.77).

Also, the results were correlated in themselves (r=.73, n=64, p<.001). The MCQ read-

ing of one user at the end of the study was missing, therefore because the samples did

not significantly differ before and after, from here onwards only the results of the initial

briefing are used (for the MCQ).

A Shapiro-Wilk test for normality shows that the scores are not normally distributed

(p<.001, W=.4). Therefore, the approach of [140] is emulated to create three reward

discounting classes with one adjustment of creating tertiles with same distance cut-offs

instead of equal-sized bins. Given the smallest and highest scores (-8.74 and -1.39)

equal distance cut-off points are defined at -6.3 and -3.84. This creates the classes HI

(high) (−3.84 < k) MI (medium) (−6.3 < k <= −3.84) and LI (low) (k <= −6.3).

Table 4.2 shows the distribution of users for each group.

4.3.1 Cross-category Feature Results

From the results of Chapter 3, surrounding the use of screen-on time, a hypothesis can

be made that impulsivity will show a stronger effect on overall user behaviour than just

screen-on time by itself. This is tested by applying a Kruskal-Wallis test followed by a

Dunn’s posthoc tests, which will identify whether or not the distributions of a feature

2AUC cells are coloured based on their performance as discussed in Section 2.3.2.1.
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Feature AUC H C1 Mdn SD C2 Mdn SD

Screen-on .575 5286 HI 10.9 320.3 MI 25.4 322.4

time .552 5286 HI 10.9 320.3 LI 21.0 285.7

.519 5286 MI 25.4 322.4 LI 21.0 285.7

App .540 1641 MI 3.0 14.2 LI 2.0 14.9

switches .521 1641 HI 1.0 39.3 MI 3.0 14.2

.512 1641 HI 1.0 39.3 LI 2.0 14.9

Time to .545 1389 MI 1.88 77.2 LI 2.12 76.4

unlock .538 1389 HI 2.16 47.7 MI 1.88 77.2

.502x 1389 HI 2.16 47.7 LI 2.12 76.4

Event .568 4496 HI 13.0 878.7 MI 34.0 729.3

count .535 4496 HI 13.0 878.7 LI 25.0 724.5

.532 4496 MI 34.0 729.3 LI 25.0 724.5

x p>=0.05

Table 4.3: Pairwise Dunn’s tests of screen-on time, app switches,

time to unlock and event count between discounting classes.2 HI (8

users), MI (41 users) and LI (15 users) classes shown as C1 and C2.

Screen-on time is in seconds. p<0.001 unless indicated otherwise.

significantly differ between any of the three impulsivity groups. All resulting p-values

are Bonferroni corrected. This will provide a more substantial basis for the limitations

discussed in Section 3.1 and add to the evidence for RQ1. The focus of summative

features will be screen-on time as this is the most common metric used in previous

literature, however additional, summative metrics will also be drawn from application

switches and the total count of events that were generated.

A pairwise test between the groups for each feature enables to target each feature in

an isolated context. Of particular interest is the effect size of every individual test,

as this gives an indication as to how strongly the isolated feature can separate the
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samples. A pairwise test enables this with a low computational overhead for dozens

to hundreds of features at a time to check the effect between two groups. While a

regression would be the usual method for comparison of multiple features the focus

in this case lies in testing whether it would be feasible to collect and evaluate single,

isolated features instead of a classic feature ranking. Additionally, pairwise tests offer a

helpful metric to compare the features across different models via a comparable effect.

Extracting effect from a linear regression would usually be possible by evaluating the

coefficients between each other. This gives an indication of the strength of each feature

additionally to its significance. However, this only works for coefficients of the same

model, for comparable effect sizes (i.e., effect sizes between models with different

features) it requires retraining of the model for each feature individually and extracting

the effect size of the entire model. This will be relevant because application categories

are introduced as part of the vectorisation process and a comparison is drawn between

features isolated within and outside of application categories.3

Table 4.3 shows how the features perform in each pairing with another group. All res-

ults show that the separation between groups is statistically significant with p<0.001.

Users with high impulsivity have the lowest average screen-on time by some distance

compared to users in LI or MI. This could be reflective of shorter bursts of usage in

highly impulsive individuals. Screen-on time has its highest separability between HI

and MI, where HI-LI and MI-LI have very similar results. However, these are very

low on the AUC scale (<0.6) and therefore provide limited confidence of predictive

power for this metric between groups. Similar results can be observed for the count

of events, where high impulsivity users generate the least amount of interaction. Ap-

plication switches and time to unlock, while fairly similarly distributed across all pairs,

show that all pairs also have a very low effect size. Notably, in all instances does the

highest AUC occur between MI and another class rather than what may be expected at

the ‘extremes’ between LI and HI.
3A predictive approach follows in Chapter 5 were these features are then used within a regression.
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Count AUC H C1 Mdn SD C2 Mdn SD

Short idle 0.564 3776 HI 10.0 713.7 MI 20.0 535.1

App switch 0.559 2394 HI 3.00 10.7 MI 4.00 9.37

App switch 0.554 2394 HI 3.00 10.7 LI 4.00 9.64

TF-IDF AUC H C1 Mdn SD C2 Mdn SD

App switch 0.580 3851 HI 0.40 0.21 MI 0.36 0.17

App switch 0.559 3851 HI 0.40 0.21 LI 0.37 0.17

Single tap 0.553 1307 HI 0.39 0.16 MI 0.34 0.16

Table 4.4: Pairwise Dunn’s tests of event count and TF-IDF weights

between discounting classes showing the top 3 strongest effect sizes

out of 21. HI (8 users), MI (41 users) and LI (15 users) classes shown

as C1 and C2. p<0.001 for all results.

Between all summative features, this shows that while these tests are statistically sig-

nificant, screen-on time and event count produce a marginally stronger effect than app

switches and time to unlock. However, there is little support to deem them effective

in separating the different levels of impulsive use between groups because of the poor

AUC scores (<0.6) for all of them.

It could be argued that the summative nature of these features obscures too much in-

formation about the underlying usage behaviour. Table 4.4 presents the same analysis

of features for each interaction event type (defined in Section 4.1), as counts and TF-

IDF scores. Alongside the combined result of all pairs overall, only the pairs of the

three strongest effect sizes are shown. This enables a clearer comparison and a brief

overview of the relative strength of each approach without the noisiness of every single

result individually.

In comparison to summative features, there is not much difference in the results of isol-

ated UI events. For event count features, events show an overall median AUC of .524

(SD=.019) and the TF-IDF single event features do not show many different results
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Screen-on time

Category AUC H C1 Mdn SD C2 Mdn SD

Sports 0.781 122 HI(2) 2.00 10.8 LI(3) 30.6 89.9

Finance 0.746 211 HI(3) 4.69 29.5 MI(18) 34.1 100.8

Sports 0.703 122 HI(2) 2.00 10.8 MI(4) 20.4 110.6

App switches

Category AUC H C1 Mdn SD C2 Mdn SD

Sports .654 43 HI(2) 2.0 2.04 LI(3) 1.0 1.16

Sports .645 43 HI(2) 2.0 2.04 MI(4) 1.0 .76

Productivity .620 623 HI(7) 2.0 3.73 MI(39) 1.0 1.55

Event count

Category AUC H C1 Mdn SD C2 Mdn SD

Weather .745 98 MI(5) 31.0 76.7 LI(4) 5.0 41.8

Tools .706 3364 MI(41) 1.0 128.7 LI(15) 8.0 141.2

Sports .664 35 HI(2) 13.0 52.7 LI(3) 49.0 218.4

Table 4.5: Pairwise Dunn’s tests of top 3 of screen-on time, app switches and

event count when taking app categories into account. HI, MI and LI classes

shown as C1 and C2, count of representing users in brackets. All p-values

are Bonferroni corrected and <0.001.

with an average AUC of .523 (SD=.022). While TF-IDF’s App switches (AUC=.580)

do show the highest overall effect size it still is very close to any other result. This in-

dicates that when any metrics are considered across a whole session, the nuances that

make up behaviour might get squashed and that neither summative nor UI events as

features are able to distinguish groups of impulsivity effectively. Once again, features

compared to MI actually show the strongest effect, instead of LI-HI. This motivates

exploring more granular levels of usage, such as previous findings surrounding applic-

ation categories.
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Count

Feata Category AUC H C1 Mdn SD C2 Mdn SD

ST** Triviab 0.790 7 HI(1) 94.5 135.1 MI(4) 13.0 28.6

TI** Photography 0.763 8 HI(3) 9.50 13.4 MI(6) 3.00 4.02

ST* Casualb 0.756 10 HI(3) 6.00 3.13 MI(5) 1.00 1.27

TF-IDF

Feata Category AUC H C1 Mdn SD C2 Mdn SD

ST* Triviab 0.891 13 HI(1) 0.52 0.04 MI(4) 0.34 0.08

LI** Weather 0.872 10 HI(1) 0.14 0.01 LI(1) 0.45 0.12

AS Sports 0.766 85 HI(2) 0.41 0.17 LI(3) 0.19 0.11

a SC=Scrolling, AS=App Switch, ST=Single Tap, LT=Long Tap, TI=Text Input, SI=Short Idle,

LI=Long Idle
b Game category
* p<0.01, ∗∗ p<0.05

Table 4.6: Pairwise Dunn’s tests of top 3 of count and TF-IDF when taking app

categories into account. HI, MI and LI classes shown as C1 and C2, count of

representing users in brackets. All p-values are Bonferroni corrected and<0.001,

unless otherwise indicated.

4.3.2 Considering Usage within App Categories

The literature has shown that usage within particular application categories can add

more insight into the structures behind behaviour and this motivates exploring whether

examining interactions in specific categories may be better than entire sessions. In this

section, the previous results are repeated with the addition of the application categories

of where the specific features occurred. As the BFUS model is designed to be flexible

nothing about the bounding or application stages have to change. Instead the only part

that is updated is the vectorisation that will now take place with categories included.

This way it is possible to provide a stable comparison between usage with and without

categories.
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The categories are determined from the Google Play Store based on application iden-

tifiers. Using the application switch event it is possible to identify the relevant ap-

plication of each interaction. From this, we retrieve the category for each of those

applications and combine them. All apps which were not available on the Google

Play Store were placed in an Other category, resulting in a total of 45 categories (see

Appendix C).

From this, given the set of all event types T = {e1, ..., e7} and the set of all categories

C = {c1, ..., c45}, a feature combination vector fc315d can be constructed based on E×

C, containing information on each event type for each category. After constructing the

final vector it was reduced from 315 to 278 features because 37 combinations of events

and app categories which did not occur in the dataset were removed, this was done

to not confuse completely empty vectors with those of low occurrence. This decision

was made since unknown interactions may not necessarily be equal to deliberate non-

interactions.

Given the 45 categories identified from the App Store, for every summative feature

where previously 3 Dunn’s comparison pairs existed, now there are 3 ∗ 45 = 135 and

for UI event based features (7) there are 3∗7∗45 = 945 individual tests. As mentioned

previously, to address some of the issues introduced by this amount of multiple tests,

the results in the following section contain Bonferroni corrected p-values.

The results in Table 4.5 show an improvement over the previous tests which did not in-

clude category information. For in-category screen-on time (AUC: M=.577, SD=.057)

the sports category shows a higher effect size between HI and LI than any of the previ-

ous tests. This constitutes an increase in effect size of >20% compared to the highest

effect size observed for screen-on time with all categories included. Similar, if not

slightly worse, results can be observed for event count (AUC: M=.570, SD=.053) even

for its highest AUC=.745.

Short bursts of interactions being normal for smartphone sessions [111] translates to

only a few application switches per session for most sessions. This is even more no-
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ticeable once those events are further split between multiple categories. Application

switches did not show similarly strong separability between groups overall (AUC:

M=.548, SD=.036) and also did not peak as high with its highest AUC being .654

between HI and LI in the sports category.

In comparison, Table 4.6 shows the top 3 statistically significant feature pairs of inter-

face interaction event count and TF-IDF. Just like summative features, the top features

for these have large improvements in effect size. For example, when counting indi-

vidual events the users with high impulsivity tapped more frequently in trivia games

than those with medium levels. Comparatively, the top feature for TF-IDF has the

highest effect sizes so far, firstly also for taps in trivia games (AUC=.891) between HI

and MI but also for long idle events in weather applications between HI and LI. How-

ever, overall the effect sizes for both of these transformation methods do not show the

same large improvements. Count has an average effect size of AUC=.566 (SD=.051)

and TF-IDF reports AUC=.579 (SD=.062).

In all of these category-specific tests an observation about user representation can be

made. These effect sizes are all backed by a low sample size since not every user

will have used applications from each category. Moreover, once the events get more

specific (resulting in larger vectors), less frequent events such as application switches

or long taps are only backed by a handful of users each. For example, only 9 users

collectively used sports apps (2, 4 and 3 users respectively for HI, MI and LI). While

similar results can be observed for the remaining pairs some categories were used by

almost all users.

This shows that there might be behaviours encoded in smaller, more specific groups

of usage which causes an interplay with high effect size for lower user representation

and on the other hand low effect size with higher user representation. Considering

this trade-off between effect size and user representation means that a process which

evaluates user behaviour should be designed to balance the specificity and summative-

ness of its features.
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4.3.3 Discussion

To recapitulate, the overarching goal of this section has been to determine the effic-

acy of different summarisations of usage using the the BFUS in correlating with a

user’s impulsivity score. In this, previous methods of usage capture, such as sum-

mative features like screen-on time are evaluated along with features representing user

interactions from the BFUS.

For the previous discussions surrounding (isolated) summative features (e.g., screen-

on time), their results match expectation. All tests (except time to unlock HI-LI) being

statistically significant at p<0.001 matches with previous findings in the literature that

these measures are correlating. However, between screen-on time, app switches, time

to unlock and event count no features effect size exceeded an acceptable range for a

strong effect. While the average of the features between classes does show differences

of sometimes more than double (e.g. screen-on time HI=10.9 and MI=25.4 seconds) the

high standard deviation in each feature causes too much variability which affects the

effect size. This already offers some insight towards RQ1 as it seems like summative

features likely do not encode enough information to separate user impulsivity by itself.

The outcome of repeating the tests with low-level features identified in Section 4.1

is two-fold. It addresses whether low-level features in isolated form offer any im-

provements over summative features as could be expected following Section 3.4 and

secondly it will contribute to verifying L3.1. In the test results, it is clear that isolated

low-level features (count or TF-IDF) do not improve on the summative features in any

significant way. This confirms the previous assumptions that isolating single features

and stretching their range across entire sessions just compresses too much information

to capture the markers of different levels of impulsivity in a user.

