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Abstract: (1) Introduction: Claudin-9 (CLDN9) is a member of the claudin protein family, a critical
transmembrane protein family for tight junctions that are implemented in the progression of nu-
merous cancer types. The present study investigated the role that CLDN9, along with the subcoat
proteins, Zonula Occludens (ZOs), plays in clinical breast cancer and subsequent impact on drug
response of patients. (2) Methods: CLDN9 protein and CLDN9 transcript were determined and
correlated with clinical and pathological indicators, together with the status of hormonal receptors.
The levels of CLDN9 transcript were also assessed against the therapeutic responses of the patients
to chemotherapies by using a dataset from the TCGA database. Breast cancer cell models, repre-
senting different molecular subtypes of breast cancer, with differential expression of CLDN9 were
created and used to assess the biological impact and response to chemotherapeutic drugs. (3) Results:
Breast cancer tissues expressed significantly higher levels of the CLDN9, with the high levels being
associated with shorter survival. CLDN9 was significantly correlated with its anchorage proteins
ZO-1 and ZO-3. Integrated expression of CLDN9, ZO-1 and ZO-3 formed a signature that was
significantly linked to overall survival (OS) (p = 0.013) and relapse-free survival (RFS) (p = 0.024) in
an independent matter. CLDN9 transcript was significantly higher in patients who were resistant to
chemotherapies (p < 0.000001). CLDN9 connection to chemoresistance was particularly prominent
in patients of ER-positive (ER(+)), Her-2-negative((Her-2(−)), ER(+)/Her-2(−) and triple-negative
breast cancers (TNBCs), but not in patients with HER-2-positive tumors. In Her-2-negative MCF7 and
MDA-MB-231 cancer cells, loss of CLDN9 significantly increased sensitivity to several chemother-
apeutic drugs including paclitaxel, gemcitabine and methotrexate, which was not seen in Her-2(+)
SKBR3 cells. However, suppressing Her-2 using neratinib, a permanent Her-2 inhibitor, sensitized
cellular response to these chemodrugs in cells with CLDN9 knockdown. (4) Conclusions: CLDN9 is
an important prognostic indicator for patients with breast cancer and also a pivotal factor in assessing
patient responses to chemotherapies. Her-2 is a negating factor for the treatment response prediction
value by CLDN9 and negating Her-2 and CLDN9 may enhance breast cancer cellular response to
chemotherapeutic drugs.
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1. Introduction

Claudins (CLDNs) are a family of small transmembrane proteins that are key ele-
ments for tight junctions. This protein family has twenty-four members each sharing a
similar protein structure that has four membrane-spanning domains with both the C- and
N-terminus located in the cytoplasmic region. Intracellularly, the N-terminus anchors
the claudin protein to the cytoskeleton via interaction with proteins such as the Zonula
Occludens (ZOs). Both termini are also involved in mediating cell signaling. Claudins,
by interacting with the same or different claudins on the other cells via the extracellular
domains, form a key part of the control mechanism of paracellular permeability and hence
the function of tight junctions. The role of claudins in pathological conditions particu-
larly in cancers including breast cancer have been explored in recent years. For example,
CLDN1, CLDN3, CLDN7, CLDN16 and CLDN20 have been found to be downregulated in
breast cancer, and the downregulation of these claudins appearing to be linked to a more
aggressive phenotype and with poor clinical outcome [1–8]. In contrast, CLDN3, CLDN4
and CLDN5 appear to be overexpressed in breast cancers [9–13]. However, determining
whether claudins play a tumor-suppressive or oncogenic role is dependent on both the
individual claudin and the type of cancer. Perhaps the most well-studied claudin in breast
cancer is CLDN4, which has been found to be highly aberrant and has a role to define a
subgroup of breast cancer [2,14–17]. As well as an indicator for disease progression and
prognosis in various cancers, some claudins have also been shown to be indicators for
cancer cell response to anticancer drugs. For example, CLDN4 overexpression, an indicator
of poor clinical outcome in patients with ovarian cancer, is an indicator of resistance to
cisplatin in this cancer type [18,19], and a similar role for CLDN6 is seen in cervical adeno-
carcinoma [20]. In breast cancer cells such as MCF-7, CLDN6 expression confers cellular
resistance to drugs such as 5-fluouracil (5-FU) and adriamycin [21]. From a clinical point
of view, high CLDN2 in colorectal cancer appears to be linked to poor outcome in those
receiving 5-FU treatment [22] and CLDN1 and CLDN7 appear to form a claudin signature
to predict the clinical response to chemotherapies in colorectal cancer [23]. The CLDN2 link
may be via the paracellular passage of drugs in lung cancer cell models [24,25]. In breast
cancer and particularly in triple-negative breast cancer (TNBC), CLDN1 is a good indicator
for cancer cell response to paclitaxel, doxorubicin and 5-FU [26]. However, in colorectal
cancer, CLDN1 often becomes upregulated following chemotherapies, and overexpression
of CLDN1 confers cells’ resistance to oxaliplatin [27].

