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Abstract
In this paper, we consider the NP-hard problem of determining fixed-length cycles
in undirected edge-weighted graphs. Two solution methods are proposed, one based
on integer programming (IP) and one that uses bespoke local search operators. These
methods are executed under a common algorithmic framework that seeks to partition
problem instances into a series of smaller sub-problems. Large-scale empirical tests
indicate that the local search algorithm is generally preferable to IP, even with short
run times. However, it can still produce suboptimal solutions, even with relatively
small graphs.

Keywords Graph theory · Cycles · Integer programming · Local search · Great deluge

1 Introduction

In this paper, we consider the combinatorial optimisation problem of finding cycles of
a specific length in undirected edge-weighted graphs. This problem is relevant in the
design of exercise routes and cycling tours (Lewis and Corcoran 2022; Willems et al.
2018). Applications also arise in network visualisation (Tamassia 2016), protein anal-
ysis (Salwinski et al. 2004), statistical mechanics (Marinari et al. 2007), and drawing
metabolic pathways (Becker and Rojas 2001).

We use the following terminology.
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Definition 1 A walk is a series of pairwise incident edges in a graph; a trail is a walk
with no repeated edges; a path is a trail with no repeated edges or vertices.

We can also add the prefix u − v to these terms to signify a walk/trail/path that starts
at vertex u and terminates at vertex v. The following definitions can also be applied
in cases where u = v.

Definition 2 A u − v-walk/trail/path is considered closed whenever u = v. Closed
trails are known as circuits; closed paths are known as cycles.

Similarly to the above, the term u-circuit (u-cycle) can be used to denote a circuit
(cycle) that starts and ends at a vertex u.

For this paper, two problem variants are considered.

Definition 3 Let G = (V , E) be an undirected edge-weighted graph with n ver-
tices and m edges, let k ≥ 0 define a desired cycle length, and let w(u, v) denote
a nonnegative weight (length) for each edge {u, v} ∈ E . The k-length cycle prob-
lem (KCP) involves identifying a cycle C = (u1, u2, . . . , ul = u1) whose length
L(C) = ∑l−1

i=1 w(ui , ui+1) minimises the objective function |k − L(C)|.
Definition 4 Given the same input as Definition 3 together with a source vertex s ∈ V ,
the k-length s-cycle problem (KSCP) involves identifying an s-cycle C = (s =
u1, u2, . . . , ul = s) whose length L(C) minimises |k − L(C)|.

Note that a cycle in a graph G is a connected subgraph in which all vertices have
a degree of exactly two. As such, any cycles in a graph must occur within a single
biconnected component (that is, they cannot contain pairs of vertices separated by an
articulation point in G). The problems of determining the shortest and longest cycles
and s-cycles in a graph are also included in our problem definitions by setting k = 0
and k = ∑

∀{u,v}∈E w(u, v) respectively.
At present, the problem of finding fixed-length cycles in edge-weighted graphs

is largely unstudied in the literature; however, several related complexity results are
known. For unweighted graphs1 the number of walks of length k between pairs of
vertices can be calculated by taking the binary adjacency matrix and raising it to
the kth power (Kocay and Kreher 2023). Basagni et al. (1997) have also shown that,
in unweighted graphs, a u − v-walk of length k can be determined in polynomial
time providing that k = nO(1). They also show that this problem is NP-hard for
edge-weighted graphs.

The task of calculating u − v-paths of length k in a graph is also known to beNP-
hard for both weighted and unweighted graphs, though certain topologies such as trees
and directed acyclic graphs can be solved in polynomial time (Hetland 2011). Finding
the longest u − v-path in an unweighted graph is also known to be fixed-parameter
tractable when parametrized by the length of the path or by the treewidth of the graph
(Bodlaender 1993). On the other hand, the problem of calculating the shortest u − v-
path in an edge-weighted graph can be solved in polynomial time using, among others,

1 For our purposes, an unweighted graph can be considered a special case of an edge-weighted graph in
which w(u, v) = 1 for all edges {u, v} ∈ E .
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the well-known Dijkstra, Bellman–Ford and Floyd–Warshall algorithms (Sedgewick
and Wayne 2011).

For circuits and cycles, similar complexity results are known.The task of identifying
a circuit in a graph G is equivalent to the problem of identifying an Eulerian subgraph
of G; however, identifying the longest Eulerian subgraph is known to be NP-hard,
both for weighted and unweighted graphs (Skiena 1990). Similar reasoning can also be
used to show that the KCP and KSCP areNP-hard since they generalise the classical
NP-hard problem of determining the circumference (length of the longest cycle) of
a graph (Garey and Johnson 1979). In more recent work, Fomin et al. (2021) have
shown that the problem of deciding whether an unweighted graph G has a cycle of at
least γ (G) + k edges is fixed parameter tractable. (Here, γ (G) denotes the minimum
length of a cycle inG, usually known as the girth ofG—see also Sect. 2.) The problem
of counting the number of u − v-paths and s-cycles in a graph is also known to be
#P-complete (Roberts and Kroese 2007).

Several results on the lengths of cycles in unweighted undirected graphs are also
known. The well-known theorem of Dirac (1952) tells us that, if ∀v ∈ V , deg(v) ≥ n

2 ,
thenG must contain a Hamiltonian cycle (that is, a cycle comprising exactly n vertices
and n edges). Stated another way, this tells us that, given a biconnected graph G with
minimum degree δ(G), then either G contains a cycle of at least 2δ(G) edges, or G
contains aHamiltonian cycle. Pósa (1963) has also shown that if deg(u)+deg(v) ≥ 2d
for all pairs of non-adjacent vertices in an undirected biconnected graphG, then either
G contains a cycle of at least 2d edges, or G has a Hamiltonian cycle. Note, that the
problem of identifying a Hamiltonian cycle in a graph is NP-hard, fixed parameter
tractable under treewidths, and W[1]-hard under clique-widths (Fomin et al. 2009).