The previous tests are repeated by emulating previous literature where the correlation

between user traits and smartphone use often existed more prominently when isolat-

ing specific application categories [104, 135, 26]. When inspecting behaviour bound
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to application categories, both summative features and UI events show much better

effect sizes but smaller representation of users per feature compared to general use.

Summative features see their best result for screen-on time at an AUC of .781, while

UI events that are TF-IDF transformed go as far as .891. These are decent to great

results according to the AUC scale, but they come with the drawback of having very

low representation among users. This also shows that there is a difference between

the samples of sessions as inferred from their user labels if they are broken down with

sufficient detail. While there will still be some uncertainty in the ground truth of the

labels, this shows that the sessions produced by the user can be separated based on

their assigned label.

However, not every user has used (or will ever use) every application category or will

take every possible action (e.g. long taps) in every category. Some exceptions exist

where almost all users were represented by specific category combinations, for ex-

ample almost all users switched to productivity application at some point or another

where an AUC of .620 is still better than any of the non-category based results. As

a conclusion to category features, the average AUC for all category results are very

similar to those of isolated features (<.6). This indicates that while these features can

be a better estimator, they do not generalise to all users.

Across all results of pairwise tests it was possible to observe a phenomenon which

may be considered unexpected. In many of these cases the effect size between the two

groups that may be expected to show the furthest spread (LI and HI) actually did not

show the strongest effect. Often the effect between one of the groups and the MI class

were the strongest. This further indicates that separation on just isolated features alone

might be problematic because the traces in actual usage do not correspond linearly with

the level of impulsivity.

In order to add depth to the investigations on usage behaviour against latent independ-

ent variables, a second variable, smartphone addiction is explored.
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Class Users Sessions M Mdn SD Min Max

Not addicted (NSA) 51 221670 23.11 23 5.00 14.5 32

Addicted (ASA) 13 79354 38.61 25.5 5.69 32.5 50.5

Table 4.7: Distribution of 64 users and 301,024 sessions across addicted and non-

addicted users according to [72] and their respective SAS results.

4.4 Smartphone Addiction

Similar to impulsivity, SA has been connected to isolated features such as time spent

in applications [124] or application changes in fragmented use [25]. To validate our

findings against another potential user trait that has an effect on user behaviour we re-

peat the analysis steps of the previous section. It will follow the same general structure

of Section 4.3 where the effectiveness of isolated features is evaluated to separate the

user groups. The difference for SA is that users are only divided into two instead of

three groups. These groups are ASA (addicted) and NSA (non-addicted).

At the start and end of the Tymer study, participants were asked to complete the SAS

survey (see Section 4.2). The results of the SAS collected before (M=26.31, SD=8.46)

and after (M=25.41, SD=7.37) the data collection period did not significantly differ

(p=.14). Additionally, the samples were highly correlated with each other (r=.82, n=64,

p<.001). In this instance, since all data were available, the results for each user were

combined and the mean of their answers was used to label them addicted or not ad-

dicted. The cut-off points for SA based on a user’s SAS score are already well defined

by [72], and these were used as the basis for partitioning users. This decision and

its inherent, potential uncertainty is discussed in more detail in Section 6.1 and Sec-

tion 5.6. As Table 4.7 shows 51 user belong to NSA (M=23.11, SD=5) and 13 users

were identified as addicted in ASA (M=25.5, SD=5.69).
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Addicted Non addicted

Feature AUC U Mdn SD Mdn SD

Screen-on time .505 8686911416 20.0 324.1 20.4 276.7

App switches .536 9513955856 2.0 14.6 2.0 34.1

Time to unlock .520 1833312400 2.01 78.3 1.85 51.8

Event countx .501 8814163664 28.0 725.6 26.0 844.9

x p>=0.05

Table 4.8: MWU tests of screen-on time, app switches, time to unlock

and event count between ASA (13 users) and NSA (51 users). Screen-

on time is in seconds. p<0.001 unless indicated otherwise.

4.4.1 Cross-category Feature Results

In this section, the analysis of isolated and high-level features is expanded to groups

separated by SA (addicted: ASA, not-addicted: NSA), complementing the analysis un-

dertaken for impulsivity in Section 4.3.1. Since the label is binary, a Mann-Whitney U

test is more applicable for SA instead of a Kruskal-Wallis and Dunn’s test, but as they

are functionally identical the same metrics are reported.

Table 4.8 shows that the average high-level features did not deviate a lot between the

ASA and NSA groups. The low effect size for all of these statistically significant summat-

ive features mirrors the results of impulsivity (AUC<0.6). The high standard deviation

of all features compared to their averages likely means that their data is too irregular to

separate them.

Given the assumption about the loss of nuance in session-compressed features, this

should also be the case for event count and TF-IDF transformations of UI events.

Table 4.9 shows that while significant, the effect size measured by the AUC (M=.531,

SD=.021) is low for all individual event types. In comparison to high-level features,

most features show that medians are also very similar between the classes. The only
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Count Addicted Non addicted

Feature AUC U Mdn SD Mdn SD

Text input .573 492978166 10.0 144.5 22.0 171.5

Long idle .546 197616102 2.0 18.1 2.0 15.5

Long tap .535 1170076 1.0 2.21 1.0 1.14

Scrolling .529 1169988738 5.0 436.7 6.0 659.3

Single tap .524 1657905034 3.0 27.4 3.0 27.5

App switch .509 3170474236 4.0 9.66 4.0 9.91

Short idle .506 8335055119 16.0 538.5 16.0 617.0

TF-IDF Addicted Non addicted

Feature AUC U Mdn SD Mdn SD

Short idle .560 7293223043 .66 .26 .83 .26

Scrolling .548 1111583024 .42 .18 .46 .18

Single tap .545 1742656121 .36 .17 .33 .16

Long tap* .532 1028618 .36 .18 .38 .18

Text input .525 567149570 .61 .18 .64 .19

App switch .521 3406799519 .38 .18 .36 .17

Long idle .519 186302310 .46 .23 .42 .24

* p<0.01

Table 4.9: MWU tests of event count and TF-IDF weights

between ASA (13 users) and NSA (51 users). p<0.001 unless in-

dicated otherwise.

exception to this is text input events where non-addicted users produced over double

(Mdn=22, SD=171.5) the amount of text input events than users in ASA (Mdn=10,

SD=144.5). The results for TF-IDF scores show equally low effect sizes to counts

(M=.536, SD=.014) individually and overall. The only noticeable change in medians

between the classes is short idles where the value for non-addicted users is almost 20%

higher. Notably, the highest AUC for either method was achieved by the feature that
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Screen-on time Addicted Non addicted

Category AUC U N Mdn SD N Mdn SD

Education .692 13399 4 15.7 147.8 16 70.8 129.2

Sports .689 38236 2 23.5 84.8 7 3.71 102.0

Tools .688 98492634 13 1.6 118.7 51 8.86 176.6

App switches Addicted Non addicted

Category AUC U N Mdn SD N Mdn SD

Sports .756 7610 2 1.0 .71 7 2.0 2.05

Simulationa .731 13485 1 2.0 2.84 3 1.0 .42

Productivity .619 7666702 12 1.0 2.04 49 2.0 3.23

Event count Addicted Non addicted

Category AUC U N Mdn SD N Mdn SD

Simulationa .799 15364 1 42.0 80.6 3 5.0 25.1

Triviaa** .686 94 4 345.0 303.2 5 826.0 2928.9

Tools .661 18961633 13 2.0 116.3 51 11.0 212.4

a Game category
* p<0.01, ** p<0.05

Table 4.10: Results of an MWU test for the top ten features (count of each

event type in an app category) with the highest effect sizes. N refers to the

count of users in each group. p<0.001 for all unless indicated differently

showed the largest gap between medians, exceeding those of high-level features.

These findings indicate that considering some UI events may provide slightly stronger

predictive power in comparison to overall screen-on time, count of application switches,

and the overall count of UI events. In general, effect sizes are low for every isolated,

non-category feature, which is similar to those findings of impulsivity in Section 4.3.1.

The next focus is on these features when considered within specific categories of apps

as behaviour is expected to retain more of its nuance.
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Count Addicted Non addicted

Feature Category AUC U N Mdn SD N Mdn SD

Scrolling* Triviaa .867 1 3 1.5 .50 3 19.0 20.6

Single tap* Triviaa .809 10 4 3.0 4.5 3 41.0 187.7

Long idle Simulationb .794 8866 1 10.0 25.9 3 3.0 4.04

TF-IDF Addicted Non addicted

Feature Category AUC U N Mdn SD N Mdn SD

Scrolling* Triviaa .877 0 3 .17 .02 3 .39 .08

Text input Education .873 1155 2 .28 .12 9 .54 .13

Single tap* Triviaa .832 7 4 .23 .08 3 .42 .10

a Game category
* p<0.01

Table 4.11: Results of MWU tests of the top three features (count of each

event and TF-IDF score) with the highest effect sizes. N refers to the count

of users in each group. p<0.001 for all unless indicated differently.

4.4.2 Considering Usage within App Categories

Table 4.10 shows how the results change when considering time spent in specific cat-

egories. Some pairs of high-level features and categories show significant boosts in

effect size. App switches of the sports category and event count in simulation applica-

tions both have AUCs >.75 which is approaching good results in terms of separability.

While none of the screen-on time effect sizes exceed 0.7 for individual tests, it shows

the highest average effect size (M=.59, SD=.567) compared to app switches (M=.571,

SD=.063) and event count (M=.582, SD=.07). It should also be noted that just as

before with impulsivity, these category-feature pairs under-represent the total sample

since only 9 and 4 users respectively generated events in those categories.

Moving from summative features to UI-based low-level features, the first observation

is an increase in overall effect size (M=.587, SD=.073) for application-enhanced counts
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compared to general counts (the best feature was text inputs with AUC=.573). The best

features outperform summative features where, for example, scrolling in trivia game

apps, with an AUC close to 0.9, shows a very strong effect size. When employing

TF-IDF vectorisation the effect size between all tests increases to the best overall score

slightly above screen-on time (M=.591, SD=.077). Additionally, individual tests also

show some of the highest effect sizes. Both, scrolling and single taps, in trivia games

reappear in the top three for TF-IDF compared to counting. Education applications

were the strongest feature for screen-on time and now reappear in the top three of

TF-IDF features when focusing on text input events.

This builds upon the evidence for low-level features encoding information more ef-

fectively, especially when transformed through TF-IDF. This also further motivates

addressing the issues of low user representation through a combination of those im-

proved features.

4.4.3 Discussion

The results of isolated features separating the classes ASA and NSA show similar results

to those observed for impulsivity. Even though mostly statistically significant, in terms

of effect size summative and UI event features perform poorly by themselves. None

of those effect sizes exceeds an AUC of 0.6 which in practical terms means that the

distributions are almost indistinguishable when trying to separate them using those

metrics. Overall, the results of isolated features are unlikely to be suitable for the goal

of identifying SA.

When features are enhanced through application category data the overall effect sizes

improve. However, the gains overall are usually minimal (e.g. screen-on time gains

only a small percentage in terms of improvement) whereas when focusing on the very

top selection of events there are some more distinct differences. This suggests that

when all data points apart from a single category-feature combination are dismissed,
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better results can be achieved for those sessions that remained because there is more

specific usage data encoded in them. The caveat is that as only sessions are used where

those combinations actually occurred, many sessions are lost for evaluation. This is

also reflected by two factors: The test statistic (U value) is very low for some of the

results. While low values are positive because they represent the proportion of potential

false guesses when viewed in context to the U values of isolated features it shows that

there were a lot fewer sessions to evaluate from overall.

Secondly, the results present interesting distinctions of notable features while consid-

ering categories. However, the samples are under-representing the actual usage beha-

viour of all users where, for the most part, less than a dozen of users are contributing

to any single feature-category pair. This typically low ‘N’ creates similar limitations

to impulsivity and suggests considering a balance of summative and low-level features

or multi-modal models and motivates their exploration.

Shifting the focus to the results of low-level UI events, the differing results between

the top features of count and TF-IDF can most likely be accounted to the scaling that

takes place during the TF-IDF vectorisation. For isolated features, TF-IDF’s ability

to distinguish nuances in usage might be compromised by the very low vocabulary of

only 7 features (i.e. event types). Once categories are introduced the TF-IDF scaling

becomes more prevalent and improves the results of the pure count. Apart from the

higher effect sizes for the top few features, overall they still perform similarly.

4.5 Conclusion

This chapter explored multiple aspects of isolated, summative and UI event features

when applied via the BFUS model to evaluate user traits: impulsivity (measured by

the MCQ delay discounting task) and smartphone addiction (measured by the SAS).

In particular, this highlighted the previously discovered limitations of usage behaviour

(L3.1 and L3.1) since isolated, summative features (but also isolated features overall)
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were not effective in distinguishing user groups. This adds evidence for C1.

Additionally, in a novel approach, it adapted an NLP technique in the form of TF-IDF

to show how it can improve the effect of identifying user traits through smartphone

behaviour. This extends previous literature which used low-level events but without

the structured nature of bounded sessions or TF-IDF transformations [104], affirming

C2.

In practical terms, it would not be possible to actually separate users that way. This is

further highlighted by instances of the impulsivity multi-class problem where cut-off

points on the response variable are placed out of order, i.e. for binning purposes the

expectation would be that the response variable shows a relationship in order so that as

it increases or decreases it corresponds to the classes such that low→medium→high

(or high→medium→low) impulsivity is present. Instead, there were instances of non-

linear relationships between response variables and classes such that as the response

variable increased the classes actually went through the transition of high→low→me-

dium impulsivity (see Event count in Table 4.3).

Introducing application categories boosted the results so that the top pairs of fea-

tures and categories performed significantly better than any non-category feature. The

strongest feature peaked at an AUC of .877 which could be considered as strong. How-

ever, the splitting of sessions into many individual grouping causes the support for

every test to be much lower than any of the previous tests. This means that not all users

are represented by that pair which lessens confidence in their practical efficacy.

At this point, another important statistical observation has to be made. While all tests

were Bonferroni corrected, conducting this amount of statistical tests at once is argu-

ably sub-optimal to warrant any individual interpretation of results in detail. In fact,

all comparisons in this chapter should be considered in unison with all other results in

their respective group and not by themselves. Any individual test, especially if already

close to the significance threshold of .05, needs to be carefully evaluated if to be used

in a psychological profile for impulsivity or smartphone addiction. Similarly, as dis-
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cussed in Section 4.2, impulsivity and addiction labels were applied to every session

from the label that was created for each user. This means that these results represent

the usage of user trait classes overall, but potentially not on an individual session level.