Compared with other members, CLDN9 is one of less well-studied claudins. CLDN9
protein is encoded by the CLDN9 gene located on chromosome 16p13.3 and is 217 amino
acids in size (22.8 kDa). It was first reported as a gene product similar to a gene in rats called
Rat Ventral Protein.1 (RVP.1) [28,29]. Mouse studies revealed that this gene is required
for the preservation of sensory cells in ears and the gene deficiency is associated with
deafness [30,31].

CLDN9 is known to be a key binding protein for pathogens. It is a coreceptor to
hepatitis C virus [32,33], and is also a receptor for the Clostridium perfringens enterotoxin
(CpE) in the gut [34]. In gastric cancer, strong CLDN9 protein staining in the tissues of
diffuse type is associated with high mortality [35], a finding seemingly replicable in a cell
line of gastric cancer [36]. CLDN9 is generally well expressed in the pituitary gland and
pituitary oncocytomas and it was seen to be highly linked to the invasive subtype of the
tumors [37,38]. In cervical cancers, CLDN9, amongst other claudins, is seen to associate
with lymphatic invasion [39] and is one of the few genes in endometrial cancer to predict a
survival of the patients [40,41]. CLDN9 was found to be linked with metastasis of in vivo
lung cancer models and with cell migration and invasiveness in vitro [42].

Studies on CLDN9 in breast cancer is rather rare. It has been reported to be low
or negative along with CDLN6, CLDN12 and CLDN13 in breast tissues [43]. We have
previously studied the role of claudins and tight junction molecules including CLDN19,
CLDN20, and ZOs in breast cancer [6,7,44]. In the present study, we identified CLDN9 as
potentially an important factor in assessing the clinical outcome of the patients and also
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patient response to drug treatment, and that this connection appears to be hormone receptor-
dependent. We further developed cell models expressing differential CLDN9 expression
levels and different hormonal receptor status, to confirm that in Her-2-positive breast cancer
cells (SKBR3), knockdown of CLDN9 rendered the cells more sensitive to chemodrugs
when Her-2 inhibitor is present. Collectively, CLDN9 is a prognostic indicator for breast
cancer and a predictor for patient therapeutic response in Her-2-negative breast cancers.

2. Materials and Methods
2.1. Cell Lines

The following human breast cancer cell lines, MCF7, MDA-MB-231 and SKBR3, were
purchased from ATCC (American Type of Cell culture) (purchased via LGC Standards,
Teddinton, England, UK) and cultured in Dubecco’s Modified Eagle Medium (DMEM) with
10% foetal calf serum (FCS) (Sigma-Aldrich, Dorset, UK) and 1 × antimicrobial solutions
(Sigma-Aldrich, Dorset, England, UK).

2.2. Mammary Tissue Cohort

Breast cancer tissue and background normal tissues (n = 127, and n = 33) were collected
immediately after surgical removal of breast cancer at the University Hospital of Wales,
as reported previously [45]. None of the patients received chemotherapy prior to surgery.
Written informed consent was required and obtained from patients, with a follow-up study
with a median follow-up period of 120 months conducted after the surgery. Pathologi-
cal, clinical and follow-up information were obtained from clinical records and used for
subgroup analyses. Of the all the patients, nine patients died of reasons unrelated to
breast cancer and were excluded from the subgroup analysis. Sample tissue was sectioned
using a cryostat (Leica CM1950) (Leica Biosystems Ltd., Newcastle, England, UK). The
samples were collected under ethical approval (Bro Taf Health Authority; ethics approval
numbers 01/4303 and 01/4046). Part of the frozen tissue sections were used for routine
histological evaluation while the remaining sections were blended and homogenized before
being subject to Tri Reagent RNA (Meck Sigma Aldrich, Dorset, UK) extraction for further
genetic analysis.