Variants of these theorems are also available for undirected edge-weighted graphs,
many of which are summarised by Fujisawa (2009) who make use of the weighted
degrees of vertices: degw(u) = ∑

v∈�(u) w(u, v), where �(u) denotes the open neigh-
bourhood of a vertex u. Bondy and Fan (1989), for example, have extended Dirac’s
theorem to the following.

Theorem 1 Let G be a biconnected undirected edge-weighted graph and d ≥ 0. Then,
if degw(v) ≥ d for all v ∈ V , then either G contains a cycle of length at least 2d, or
all of the longest cycles in G are Hamiltonian.

Bondy et al. (2002) have also provided a variant of Pósa’s theorem for edge-
weighted graphs:

Theorem 2 Let G be a biconnected undirected edge-weighted graph and d ≥ 0. Then,
if degw(u)+degw(v) ≥ 2d for all {u, v} /∈ E, then either G contains a cycle of length
at least 2d, or G contains a Hamiltonian cycle.

A further theorem due to Bondy and Fan (1991) provides a lower bound on the
length of the longest cycle:

Theorem 3 Let G be an undirected biconnected edge-weighted graph. Then G
contains a cycle of length at least:

2
∑

{u,v}∈E w(u, v)

n − 1
. (1)
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Fig. 1 Summary of upper and lower bounds on cycle length in undirected edge-weighted graphs. Point (A)
corresponds to Eq. (1)

Upper bounds on the length of the longest cycle in an undirected edge-weighted graph
G can also be stated, for example,

UB1(G) =
n∑

i=1

w(ei ), (2)

where e1, . . . , en are the n edges in G with the largest weights. If G is biconnected,
we can also calculate a second upper bound,

UB2(G) =
⌊∑

v∈V τ(v)

2

⌋

, (3)

where τ(v) gives the sum of the weights of the two heaviest edges incident to a vertex
v. A summary of these bounds is illustrated in Fig. 1.

In the next section, we will survey some relevant algorithms for constructing and
enumerating cycles in graphs. In Sect. 3 we then describe several new algorithms for
the KCP and KSCP. Section4 analyses the performance of these algorithms across a
variety of different graph types. It also identifies a case in which the KCP and KSCP
are solvable in polynomial time. Finally, Sect. 5 concludes the paper.

2 Existing algorithmic strategies

Johnson (1975) has previously proposed amethod for generating the setC of all cycles
in a directed graph. In this approach, each cycle is determined by anO(n+m) process,
leading to an overall run time ofO(|C|(n+m)). Johnson’s method can also be used to
generate the set of all cycles in undirected graphs. This is achieved by replacing each
edge {u, v} in the undirected graph with the directed arcs (u, v) and (v, u). Following
the execution of the algorithm, cycles containing just two arcs must then be removed
from C. The cardinality of C should then also be halved by removing the “reverse” of
each cycle (that is, if the cycle (u1, u2, . . . , ul = u1) is present in C, then the reverse
cycle (u1 = ul , ul−1, . . . , u1) should be removed from C). This method, therefore,
provides the basis of an exact algorithm for the KCP and KSCP; however, as Johnson
notes, the growth rate of |C| can exceed the exponential 2n , leading to infeasible run
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times for non-trivial cases.2 Alon et al. (1995) have also proposed an exact method
for determining length-k cycles in directed unweighted graphs, though this also has a
high growth rate of O(2kn2.37 log n).

Algorithm 1: Make- Cycle
input : A biconnected edge-weighted graph G = (V , E) and an edge {u, v} ∈ E
output: A cycle C containing the edge {u, v}

1 Let G′ be a copy of G with {u, v} removed
2 Let P be a v − u-path in G′
3 Concatenate {u, v} to P to get C

An arbitrary cycle in a biconnected graph G can be formed using the simple pro-
cedure Make- Cycle given in Algorithm 1. As shown, this operates by removing an
edge {u, v} and then determining a v −u-path P in the resultant graph. The final cycle
C is made by concatenating P and {u, v}. Note that different cycles will be produced
by this process depending on the algorithm chosen for constructing P . If breadth-first
search (BFS) is used, the v−u-pathwith theminimal number of edgeswill be returned;
if depth-first search (DFS) is used, paths with higher numbers of edges are likely.

Make- Cycle can also be used as the basis of an exact polynomial-time algo-
rithm for determining the shortest cycle in an edge-weighted graph. For s-cycles, this
involves executing Make- Cycle with each edge {s, v} incident to s as input, and
then determining the shortest v−s-path in each case. If Dijkstra’sO(m+n lg n) algo-
rithm is used for the latter, this gives an overall run time ofO(deg(s)(m + n lg n)). To
calculate the shortest cycle across the whole graph (sometimes known as the weighted
girth of a graph), the same process should be followed using all edges {u, v} ∈ E .
This gives a run time of O(m(m + n lg n)). Orlin and Sedeno-Noda (2017) have also
outlined a more efficient O(mn) method for this problem, while Ducoffe (2021) has
proposed a (2+ ε)-approximation scheme running inO(n5/3polylog(1/ε)+m) time.

An exact algorithm for the KSCP was recently suggested by Willems et al. (2018).
This operates by first creating an additional vertex s′ whose neighbourhood �(s′) =
�(s). Cycles in G therefore correspond to an s − s′-path. To find an s − s′-path of the
correct length, the well-known algorithm of Yen (1971) is then used. This operates by
determining a ranking of the shortest s − s′ paths in G; hence Yen’s algorithm must
continue to execute until a path is observed that has at least three edges and a length
of at least k. A drawback of this approach is that the number of paths to be considered
in this ranking can grow exponentially with regard to k. The use of Yen’s algorithm
also means that each successive cycle takes up to O(n(m + n lg n)) time to generate.
This leads to serious scaling-up issues, particularly with large graphs and high values
of k (Lewis and Carroll 2022).

An O(mn2) heuristic for the KSCP has also previously been suggested by Lewis
and Corcoran (2022). This operates by considering vertices v ∈ (V − {s}) one at a

2 In the complete undirected graph Kn , for example, the number of different cycles is
∑n

x=3
(n
x
) (x−1)!