This motivates an approach which considers all features at the same time to include

all session data. The higher performance of the TF-IDF results already considers the

co-existence of events among others, and this motivates that the interplay of multiple

features may produce strong results when applied to a trained model which then leads

to C3. This can be achieved via a logistic regression and forms the focus of the next

chapter.
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Chapter 5

Extracting User Traits Embedded in

Complex Behaviour

Following the approach of Chapter 4 gives an opportunity to explore the utility of

multi-modal models to address the limitations of isolated feature models. For this,

likewise to Chapter 4, independent models will be built for SA and impulsivity. In

addition to checking the viability of any single feature to discern samples of classes

as posed in RQ1, this chapter aims to harness the improved magnitude of effect while

still maintaining the support of all users, which can be tested by training multi-modal

logistic regression models capable of predicting a user’s class (such as impulsivity or

SA) in accordance with RQ3. It is expected that using high-level features will ex-

hibit some form of mischaracterisation while identifying usage behaviours because of

compression and aggregation. This means models built from low-level features should

show comparable to better accuracy at predicting the user labels from their behaviour

in sessions.

In the following sections, regression models are built from the category features intro-

duced in Chapter 4. This methodology was constructed assuming that being able to

utilise all combinations will be more accurate (as per the improved peaks of AUC) but

it will also take into account all available interaction data instead of focusing on one

specific pair.

This also avoids the issue of potentially misrepresenting a characteristic of this dataset
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as generally applicable, which could be possible considering the number of multiple

tests where some features could show correlations by chance even with a standard p-

value threshold of .05. Table 4.6 shows multiple instances of the p-value being close to

this threshold. However, given the precision of the other p-values (p<0.001 for many)

that are reported, the chance of all of them showing false significance is low.

The regression models predict the probability of a user’s session falling into any of

the user trait classes. This has multiple benefits compared to the approach of single

features. With a regression, all sessions from all users can be utilised, just like in the

isolated feature comparison cases of the Kruskal-Wallis or Mann-Whitney analysis.

Additionally, all of the possible combinations of UI events and categories can be util-

ised at the same time, which as displayed in Table 4.5 and Table 4.6 comes with a

drastic improvement in effect size when inspecting their isolated cases.

5.1 Regression Preparation

Multiple multi-modal regression models are going to train on and test the users’ trait

classes based on a vector of input features (as extracted from the second vectorisation

step of BFUS). These regression models are going to output a probability which cor-

responds to one of the classes for every single a session of a user. A standard 10-fold

cross-validation at a 90/10 train-test split is used for all session data. Since the features

are transformed using PCA to remove issues during the regression, the influence of

specific features will not be discussed in detail as they are obscured and do not hold

relevant information to user behaviour any longer. Chapter 6 will explore and discuss

the benefits and drawbacks of an adjacent methodology which allows to maintain non-

transformed session features and offers potential psychological interpretations beyond

a predictive application.

To utilise all of the information present in the feature vectors while reducing the amount

of noise, the features are compressed to a more tractable set by employing principal
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component analysis (PCA). The noise from so many features is hard to avoid if the

category data for every single event is to be retained. While it would be possible to only

inspect one category at a time, this would then not include the data of each category

for each event in case multiple different categories were used between sessions (this

is also even more important for the application with TF-IDF which requires the entire

corpus to be present). Configured so that a variance of at least 99% is required to

explain each component, this transforms the raw feature vector to a vector with fewer

total components. While PCA obscures the individual influences of the input features,

it enables the same method of variable transformation for every input vector (screen-

on time, summative features, event count and TF-IDF) without having to conduct an

individual feature extraction. By observing the receiver-operator-characteristic (ROC)

of these classes, the AUC for each class and their average can be extracted. Similar

to the Kruskal-Wallis and Mann-Whitney tests, the AUC of each class will give an

indication of how discernible any session in the individual class is compared to all

other classes. This also established a comparable metric between those tests as an

addition to the standard classification metrics such as precision, recall and accuracy.

Because there are fewer addicted (13) than non-addicted (51) users, they also produced

vastly different amounts of sessions (79,354 and 221,670 respectively). To account

for this skew of volume in the input the regression is trained with balanced training

weights. The balance weight is calculated as follows: Let N be the sample size of

training sessions (N = 301024 × 0.9 = 270, 922) and F the number of features (98

after PCA). When K is the count of available classes, let yi ∈ 1, ..., K be the label

of the target variable for observation i and cyi the count of observations in the current

sample of N.
N

F × cyi
=

270, 922

98× cyi
(5.1)

Given a well-shuffled set of input features, every iteration of the following 10-fold

cross-validation should contain enough data for each value of yx to be stable.

The logistic regression calculates the probabilities for each class for every session in
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the test data. To then get a result for each of the users, the probabilities of all their

sessions are combined by taking the geometric mean of probabilities for each class.

The class with the highest of those means is subsequently chosen as the final class for

each user.

Let W be a matrix of coefficients where each row Wk represents one class k. Then the

regression predicts the class probabilities P (yi = k|Xi) as1:

p̂k(Xi) =
exp(XiWk +W0,k)∑K−1
l=0 exp(XiWl +W0,l)

(5.2)

Let C be the constant of regularization strength and r(W ) be a regularisation term,

then the optimization is calculated as follows:

minW − C
n∑

i=1

K−1∑
k=0

[yi = k]log(p̂k(Xi)) + r(W ) (5.3)

The Iverson bracket [yi = k] evaluates to 0 or 1 depending on the result being false or

true, respectively.

To improve model fit the regression is configured with an L2 penalty regularisation

term which calculates the square root of the sum of the squared vector values. Given

m is the number of features then this penalty is defined as follows:

1

2
‖W‖2F =

m∑
i=1

K∑
j=1

W 2
i,j (5.4)

To solve, the regression uses a limited memory Broyden-Fletcher-Goldfarb-Shanno

(LBFGS) method as proposed by Byrd et al. [20].

1As implemented by scikit-learn (version 1.3.1), see https://scikit-learn.org/1.3/

modules/linear_model.html

https://scikit-learn.org/1.3/modules/linear_model.html
https://scikit-learn.org/1.3/modules/linear_model.html
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Predicted

Actual LI MI HI Avg

LI 8 0 7

MI 9 11 21

HI 0 0 8

Precision .471 1.00 .583 .685

Recall .533 .268 1.00 .601

Accuracy .750 .531 .563 .615

AUC .572 .588 .617 .601

(a) Screen-on time

Predicted

Actual LI MI HI Avg

LI 10 0 5

MI 13 15 13

HI 1 0 7

Precision .417 1.00 .280 .566

Recall .667 .366 .875 .636

Accuracy .703 .594 .703 .667

AUC .580 .582 .630 .607

(b) Screen-on time, app switches and event

count

Predicted

Actual LI MI HI Avg

LI 14 0 1

MI 16 21 4

HI 2 1 5

Precision .438 .955 .500 .631

Recall .933 .512 .625 .690

Accuracy .703 .672 .875 .750

AUC .571 .577 .592 .586

(c) Event count

Predicted

Actual LI MI HI Avg

LI 9 6 0

MI 1 40 0

HI 2 0 6

Precision .750 .870 1.00 .873

Recall .600 .976 .750 .775

Accuracy .859 .891 .969 .906

AUC .679 .677 .727 .702

(d) TF-IDF

Table 5.1: Confusion matrices for classifying the delay discounting class of each

user when utilising features which are PCA transformed category-specific vectors

originating from summative features or user UI events of each session.
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Experiments 3.1 and 3.2 summary

Aim: Multi-modal models which combine isolated features into a single regres-

sion task are used to classify impulsivity (Experiment 3.1) and SA (Experiment

3.2). This combination addresses the user representation problem while including

the category specific features which showed a high effect size.

Input sessions: All available sessions with class labels after pre-processing (as in

Chapter 4, Experiment 2.1 and 2.2).

Features: High-level: Per-category screen-on time and a combination of sum-

mative features; Low-level: Per-category event counts and TF-IDF vectors created

from UI events.

Output: Probability of a session showing signs of impulsivity or SA.

5.2 Impulsivity is Encoded in Complex Behaviour

This section explores the results of user impulsivity classification based on a range of

input features such as screen-on time or other summative features but also low-level

UI features. All results for the various kinds of regression models and their resulting

classification of the 64 participants are displayed in Table 5.1. In this, an inverse clas-

sification will be used to describe the following kind of misclassification for a user: A

user that belongs to class LI is classified to be part of class HI or vice versa, implying an

inversion of a user’s original predisposition to impulsivity. This special case is defined

because it demonstrates a particular inability of a model to classify the data even on

the extreme ends of the classification spectrum.

For in-category screen-on time, 27 of 64 users are correctly classified. Per class, this

method correctly identifies 8 of 15 users in LI, 11 of 41 users in MI and 10 of 8 users

in HI. The model is most accurate at detecting low impulsivity users at a 75% ac-

curacy, however, the precision (47.1%) and recall (53.3%) are still fairly low. MI has
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no false positives at all and misses 30 out of 41 true positives. Overall, the classes

(LI AUC=.572, MI AUC=.588) and HI AUC=.617) perform similarly with an effect

size for the entire model AUC=.601, SD=.004. The strength of this effect size is also

reflected in the macro average accuracy of 60.1%.

When utilising a larger vector compared to just screen-on time by expanding it with

application switches and general event count per category, results improve slightly to

32 of 64 correct classifications. Other than that the classification is similar to screen-on

time by itself. The accuracy is 5% better (66.7%) but the precision is worse (56.6%).

Even though more users are correctly identified, the effect size (AUC=.607, SD=.003)

is slightly lower than that of screen-on time by itself. These regressions show that

using just a user’s high-level features is not enough to accurately classify them into

their correct group (<=50% correct classification). This motivates exploring the space

of low-level multi-modal features.

Instead of counting event totals per category, it is also possible to take every event as

an individual feature. This is the same method as in the previous section. When using

these features in the regression another bump in classification accuracy occurs. 40 out

of 64 users are identified correctly. This represents an increase of almost 10% overall

accuracy to 75%. In comparison to the accuracy bump provided by adding more kinds

of summative features, the precision and recall are closer to, or even higher than what

can be observed for screen-on time alone. This method caused a first false positive for

MI but also halved the number of inverse classifications.

The results for TF-IDF based features are higher for all classes individually and also

combined. 55 of 64 users were classified correctly. HI being the most distinguish-

able class (AUC=.727) where 6 of 8 users were classified correctly while two were

missed as inverse classifications. MI (AUC=.677) and LI (AUC=.679) then follow as

the second and third highest effect sizes of all previous models. Respectively that is

40 of 41 (89.1% accuracy) and 9 of 15 (89.1% accuracy) users correctly identified

in those classes. Additionally, no more users apart from the previously mentioned two
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from HI were inversely classified. The average performance of the model is AUC=.702,

SD=.002 is 10% better than previously and the overall accuracy of 95% improves the

results achieved by event count vectorisation by 15%. For this application of user clas-

sification, low-level features have improved the accuracy of the models significantly.

5.2.1 Classification Result Discussion

The previous sections displayed the model’s capability to decode smartphone beha-

viour at different granularities as a proxy to observing user traits. Section 2.3.2.1

discussed how an effect size of 0.7 falls into the range of acceptable results. Only

the TF-IDF models were able to match that performance while summative features

hovered around .6 AUC and count-based models didn’t even reach this level. How-

ever, this is still above the averages observed for any of the isolated tests and also they

are more consistent with standard deviations being in the 1% range.

These effect sizes only apply to classifying a single session by itself, not the overall

disposition of a user. The effect sizes in these models apply to detecting the disposition

of each separate session, not a user’s total disposition to impulsivity as reflected in the

profile of all sessions they produce. By combining the class probabilities of all sessions

a much more accurate result for a user can be found than by checking each session

individually.

Summative features, both for screen-on time and a combination of summative features

to build a larger vector, do not perform well even after this transformation. At most half

of the users get classified correctly, with a relatively high amount (10%) of inverse clas-

sifications. Perhaps counter-intuitively, using the UI event count vector produces better

accuracy results even though the models have worse effect sizes. While it seems that

models that are worse at classifying individual sessions should also show worse results

when combining those results, this could be the result of UI event models classifying a

smaller amount of sessions correctly, but the probabilities for correct predictions being
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higher resulting in a stronger influence when combining.

Finally, TF-IDF models predict the discounting classes of 55 from 64 users correctly.

Also, only 2 users ended up being completely misclassified (low as high). Compared

to the other methods this only improves the accuracy of complete misclassification by

1, however classifications for MI are drastically improved. This constitutes an overall

classification accuracy of 90%. Given the variability of all the input factors and the

general noise and complexity within human behaviour, this can be considered a very

good result for a classification of this kind. The jump in accuracy from the previous

count model could be a result of the data being well distributed as an effect of the TF-

IDF transformation. The reduction of variability from abstracting away pure screen-on

time and rather focusing on the internal characteristics of the usage session might cause

a regression model to learn more intrinsic features about usage. From this, it can also

be deducted that the vectorisation method for BFUS likely needs careful selection,

since results can differ starkly based on the desired result (per-session or per-user) and

processing in the application stage (pairwise tests or regression). It seems that the

vectorisation method plays a part in how well users can be classified but especially

on the extreme ends TF-IDF did not improve detection significantly, it is mostly the

medium cases of impulsivity that were captured more accurately.

In conclusion, TF-IDF weighted UI events as features are an improved way of distin-

guishing between the delay discounting classes LI, MI, and HI. This method enables

detecting a user’s impulsivity class based on their delay discounting by only processing

their user-app interactions without requiring further interaction with a user, such as

needing them to fill out a survey. Given enough data points in form of sessions, it cap-

tures the nuances of their usage for each session and will calculate a result based on

their overall behaviour. It is able to do so over other methods such as utilising summat-

ive features or simpler vectorisation methods such as counting UI events. However,

while it did perform slightly better for the extremas most of the improvements are seen

for more accurately detecting whether a user is of the MI class.
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This directly offers some answers to the research questions in Chapter 1. RQ1 is now

likely as high-level summative were less or even in-effective. Also, the results of ap-

plying the BFUS with TF-IDF features gives a partial answer to RQ2 as it shows that

deducting user traits from usage is possible in some scenarios. To add further support,

analysis of multi-modal models for SA are investigated next.

Predicted

Screen-on Summative Count TF-IDF

Actual ASA NSA ASA NSA ASA NSA ASA NSA

ASA 6 7 10 3 6 7 9 4

NSA 2 49 10 41 3 48 4 47

Precision .750 .500 .667 .692

Recall .462 .769 .462 .692

Accuracy .859 .797 .844 .875

AUC .603 .607 .588 .724

Table 5.2: Confusion matrices for classifying the SA class of each user when util-

ising features which are PCA transformed category-specific vectors originating

from summative features or user UI events of each session.