2.3. Key Research Materials

A mouse monoclonal antibody to GAPDH(SC-32233), a goat polyclonal antibody
to CLDN9(SC-17672) and a mouse monoclonal antibody to CLDN9(SC-398836) were, re-
spectively, purchased from Santa-Cruz Biotechnologies Inc. (Santa Cruz, CA, USA). A
mouse monoclonal antibody to ZO-1(33-9100) was, respectively, purchased from Thermo
Fisher Scientific Inc. (Thermo Fisher Scientific, Loughborough, UK). siRNA targeting hu-
man CLDN9 was obtained from Santa-Cruz Biotechnologies Inc. Chemo-drugs, including
gemcitabine (GEM), docetaxel (DOC), cisplatin (CIS), methotrexate (MTX) and docetaxel
were purchased from Sigma-Aldrich (Dorset, UK). A broad-spectrum permanent Her-2
inhibitor, neratinib, was obtained from PUMA Biotechnologies Inc. (Los Angeles, CA,
USA). These drugs were dissolved in DMSO, further diluted with DMEM to a desired
concentration and stored at −20 ◦C until use. Other chemicals were purchased from Merck
unless otherwise stated.

2.4. Creation of CLDN9 Knockdown Cell Models

Breast cancer cell lines MCF7, MDA-MB-231 and SKBR3 were used to create sub-
lines with CLDN9 knockdown. Transient knockdown using siRNA (SC-43050) from Santa
Cruz Biotechnology Inc., Dallas, TX, USA, was used on the cells. The sequence of siRNA
for CLDN9 were as follows: Sense: GAGCAUUUGUAACUGGAAAtt. Antisense: UU-
UCCAGUUACAAAUGCUCtt. Transfection of cancer cells was carried out using trans-
fection kits (SC-36868 and SC-29528) purchased from Santa Cruz Biotechnology Inc., by
following the manufacturer’s instructions. The effect of knockdown was verified using
PCR, qPCR and Western blotting analyses.
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2.5. Analysis of Gene Transcript by PCR and QPCR

Quantitative and qualitative gene transcript analyses were undertaken using real-time
quantitative RT-PCR and QPCR by employing the Amplifluor Molecular Beacon system.
Reactions were prepared in a MicroAmp fast Optical 96-well plate (Greiner Bio-One Ltd.,
Gloucestershire, UK) using primers specific to the molecule of interest. In addition to
unknown samples, reactions were prepared for a known standard that was run alongside
the unknown samples. Once all samples and unknowns were added to the plate, the
plate was sealed with optical seals (PrimerDesign, Southampton, UK) and the sample
was subjected to a StepOne Plus qPCR system (Thermo Fisher Scientific, Waltham, MA,
USA). Relative copy numbers of the samples were calculated as part of the systematic
analysis, in accordance with the standard curve, and were subsequently exported to Excel
2019 (Microsoft Inc., Redmond, WT, USA) for further analysis. Qualitative PCR prod-
uct was separated using 1% agarose and image obtained from a UV imager. Sequences
used in the study were as follows: QPCR for CLDN9: 5′GTGCCCTCTGTGTCATTG′3 and
5′ACTGAACCTGACCGTACATCCACACACGTGGTACACT′3, ZO-1: 5′CCACATACAGA
TACGAGTCCTC′3 and 5′ACTGAACCTGACCGTACAGTAACTGCGTGAATATTGCT′3;
ZO-2: 5′CAAAAGAGGATTTGGAATTG′3 and 5′ACTGAACCTGACCGTACAGAGCACA
TCAGAAATGACAA′3; ZO-3: 5′CTGACATGGAGGAGCTGA′3 and 5′ACTGAACC
TGACCGTACAGCTTAGCTTCCCTTCTGACT′3), GAPDH (5′AAGGTCATCCATGACAA
CTT′3 and 5′ACTGAACCTGACCGTACAGCCATCCACAGTCTTCTG′3) and CK19 (5′AGC
CACTACTACACGACCAT′3 and 5′ACTGAACCTGACCGTACATCGATCTGCAGGACAA
TC′3).

2.6. Western Blotting

Proteins were extracted from cultured cells with RIPA buffer and quantified using a
BioRad protein quantitation kit (Bio-Rad Laboratories, Hertfordshire, UK). The samples
were treated with 2 × Laemmle sample buffer, boiled for 5 min at 100 ◦C and then loaded
to 12% SDS PAGE gel for electrophoresis. The protein transfer from the gel onto the PVDF
membrane that had been preactivated with methanol was subsequently accomplished using
a semidry transfer technique. A 10% milk powder solution was utilized for membrane
blocking. The blots were incubated with the respective primary antibody to CLDN9 and
GAPDH, and then exposed to the secondary antibody that was HRP-conjugated before
being visualized with EZ-ECL solution (Geneflow Ltd., Litchfield, UK).