2 .
Formulas for several other graph topologies can be found at https://mathworld.wolfram.com/GraphCycle.
html
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time and generating pairs of short vertex-disjoint s − v-paths. When merged, these
s − v-path pairs form an s-cycle. This particular algorithm is concerned with finding
attractive-looking round trips in roadnetworks; consequently, several accommodations
are made that (a) stop solutions from looking too complicated to the user, and (b) allow
the round trips to cross articulation points and bridges in the underlying graph more
than once when necessary.

Relevant work in this area has also been carried out by Chalupa et al. (2017),
who have investigated several integer programming (IP) formulations for finding the
longest cycles in unweighted graphs. These formulations are the basis of the IPmodels
for the KCP and KSCP, shown in the next section. Further work on the longest cycle
problem is also due to Chalupa et al. (2018), who suggest using a probabilistic variant
of BFS for producing long cycles. Simple operators are also used that can lengthen a
cycle by up to two edges at a time.

Finally, there are also similarities to note between the KCP and the well-known
maximum travelling salesman problem. In the latter, we are interested in finding a
maximum-length cycle in an edge-weighted graph. Unlike the KCP, however, these
cycles must also be Hamiltonian. Consequently, problem instances considered in the
maximum travelling salesman problem usually correspond to complete edge-weighted
graphs (Dudycz et al. 2017; Guo et al. 2013).

3 Algorithmic framework

Our approach in this paper will be to try and find high-quality solutions for the KCP
andKSCP using a process that operates under a fixed time limit. Since, as noted, cycles
cannot span parts of graphs that are separated by an articulation point, we choose to
first partition the input graph G into a set of biconnected components. Each of these
subgraphs can then be tackled separately, with the best solution among these then
being returned as the final solution. Two bespoke methods are considered for tackling
each biconnected subgraph: one based on integer programming (IP) and one based
on local search using specialised neighbourhood operators. These two methods are
considered in Sects. 3.1 and 3.2 respectively.

Algorithm 2: Random- First- Search
input : A graph G = (V , E) and a root vertex r ∈ V
output: A directed tree T giving paths from r to all reachable vertices in G

1 Let T = {r}, and let L be a list of all (directed) edges exiting r . That is, L = [(r , v) : ∀v ∈ �(r)]
2 while L is not empty do
3 Select and remove a randomly selected element (u, v) from L
4 if v /∈ T then
5 Add (u, v) and v to T
6 foreach w ∈ �(v) (considered in a random order) do
7 Append (v, w) to L
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Fig. 2 An illustration of Algorithm 3. Part (a) shows an example instance of the KCP using k = 20 and
a graph G with n = 9 vertices, m = 12 weighted edges, and UB1(G) = 36. Part (b) shows how this
instance is partitioned into l = 2 (non-dyad) biconnected components, G1 and G2. Also shown are the
associated ki values, and the initial cycles Ci (in bold). Part (c) shows the solutions produced by the chosen
optimiser, executed at Step 10 of Algorithm 3. In this case, the returned solution Cbest = C2, with cost of
|k − L(C2)| = 1

As we will see, an important part of our algorithms will be the ability to produce
random paths between vertex pairs. For these purposes, Algorithm 2 shows a gen-
eralised version of BFS and DFS that we call random-first search (RFS). Like DFS
and BFS, this procedure operates in O(n + m) time and calculates a directed tree T
that specifies paths from a given root vertex r ∈ V to all reachable vertices (that is, a
spanning tree of the connected component containing r ). The main stochastic element
of this procedure is achieved in Step 3, where the next vertex to be explored is always
chosen randomly from the list L . In contrast, BFS always selects and removes the first
item in L (making L a queue), while DFS always selects and removes the last item
(making L a stack). Note that while RFS produces a greater variety of spanning trees
than BFS and DFS, it does not produce a uniform spanning tree (that is, a spanning
tree that can be said to have been drawn randomly from the set of all spanning trees).
Uniform spanning trees can be produced using the methods of Aldous (1990) or Wil-
son (1996), though these are based on performing random walks in the graph and are
subject to more unpredictable run times.

Algorithm 3 shows our overall framework for the KCP. An example of this process
is also shown in Fig. 2. In Step 1 of this pseudocode, we first determine whether
adjustments can be made to the target cycle length k. Specifically, if the given value
for k is seen to exceed the upper bound UB1(G), then k can be reduced to this value.
This adjustment allows the algorithm to halt early if a cycle of length UB1(G) is
determined (which would not be the case otherwise).

In Step 2, G is broken up into its (non-dyad) biconnected components G1, . . . ,Gl .
This can be achieved using the O(n + m) algorithm of Hopcroft and Tarjan (1973),
based on depth-first search. In our case, we also choose to label these subgraphs such
that |V1| + |E1| ≥ |V2| + |E2| ≥ . . . ≥ |Vl | + |El |. The rationale for this labelling is
that a solution of length k is more likely to be found in larger graphs (which will tend
to feature larger solution spaces), hopefully allowing the algorithm to halt sooner.