5.3 Smartphone Addiction is Encoded in Complex Be-

haviour

In this section the feature vectors described in Section 5.1 will be reused to classify

users in relation to their proneness to smartphone addiction. The process is very similar

apart from addiction being binary and not a multi-class problem (like the impulsivity

classes in Section 5.2), therefore a differentiation of an inverse classification does not

exist (as every misclassification is inverse from the desired outcome).

Table 5.2 shows, with an accuracy of .859, that using only screen-on time as the re-
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gressor predicts 55 of 64 users correctly. While there were only 2 user falsely classified

as addicted, 7 addicted users were missed. The per-session model performance is not

very high (AUC=.603).

Summative features (screen-on time, application count and total event count) perform

worse than screen-on time by itself, only classifying 51 users correctly. A total of 10

users were falsely classified as addicted, however only 3 addicted users were missed

(AUC=.607). Similar to the combined high-level feature models for impulsivity, the

addiction models also struggled to learn the session specific markers and therefore

encourage the investigation of models using low-level features.

Moving to counts of low-level features as the regressor shows similar performance to

screen-on time with a 54 users being classified correctly. This method also correctly

identifies 6 users as addicted and misses 7, but interprets one more user in NSA as

addicted. Similar to the regression for impulsivity features in Table 5.1, event count

seems to be the hardest to learn for the models (AUC=.588).

Finally, TF-IDF features do perform best overall with 56 correctly identified users. 9

users are correctly identified as addicted while minimising wrong classifications (4 in

either case). This means that while it is not strictly the best for every metric it does

maximise the total predictive power. This is also reflected by the model fit (AUC=.724)

which is the strongest performing model across all regression models in this chapter

(including the impulsivity models).

5.3.1 Classification Result Discussion

Smartphone addiction shows some parallels to impulsivity in terms of possible classi-

fication. The models achieve adequate results given the extreme variability of the input

vectors. The power of the results is comparable to those of impulsivity while having

much less variance. The accuracies of the SA models are all within 10% of each other

compared to up to 30% for impulsivity.
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The models trained with TF-IDF features again show the best performance, at least

on a session-by-session basis. They also have the highest accuracy overall by a small

amount (with one more correct prediction) but do not have the highest precision and

recall. TF-IDF improved on screen-on time by only a single additional correct classi-

fication. There is multiple possibilities for why they are settled so close to each other,

while the AUC is improved by over 10% for TF-IDF models, there might be an issue of

sample size arising. While every user has generated a sizeable amount of sessions, it is

possible that adding even more session could show more improved results for TF-IDF

features. This is especially the case because of how user labels are attached to each

session as discussed in Section 4.2, it is possible that for some of the users this differ-

ence does not crystallise out from their regular usage enough in a binary classfication

problem. Alternatively, it is possible that screen-on time is actually a fairly decent

predictor for SA, however, it should be noted that in this case when it came to predic-

tions of specifically the true positive case ASA it performed worse to TF-IDF by a more

significant degree (6 and 9 correct classification respectively).

This means that which one of these models is the best in that situation may depend on

the desired outcome. Two potential alternate real world scenarios could be constructed:

• The correct detection of addicted users is vital. The system has to be sure that

once a user is flagged they are actually showing these negative tendencies. In

this case maximising the precision would be preferred to overall accuracy, be-

cause missing users on the edge of detection has less consequence than including

wrong classifications.

• For screening purposes as many of the addicted users are sought to be included.

This enables reducing the set of potential participants with issues that have to be

addressed and can be followed up by additional steps. Here a high recall would

be ideal because less addicted users would be missed in the selection.

While these are not the only potential scenarios it demonstrates how considering al-
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Impulsivity

Addiction High (HI) Medium (MI) Low (LI)

Addicted (ASA) 4 (31%) 7 (54%) 2 (15%)

Not addicted (NSA) 11 (21%) 34 (67%) 6 (12%)

(a) Total overlap of all users.

Impulsivity

Addiction High (HI) Medium (MI) Low (LI)

Addicted (ASA) 3 (30%) 4 (40%) 2 (30%)

Not addicted (NSA) 6 (15%) 30 (75%) 4 (10%)

(b) Overlap of correctly classified users by TF-IDF based regression models.

Table 5.3: The count (and percentage) of overlapping users between the addiction

and impulsivity classes.

ternative models could be beneficial. Given the better model fit of TF-IDF and how

close the actual number values are though, in this case it is likely that when user count

is extrapolated further the results would favour TF-IDF overall.

Another aspect of these models is that misclassifications are (as discussed in the intro-

duction to this section) always ‘hard’. Generally misclassifications are never desired,

but given certain scenarios it can be less of an issue than in others. For example, in

a multi-class problem the difference between classifying a user as low instead of me-

dium might not be as impactful as if there was only low and high. Which in a binary

problem (such as SA in this case) is always going to be the case.

In combination this has shown that SA and impulsivity individually can be detected in

users from just their usage behaviour, following is a discussion about how these two

classes (which might be perceived as similar) should be valid to allow an extrapolation

to other cases.
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5.4 Generalisation of User Trait Extraction

The results in this chapter show that the BFUS model can be configured in such a

way to enable user trait identification. Those findings were validated in two separate

instances by identifying SA measured via the SAS and impulsivity measured via the

MCQ in user groups. This gives confidence in the model functioning not just specific-

ally with SA or impulsivity but rather is generally applicable.

A caveat to generalisation may be the perceived closeness of smartphone addiction and

impulsivity in terms of what they cause in the behaviour of a user. The argument could

be made that the issues between SA and impulsivity are linked as both topics describe

some impact on the human psyche. One could come to the conclusion that a large user

overlap exists between the addicted and high impulsivity groups. However, there is

no correlation between the SAS and MCQ results of each user (r=.196, p=.121). This

also extends to the specific pair of the groups for addicted (ASA) and highly impulsive

(HI) users (r=.266, p=.379). Additionally, Table 5.3 shows that the overlap between

impulsivity groups is similarly distributed across addicted and non-addicted users. This

means that the SAS and MCQ are not biased in such a way that they capture similar

groups of users by default.

This distribution does not significantly change if only the users that were correctly

classified using the TF-IDF models are considered. When focusing on the high im-

pulsivity group the gap does get larger for correct predictions of addicted compared to

non addicted users. This is likely the case because impulsivity and addiction alike have

been identified to have an influence on a user’s behavioural patterns and the likelihood

that some matching usage behaviour exists is relatively high. Apart from those as-

sumptions the connection between smartphone addiction and impulsivity and its effect

on the prior classification tasks seems to be small as addicted and non addicted users

alike can be identified with similar accuracy in relation to their impulsivity groups.

In conclusion, as part of this analysis impulsivity and smartphone addiction can be

considered separate variables as there is no substantial overlap between their groups.
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5.5 Implications and Considerations in predicting User

Traits

Due to the sensitive nature of the topic there are implications of hard misclassifications

if represented as strict binary classification labels (addicted when not addicted or vice

versa). The classification that was used relies on combining all session probabilities

to create a single probability of how impulsive or addicted a user is. The magnitude

of per-session probability is expected to be relevant when combining it into a total

probability. For example, instead it would be possible to count how many sessions were

assigned a label and pick the highest count but that would actually remove valuable

information of how impactful any single session was in context of all sessions.

Conceptually, when extending this to applying the final class label to a user it creates a

similar problem. Once the total probability is retrieved, applying a class label actually

loses information. Considering that issues such as problematic smartphone use does

not share the exact same symptoms between each user, quantifying it as a simple yes

or no question could be problematic. For a classification task (especially to evaluate

model performance) it makes sense, however in a real-world setting it might be more

practical to evaluate users based on the sliding scale that is presented when inspecting

the identified probability of addiction.

As a consequence the findings could be reported in terms of potentially correlating

factors and probabilistic risk, rather than treating it as a strict classification problem.

Anything added beyond that should be treated merely as suggestions as to how this

knowledge could be used in practice.

In Figure 5.1 this is demonstrated by showing the results of the TF-IDF model and how

users are actually distributed when considering their combined session probabilities.

The separation of users is not very clear, while there are some users who have stronger

tendencies on either side of the spectrum the general distribution is a trend rather than

a clear separation. Given this image, drawing a hard line at exactly the mid point and
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Figure 5.1: A sorted view of all 64 users in the Tymer dataset and their combined

addiction probabilities based on a TF-IDF vectorisation. The red line represents

a default cut-off value of 0.5 between an addicted and non-addicted class.

declare everyone above addicted seems questionable.

This shows the importance of considering the impact on users from these classifications

and that any conclusion stemming from it should be carefully reviewed. However,

depending on the accuracy of the results it is still likely that such a prediction is a

solid indicator, even if used with such a cut-off method. A deeper exploration of this

problem surrounding classifications and specifically uncertainty during the prediction

process is featured in Chapter 6.

5.6 Stability of Trained Models and Survey Data

While the surveys to infer user traits used in this thesis (SAS and MCQ) are statistically

validated, compared to the objective data which is collected from user interactions it
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may be possible that they lack in some aspects of actual representation. The models

presented in this thesis do not follow specific questions or rules that were previously

defined, instead they learn from the user inputs and then relate users that show similar

usage patterns. This could mean that these models will find relationships which are

closer than those modelled from static questions, which would have an implications on

the conclusions of prediction results in this thesis.

When false classifications are encountered, they are wrong from the perspective that

the original label could not accurately be recreated from the supplied input data. The

model identifies the input features of an unseen case to be similar to what it has learned

and therefore relates it to the probability of it being of a certain class. The cause of this

could be of two reasons: The first being that the learned features do not describe the

variance of the independent variable closely enough. In this it can be assumed that the

model does not have a good fit of understanding the relationships between features.

For the second point it has to be understood that in this analysis the SAS and MCQ

were used as a proxy for SA and impulsivity. This means that the model is learning

features which inform of the results of those surveys since they are markers which

can be used for those traits. However, that is what they are, an approximation of our

understanding for what constitutes SA or impulsivity.

The model has learnt the relationship of behaviour in the form of actual usage fea-

tures at a low-level of interactions. It then groups users based on this usage instead

of considering (potentially arbitrary) relationships of questions given to the user. It is

possible that the models actually have learned habits and patterns of problematic user

behaviour that cannot be detected by an in-person survey. Thus it may be that it has

developed a more in-depth understanding of those conditions than can be described by

survey questions.

So, while the analysis in this chapter showed that the response values of the SAS

and MCQ can be predicted with high accuracy, this poses the discussion whether a

predictive model like this is even better at decoding the markers of the underlying con-
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ditions (SA and impulsivity) than those original surveys. Validation of such a concept

would present a challenge since it would require ‘perfect’ labels (e.g., addicted or not

addicted) for the training set of users and it is unclear how that could be produced

because surveys are usually what is relied on to produce them.

5.7 Conclusion

In this chapter logistic regression models were used to predict user trait classes from

their transformed usage event stream. Between impulsivity and SA the results overall

are positive, where classification accuracy is as high as 90%. It further validates previ-

ous literature which has found markers of usage to be correlated with user traits such

as addiction (e.g., [96]) by adding method which is able to effectively separate groups

of users based on low-level events. It also achieves this by only monitoring a user’s

usage stream instead of the use of surveys (e.g., [21]). This compliments the isolated

feature analysis of Chapter 4, it shows that by transforming low-level features they can

be user to infer user behaviour as posed in RQ2 and also provides answers to RQ3

in that it is possible to predict user traits based on those features which produces (at

least partly) improved results to high-level features. Therefore it presents significant

evidence which supports C2 and also supports the application of the BFUS model of

C3.

Perhaps surprisingly, the models for either user trait show similar performance. In

Section 5.4 the analysis of an overlap between the trait groups shows that there is no

significant similarities especially between the “true positive” groups. This is interesting

considering SA was classified based on previously defined cut-off points outside of the

scope of this thesis while MCQ cut-off points were derived from their distribution.

This might inform of a general level of user trait information that is encoded in usage

behaviour.

The application with multiple features also reveals an observation but also potential
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limitation in the form of feature selection. For impulsivity models, low-level feature

vectors like event count and TF-IDF performed much better than the other representat-

ive summative high-level features. For SA, while the training effect (AUC) was better

for TF-IDF, there was a less clear separation between summative and low-level fea-

tures. Generally, selection of features seems to be a very important consideration for

model performance.

At a more general level, it is important to highlight that as well as SA and impulsivity

detection being used for positive and supportive purposes, such as to help diagnosis

or manage a condition, this work highlights that automatically inferring a user’s traits

from simple smartphone behaviour is possible. This reaffirms the importance of clarity

and ownership of one’s low level data and the inferences that are drawn from it. It

also highlights the significant trust that is placed in third-party organisations aligned to

individual data, even if the data is anonymous but bound to a specific device. These is-

sues surrounding the current data governance principles (or lack thereof) of automated,

potentially intelligent, systems which handle and process human characteristics are the

subject of ongoing development and debate in the wider literature [132, 16, 48].

A psychological interpretation of results is complicated since TF-IDF encodes the

events as weights and PCA then obfuscates the incoming features completely. After

this the regression model can show that some features have lower or higher β values

but they do not represent any real-world explainable features. The results show that the

presented methodology creates an effective way of capturing and representing usage,

so this poses the question of a possible extension which either does not obscure the

input parameters or is able to evaluate them.

The previous chapters culminate and are compounded here, the investigation within

this thesis moved through the multiple stages of smartphone behaviour analysis, from

its history and limitations to a new model with novel applications for detection pur-

poses. In this, the aim of this thesis, the detection and potential utilisation of user traits

from just smartphone interactions is considered successful. From here, the next chapter
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offers a collection of extensions to the process which addresses some of the limitations

or edge cases remaining.
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Chapter 6

Extensions to Behaviour Modelling

The previous chapters have discussed the efficacy of methods in behaviour research

(e.g., a focus on high-level or isolated features) and how those can be improved with

methods such as proper bounding or consideration of low-level events and applied in

a context such as user trait detection. In this chapter, recommendations for user trait

model parameters are explored which extend upon the previous additions towards RQ3.

Those suggestions offer an in-depth analysis of how user behaviour can be evaluated

instead of just predicted. This expands the set of potential tools for the evaluation of

usage as presented in Chapter 4 and contributes to C5.

6.1 The User-Session Relationship

In classification tasks the relationship between class (e.g., ASAor NSA) and label should

be one-to-one. This means when estimating the class of a user, such as that in Chapter

5, the input features should describe the label of the user themselves directly and not

be an amalgamation of their session behaviour. By considering each session as an in-

dividual classification problem, the scope was extended to a one-to-many relationship

(many sessions for one user). The outcomes were then combined to a single result

based on their average. Implementing such a strategy meant that every session can

be predicted individually but also introduced a certain amount of uncertainty for each

label. This leaves room for a potential concentration of data points with stronger indic-
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ators of the user’s class traits and therefore improve predictions on a per-user basis.