2.7. Cellular Response to Chemotherapy Drugs

Breast cancer cells, with or without CLDN9 knockdown, were seeded into 96-well
plates and treated with serially diluted drugs before they were incubated in the incubator.
The concentrations of the drugs were, respectively, chosen based on their known IC50 and
previous studies. After 72 h, the cells were fixed with 4% formalin, stained with 0.5% crystal
violet and extracted with 10% acetic acid after washing. The absorbance was measured at
595 nm using a spectrophotometer to detect their respective cell densities. The percentage
drug toxicity was calculated as follows:

Percentage drug toxicity = [(Absorbance in untreated well − Absorbance in drug treated well)/
Absorbance in untreated well] × 100

The scatterplots of percentage toxicity versus drug concentration were plotted, with
the best fit curve used to calculate the respective IC50 value.

2.8. Immunohistochemical Staining of CLDN9 Protein

CLDN9 staining was carried out using a breast cancer tissue microarray BR1503f
(US Biomax, Inc., Derwood, MD, USA), which had 75 cases of breast cancer tissues (in
total, 128 samples were utilized for the analysis). After dewaxing and rehydration, the
tissue microarray was subjected to antigen retrieval followed by thorough washing in
PBS. After blocking nonspecific binding with 10% horse serum, the primary anti-CLDN9
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antibody was added and incubated overnight at 4 ◦C (final concentration: 2 ug/mL).
Following extensive washing in PBS, the secondary antibody and tertiary reagents were
added, with biotinylated secondary antibody first followed by avidin–biotin amplification
with a commercial kit (Vectastain Elite Universal ABC kit, Vector Laboratories Ltd., Pe-
terborough, UK). After further washing with PBS, the slides were further incubated with
3,3′-diaminobenzidine (DAB) solution to allow for chromogenic detection. Finally, the
tissue sections were counterstained with hematoxylin, washed thoroughly in tap water and
then subjected to dehydration through a graded series of ethanol, prior to being cleared
in xylene and mounted in DPX mounting solution (Sigma-Aldrich, Dorset, UK). Staining
was visualized using a Leica DM1000 LED microscope (Leica Biosystems Ltd., Newcastle,
England, UK). Negative controls were prepared by omitting the primary antibody and
only using the secondary universal antibody from the Vectastain Elite ABC kit. The stain-
ing pattern and intensity were evaluated by two independent researchers, as previously
reported [46].

2.9. Immunofluorescence (IFC)

Pretreatment was carried out with an 8-well chamber slide with the medium in the
incubator overnight. 10 × 104 cells were seeded into each well of the chamber slide. After
36 h of incubation, the medium was discarded, and the cells were fixed with 4% formalin.
After washing with PBS, the cells were permeabilized with 0.1% Triton × 100 (diluted with
PBS) for 5 min. Nonspecific binding was blocked with 8% horse serum (dilute with PBS) for
2 h, and the slide then incubated with primary antibody at a concentration of 1:100 overnight
at 4 ◦C. The slides were subsequently incubated with secondary antibodies tagged with
either fluorescein isothiocyanate (FITC, 1:500) or tetramethylrhodamine isothiocyanate
(TRITC, 1:500) (Sigma-Aldrich, Dorset, UK), together with 6-Diamidino-2-phenylindole
(DAPI, 1:1000) (Merck Millipore, Watford, UK). The slides were washed and mounted
with FluoSave (Calbiochem, Nottingham, England, UK) in preparation for photographing.
Images were captured using an Olympus microscope and photographed with a Hamamatsu
digital camera.

2.10. Patients’ Response to Chemotherapies and Evaluation

We used a comprehensive public database that contains breast cancer patients with
their therapeutic options recorded [47]. The database took the approach of ROC (receiver
operating characteristic curve), allowing for classification of patients’ sensitivity to a therapy.
Here, the AUC (area under the curve) values and the statistical value for sensitivity to
treatment were recorded. Additionally, the levels of the respective gene expression of
the gene of interest were also displayed together with their statistical power (using a
Mann–Whitney U test).

2.11. Statistical Methods

Statistical analyses were carried out using SPSS (version 27.0). Groupwise comparisons
were conducted using a Kruskal–Wallis test and ANOVA where applicable. Pairwise
comparisons were performed using a Mann–Whitney U test, as indicated in the text.
Kaplan–Meier method and log rank test were used to run survival analysis. Univariate and
multivariate analyses were conducted using Cox regression model. Classification analysis
was achieved using the receiver operating characteristic (ROC) method.