In Steps 3 to 7 of Algorithm 3, each subgraph Gi is first considered in turn and
an associated k-value, ki , is calculated, as with Step 1. Since each subgraph is now
a biconnected component, the upper bound from Eq. (3) is also used here. An initial
solution is then formed using theMake- Cycle procedure. In our case, this is done by
executing Make- Cycle four times, using BFS, DFS, RFS and Dijkstra’s algorithm
(respectively) for the determination of the paths P . The cycle Ci is then set to the
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Algorithm 3: Algorithm Framework for the KCP
input : An edge-weighted graph G = (V , E), a target length k, and a time limit
output: The best observed cycle Cbest in G

1 Set k = min(k,UB1(G)) and set Cbest = null
2 Determine all non-dyad biconnected components in G and label these as
G1 = (V1, E1), . . . ,Gl = (Vl , El )

3 foreach i ∈ {1, . . . , l} do
4 Set ki = min(k,UB1(Gi ),UB2(Gi ))

5 Let Ci be an initial cycle for Gi , found by executingMake- Cycle with a randomly selected
edge in Ei

6 if Cbest = null or |k − L(Ci )| < |k − L(Cbest)| then set Cbest = Ci
7 if |k − L(Cbest)| = 0 then exit

8 foreach i ∈ {1, . . . , l} do
9 if L(Ci ) �= ki and not ( ki < k and |k − ki | ≥ |k − L(Cbest)| ) then

10 Execute the chosen optimisation algorithm for the KCP using inputs Gi ,Ci , and ki and a
time limit proportionate to Gi ’s size. Let Ci be the cycle returned by this process

11 if |k − L(Ci )| < |k − L(Cbest)| then set Cbest = Ci
12 if |k − L(Cbest)| = 0 then exit

best among these four options. The variable Cbest is also used to store the best cycle
observed across the whole run.

The main actions of Algorithm 3 occur in Steps 8 to 12. Note that optimisation only
takes place when both conditions on Line 9 are satisfied. The first condition ensures
that Ci is not yet optimal with respect to ki ; the second prevents optimisation in cases
where L(Cbest) is guaranteed not to be improved upon by the cycles of Gi .

In cases where optimisation is carried out at Line 10, we choose to set the time
limit to:

t · |Vi | + |Ei |
∑l

j=i |Vj | + |E j |
(4)

where t is the amount of remaining run time. This means that each subgraph Gi is
allocated a run time in (linear) proportion to its size. Other options are also possible,
however. Once all graphs Gi have been considered, the algorithm ends by returning
the best-observed solution Cbest.

Figure 3 illustrates the sizes of the biconnected components that can be expected as
a result of the partitioning process. As shown, when a graph is very sparse, many small
subgraphs are formed. This will allow our algorithm to consider a series of small sub-
problems as opposed to one large one; however, for denser graphs, the partitioning
process has little or no effect because the original graph G is likely to already be
biconnected.

For the KSCP three small modifications to Algorithm 3 are also required. First,
in Step 2, only non-dyad biconnected components containing the source vertex s
need to be considered. Second, when generating an initial solution in Step 5, the
randomly selected edge must always be incident to s. Third, the optimisation stage
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Fig. 3 Size of the ten largest biconnected components for graphs with n = 1000 vertices and varying
densities. The first chart shows results for planar graphs with varying numbers of edges; the second shows
the same for various random graphs G(1000, p). All figures are means taken across 100 graphs

at Step 10 requires modification to ensure that s is always present in a solution. The
latter modification is considered in the following two subsections.

3.1 Integer programming (IP) formulations

In this section, we specify the IP formulations that can be used for Step 10 of Algo-
rithm 3. We first give a formulation for the KSCP. This is then extended for the KCP.
Our IP formulation for theKSCP is adapted from a recent model for finding the longest
s-cycles in unweighted graphs (Chalupa et al. 2017). It is also purported to outperform
an earlier formulation for the same problem due to Dixon and Goodman (1976). In
both cases, runs of the IP solver can also be warm-started using the initial solutions
produced by Step 5 of Algorithm 3.

Given G = (V , E), let V = {v1, v2, . . . , vn}, and assume (without loss of general-
ity) that s = v1. For this IP model the adjacencies and weights of G are stored in the
matrices An×n andWn×n such that Ai j = 1 if {vi , v j } ∈ E (and Ai j = 0 otherwise);
and Wi j = w(vi , v j ) if {vi , v j } ∈ E (and Wi j = ∞ otherwise). An s-cycle is then
stored using the binary variables Xi j , where Xi j = 1 signifies that a transition is made
from vi to v j in the cycle, and Xi j = 0 otherwise. The objective is to now

minimize: |k −
n∑

i=1

n∑

j=1

Ai jWi j Xi j | (5)

subject to:

Xi j ≤ Ai j ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n} (6)
n∑

i=1

Xi j −
n∑

i=1

X ji = 0 ∀ j ∈ {1, . . . , n} (7)

n∑

i=1

Xi j +
n∑

i=1

X ji ≤ 2 ∀ j ∈ {1, . . . , n} (8)
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n∑

i=1

n∑

j=1

Ai j Xi j ≥ 3 (9)

0 ≤ Yi j ≤ (n − 1)Xi j ∀i ∈ {2, . . . , n}, ∀ j ∈ {1, . . . , n}
(10)

2
n∑

j=1:
j �=i

Yi j − 2
n∑

j=2:
j �=i

Y ji −
n∑

j=1:
j �=i

Xi j −
n∑

j=2:
j �=i

X ji = 0 ∀i ∈ {2, . . . , n} (11)

Xi j ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n}
(12)

Yi j ∈ R ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n}.
(13)

Here, (5) corresponds to the objective function given in Definition 4, while (6)
ensures that Xi j = 1 only if {vi , v j } ∈ E . Constraints (7) and (8) ensure that a
vertex is present in the cycle only when it has exactly one edge entering and one edge
leaving, else it has no such edges. Constraint (9) also ensures that cycles contain at
least three edges. Finally, (10) and (11) make use of the auxiliary variables Yi j . These
represent flows on the edges and are used to ensure that solutions comprise exactly one
s-cycle. (Specifically, a solution with more than one cycle would imply the existence
of cycles not containing the source vertex s = v1; however, cycles not containing
v1 are disallowed by the above constraints. Further explanations and proofs of this
concept are given by Bezalel and Graves (1978) and Chalupa et al. (2017).)