This becomes relevant given the construction of the learning set for the models presen-

ted in Section 4.2. Since this is a novel application of low-level UI events for user

trait detection there is no available data on how they are influenced by user behaviour.

Concretely, for the SA models (but similarly the impulsivity models) this means that

sessions are labelled based on the user’s addiction label as a binary value. This as-

sumes that every session of an addicted user will be distinct from that of non-addicted

users. In reality, this is likely not the case; only a subset of sessions will exhibit distinct

problematic characteristics. Additionally, the dataset contains sessions that are short

and have limited UI events, where correlating characteristics with addiction may be

prevalent. This also could be a source for sessions which are similar between addicted

and non-addicted users.

Based on this, we may expect that a lot of sessions exist that influence the classific-

ation by training the model with conflicting information. Currently, the labelling of

sessions assumes an inherent base stability in the input data. If every data point (e.g.,

session) in the one-to-many relationship is labelled correctly then the naive solution of

including all data points should be the best representation of the original data. Instead,

if the labels of the input data cannot be verified accurately, then there might be cases

where incorrectly tagged data can introduce issues during the training of the models.

Excluding these sessions from the evaluation of the users’ trait classes may improve

the accuracy of the models.

To examine this effect and the impact on the modelling, sessions that are close to the

boundary of classification of the current models can be excluded, as they as they are

likely to provide little to no valuable information for the actual task of user classific-

ation. The intention of this is to isolate a type of ‘uncertain’ usage session which is

common in both addicted and non-addicted users and then remove it.

To account for these uncertain cases of interaction, we continue by training a binary

classifier, but then evaluate and adjust the classification of the training data to account
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for uncertainty in the model. Interpreting ranges in logistic probabilities for uncertain

cases has been discussed in the literature before [69]. In these cases, a low confidence

area around the classification threshold is created which, besides the labels (in our

case, addicted and not addicted), creates a third label, uncertain as similarly explored

by Li et al. [78] and performed by Johannes Landsheer for detection of cognitive

impairment (CI) [74]. In this, Landsheer was able to isolate 27.5% (N=1379) of CI

cases as uncertain, which allowed him to boost his accuracy for results of positive and

negative classifications.

6.1.1 Examining the Effects of Evaluation Thresholds

The regression model calculates the probability that a given session is contained in a

positive (e.g., is addicted) class. A classification threshold is a cut-off point in [0, 1]

which is defined to separate the two classes. By default, a value of 0.5 is used, how-

ever it can be adjusted to account for cases of imbalanced classification. A more suit-

able threshold can be calculated via the maximum Youden index [166] to optimise the

break-even point between the false positive and true positive rate.

sensitivity =
true positives

true positive + false negatives
(6.1)

specificity =
true negatives

true negatives + false positives
(6.2)

J = sensitivity + specificity − 1 (6.3)

To demonstrate the effects of such an approach, the smartphone addiction TF-IDF

models of Section 5.3 can be re-used, as they represent a fairly classic binary yet im-

balanced classification problem. With this model, the Youden index (J) is calculated as

.567, which is very close to the default threshold. This can be explained through the

model being trained based on a balanced input (see Section 5.1), which means that the

input data is weighted to be equally as likely to occur and therefore adjusts the output

probabilities. Doing so is fine for prediction tasks, but because it does not accurately
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Figure 6.1: The amount of session support for all probabilities when a model is

trained with balanced and unbalanced input weights. A probability closer to 0

corresponds to NSA and 1 to ASA.

represent the underlying distributions of occurrence it shifts the Youden index away

from its original position.

To identify the Youden index as it occurs in the original distribution of classes, the

model needs to be adjusted so that the inputs are no longer balanced for class imbal-

ance. The issues this introduces can be later addressed by shifting the Youden index

into a more ideal position than the base cut-off. Figure 6.1 shows a histogram of the

probabilities of sessions between a balanced and unbalanced dataset. The major differ-

ence is the cut-off point which can be observed as the point where the most uncertain

sessions settle, compared to a model with balanced features it moved away from the

centre to ~ 0.31 for the unbalanced set. This occurs because of the larger volume of

sessions with a low probability of being in a certain class, the model does not correct

for the skew anymore and learns the distribution which will be a high concentration of

low probabilities.
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The resulting Youden index (M=.31, SD=0.01) for the unbalanced dataset can be used

as the threshold of probabilities when classifying users (as ASAand NSA) which means

this method should be close to equal to balancing the input data before. In this case, the

prediction results (9 true positives, 4 false positives, 4 false negatives and 47 true neg-

atives) are exactly the same as the balanced model and even the AUCs are within 1%

(compare Table 5.2). This way the same accuracy of a pre-balanced model is achieved

while maintaining a model which is trained using a distribution of sessions of how

they actually occurred. This shows that either method is suitable for a normal classi-

fication task, however for further computation with uncertainty along the probabilities,

an unskewed distribution is preferred.

Experiment 4.1 summary

Aim: Users may not exhibit signs of addiction in every usage session. Removing

the sessions which only have a small impact on the classification may improve its

accuracy.

Input sessions: All available sessions with class labels after pre-processing (as in

Chapter 4, Experiment 2.1 and 2.2).

Features: PCA transformed TF-IDF vectors created from UI events (as in Chapter

5, Experiment 3.2).

Output: Probability of addiction for each session (as in Chapter 5, Experiment

3.2).

6.1.2 Classification of the Uncertain

For the low-confidence (or ‘uncertainty’) range, a balance between removing sessions

and probability should be considered. Choosing it too high might remove too many

sessions and reduce the overall confidence in the model being generalisable, but leav-

ing it too small causes an ineffective amount of sessions to be removed. Figure 6.2
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Figure 6.2: The amount of session support for all probabilities when an unbal-

anced model is trained but sessions in the uncertainty range of 5/10/15/20/25%

expanded from the Youden index (J) are removed.
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Figure 6.3: The distribution of sessions that are considered addicted, non-

addicted or uncertain for every user. Uncertain is split into sessions that would

have been classified as addicted or not addicted at the probability threshold. The

users are sorted by their mean addiction probability of all their sessions. Symbols

along the x-axis: ‘x’ is a user that is addicted according to the SAS. ‘o’ shows a

false classification (depending on ‘x’)
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Predicted

5% 10% 15% 20% 25%

Actual ASA NSA ASA NSA ASA NSA ASA NSA ASA NSA

ASA 11 2 12 1 12 1 12 1 12 1

NSA 10 41 7 44 5 46 5 46 8 43

Sessions 176,385 141,265 107,978 78,363 46,457

Precision .524 .632 .706 .706 .600

Recall .846 .932 .923 .923 .923

Accuracy .813 .875 .906 .906 .859

AUC .794 .826 .865 .909 .950

Table 6.1: Confusion matrices for detecting user smartphone addiction when eval-

uated with an uncertainty range surrounding a probability threshold. Reference

for 0%: 301,024 sessions (TP=9, FP=4, FN=4, TN=47), Precision & Recall=.692,

Accuracy=.875, AUC=.724

shows how different cut-off points affect the number of sessions that get removed sur-

rounding the probability threshold. Those predictions are often incorrect because of the

low probabilities assigned by the regression model, therefore the overall classification

accuracy of the model can be raised.

Figure 6.3 visualises how different thresholds affect the sessions removed by the un-

certainty range affect the number of considered sessions. Every user produced sessions

of each category but either side of the scale shows that users predominantly create ses-

sions with their respective labels. Additionally, it shows how users that were falsely

classified (marked with ‘o’) fit in with their neighbours based on the volume of sessions

of the opposite label they produced.

In Table 6.1 the impact on classification is shown. As the adjusted models remove

the peak around the Youden index, even 5% removes almost half of all classification

sessions (∼300k to ∼175k). Given the large volume of sessions this still leaves a lot
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of sessions per user to be evaluated (M, Mdn, Std) while removing a lot of sessions

that do not contribute a lot of distinguishable information. However, in the case of 5%,

the overall prediction quality is slightly worse with 52/64 correct predictions, this is

likely a result of removing previously available information which helped classification

while still retaining too much noise. Once 10% are removed the results show slight

improvements with 56 correct classifications. This is better than the previous models

where no thresholding took place and evidences some support that addictive behaviour

may not be exhibited in all sessions a user performs.

There is a relationship between the threshold increasing and more and more sessions

being removed (roughly 30-40k per step). The results for 15% and 20% are identical

with an accuracy of 58/64 correct classifications. Simultaneously, the AUC for the re-

maining session is increasing steadily as sessions which are less relevant are removed.

The accuracy for remaining sessions increases, even if it does not directly translate to

improved results for users. One aspect to consider when applying such a technique

is that the removal of an increasingly high volume of data points might cause issues

with the general applicability of the regression models, risking fitting it too close to the

specific data.

For example, at 25% (with support of only 46,457 sessions) the accuracy reduces back

to 55/64 correct classifications. At this point, so many sessions are removed that some

users only have <10 sessions to be tested for each iteration of the cross-validation.

The loss of trainable data at a threshold this high removes not only confidence in the

generalisability of the method as a whole but also removes too much data from the

model to make good guesses on a user’s session.

6.1.3 Validity and Discussion

By applying an uncertainty range the gap required to create a more definitive addicted

or non-addicted session is widened. In Figure 5.1 it was possible to observe how the
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Figure 6.4: Distribution of probabilities for a regression model with unbalanced

input data and after removing sessions in a 15% uncertainty range around a 0.31

threshold represented by the red line.

probabilities of all users aligned. This shows that drawing a hard line at a threshold

of 0.5 is probably not a practice that is applicable in the real-world. Figure 6.4 shows

a distribution of all users after applying a 15% uncertainty range and retraining the

model with those sessions. While there is a clearer separation between the peaks of

addicted and non-addicted users the threshold is still in an area where it should not be

applied automatically (note that for demonstration purposes the probability threshold

is adjusted as it changes again after retraining).

This shows how the one-to-many relationship between users and usage sessions can

be utilised and also adds another layer to the discussion of classification strategies in

Section 5.5. Improvements to accuracy are possible, however, depending on the avail-

able data and methods used they can introduce issues with pruning too much data.

Choosing to use an uncertainty range for classification in a user trait identification task
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can therefore only make sense if tuned appropriately. Additionally, while the best-

performing uncertainty range in this section is 20%, it may be not the exact threshold

that will be applicable for other feature sets or users. It shows that removing some of

the less impactful data can be useful to improve classification accuracy and sets an ex-

ample of how to choose such a range instead of a simple threshold without uncertainty

considerations.

Another point that needs to be addressed is that this actively interferes and adjusts the

outcomes of a regression rather than improving the understanding of input parameters

to the model. This would be a bigger issue if the input data, specifically the user labels,

are completely accurate. However, the way that user labels are applied to each session

(as discussed in Section 4.2 means that the ground truth on a per-session level is not

guaranteed. Thus the main motivation to this approach stems from the fact that it is

not possible to retrieve the per-session labels but the analysis is based on a per-session

basis. Following this, it is difficult to tune the models further for more accurate readings

on the labels themselves because on a session level it may be unknown whether they

are more or less reflective of a user trait if they are not already firmly predictive of one

or the other. This also means that this method is not recommended in a situation where

per-session labels exist, because then the goal should instead be to identify the markers

for ‘neutral’ sessions directly. In this case, where the label assignment causes the

uncertainty of which features may be influential, thresholding represents a compromise

since it does necessitate discarding information in the form of some sessions but may

help to strengthen a predictive model which may otherwise not be possible.

The results suggest that the classification of SA can be reduced down to the occur-

rence (or not) of a small number of specific smartphone sessions to a user. This raises

questions, along with the contributions of Chapters 4 and 5, about the psychological

interpretation of the influences of individual features on trait predictions.
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6.2 Balancing Model Interpretability and Accuracy

The choices made in the implementation of the BFUS model to examine linkages

between smartphone behaviour and user traits in Chapter 5 were focused on max-

imising classification accuracy. In particular, training the regression models with raw

feature vectors causes issues with highly correlated features (such as singular matrices

during training). By applying PCA, those collinearity issues are resolved automatic-

ally while maintaining almost the total variance (99%) in the data. This is a common

strategy for regression models but comes at the cost of losing their interpretability, as

they now represent a compressed version of the original input features which can no

longer be accessed after a PCA transformation. However, the implementation can be

adjusted to allow for the extraction and examination of the effects of specific beha-

viours in specific app types that can bring useful conclusions in their own right, albeit

at the potential expense of maximising model accuracy.

6.2.1 Regression Coefficients

To circumvent the feature obfuscation which is introduced by using PCA an altern-

ate method to resolve collinearity issues during the regression is needed. Collinearity

occurs for features which are highly correlated, so removing features is an option.

However, it adds the additional task of having to decide which features to remove or

keep. Since this is a manual step it may introduce issues for creating regression models

because of reasons such as:

• It can become very laborious for a large number of features

• Singularity can also arise from inter-dependencies of multiple variables that are

linearly linked

• Ultimately it is an arbitrary selection of which feature to keep or discard
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One way around this issue could be hierarchical regression, however, this is difficult

because of the high amount of features. Since any session may include multiple cat-

egories, they need to be included in their entirety alongside all features in the dataset.

This means that building many stepwise models for the amount of sessions in the Ty-

mer dataset is a very computationally expensive process. Thus, for a faster selection

this section opts to remove collinaearity issues removing highly correlated features.

Assuming a successful removal of correlated features, they can be used as input fea-

tures for the regression models with the same process as Chapter 5. In the case of

the Tymer dataset, with input features being category-specific TF-IDF transformed UI

events, removal of features showing a correlation of >= 0.9 proved to effectively re-

solve all collinearity issues. This section will go on to show how the BFUS can be used

to identify the individual influences of features which make up the whole of a user trait

classification.

Once the logistic regression models are adjusted in this way, feature importance can

be extracted by utilising the models’ coefficients. This shows how important specific

regressors were in the context of the current model, even if they might not be directly

comparable to a general measure or between different models. This gives insight into

the influence of features on the decision function of the model made based on the

behaviour of a user.

The regression coefficients are a measure of how much any given regressor contributes

to the outcome of the final prediction. A higher, positive value corresponds to a positive

outcome (addicted in this case) and a lower, negative value corresponds to a negative

outcome (not addicted). Features which are close to zero show that they are either too

similar or hold too little variance information to be useful for predictive tasks.