3. Results
3.1. Transcript Levels of CLDN9 in Breast Cancer Tissues

Breast cancer tissues expressed significantly elevated levels of CLDN9 transcript
(p = 0.035) (Table 1). Patients who died of breast cancer and who developed breast cancer-
related incidence had a raised level of the CLDN9 transcript, although these were marginally
statistically significant. It was interesting to note that levels of CLDN9 transcript were
significantly correlated with transcripts of ZO-1 and ZO-3, but not ZO-2 (Table 2).
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Table 1. CLDN9 in mammary tissues and breast cancer tissues.

Category Subgroup n CLDN9 (Median
(Q1–Q3) p Value *

Normal 33 15 (4–764)
Tissue type

Tumour 127 77 (4–4342)
0.035

1 24 1500 (158–21,800)

2 43 41 (3–5418) 0.025Grade

3 58 31 (4–1442) 0.0036

1 70 125 (6–6170)

2 40 57 (3–1467) 0.18

3 7 226 (32–32,600) 0.59
TNM staging

4 4 89 (20–5529) 0.76

Disease free 90 80 (7–6505)

Died of BrCa 16 729 (11–16,375) 0.071Clinical outcome

All BrCa Incidence 28 125 (4–1467) 0.05

Negative 75 32 (4–700) 0.09
ER status

Positive 38 924 (4–18,520)

Her2(−) 57 81 (3–5165)
Her2

Her2(+) 55 75 (7–1970)
0.75

* Mann–Whitney U test.

Table 2. Correlation levels of the CLDN9 transcripts with that of ZO-1, ZO-2 and ZO-3 (Spearman
ranked method).

Spearman’s Correlation with CLDN9

ZO-1 Correlation Coefficient 0.297 **

Significance (2-tailed) 0.001

ZO-2 Correlation Coefficient −0.084

Significance (2-tailed) 0.374

ZO-3 Correlation Coefficient 0.252 *

Significance (2-tailed) 0.011
* indicating significance p < 0.05; ** indicating significance p < 0.001.

3.2. CLDN9 Protein Expression in Mammary Tissues

We evaluated the protein distribution in representative samples of mammary tissues
and breast cancer tissues (Figure 1 and Table 3). As shown in Figure 1, normal mammary
tissues indicated the presence of CLDN9 protein in areas representing tight junctions
(Figure 1, arrows in green). In tumor tissues, the staining appeared to be more diffuse
and seem in cytoplasmic regions rather than in the junctional regions (Figure 1, open
red arrows), a pattern similar to that found with the ZO family proteins, as previous
reported [48]. The analysis of the CLDN9 staining (Table 3) also indicated the pattern
changing between normal tissues and tumor tissues.
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panel) and breast cancer tissues of different grade (right three panels). In normal tissues, CLDN9 
was seen in the residual mammary epithelial cells at the apical regions (green arrows) and to a de-
gree in cytoplasmic regions (open red arrows). In breast cancer, however, the staining was seen in a 
diffused pattern and was primarily in the cytoplasmic region of the cells (open red arrows). 

Table 3. Analysis of the CLDN9 staining in the breast cancer TMA (BR1503f). 
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Negative to Weak 
(0–1) 
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(2–3) 
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T1 
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(n = 3) 

1 2 0 3 0 3 2.272 0.8104 

Figure 1. Immunohistochemical detection of the CLDN9 protein in normal mammary tissue (left
panel) and breast cancer tissues of different grade (right three panels). In normal tissues, CLDN9 was
seen in the residual mammary epithelial cells at the apical regions (green arrows) and to a degree in
cytoplasmic regions (open red arrows). In breast cancer, however, the staining was seen in a diffused
pattern and was primarily in the cytoplasmic region of the cells (open red arrows).

Table 3. Analysis of the CLDN9 staining in the breast cancer TMA (BR1503f).