To tackle the KCP, we could choose to execute the above model n times, using
each vi ∈ V in turn as the source vertex. However, for large graphs this could lead
to very long run times. Here, we use an alternative approach that involves taking an
edge-weighted graph G = (V , E) with V = {v1, v2, . . . , vn} as before, but then
also adding a dummy vertex v0 together with zero-weighted edges {v0, vi } for each
i ∈ {1, . . . , n}. Our task is to now find a v0-cycle in this extended graph such that,
if the edges {v0, u} and {v0, v} are being used in the cycle, then the edge {u, v} also
exists. This latter constraint involves introducing the additional binary variables Zi j .
The full model is now:

minimize: |k −
⎛

⎝
n∑

i=0

n∑

j=0

Ai jWi j Xi j +
n∑

i=0

n∑

j=0

Ai jWi j Zi j

⎞

⎠ | (14)

subject to:

Xi j ≤ Ai j ∀i ∈ {0, . . . , n}, ∀ j ∈ {0, . . . , n}

(15)
n∑

i=0

Xi j −
n∑

i=0

X ji = 0 ∀ j ∈ {0, . . . , n} (16)
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n∑

i=0

Xi j +
n∑

i=0

X ji ≤ 2 ∀ j ∈ {0, . . . , n} (17)

n∑

i=0

n∑

j=0

Ai j Xi j ≥ 4 (18)

0 ≤ Yi j ≤ nXi j ∀i ∈ {1, . . . , n}, ∀ j ∈ {0, . . . , n}
(19)

2
n∑

j=0:
j �=i

Yi j − 2
n∑

j=1:
j �=i

Y ji −
n∑

j=0:
j �=i

Xi j −
n∑

j=1:
j �=i

X ji = 0 ∀i ∈ {1, . . . , n} (20)

Zi j ≤ Ai j ∀i ∈ {0, . . . , n}, ∀ j ∈ {0, . . . , n}
(21)

n∑

i=1

n∑

j=1

Zi j = 1 (22)

X0 j + Xi0 − 2Zi j ≥ 0 ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n}
(23)

Xi j ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n}
(24)

Yi j ∈ R ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n}
(25)

Zi j ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , n}.
(26)

In this case, the additional term in (14) ensures that the cost of a solution corresponds
to the objective function given in Definition 3. Constraints (15) to (20) also match (6)
to (11) in the previous model, albeit with modified ranges. Finally, (21) to (23) concern
the variables Zi j . These are used to ensure that the two edges {v0, u} and {v0, v} can
be replaced by the edge {u, v} in the evaluated cycle. This also means that solutions
must contain at least four edges instead of three, as stipulated by (18).

3.2 Local search algorithm

An alternative to using integer programming in Step 10 of Algorithm 3 is to employ
a bespoke local search method. Local search is a heuristic framework that seeks to
identify high-quality solutions within a space of candidate solutions. It does this by
moving among solutions within this space using neighbourhood operators that make
alterations to previously observed solutions. Typically, this continues until a solution
of sufficient quality is discovered or until some computation limit is exceeded. Our
local search algorithm for the KCP is described in the following two subsections.
Section3.2.3 then details the modifications needed for the KSCP.
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Fig. 4 Demonstration of our main neighbourhood operator. Part (a) shows an example graph G, a cycle
C and a selected vertex ui ∈ C . Part (b) shows the graph G′ formed from Part (a), together with a tree T
rooted at ui . Parts (c), (d) and (e) demonstrate the various ways that new cycles C ′ can be formed using
this information. These correspond to points (i), (ii), and (iii) in the text, respectively

3.2.1 Neighbourhood operators

The solution space for the KCP is defined by the set of all cycles in the input graph.
Neighbourhood operators should therefore be able to take an existing cycle and make
alterations that result in new, different cycles. Let C = (u1, u2, . . . , ul = u1) be an
arbitrary cycle, written as a sequence of vertices. The edges of C are therefore given
by the set {{ui , ui+1} : i ∈ {1, 2, . . . , l − 1}}. An intuitive neighbourhood operator
is to now select two vertices ui , u j ∈ C , remove the current ui − u j -path in C , and
replace it with a new ui−u j -path. This newpathmight be generated using path-finding
algorithms such as BFS, DFS, RFS, Wilson’s and Dijkstra’s, as discussed earlier.

Our main neighbourhood operator for the KCP extends these ideas by allowing
several new solutions to be evaluated following just one application of a path-finding
algorithm. The idea is to select a vertex ui ∈ C and then try to produce paths from
this to all other vertices v j ∈ C but without using any of the edges currently in C .
The operator proceeds as follows. Given the graph G, the current cycle C and a vertex
ui ∈ C , we first form a new graph G ′. This is simply a copy of G with all edges of C
removed. A further vertex, u′

i , is then also added toG
′, with the neighbours of u′

i being
set to those of ui in G ′. In the next step, RFS (Algorithm 2) is used to form a tree T in
G ′ that is rooted at ui and that defines paths to all reachable vertices u j ∈ C ∪ {u′

i }.
A new candidate solution C ′ can then be produced with respect to ui and each u j in
three different ways.

(i) By setting C ′ to be a copy of C with its ui − u j -path replaced by the ui − u j -path
in T ;

(ii) Forming C ′ by joining the ui − u j -path in C to the ui − u j -path in T ;
(iii) If u j = u′

i , by setting C ′ to be the ui − u′
i -path in T .

Examples of these three actions are shown in Fig. 4. Note also that the actions of (i) and
(ii) may result in solutions containing duplicate vertices. Such solutions will constitute
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Fig. 5 Part (a) shows how some applications of our main neighbourhood operator can result in an infeasible
solution.Here, replacing the ui−u j -path inC with the only available alternative results in a vertex appearing
twice in the solution.This is illegal. Part (b) demonstrates the limitations of themainneighbourhoodoperator.
For illustrative purposes, edge weights correspond to the lengths of the lines in this example

circuits as opposed to cycles and are therefore rejected by the algorithm. An example
is shown in Fig. 5a.