Figure 6.5a and Figure 6.5b visualise all coefficients in the model with statistical sig-

nificance (p<.05) after Bonferroni correction. The full range of coefficient tables is

available in Appendix D. TF-IDF has a fairly gradual, linear distribution of coefficients

with a few features on either end of the curve having a particularly strong influence.
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Figure 6.5: Shape comparison of feature coefficients and a 5% confidence interval

for all statistically significant features in the logistic regression. View Appendix D

for the full list of coefficients.

This shows that any prediction with these models is an accumulation of many reason-

ably weighted features. In contrast, the event count is distributed such that only a few

events have a strong influence on the result.
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Model Mean Median Std CV Min Max

TF-IDF -.014 -.304 1.384 .488 -2.852 5.093

Count .012 0 .178 .301 -.579 .821

Table 6.2: Descriptive statistics of coefficients for TF-IDF and event count models.

CV=Coefficient of variation.

This can also be seen in Table 6.2, even though the means between coefficients for both

models are similar, the deviation from the mean is much higher for the TF-IDF model

(M=-.014, SD=1.384, CV=.488) than for the event count model (M=.012, SD=.178,

CV=.301). Because of the unrelated ranges between model coefficients, this is true

even when the normalised coefficient of variation (CV) is considered instead of just

the pure standard deviation. This shows that TF-IDF has a better distribution of feature

influences and the model learns from more factors of information instead of only really

considering a small count of available features.

This variation could be the reason for the TF-IDF models outperforming count models

in classification tasks as more features meaningfully contribute to the total outcome.

However, given the transformation by TF-IDF, these coefficients do not necessarily

hint towards the frequency of the events occurring in a session, but rather towards

the relevance of the event. It makes a psychological interpretation difficult because

TF-IDF’s relevance calculation obfuscates the raw information (i.e., counts) used to

calculate it. In turn, this makes interpreting the potential influence of the abundance or

scarcity of events not possible in comparison to using raw event counts instead. This

motivates the exploration of feature influences in an event count model.
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Feature coef [0.05 0.95]

App switch .154 0.143 .165

Text input .003 .002 .004

Short idle 0 0 0

Scrolling 0 0 0

Tap N/A

Long idle -.042 -.053 -.032

(a) Coefficients for count model

Feature coef [0.05 0.95]

App switch 1.027 .827 1.227

Text input .698 .579 .817

Short idle .468 .384 .553

Scrolling -.209 -.317 -.100

Tap -.602 -.786 -.419

Long idle -1.401 -1.628 -1.185

(b) Coefficients for TF-IDF model

Table 6.3: Coefficients for the statistically significant features (events) in applica-

tions of the Social category.

Experiment 4.2 summary

Aim: Depending on the use case, the psychological interpretability of the input

features may be desirable. In the previous regression models, the input features

were obfuscated using PCA to resolve collinearity issues. Instead, their correlation

can be used to manually remove features.

Input sessions: All available sessions with class labels after pre-processing (as in

Chapter 4, Experiment 2.1 and 2.2).

Features: TF-IDF vectors created from UI events, where all features with a cor-

relation of >= 0.9 were removed.

Output: Probability of addiction for each session (as in Chapter 5, Experiment

3.2) and an interpretable regression coefficient for each feature.

6.2.2 Evaluating SA Regression Coefficients

While event count models attain less accuracy than a model built using TF-IDF scores

as features, they provide an opportunity to drill down into the more specific causes
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of behaviour changes. To give an example of how this usage could be interpreted,

Table 6.3 shows the coefficients of events for the Social category. This category was

selected as it is frequently referred to in the literature as a key category for its impact

on user behaviour and its potentially problematic aspects with respect to SA [161, 114,

109].

Application switches in this category are a factor associated with SA, this suggests that

users that frequently switch from and to this category are more prone to SA. Text input,

short idle and scrolling are (or close to) non-contributing factors. Taps were not a signi-

ficant coefficient. Long idle is a slightly negative feature, meaning that longer pauses in

these applications are a slight indicator for more considered and less SA-prone session

behaviour. This aligns with previous findings that show that forcing pauses (effectively

locking device usage) before using applications which are linked with overuse (such as

social network applications) can induce regularisation of smartphone use [59, 60].

TF-IDF models show some parallels in the results, where it shows that as app switches

become the dominant feature, it increases the probability of SA behaviour. Addition-

ally, the same is true for the opposite effect with long idles. This shows that for these

two events, their total frequency but also their relevance in a session have an impact.

On top of these parallels, TF-IDF shows some more variation in the rest of the coeffi-

cients. For example, tapping and scrolling are slightly negative factors. This could be

due to the fact that these are very normal actions performed by every user, so when they

are the focus of a social application session it’s potentially not correlated with addic-

tion. On the other hand, text inputs (could be things such as writing a post or replying

to a comment) and short idles seem to be evaluated as factors that could be interpreted

as problematic. This could be due to them being the result of more engaged behaviour

that requires a user to interact more closely with their device than just scrolling.

As evident, the lines of reasoning for the interpretation of TF-IDF models are much

more difficult compared to those with event count. Being able to connect a higher count

of an event with a higher chance of problematic behaviour is easier to understand than
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the relative score of a transformation. However, in the previous chapters adding this

kind of additional level has been helpful in differentiating the highly nuanced behaviour

between users.

In the context of the BFUS model, this shows that choosing the parameters for all three

of its steps carefully is vital to generate desired results. For example, in a classification

task, maximising probability is desirable even at the cost of obfuscating the input vari-

ables. Whereas for more real-world explainable parameters, especially when it comes

to trying and resolving issues of potentially problematic behaviour, it might be more

appropriate depending on the application to choose a slightly worse fitting model that

provides an easier means to examine the impact of event counts.

6.3 Conclusion

This chapter showed that considerations of uncertainty and interpretability should af-

fect the creation of behaviour models - using Smartphone Addiction models as a demon-

stration to provide design considerations going forward. Firstly, in a novel approach

addressing a problem caused by the sessionisation of the event stream through the

BFUS model, the user-session relationship is explored. User traits may not be reflec-

ted by each session a user produces but is assumed to via the application of the user

labels. This causes similarity of types of sessions between addicted and non-addicted

users and creates uncertainty which can be leveraged to produce more precise results.

Every user produces many sessions which may or may not be indicative of a user trait

and there is no absolute certainty in how strongly a user’s behaviour is reflected by their

usage. It is possible to construct a set of training data (i.e., user sessions) that isolates

more pronounced markers of a user’s behaviour by removing those sessions that fall

into a range of ‘uncertainty’. The results show that by focusing on sessions with more

certainty, probability-based prediction tasks can be improved. However, this should be

approached with caution due to the effects this may have on data quantity and overfit-
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ting. This is a novel approach to tackling uncertainty in smartphone behaviour and in

this example which uses user traits also adds evidence for C3.

Furthermore, the challenge of building models using interpretable features is discussed.

While Chapter 5 showcases the predictive power of usage transformed into TF-IDF

score features, there are limited opportunities to interpret and contextualise the impact

of each raw event on the classification produced by the model. Such interpretations

are helpful to identify possible cause-effect relations between smartphone usage and a

user’s traits. Alternative strategies using event counts present a design consideration

in balancing model accuracy with improved interpretability through regression coeffi-

cients.
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Chapter 7

Conclusions

The overall efforts in this thesis provide contributions to the advancement of the field

of behavioural research surrounding digital devices. In this chapter, these contributions

are summarised and key results are highlighted, as well as a discussion surrounding its

wider impact in the literature. This includes an assessment of the techniques that are

used throughout the thesis. This paves the way for potential future work surround-

ing the future of behaviour research with digital devices, in which key directions are

discussed following the thesis summary.

7.1 Thesis Summary

7.1.1 Assessment of Smartphone Behaviour Research

In the literature, a wide variety of methods have been used to record and extract the data

surrounding smartphone use. This includes information specific to the device that can

be used to infer habits based on usage patterns (e.g., derived from application usage,

battery status, SMS and phone calls) and other sensors that collect external information

(e.g., GPS location or signal strength). One area of application of understanding this

behaviour is exploring links between behaviour and user states and traits. Furthermore,

the use of surveys for mental states (e.g., mood or boredom) has enabled the collec-

tion of user personalities and traits (e.g., smartphone addiction or impulsivity). These
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metrics have been used to infer various aspects of the behaviour of users such as rule

mining or problematic use patterns.

Within these research areas, some conventions bring progression into an otherwise

unstructured landscape. Recent work has been moving away from strict survey data

and towards large-scale data processing because of the advanced capabilities of on-

device capture but also progress in the understanding of aligning user states with their

usage. However, aspects such as feature selection still remain to be identified and it

motivated the exploration of alternative approaches such as low-level UI events as the

basis for contextualising on-device usage. It is likely that they will evolve even further

in the future as device capabilities change, instead of there being a permanent solution.

7.1.2 Evaluation of Isolated and High-Level Features

Parts of this thesis were motivated by questions surrounding commonly used metrics

in the literature (specifically RQ1). The assessment found isolated (oftentimes sum-

mative) features to be common metrics used in the literature (Chapter 2) for usage

behaviour evaluation. However, with the rise of modern data-driven approaches and

their capability to observe finer-grained device usage events, the effectiveness of these

common metrics can provide more detail on device use compared to model usage.

For this, the thesis utilises the Tymer dataset which fulfills the various requirements

for low-level feature capture. The Tymer dataset includes data collected over 8 weeks,

with a reasonable amount of users (64) which generated a sizeable amount of session

(>300,000). While this is comparable to or even more data than other studies in this

research area, there are also others that collect data for hundreds or thousands of users,

and collect data over much longer periods of time. On an individual level, these lar-

ger studies often collect data less frequently and with smaller individual datapoints, or

data in a more compressed form. However, this still offers more diverse data over a

longer period of time. The Tymer dataset is the largest (public) dataset that captures
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data of this low-level nature (combined with user labels) and should largely be repres-

entative of user behaviour, but it is limited in size and diversity when it comes to the

consideration of universal applications.

The analysis in Chapters 3 and 4 has shown that isolated features (of any level) do

not suffice to accurately capture the complexity of user behaviour compared to a com-

bination of features in a multi-modal model. To do so Chapter 4 focuses heavily on

the features in isolation and their comparative effect sizes using multi-class pairwise

tests. While other methods of analysis such as regression models would have been pos-

sible, the focus on these pairwise tests enables a direct comparison not just between

the features within one model but lend itself to comparison when other vectorisations

are introduced (such as added application categories). As such the outputs of Chapter

4 are purely meant to highlight the inconsistency of how frequently isolated features

and are highlighted through a standardised effect size. Additionally, Chapter 5 high-

lighted the utility of low-level UI events in comparison to summative features. For

two examples of groups of independent variables (e.g., smartphone addiction risk, im-

pulsivity groups), TF-IDF transformed low-level features provided stronger predictive

power compared to high-level summative features.

As discussed previously, low-level features as represented by UI events here should

offer a better representation of the nuances in behaviour in the form of a users usage.

This is because high-level features compress and misrepresent the actual usage. Re-

utilising TF-IDF in a non-NLP context enables a novel kind of ‘importance’ extraction

for events within each session and its fixed vector output is ideal for many forms of

follow up analysis. However, this method intrinsically also represents a form of com-

pression. By using TF-IDF the direct temporal relationship between events within a

single session is lost since it computes the relevancy of events for each session across

all usage of users. While it is possible to encode timings and hesitation by introdu-

cing ‘pause‘ pseudo-events, this is otherwise only circumventable by utilising n-grams

which are computationally very expensive. It would also be possible to only focus on
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transitions within each session through methods such as markov chains, but this loses

the relationship to the rest of the ‘corpus’. It appears that for to analyse usage of user

behaviour there is balance for feature compression which moves between usability,

computability and (mis-)characterisation.

The findings of the analysis applied with isolated and high-level features leads to the

following contribution:

C1 Identification of issues with current common methods for representing user beha-

vior, which tend to focus on single, isolated features and high-level characteristics.

7.1.3 The Behaviour-From-Usage-Stream Model

The limitations identified as part of C1 motivated the design of a generalisable model

for usage processing as a basis for comparison between usage features. Chapter 3 intro-

duced the BFUS model which acts as a framework for user behaviour modelling. The

model assumes that users generate a stream of interactions with their device which can

be used to explore their behaviour. It provides multiple steps to aid the construction

of a user evaluation model while maintaining indifference towards individual para-

meters such as feature selection or possible applications. The abstraction is necessary

to enable future compatibility with developments in device capabilities, data capture

methods and advancements in usage behaviour research.

C2 The proposal of the Behaviour-From-Usage-Stream model represents a formal

framework to process and evaluate user behaviour data.

7.1.4 Trait Prediction from Behaviour Stream

Within this thesis, the BFUS model was designed to utilise any factor of usage beha-

viour and relate it to independent variables. This enabled research questions that stable
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user traits reflect on a user’s behaviour and can be detected as such to be investig-

ated. This is posed by RQ3 and tested in Chapters 4 and 5. Isolated features were not

sufficiently capable to separate groups of different levels of addiction or impulsivity.

However, a combination of features resulted in strong performance in predicting user

trait groups for SA and impulsivity.

In this impulsivity and smartphone addiction were used as separate traits to demon-

strate the models ability to adapt to more than one variable. The traits were determined

using previously established surveys (the MCQ and SAS-SV respectively), but there

are other methods that have been developed for them. The focus of this thesis was not

to obtain a definition of how impulsivity and smartphone addiction influence the users

behaviour but rather that user traits in general will show influences in the users usage

habits. This was successful in that low-level features were able to predict classes of

users based on the markers identified by these surveys. Furthermore, both traits are

expected to encourage negative behaviours and could be construed to be too similar to

be considered individual traits. While psychologically there may be overlaps in how

this affects a person, the limited overlap between the highly affected users of SA and

impulsivity gives confidence in the generalisability of applying the BFUS framework

for applying to different user traits. This leads to the following thesis contribution:

C3 A case study of UI event based user behaviour capture being powerful enough to

distinguish users based on psychological traits such as addiction or impulsivity.

7.1.5 Uncertainty and Interpretability Recommendations

Predictive tasks surrounding smartphone behaviour offers multiple candidates for vi-

able evaluation methods. Chapter 6 expands this knowledge by supplying analysis-

backed suggestions for topics such as feature selection, psychological interpretation,

and a novel concept for decisions on the uncertain aspects of the user-session rela-

tionship. It presented an in-depth exploration into suggestions for the evaluation tools
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which apply to predictive tasks and can be used in conjunction with the BFUS model.