Intensity

Negative
to Weak

(0–1)

Moderate
to Strong

(2–3)

Membrane Nucleus Statistical
Significance

Positive Negative Positive Negative Chi Value p Value

Normal
(n = 3) 0 3 3 0 0 3

Tumor
(n = 128) 74 54 19 109 23 105 19.85 0.0013

Grade1
(n = 4) 2 2 1 3 2 2

Grade2
(n = 57) 29 28 8 49 13 44 1.849 0.8696

Grade3
(n = 28) 16 12 2 26 2 26 7.264 0.2018

T1
(n = 4) 4 0 0 4 0 4

T2
(n = 69) 35 34 11 58 11 58 5.191 0.393

T3
(n = 25) 15 10 5 20 7 18 4.885 0.4301

T4
(n = 15) 9 6 1 14 2 13 3.216 0.6667

HER-2-
(n = 81) 52 29 12 69 13 68

HER-2+
(n = 3) 1 2 0 3 0 3 2.272 0.8104

HER2++
(n = 9) 3 6 2 7 0 9 5.273 0.3834
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Table 3. Cont.

Intensity

Negative
to Weak

(0–1)

Moderate
to Strong

(2–3)

Membrane Nucleus Statistical
Significance

Positive Negative Positive Negative Chi Value p Value

HER2+++
(n = 29) 15 14 5 24 7 22 2.431 0.7869

ER-
(n = 59) 33 26 10 49 13 46

ER+
(n = 18) 10 8 3 15 1 17 2.519 0.7736

ER++
(n = 20) 12 8 4 16 1 19 3.168 0.674

ER+++
(n = 25) 16 9 2 23 5 20 1.662 0.8937

3.3. CLDN9 and Patient Clinical Outcome

Patients with high levels of CLDN9 had a shorter, yet statistically nonsignificant overall
survival (OS) than those with low levels (p = 0.054) (Figure 2). A weaker link was seen with
relapse-free survival (RFS) (p = 0.157). Owing to the nature that ZO proteins are critical
anchorage proteins for CLDN9 in the cells and that CLDN9 was significantly correlated
with ZO-1 and ZO-3, we further integrated the expression pattern of CLDN9, ZO-1 and ZO-
3 and analyzed against patient outcome. As can be seen in Figure 2, the expression signature
of integrated CLDN9, ZO-1 and ZO-3 had a marked value in significantly predicting both
OS (p = 0.013, hazard ratio (HR) = 0.1472) and RFS (p = 0.024, HR = 1.1148). Integrated
expression also showed a high significant independent value in multivariate analysis
(Table 4). The CLDN9/ZO expression does provide an excellent prediction value for OS
(p = 0.004) and for RFS (p = 0.010).
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Table 4. Multivariate analysis of the CLDN9/ZO expression signature against clinical outcome.

Factors
OS RFS

Hazard Ratio p Value * Hazard Ratio p Value *

CLDN9/ZO signature 2.033 0.004 1.239 0.010

NPI ** 3.028 0.089 2.068 0.045

Grade 1.287 0.432 1.275 0.530

TNM staging 1.034 0.902 1.412 0.033

ER status 2.022 0.266 3.896 0.008

Her-2 status 3.016 0.083 7.697 0.008
* Cox regression method. ** NPI: Nottingham Prognostic Index.

3.4. CLDN9 and Hormone Status Outcome

CLDN9 was found to be expressed at different levels depending on receptor status
(Figure 3). This inspired us to further investigate if the expression signature had value in
the subgroups with different receptor status. As shown in Figure 3, analysis in subgroups
did not markedly improve the prediction in overall survival in subgroups with different
hormone receptor status, suggesting that this signature may operate well irrespective of
the receptor status of breast cancer.
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3.5. CLDN9 and Patient Response to Drug Treatment

From previous reports that claudins are important markers in predicting patient
response to therapies, we conducted an analysis on the available TCGA dataset (accessed
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via ROCplot.com) and explored the possible link between CLDN9 and patient response
to drugs.

3.5.1. High Expression of CLDN9 and Patient Resistance to Chemotherapies

CLDN9 transcript levels have a significant impact on breast cancers and patient
responses. Shown in Figure 4A,B are analyses based on the ROC model in the pathological
response (A) and 5-year RFS response (B). It was clear that by both assessment methods,
CLDN9 is highly significant in distinguishing patients’ responses. When the levels of
CLDN9 were analyzed in the responders (sensitive) and non-responders (resisted) to
chemotherapies, the non-responders (resisted) had significantly higher levels of CLDN9
transcript than the responders (Figure 4C).
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of patient pathological (A) and 5-year relapse-free survival (RFS) (B) to chemotherapies. There is a
significant connection between CLDN9 transcript and patients’ responses. (C) CLDN9 transcript
levels in the respective group. Patients who resisted (non-responders) chemotherapies had signifi-
cantly higher levels of CLDN9 compared with those who responded to treatment in both pathological
assessment and RFS assessment. Data from the TCGA dataset (ROCplot.com, accessed on 23 June
2023). * by Mann-Whitney U test.