Although the above neighbourhood operator can produce cycles in a variety of
ways, observe that the new cycle C ′ will always share at least one common vertex
with its predecessor C . In some cases, this limitation can cause difficulties. Figure5b
gives an example of this, illustrating a current cycle C and the optimal cycle C∗.
To move from C to C∗ using our current neighbourhood operator, C must first be
transformed into one of its surrounding cycles. However, the options available in this
case are much longer and will therefore feature a much higher cost than C . The cycle
C can therefore be seen as representing a prominent local optimum from which it
is difficult to escape using our current neighbourhood operator. For these reasons,
we therefore also choose to include a second neighbourhood operator that allows the
production of new cycles that share no vertices with their predecessor. In our case, this
operator simply generates a new cycle using the same process as described in Step 5
of Algorithm 3.

3.2.2 Local search

A full description of how our neighbourhood operators are applied to the KCP is given
in Algorithm 4. As shown, we choose to use the great deluge metaheuristic here. This
operates by maintaining a boundary value B. During execution, a newly generated
solution C ′ is then accepted if its cost is seen to be less than or equal to B, or less than
or equal to the cost of the current solution C . At the start of execution, B is typically
set to a high value, allowing many worsening moves to take place. During a run, B is
then gradually reduced, thereby discouraging worsening moves from being accepted.

As shown in Algorithm 4, our local search method starts by setting B to the cost of
the initial solution. During execution, the variable Cbest is then used to store the best-
observed solution. This is returned by the algorithm once the time limit is exceeded,
or when L(Cbest) = k. Each iteration of the algorithm takes place between Lines 2
and 25. First, a vertex vi ∈ C is randomly selected, and G ′ and T are formed as
previously described. In Line 6, the set S is constructed. The use of this set allows the
various modifications available from our neighbourhood operators to be considered
in a randomised order, as shown in Lines 8 to 22. At the end of each iteration, a
new solution will have been generated, or all neighbourhood moves currently under
consideration will have been rejected. In either case, at Line 25 an adjustment to B
is required. Due to the time-dependent nature of this algorithm, we do this by setting
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Algorithm 4: Local Search Algorithm for the KCP
input : An edge-weighted graph G = (V , E), an initial cycle C , a target length k, and a time limit
output: The best cycle observed during execution, Cbest

1 Set the boundary B = Binit = |k − L(C)| and set Cbest = C
2 while the time limit is not exceeded and |k − L(Cbest)| > 0 do
3 Let C be written as a series of vertices (u1, u2, . . . , ul = u1)
4 Select a vertex ui ∈ C at random and create the new graph G′ with respect to G, C , and ui
5 Use RFS to form a tree T rooted at ui in G′ that defines paths to all reachable vertices

u j ∈ C ∪ {u′
i }

6 Let S be a set comprising u′
i , the vertices of C that are reachable from ui in G′, and a randomly

selected vertex v belonging to G but not C
7 foreach u j ∈ S (considered in a random order) do
8 if u j = v then
9 Let C ′ be the output of Make- Cycle using inputs G and a randomly selected edge

incident to v

10 if |k − L(C ′)| ≤ |k − L(C)| or |k − L(C ′)| ≤ B then
11 Set C = C ′ and break // The second neighbourhood operator is

applied

12 else if u j = ui then
13 Let C ′ be the cycle defined by the u′

i − ui -path in T
14 if |k − L(C ′)| ≤ |k − L(C)| or |k − L(C ′)| ≤ B then
15 Set C = C ′ and break // Adjustment (iii) is applied

16 else
17 Let C ′ be a copy of C with its ui − u j -path replaced by the ui − u j -path in T
18 if (|k − L(C ′)| ≤ |k − L(C)| or |k − L(C ′)| ≤ B) and C is a cycle then
19 Set C = C ′ and break // Adjustment (i) is applied

20 Let C ′ be formed by joining the ui − u j -path from C and the ui − u j -path from T
21 if (|k − L(C ′)| ≤ |k − L(C)| or |k − L(C ′)| ≤ B) and C is a cycle then
22 Set C = C ′ and break // Adjustment (ii) is applied

23 if |k − L(C)| < |k − L(Cbest)| then
24 Set Cbest = C

25 Reduce B according to the time remaining (see Sect. 3.2.2 for description)

B = (1 − p) · Binit, where p is the proportion of the allocated time limit consumed
by the local search algorithm so far. This ensures that B is reduced linearly so that it
hits zero at the time limit.

Similarities clearly exist between great deluge and the more well-known simulated
annealing metaheuristic. However, in initial experiments with the KCP, we found that
simulated annealing was very sensitive to the imposed cooling schedule and value on
the initial temperature. This made its behaviour hard to control. Another alternative
would have been to use the tabu search metaheuristic. However, tabu search usually
operates by, at each iteration, evaluating the set of all solutions that neighbour the
current solution.Given the exponential number of different paths that can exist between
vertex pairs, for this problem this set is likely to be too large in most cases.
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3.2.3 Adjustments for the KSCP

As with previous sections, a small number of adjustments are also required to make
the local search algorithm suitable for the KSCP. To do this, Algorithm 4 is modified
in the following way.

• Step 6 is adjusted so that v is not added to the set S. This ensures that Steps 8–11
are never executed;

• Steps 12–15 are only executed if u j = s;
• Steps 20–22 are not executed.

These modifications ensure that the source vertex s is always present in any new cycle
C ′.

For the KSCP it is also possible to reduce the size of the considered graph G during
execution. To do this, an additional variable C̄ needs to be maintained that contains the
shortest observed cycle whose length exceeds k. Whenever C̄ is updated, we can then
remove all vertices v from G for which the shortest s−v-path is greater than L(C̄)/2.
This is because the length of any s-cycle containing v will have a cost exceeding that
of C̄ and cannot, therefore, improve on Cbest. Such vertices can be identified by using
Dijkstra’s algorithm to produce a shortest-path tree rooted at s. Reducing the size of
G in this way has the potential to improve algorithm efficiency and lessen memory
requirements.