It introduces the concept of leveraging the one-to-many relationship between users and

sessions to deal with the uncertainty introduced by user trait labels. This uncertainty

is originally created by assigning the users labels (SA and impulsivity) to each ses-

sion they created individually. It is unlikely that every session they generated actually

displayed their traits in a detectable manner. Therefore there is a form of base incon-

sistency in the labels when the sessions are evaluated. This also prevents really drilling

down into how the behaviour caused by these traits affects session usage. After all it is

not really possible to determine how the behaviour is correlated to the session interac-

tions. The uncertainty threshold may contribute a method to reduce the sessions with

low impact to the overall evaluation. It should be noted, that instead of identifying the

root behaviours, this just removes cases which are hard to identify, in a usual scenario

with correct labels this should be avoided. Furthermore, this also applies for the dis-

cussion in feasibility and trade-offs of utilising these predictive models of smartphone

usage for psychological interpretations.

Extracting the psychological relationships when low-level features are transformed via

TF-IDF is difficult, and relying on counts or screen-on time may be reasonable options

when making inferences for audiences that need more explainable influences. How-

ever, as discussed this does introduce issues with compressing actual behaviour. When

using transformed low-level features for prediction tasks and still desiring to under-

stand the influences of the individual features better, it is possible to remove features

to avoid collinearity issues while building the regression models. Therefore, feature

correlations are used to build models that retain their input features (instead of util-

ising PCA) for collinearity issues. While there are other standard ways to accomplish

this, such as a stepwise linear regression, such an approach would be very computa-

tionally expensive for the high amount of features and sessions in this situation. By

addressing this issue, non-PCA transformed features enable a comparison between the

coefficients of different features. This gives information to how user traits (such as
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SA or impulsivity) have changed the usage in sessions. It should be noted that in the

case of TF-IDF a direct comparison is still difficult because it obscures the meaning

of "more" or "less". It can only inform of the relevancy of the feature and that in a

given session it is impactful for a trait. In contrast, using the count of events gives a

more natural, explainable result but comes at the cost of a worse performing prediction

model.

7.2 Future Work

This thesis builds on the current body of literature surrounding smartphone behaviour

research and addresses key limitations. The contributions outlined in 7.1 provide a

basis for further exploration of understanding usage behaviour and the BFUS frame-

work can be applied in various different contexts. This section explores how these

concepts could be applied or extended in future work by shifting the context of their

application.

7.2.1 Extension to Other Digital Devices and Multi-Device Use

Capture and processing of usage data are often concentrated on smartphones or other

wearable devices because, for a large proportion of users, these are devices which

they interface with constantly throughout the day. Simultaneous use of, or switching

between multiple devices is a growing trend [106]. Using multiple devices enables

ways of multitasking and context switching which are not possible to be achieved by a

single device and likely creates interaction effects which are not well understood yet.

This motivates the exploration of the effects stemming from multi-device usage.

These devices often also bridge personal and business use and may not be restricted to

certain times of the day. In many ways, they are often ubiquitous to every aspect of

life. This is reinforced by other devices such as laptops or personal computers which
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represent a different category of digital devices altogether. Datasets for these devices

are not as frequent or have enough detail to be considered useful for the transformation

in this thesis. However, the general idea of collecting many low-level data points is not

completely foreign as seen in the example of the Behacom dataset [127]. This is an

opportunity for the research community to design studies generating suitable datasets

of single and multi-device use with low-level interaction events.

Parallels between the usage of smartphones and desktop computers can be established.

High-level features such as screen-on time, application switches or categories are very

similar. Low-level features are also very comparable, all primary and most supplement-

ary actions are well-defined in both cases and oftentimes directly applicable through

some sort of semantic mapping. For example taps and clicks, scrolling with a finger or

mouse wheel, and inputting text using the onscreen or an external keyboard.

The model framework as outlined in Chapter 3, enables flexibility in areas such as

vectorisation and application such that it could theoretically be applied to other tech-

nologies, given the relative closeness of platforms in terms of interaction possibilit-

ies. There might be different parameters and features that need to be chosen as these

devices to have different characteristics than smartphones such as portability, screen

sizes or computational power that add additional layers of complexity for evaluating

behaviour. Use cases such as multiple applications being used at the same time do not

directly translate to the capabilities of most smartphones and therefore would require

special consideration.

7.2.2 Robustness and Configuration of BFUS

When the BFUS model is introduced in Chapter 3 it is described with a three-step

process (Bounding, Vectorisation and Application). In this, it formalises a process of

user behaviour analysis that previously was left entirely to the researcher themselves.

Over the course of this thesis, its individual steps have been utilised and validated,
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specifically with respect to Bounding where screen-to-screen sessions were created,

Vectorisation in the form of utilising high-level summative features or UI-based fea-

tures and Application with internal consistency and external variables in the form of

SA and impulsivity. Choosing the method to use in each one of these steps was based

on the surrounding literature and the assumptions made of the outcome. Screen event-

based breakpoints for sessions, low-level event TF-IDF transformation and logistic

regressions provided the best results for the Tymer data.

However, given the extreme variance in user behaviour data not only between-subject

but also within-subject, these methods might not translate to every possible use-case;

on top of there potentially being better methods being discovered in the future. The

model provides a flexible framework for future research with alternative goals. There-

fore there is a wide breadth of options to consider when choosing how to construct

such a model. The aim of this section is to encourage the careful selection of those

options and add to the scope of considerations.

7.2.2.1 Considerations of Alternative Model Parameters

As discussed in Section 3.3.1 Bounding can be approached in multiple ways. Various

methods including screen event-based separation (e.g. screen on to off), cognitive

timeouts (e.g. 45 seconds of idle) or time windows (e.g. day of the week or hour of

the day) have been proposed before. In this thesis, screen event separation is used for

bounding but timeouts are included to encompass multiple facets of the current state

of research surrounding cognitive boundaries. Alternative methods of slicing the event

stream (e.g., application launch boundaries) may be useful in other scenarios.

Vectorisation establishes the features that are available to relate to the outcome (e.g.

independent variable). Commonly this has been simply screen-on time or similar high-

level features. As part of this thesis, the use of transform low-level events in the form

of TF-IDF has been explored.
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NLP offers a lot of parallels with its various methods to transform the high variance in

a string of strictly defined tokens. A different approach to TF-IDF is Word2Vec which

instead of extracting the relevance of a token in a document, encodes the information

of how different tokens relate to each other. This means that instead of the importance

of the word itself, the semantic similarity to each other word is computed. In terms

of natural words, this could be that the word “man” is the combination of matrices for

“human” and “male” whereas “woman” combines “human” and “female”. In the space

of NLP, this can be very useful information as it introduces semantic connections that

were previously known to humans but not computers. This information could poten-

tially be useful to relate to user interactions in sessions rather than words and sentences.

The relationship of actions taken based on content or time of day could resolve new

findings in the user behaviour space. Additionally, it encodes this information in a

fixed-size vector matrix, which provides a flexible means for further processing.

Similarly, transition matrices are used to represent transitions between different states

of a system. They are used to model the probability of transitioning from one state to

another. They can also be used to predict the future states of a system and to determine

the most likely paths between states. In the context of smartphone UI events, they can

be difficult to tune because of the overwhelming amount of some events over others

(e.g. scrolling). Markov chains can be used to visualise (and therefore contextualise)

transition matrices easily which could be useful in scenarios where the state model is

of interest.

TF-IDF as a bag-of-words method loses these relationships between words completely.

Instead, it is possible to construct N-grams or apply sliding windows for usage within

sessions to retain some of this information. However, this introduces an exponential

growth of features to consider which might increase compute times beyond acceptable

levels. It also increases the count of features significantly which means overfitting

issues can arise depending on the data which is used to fit regression models.

For the analysis in this thesis, application categories were extracted from the app store
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as-is. The reason for this was to retain accurate input data without adding a layer of

potentially biased clustering of applications for the sake of the model. But Al-Subaihin

et al. identified that categories from the app stores can be misleading because of a lack

of granularity and specificity [5]. By transforming the input vectors via alternative

measures to create categories for applications (e.g., clustered description text) it may

be possible to increase the model’s accuracy and interpretability.

Alternative approaches for Application include internal disambiguation methods, for

example, one of the various other clustering algorithms. For example, hierarchical

clustering as an unsupervised machine learning technique can be used to group ses-

sions into clusters based on similarity (similar to the approach of K-Means). This

approach allows for the creation of a hierarchical structure of clusters, which can be

used to highlight how usage is connected. It can also highlight decision values which

separate usage clusters from each other and could be used for further psychological

interpretations of usage behaviour.

7.2.3 Practical Applications

In this thesis, the feasibility of detecting user traits using the BFUS model was demon-

strated. This motivates constructing potential scenarios in which this technology could

be applied with a real-world effect. Simultaneously, given that such systems will

handle sensitive personal data it raises the need for consideration of potential ethical

and privacy issues.

With the focus on problematic smartphone use, scenarios in a clinical setting in which

such a system is extended to a platform used by professionals to evaluate patients’

psychological profiles could be a research direction to explore. This would enable them

to explore the efficacy of personal device usage data alongside a patient’s development

without any need for more invasive methods. For example, not only would it remove

the need for repeated surveying of the user to track how treatment impacts them over
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time.

Since on-device capabilities have evolved to the point where this kind of computation

might also be feasible right ‘in-the-moment’. With traits of a user being tracked as they

use their device in everyday life. This could provide invaluable insight and feedback

to users about their own habits and usage patterns that they might not be aware of.

Contextualising smartphone usage from UI interactions could also be explored for

intervention-based applications (e.g., [60]) and could also prompt a user to reduce

problematic patterns or inform them of how their behaviour reflects those issues.

7.2.3.1 Preventing Impulsive Use

The detection of sporadic or impulsive usage may also be of interest for user traits that

are not specifically bound to smartphone usage. Certain aspects of user behaviour have

previously been linked with issues in cyber security (e.g. [100, 2]). A user’s behaviour

can identify them, which can be useful in cases where it is desirable to know if the user

of a device is its actual owner solely based on usage traits. This can be extended to a

security feature which is called continuous authentication. In this, the behaviour of the

current user is monitored constantly and checked against a learned pattern of the owner

of the device [70, 86]. If the behaviour does not match the previously learned behaviour

the user gets effectively locked out of using the device. While current approaches are

not secure enough to replace traditional measures such as traditional biometrics or PIN

completely, it is a promising additional security layer that is difficult to fake. The link

between cyber security and impulsive characteristics in user behaviour and adding such

warnings could be beneficial to protect against the breach of critical systems.

7.2.3.2 Suggestion and Recommendation Systems

One of the key areas of smartphone usage concerns itself with directly utilising certain

information to generate a benefit for the user. The smartphone and its rich application
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ecosystem enable many different tasks to be accomplished and users tend to individual-

ise their phones to fit processes in their own lives. With dozens of applications installed

on a single device, it can be difficult to organise the limited screen space. Previously, by

observing the usual context and usage data it is possible to observe common switching

patterns [149] and use those patterns to predict which apps users will likely seek to use

next [11, 56]. This can be as simple as a drawer of frequently used applications that a

user is most likely to return to but using approaches such as rule mining (Section 2.1.2)

can enable more powerful, dynamic options. Instead of just displaying frequent ap-

plications this approach can show less frequent or more niche applications based on

previous application sequences, the location and time or other context information.

Another aspect is maximising the longevity of a constantly draining battery. With

strains on different components of the device (based on the applications that are being

used), managing the available resources can be a valuable tool. Throttling or optim-

ising the drain of processing and memory modules can be an effective strategy to min-

imise battery drain for specific tasks [133]. Combined with next-app prediction it has

been shown that pre-loading expected application launches in the background can be-

neficially impact battery drain [164]. Also more generally applied, modern low-power

modes already implement some of these ideas by restricting resources that reduce re-

sponsiveness to an extent but do not affect the user experience. For example, these

can include limiting notification frequency, reducing network speeds or reducing back-

ground processes while the display is sleeping.

This has been possible through learning and adapting to usage in the form of time

spent on the device and application switch patterns. It may be possible to also utilise

the captured signals of low-level events to direct a users next move. This is could

be useful in isolation (e.g., for better next app predictions), but also with additions of

user labels such as SA to drift them away from other problematic or addiction-seeking

usage patterns.

The evolution of the smartphone and future capabilities in sensing and computing
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means that continued development surrounding these personal devices is likely. To

further observe and understand how people use (and want to use) their smartphones

will be relevant to drive this development.

7.3 Final Remarks

In this thesis, a new model for decomposing usage from behaviour in the form of an

event stream was presented. Utilising this model in combination with various features

showed their correlating strength with personal user traits. Usage at the low-level in

the form of UI events inherited the strongest signals of those traits when compared

with summative time-based features. This has shown the efficacy of utilising low-level

interactions such as UI events as the basis for contextualising behaviours in smartphone

usage.
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Appendices
A Tymer Demographics

Age M SD
Years 25.4 5.87

Gender N %
Male 34 53.13
Female 30 46.88

Employment N %
Student 38 59.38
Student & employed 13 20.31
Employed 12 18.75
Unemployed 1 1.56

Education N %
High school, no diploma 1 1.56
High school diploma or equiv. 5 7.81
Trade/technical/vocational training 1 1.56
Undergrad education, no degree 14 21.88
Bachelor’s degree 19 29.69
Master’s degree 21 32.81
Doctorate 2 3.13
No answer 1 1.56

Table A1: Demographics of the Tymer dataset. Table taken from [104].
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B K-means elbow

Figure A1: The elbow method of choosing K for K-Means. The number of
clusters can be chosen by observing the inertia (sum of squared error per cluster)
elbow. This elbow was created using clustered values of TF-IDF transformed user
interaction events within the Tymer dataset.
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C Application Categories

Category Apps Sessions
Books 29 1,097
Business 25 720
Comics 2 5
Communication 57 103,658
Dating 2 47
Education 31 574
Entertainment 57 1,187
Finance 29 1,212
Food and drink 7 17
Game action 15 77
Game adventure 8 6,823
Game arcade 38 1,033
Game board 2 63
Game card 5 19
Game casual 24 1,656
Game educational 5 5
Game music 1 5
Game puzzle 42 320
Game racing 8 9
Game simulation 12 340

None used n/a 81,451

Category Apps Sessions
Game sports 11 296
Game strategy 10 833
Game trivia 12 48
Game word 12 170
Health and fitness 51 4,620
House and home 2 39
Launcher 23 130,438
Libraries and demo 1 1
Lifestyle 69 19,037
Maps and navigation 29 1,220
Personalization 10 1,299
Photography 64 12,427
Productivity 102 17,234
Shopping 31 44,237
Sports 16 528
Tools 130 38,486
Travel and local 58 6,803
Video players 33 4,975
Weather 14 1,051
Web browser 5 4,818