3.5.2. Expression of CLDN9 and Patient Resistance to Chemotherapies in Relation to
Hormone Receptor Status and Molecular Subtypes

When receptor status was considered, it was found that patient response to chemother-
apies in ER positive and ER negative tumors showed the same trend that patients who
resisted chemotherapies had significantly high levels of CLDN9 transcript compared to
the sensitive group (p < 0.001 in both groups) (Figure 5 and Table 5). The same link
between CLDN9 expression and drug resistance was seen in Her-2-negative tumors
(p = 0.0000000027). However, it was noteworthy that in Her-2-positive tumors, there was

ROCplot.com
ROCplot.com
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no significant difference between responders and non-responders, leading us to investigate
further using in vitro methods (Figure 5 and Table 5).
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Table 5. CLDN9 expression in breast tumors with different receptor statuses and with different
molecular subgroups. Data derived from ROCplot (accessed on 23 June 2023).

Non-Responders Responders
5-Year RFS Response

n Median Min–Max n Median Min–Max
p *

ER(−) 111 182 10–564 115 99 6–922 0.000034
ER status

ER(+) 109 252 26–750 141 163 6–1315 5.9 × 10−9

Her2 (−) 173 250 10–750 183 141 6–1362 7.1 × 10−11

Her2 status
Her2 (+) 47 162 25–432 73 133 5–622 0.12

ER(+)/Her2(−) 88 262 26–750 103 163 12–1352 0.000000009

ER(+)/Her2(+) 21 200 75–432 38 168 5–429 0.14

ER(−)/Her2(+) 26 140 25–343 35 122 7–622 0.13

TNBC 84 218 10–564 80 96 6–439 0.000075

Luminal-A 20 202 59–304 58 126 15–501 0.0068

Luminal-B 90 262 26–750 83 199 5–1352 0.00005

* By Mann-Whitney U test.

ROCplot.com
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We subsequently explored the relationship between CLDN9 expression in molecular
subtypes. As shown in Table 5, high levels in tumors where Her-2 was negative are
linked to resistance. This includes ER(+)/Her-2(−) tumors (p = 0.000000009), Luminal-A
(p = 0.0068) and Luminal-B (p = 0.00005) tumors where both are Her-2-negative. What
is more interesting is that in triple-negative breast cancers that are both ER- and Her-2
negative, this connection was also highly significant (p = 0.000075). Conversely, in the
two subgroups that were Her-2 positive, namely ER(+)/Her-2(+) and ER(−)/Her-2(+), the
relationship was not significant (p = 0.14 and p = 0.13, respectively) (Table 5). Collectively,
the clinical information indicates that the presence of Her-2 in breast cancer decreases the
responsiveness of the cells to chemotherapies.

3.5.3. CLDN9 Is Not Connected to Endocrine or Anti-Her-2 Therapies

It is very interesting to note that levels of CLDN9 do not appear to be linked to
patients’ response to endocrine therapies (AUC = 0.503, p = 0.45, by 5-year RFS), or anti-
Her-2 therapies (AUC = 0.513, p = 0.44, by 5-ear RFS).

3.6. Creation of CLDN9 Knockdown Breast Cancer Cell Model

To corroborate the clinical findings, we established cell models of breast cancer
cells with CLDN9 knockdown, based on analyzing the baseline expression levels of
CLDN9 in three breast cancer cell lines. The breast cancer cell lines MDA-MB-231 (HER-
2−/ER−/PR−), MCF7 (HER-2−/ER+/PR+) and SKBR3 (HER-2+/ER−/PR−), represent-
ing the main molecular subtypes of breast cancers as portraited earlier, were employed to
generate the CLDN9 knockdown cell models. As shown in Figure 6, the CLDN9 expression
in each cell line exhibited a significant reduction following transfections with anti-CLDN9
siRNA, as evidenced with PCR, qPCR and Western blotting analyses.
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transcript expression in in the respective cell line controls and CLDN9 knockdown cells as confirmed
using PCR (right panel) and quantitative PCR (left panel). (E): Knockdown of CLDN9 protein in the
respective cell lines as shown using protein blotting. * p < 0.05, *** p < 0.001 vs. control cells.