4 Experimental analysis

In this section, we compare the performance of the IP and local search algorithms
using the overall framework given by Algorithm 3. Our aim is to gauge the accuracy
and scaling-up characteristics of these methods for differing graph sizes, topologies,
and values of k. In our trials, all heuristics were implemented in C++ while the IP
models were executed using FICO Xpress, version 8. For our heuristics, graphs were
stored using adjacency lists. On the other hand, the IP models required adjacency
matrices. Both algorithms were executed using a time limit of 300s per instance. For
comparison’s sake, a second time limit of ten seconds was also used with the local
search algorithm. All trials were executed on Windows 7 machines with 3.2 GHz
quad-core CPUs and 8 GB RAM. Source code and a full listing of these results are
available at http://www.rhydlewis.eu/resources/kcycle.zip.

Three graph topologies are considered here.

Planar graphs are graphs that can be drawn in two-dimensional space
so that no edges cross. In this sense, they are similar in
structure to real-world transportation networks because, at
the points where streets intersect on amap, there is usually
a vertex present that allows the user to switch between
them. In our case, planar graphswere formed by randomly
placing n vertices into a 10,000 × 10,000 unit square.
A random Delaunay triangulation was then generated on
these vertices to give a set of edges. Edge weights were
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Fig. 6 Distribution of cycle lengths with our three considered graph topologies. The first chart considers
a planar graph on 15 vertices; the second, a 4-regular graph on 20 vertices; the third, a 5 × 5 grid graph.
These results were determined using the NetworkX implementation of Johnson’s algorithm as detailed in
Sect. 2. The maximum length cycles seen in these graphs were, respectively, 77,303, 139,943, and 24

set to the Euclidean distances between their endpoints,
rounded to the nearest integer.

d-Regular graphs are graphs for which deg(v) = d for all v ∈ V , where
d ∈ {1, 2, . . . , n − 1}. In our case, these graphs were
generated at random using the Python library NetworkX.
Edge weights were then set to values chosen at random
from the set {1, 2, . . . , 10,000}. Note that, according to
Robinson and Wormald (1994), d-regular graphs almost
certainly contain Hamiltonian cycles whenever d ≥ 3.
The KCP and KSCP are also solvable in polynomial time
in cases where d = 2, since such graphs are composed of
cycles only.

Rectangular grid graphs are graphs in which both the vertices are arranged in an
x × y lattice. The neighbours of a vertex then correspond
to the vertices above, below, to the left, and to the right
(where present). Such graphs can also be defined as the
Cartesian product of the path graph on x vertices and the
path graph on y vertices. Rectangular grid graphs there-
fore have n = xy vertices andm = (x−1)y+(y−1)x =
2xy − x − y edges. This particular topology helps to
model street maps of cities that follow a grid plan, such as
Chicago, Calgary and Adelaide. In our case, all edges in
these graphs were allocated a weight of one and can there-
fore be considered unweighted. Aswewill see in Sect. 4.3,
the KCP and KSCP are both polynomially solvable for
such cases.

Figure 6 illustrates the distribution of cycle lengths for small instances of these
three topologies. As shown, each distribution is roughly normal in shape, with a slight
negative skew. This suggests that cycles of length k are more common when k is
roughly halfway between the upper and lower bounds. Similarly, long cycles are less
common in the solution space and, therefore, could be more difficult to identify. The
results in the following subsections seem to confirm this.
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Fig. 7 The top row shows the costs achieved using the IP and local search algorithms with the KCP using
planar graphs with n = 100, 500 and 1000 vertices (respectively) and various values of k. Each point is the
mean across 20 graphs. The bottom row shows the same information for the KSCP using randomly selected
source vertices

4.1 Planar graphs

Figure 7 summarises the performance of our algorithms with planar graphs using
n ∈ {100, 500, 1000} and a wide range of values for k. In all cases, we see that there
is little difference in the costs returned for the KCP and KSCP, despite the latter being
a more restricted problem. We also see that the cost of the returned solutions tends
to increase when k is raised. This is because, as we saw in Fig. 6, long cycles tend
to be less frequent within the search space, making them more difficult to identify.
With the local search algorithm, this is also exacerbated by the fact that movements
in the solution space are more difficult to achieve when considering long cycles. This
is because, when the incumbent solution C contains many vertices, the proposed new
solution C ′ is more likely to contain duplicates of vertices and therefore be rejected
by the operator. Despite these difficulties with the neighbourhood operator, however,
it is clear that the local search algorithm, even with the shorter time limit, consistently
outperforms the IP method, particularly with larger graphs.

An oft-cited advantage of using IP methods is that, given enough time, they can
provide the user with a certificate of optimality. In contrast, our local search algorithm
can only return such a certificate if a zero-cost solution (i.e., a solution that is exactly k
units in length) is found. Despite this, our trials found that the local search method was
still seen to return certificates of optimality more frequently across nearly all values
of n and k with these graphs. The exception to this pattern was with the KSCP using
n = 100 and the highest values of k. In these cases, the small graphs allowed the
IP method to often produce a certificate of optimality and conclude that no cycles of
length k existed in the graph. The effects of this characteristic can be seen in Fig. 7
where, for a small number of high values of k, slightly superior results are returned
by the IP method.
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Fig. 8 The top row shows the costs achieved using the IP and local search algorithms with the KCP using
1000-vertex 3- 4- and 5-regular graphs (respectively) over various values of k. Each point is the mean
across 20 graphs. The bottom row shows the same information for the KSCP using randomly selected
source vertices

4.2 d-regular graphs

Figure 8 summarises the performance of our algorithms with d-regular graphs using
d ∈ {3, 4, 5} and n = 1000. Similar patterns to the planar graphs are shown here, with
the local search algorithm consistently identifying better solutions than the IP method,
even when using the shorter ten-second time limit. Indeed, for the larger values of k,
we found that the IP solver was often unable to make any improvements on the initial
solutions supplied by Algorithm 3. For the highest values of k in these figures, we also
see that lower-cost solutions are achieved by the local search algorithm when d is at a
higher value. This is because the larger number of edges in these graphs contributes to
a wider variety of cycles available in the solution space. Hence solutions with lower
costs can usually be identified.