Other 442 175,441

Table A2: A list of all fetched application categories from the Google Play Store
for the Tymer study. Including how many applications were captured for each
category and in how many sessions (out of 301,024) the category appeared.
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D Full Coefficient Tables

Category Feature p Coef [.05 .95]
Launcher App switch <0.001 -2.852135 -2.951985 -2.752285
Health and fitness Short idle <0.001 -2.671645 -2.939358 -2.403931
None Text input <0.001 -1.978947 -2.070161 -1.887734
Weather Short idle <0.001 -1.678748 -2.272526 -1.084969
Communication Long idle <0.001 -1.647544 -1.815843 -1.479245
Personalization Short idle 0.001 -1.435098 -2.212702 -0.657494
Web browser Short idle <0.001 -1.413694 -1.682605 -1.144783
Social Long idle <0.001 -1.401252 -1.617531 -1.184974
Tools Tap <0.001 -1.381696 -1.671575 -1.091817
Productivity Short idle <0.001 -1.36148 -1.509132 -1.213828
None Tap <0.001 -1.200717 -1.27141 -1.130023
Lifestyle Short idle <0.001 -1.168593 -1.300682 -1.036505
Travel and local Short idle <0.001 -1.152798 -1.318996 -0.986599
Tools Text input <0.001 -1.083707 -1.342573 -0.82484
Video players Short idle <0.001 -0.991284 -1.273419 -0.709149
Tools Long idle <0.001 -0.965766 -1.303246 -0.628286
Game strategy Short idle 0.029 -0.922575 -1.565069 -0.280082
Communication App switch <0.001 -0.915468 -1.076192 -0.754744
Video players Scrolling 0.003 -0.914673 -1.45676 -0.372586
Maps and navigation Short idle 0.001 -0.795469 -1.196938 -0.394
Entertainment Short idle 0.021 -0.716507 -1.190453 -0.24256
Video players Long idle 0.005 -0.715964 -1.175242 -0.256687
Productivity Long idle <0.001 -0.703567 -1.048754 -0.35838
Sports Short idle 0.017 -0.676605 -1.120425 -0.232785
Video players App switch 0.042 -0.670972 -1.254391 -0.087553
Music and audio Long idle 0.006 -0.651788 -1.061487 -0.242089
News and magazines Long idle 0.008 -0.640459 -1.085302 -0.195616
Lifestyle Long idle 0.001 -0.611132 -0.948748 -0.273515
Productivity Tap 0.005 -0.603145 -1.007512 -0.198777
Social Tap <0.001 -0.602403 -0.785716 -0.419091
Productivity Text input 0.001 -0.575255 -0.900907 -0.249604
Photography Short idle <0.001 -0.554558 -0.671584 -0.437533
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Communication Tap <0.001 -0.438293 -0.573774 -0.302812
Photography Long idle 0.011 -0.389208 -0.659241 -0.119175
News and magazines Short idle <0.001 -0.353949 -0.482596 -0.225303
None App switch <0.001 -0.30404 -0.378253 -0.229828
News and magazines Tap 0.039 -0.303973 -0.575135 -0.03281
Game adventure Long idle 0.048 -0.256363 -0.479046 -0.03368
Social Scrolling <0.001 -0.20872 -0.317118 -0.100323
Communication Text input <0.001 -0.158144 -0.220712 -0.095575
Communication Short idle <0.001 0.177391 0.115099 0.239682
None Short idle <0.001 0.256269 0.202861 0.309677
Music and audio Scrolling 0.039 0.298947 0.054167 0.543726
Productivity Scrolling 0.014 0.301837 0.065896 0.537778
Tools Scrolling 0.001 0.342677 0.135093 0.55026
Lifestyle Tap 0.027 0.385634 0.051834 0.719434
None Scrolling <0.001 0.447581 0.359525 0.535638
None Long tap 0.002 0.466842 0.179694 0.75399
Social Short idle <0.001 0.468252 0.383618 0.552885
Books and reference Short idle 0.001 0.609201 0.286925 0.931477
Game adventure Short idle <0.001 0.630984 0.482078 0.77989
Travel and local Scrolling 0.005 0.646952 0.252508 1.041397
Lifestyle Text input 0.006 0.694262 0.217876 1.170648
Social Text input <0.001 0.697928 0.579194 0.816663
Communication Scrolling <0.001 0.699164 0.608512 0.789816
News and magazines App switch <0.001 0.792517 0.448465 1.13657
Web browser Text input 0.001 0.808868 0.363443 1.254293
Lifestyle Scrolling <0.001 0.816276 0.526001 1.106552
Photography App switch <0.001 1.000054 0.73123 1.268879
Launcher Short idle <0.001 1.022458 0.951079 1.093837
Social App switch <0.001 1.026912 0.827227 1.226597
Music and audio Tap <0.001 1.072903 0.868518 1.277287
Game casual App switch 0.004 1.30914 0.472058 2.146223
Game casual Short idle <0.001 1.533177 1.194198 1.872157
Game casual Long idle <0.001 1.795045 1.362459 2.22763
News and magazines Scrolling <0.001 1.869467 1.639643 2.099292
Game adventure App switch <0.001 2.433656 2.127719 2.739593
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Productivity App switch <0.001 2.456935 2.164005 2.749866
Launcher Scrolling <0.001 2.912109 2.758879 3.065339
Tools Short idle <0.001 4.026339 3.928404 4.124275
Lifestyle App switch <0.001 5.093477 4.771957 5.414997

Table A3: All statistically significant coefficients for TF-IDF.

Category Feature p Coef [.05 .95]
Personalization App switch <0.001 -0.579053 -0.71728 -0.440826
Tools App switch <0.001 -0.465619 -0.492801 -0.438438
Weather Short idle <0.001 -0.406019 -0.567119 -0.244918
News and magazines Long idle <0.001 -0.331893 -0.392763 -0.271023
Video players App switch <0.001 -0.244471 -0.299519 -0.189424
Tools Long idle <0.001 -0.19405 -0.221682 -0.166418
Launcher App switch <0.001 -0.172302 -0.180678 -0.163926
Education Tap 0.01 -0.129564 -0.214334 -0.044793
Launcher Long idle <0.001 -0.128969 -0.152479 -0.105459
None Tap <0.001 -0.12749 -0.132916 -0.122063
Game strategy Short idle <0.001 -0.120857 -0.176054 -0.06566
Productivity Long idle <0.001 -0.119671 -0.1534 -0.085942
Productivity Tap <0.001 -0.099738 -0.118549 -0.080928
Entertainment Tap 0.019 -0.09506 -0.165237 -0.024884
Music and audio Long idle 0.001 -0.063736 -0.097913 -0.02956
Shopping Tap 0.029 -0.062576 -0.111723 -0.013428
Tools Tap <0.001 -0.043201 -0.052964 -0.033438
Social Long idle <0.001 -0.042443 -0.053233 -0.031653
Lifestyle Long idle 0.001 -0.03643 -0.058229 -0.01463
Communication App switch <0.001 -0.031257 -0.040238 -0.022276
Lifestyle Tap 0.032 -0.021648 -0.040915 -0.002381
None Long idle <0.001 -0.015664 -0.020103 -0.011225
Video players Scrolling <0.001 -0.015222 -0.020549 -0.009895
Communication Long idle <0.001 -0.014741 -0.020594 -0.008888
News and magazines Tap <0.001 -0.013668 -0.018175 -0.00916
Game puzzle Short idle 0.002 -0.013008 -0.020592 -0.005423
Communication Tap <0.001 -0.012208 -0.015555 -0.008861
Travel and local Short idle <0.001 -0.004756 -0.005733 -0.003779



D Full Coefficient Tables 175

Web browser Scrolling <0.001 -0.00465 -0.006474 -0.002825
Shopping Scrolling 0.024 -0.002876 -0.004954 -0.000799
Sports Short idle 0.024 -0.002679 -0.004505 -0.000852
Productivity Short idle <0.001 -0.002312 -0.002821 -0.001804
Maps and navigation Short idle 0.032 -0.001853 -0.00322 -0.000487
Health and fitness Short idle 0.022 -0.001654 -0.002752 -0.000555
Entertainment Short idle 0.001 -0.001551 -0.002375 -0.000727
Web browser Short idle <0.001 -0.001409 -0.001764 -0.001054
Books and reference Short idle 0.019 -0.0014 -0.002402 -0.000398
Lifestyle Short idle <0.001 -0.001046 -0.00136 -0.000732
Photography Short idle 0.001 -0.001046 -0.001581 -0.000511
Video players Short idle 0.004 -0.000694 -0.00113 -0.000258
Social Scrolling <0.001 -0.000293 -0.000409 -0.000177
Communication Short idle <0.001 -0.0002 -0.000266 -0.000134
Social Short idle <0.001 -0.000093 -0.00014 -0.000047
None Short idle <0.001 0.000265 0.000152 0.000378
News and magazines Short idle <0.001 0.000296 0.000194 0.000398
Communication Scrolling <0.001 0.000317 0.000269 0.000365
Productivity Scrolling 0.047 0.000352 0.000016 0.000688
Books and reference Scrolling 0.047 0.001198 0.000163 0.002233
None Text input <0.001 0.001579 0.001079 0.002079
News and magazines Scrolling <0.001 0.0026 0.00177 0.003429
Tools Scrolling <0.001 0.002709 0.001963 0.003456
Social Text input <0.001 0.00296 0.002138 0.003781
Launcher Short idle <0.001 0.003018 0.002343 0.003693
Productivity Text input <0.001 0.003222 0.00197 0.004475
None Scrolling <0.001 0.003699 0.00297 0.004428
Music and audio Scrolling 0.001 0.004752 0.002113 0.007392
Tools Short idle <0.001 0.007442 0.006983 0.007901
Photography Scrolling 0.002 0.008993 0.003819 0.014166
Lifestyle Scrolling <0.001 0.011081 0.007666 0.014495
None App switch <0.001 0.019199 0.015539 0.022858
Shopping Text input 0.024 0.020104 0.005519 0.034688
Travel and local Tap 0.002 0.020444 0.008524 0.032363
Lifestyle Text input <0.001 0.021797 0.012687 0.030906
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Travel and local Long idle <0.001 0.032581 0.020852 0.04431
Tools Text input <0.001 0.03316 0.026834 0.039486
Video players Tap 0.009 0.035068 0.010563 0.059573
Game casual Long idle <0.001 0.037317 0.024722 0.049911
Web browser Text input <0.001 0.04221 0.03345 0.050971
Web browser Tap <0.001 0.052714 0.036198 0.069231
Launcher Scrolling <0.001 0.062883 0.057055 0.06871
Maps and navigation Tap 0.032 0.06371 0.015872 0.111548
Music and audio App switch 0.001 0.078418 0.037717 0.119119
Education Text input <0.001 0.101673 0.070412 0.132935
Game sports Long idle <0.001 0.105913 0.072087 0.139739
Game puzzle Long idle <0.001 0.118627 0.070878 0.166376
Launcher Tap <0.001 0.118687 0.104569 0.132805
Entertainment Text input <0.001 0.14762 0.085966 0.209275
Social App switch <0.001 0.153962 0.142574 0.165349
Books and reference App switch 0.019 0.156014 0.046999 0.265029
Sports App switch 0.028 0.179583 0.043892 0.315275
News and magazines App switch <0.001 0.18348 0.153661 0.213299
None Long tap 0.014 0.190074 0.038633 0.341515
Game arcade App switch <0.001 0.217473 0.133394 0.301552
Game adventure App switch <0.001 0.268609 0.241875 0.295343
Finance App switch <0.001 0.294922 0.203135 0.38671
Productivity App switch <0.001 0.346977 0.322771 0.371184
Lifestyle App switch <0.001 0.666628 0.629541 0.703714
Game casual App switch <0.001 0.821195 0.735187 0.907202

Table A4: All statistically significant coefficients for event counts.
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E Smartphone Addiction Scale

# Items
1 Missing planned work due to smartphone use.
2 Having a hard time concentrating in class, while doing assignments,

or while working due to smartphone use.
3 Feeling pain in the wrists or at the back of the neck while using a smartphone.
4 Won’t be able to stand not having a smartphone.
5 Feeling impatient and fretful when I am not holding my smartphone.
6 Having my smartphone in my mind even when I am not using it.
7 I will never give up using my smartphone even when my daily life

is already greatly affected by it.
8 Constantly checking my smartphone so as not to miss

conversations between other people on Twitter or Facebook.
9 Using my smartphone longer than I had intended.
10 The people around me tell me that I use my smartphone too much.

Table A5: The final questions of the SAS-SV which are asked on a 6-point Likert
scale. The possible answers were ‘Strongly disagree’, ‘Disagree’, ‘Weakly disagree’,
‘Weakly agree’, ‘Agree’ and ‘Strongly agree’ [71]
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F Monetary Choice Questionnaire

# Items k
1 Would you prefer $54 today, or $55 in 117 days? .00016
2 Would you prefer $55 today, or $75 in 61 days? .006
3 Would you prefer $19 today, or $25 in 53 days? .006
4 Would you prefer $31 today, or $85 in 7 days? .25
5 Would you prefer $14 today, or $25 in 19 days? .041
6 Would you prefer $47 today, or $50 in 160 days? .0004
7 Would you prefer $15 today, or $35 in 13 days? .10
8 Would you prefer $25 today, or $60 in 14 days? .10
9 Would you prefer $78 today, or $80 in 162 days? .00016
10 Would you prefer $40 today, or $55 in 62 days? .006
11 Would you prefer $11 today, or $30 in 7 days? .25
12 Would you prefer $67 today, or $75 in 119 days? .001
13 Would you prefer $34 today, or $35 in 186 days? .00016
14 Would you prefer $27 today, or $50 in 21 days? .041
15 Would you prefer $69 today, or $85 in 91 days? .0025
16 Would you prefer $49 today, or $60 in 89 days? .0025
17 Would you prefer $80 today, or $85 in 157 days? .0004
18 Would you prefer $24 today, or $35 in 29 days? .016
19 Would you prefer $33 today, or $80 in 14 days? .1
20 Would you prefer $28 today, or $30 in 179 days? .0004
21 Would you prefer $34 today, or $50 in 30 days? .016
22 Would you prefer $25 today, or $30 in 80 days? .0025
23 Would you prefer $41 today, or $75 in 20 days? .041
24 Would you prefer $54 today, or $60 in 111 days? .001
25 Would you prefer $54 today, or $80 in 30 days? .016
26 Would you prefer $22 today, or $25 in 136 days? .001
27 Would you prefer $20 today, or $55 in 7 days? .25

Table A6: The questions of the monetary choice questionnaire. Participants have the
option to either choose the ‘smaller reward today’ or the ‘larger reward in the specified
number of days’. k represents the estimated rate of discounting. [62]
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