4.3 Rectangular grid graphs

Our final set of results concerns unweighted x × y rectangular grid graphs. It is trivial
to show that cycles are present in any rectangular grid graphs for which both x ≥ 2
and y ≥ 2. Because of their bipartite nature, cycles in these graphs must also contain
an even number of vertices and edges. For the KCP, the solution space of these graphs
is known to expand quickly with respect to increases in x and y.3 For example, the
number of different cycles in a 3 × 3 grid is 13, while the number in a 10 × 10 graph
is approximately 2.74 × 1019.

In Theorem 4 below, we show that the KCP and KSCP are polynomially solvable
for unweighted rectangular grid graphs. As a corollary, this also proves that cycles and
s-cycles exist for all even values of k between 4 and n. That said, it is still interesting to
gauge the performance of our algorithmson these graphs.We should also note thatKCP

3 See http://oeis.org/A140517.
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Fig. 9 Part (a) illustrates how a Hamiltonian cycle can be formed in an x × y = n-vertex rectangular grid
graph in cases where n is even. To do this, we simply follow the outline of the grey “snake” depicted. Part
(b) illustrates the shape of the snake in cases where n is odd. In these cases, the maximum cycle length is
n − 1 vertices/edges. Part (c) shows a 10 × 10 rectangular grid graph with a cycle of length 98; hence two
of the 100 vertices are not included in the cycle

and KSCP remainNP-hard for non-rectangular grid graphs since they generalise the
problem of finding Hamiltonian paths in these graphs. The latter problem was proved
to be NP-hard by Itai et al. (1982).

Theorem 4 The KCP and KSCP are polynomially solvable with unweighted rectan-
gular grid graphs.

Proof LetG be a rectangular grid graphwith x ≥ 2 rows, y ≥ 2 columns and therefore
n = xy vertices. Without loss of generality, if x is even and y is odd, rotate the graph
by 90 degrees to make x odd and y even. Also, assume that the desired length k is an
even number between 4 and n (cycles with k edges do not exist for any other values).

In cases where y is even, a snake-like pattern can be drawn on G in the manner
depicted in Fig. 9a. A Hamiltonian cycle can then be found by following the edges on
the outline of this “snake”. In cases where y is odd (implying that x and n are also
odd), a cycle with n−1 edges can be determined by following the outline of the snake
shown in Fig. 9b. Given these cycles, in both cases cycles with two fewer edges can be
formed by removing the head (or a tail) from the snake and using the resultant outline
as before. This action can be repeated until the snake defines a cycle of k edges. Hence
the KCP is polynomially solvable.

For the KSCP, the same process is followed except that, if the source vertex s is on
the outline of the snake’s head, then only tails should be removed. Similarly, if s is
touching a tail, then only the head (or any other tails) should be removed. Hence the
KSCP is also polynomially solvable. ��

Figure 10 shows the performance of our algorithms with 50 × 50 and 100 × 100
rectangular grid graphs. Here we find the IP to be particularly poor; indeed, in our trials
with the 100×100 graphs, it was never able to improve on the initial solutions provided
by the warm start. In contrast, the local search algorithm is much more effective, even
with the restricted time limit.

Despite the general superiority of the local search algorithm with these graphs,
Fig. 10 still indicates that it experiences difficulties when seeking solutions of lengths
close to the maximum of n (where, we recall, zero-cost solutions must exist for even
values of k between 4 and n.) The reasons for this are illustrated in the example 100-
vertex graph shown in Fig. 9c. The solution, in this case, comprises 98 of themaximum
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Fig. 10 The top row shows the costs achieved using the IP and local search algorithms with the KCP using
50×50 and 100×100 rectangular grid graphs (respectively) for various values of k. Each point is the mean
across 20 runs. The bottom row shows the same information for the KSCP (each point is the mean across
20 runs using randomly selected source vertices)

100 edges possible; however, there is no way of applying our neighbourhood operators
to this current solution that will lengthen the cycle further. This solution can therefore
be seen as representing a conspicuous local optimum from which it is difficult for the
algorithm to escape under our current operators.

5 Conclusions and discussion

This paper has proposed two different approaches for tackling theNP-hard k-length
cycle and k-length s-cycle problems. Both of these methods operate under a common
framework whereby the input graph is first partitioned into biconnected components.
We have also shown that theKSCP andKCP are polynomially solvable for unweighted
rectangular grid graphs.

Our IP-based approach has been shown to perform well with very small instances;
however, under our imposed time limits it struggles on larger instances and higher
values of k. In contrast, our local search method has produced superior results in
most cases, even under very restricted time limits. The latter also operates using a
O(n + m) adjacency list representation of a graph, which is more memory efficient
than the O(n2)-sized adjacency matrices required by the IP. Note, however, that the
local search method is not exact and can produce sub-optimal solutions even with
relatively small graphs, as illustrated in Fig. 9c.
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As part of our local search algorithm, we have proposed using the random-first
search (RFS) method for determining paths in graphs. This occurs in Step 5 of Algo-
rithm 4.We also tried replacing RFSwith the alternative path-finding algorithms listed
in Sect. 3. In general, the use of Dijkstra’s algorithm or DFS here produced poor results
because these methods are biased towards short and long paths (respectively) and lack
sufficient randomisation. BFS andWilson’s algorithm showed better prospects, though
we still found their results to be marginally worse than RFS for high values of k. For
BFS, this also seems to be due to the lack of randomisation; on the other hand, Wil-
son’s algorithm was found to be more costly than RFS, resulting in fewer iterations of
the local search algorithm within the imposed time limit.

A direction of future research would be to seek improvements to our proposed
methods. This could include using different IP formulations, further (or improved)
neighbourhood operators, and/or different metaheuristic frameworks. It would also be
interesting to consider extending the KSCP so that more than one vertex is considered
compulsory in a cycle. In road networks, this would allow the user to create a route
that includes several locations, such as a school, shop, and cafe.

Another avenue of research is to consider the KCP and KSCP when applied
to directed graphs. Such problems will require different schemes for graph parti-
tioning. Our current algorithms would also require modified IP formulations and
neighbourhood operators in these cases.
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