3.7. CLDN9 Expression and Cell’s Response to Chemodrugs

The aim of this part of the study was to ascertain the correlation between CLDN9
expression levels and chemoresistance across various subtypes of breast cancer cells. We
evaluated the IC50 values of methotrexate, docetaxel, cisplatin and gemcitabine in the
three representative cell lines, encompassing both normal CLDN9 expression levels and
those with CLDN9 knockdown. Figure 7 illustrates examples of drug responses within
normal CLDN9-expressing cells and CLDN9 knockdown in the breast cancer cell models.
Utilizing the cell models established in this study, we validated the responsiveness of these
cell lines to chemotherapy agents. As shown in Table 6, knockdown CLDN9 in the Her-2-
negative MCF7 and MDA-MB-231 cells sensitized the cells in their response to gemcitabine,
docetaxel, methotrexate and, to some degree, cisplatin. However, in the Her-2(+) SKBR3
cells, knockdown CLDN9 only had marginal effects on the cells’ response to these drugs
(Table 6).

Biomedicines 2023, 11, 3136 14 of 22 
 

neratinib and chemodrugs appeared to render more toxicity than using either the Her-2 
inhibitor alone or the chemodrug alone. This effect was not seen with MCF7 (Figure 9) nor 
with MDA-MB-231 (Figure 10) cells, both of which are Her-2-negative in that the control 
cells and CLDN9kd cells responded similarly to neratinib, chemodrugs and their combi-
nations, as seen in MCF-7 (Figure 9) and MDA MB-231 (Figure 10). 

 
Figure 7. Implication of CLDN9 on breast cells’ response to chemotherapeutic agents over broad 
concentration ranges. (A) MDA-MB-231 cells (gemcitabine 8 µM); (B) MCF7 cells (gemcitabine 200 
µM); (C,D): SKBR3 cells (gemcitabine 10 µM and cisplatin 100 µM). CT: control; KD: knockdown. 

Table 6. IC50 of chemotherapy drugs in breast cancer cell lines with modified CLDN9 expression. 

 
Gemcita-

bine 
(µM) 

Docetaxel 
(µM) 

Cisplatin 
(µM) 

Methotrexate 
(µM) 

MDA-MB-231Control 0.820 54.612 12.520 107.927 

MDA-MB-231CLDN9-KD 0.287 31.134 4.723 2.7834 

MCF7Control 27.261 6.575 13.462 2179.402 

MCF7CLDN9-KD 7.334 17.876 12.414 1510.961 

SKBR3Control 0.028 0.100 10.162 1012.070 

SKBR3CLDN9-KD 0.031 0.086 12.493 706.855 

Figure 7. Implication of CLDN9 on breast cells’ response to chemotherapeutic agents over broad
concentration ranges. (A) MDA-MB-231 cells (gemcitabine 8 µM); (B) MCF7 cells (gemcitabine
200 µM); (C,D): SKBR3 cells (gemcitabine 10 µM and cisplatin 100 µM). CT: control; KD: knockdown.

Table 6. IC50 of chemotherapy drugs in breast cancer cell lines with modified CLDN9 expression.

Gemcitabine
(µM)

Docetaxel
(µM)

Cisplatin
(µM)

Methotrexate
(µM)

MDA-MB-
231Control 0.820 54.612 12.520 107.927

MDA-MB-
231CLDN9-KD 0.287 31.134 4.723 2.7834

MCF7Control 27.261 6.575 13.462 2179.402
MCF7CLDN9-KD 7.334 17.876 12.414 1510.961

SKBR3Control 0.028 0.100 10.162 1012.070
SKBR3CLDN9-KD 0.031 0.086 12.493 706.855
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As indicated in Table 5, in patients bearing Her-2 breast cancer, CLDN9 appeared to
have lost its value in predicting patient response to chemotherapies. In order to test if
this connection can be replicated in vitro, we employed a Her-2-positive cell, SKBR3, and
applied a permanent Her-2 inhibitor, neratinib, with or without chemotherapeutic drugs.
As shown in Figure 8, both neratinib and chemotherapy drugs (except cisplatin) exert
cytotoxicity on SKBR3 control cells. However, with CLDN9 knockdown in SKBR3 cells,
cells became more sensitive to neratinib and chemodrugs. Additionally, the combination of
neratinib and chemodrugs appeared to render more toxicity than using either the Her-2
inhibitor alone or the chemodrug alone. This effect was not seen with MCF7 (Figure 9)
nor with MDA-MB-231 (Figure 10) cells, both of which are Her-2-negative in that the
control cells and CLDN9kd cells responded similarly to neratinib, chemodrugs and their
combinations, as seen in MCF-7 (Figure 9) and MDA MB-231 (Figure 10).
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Figure 9. Inhibition of Her-2 and MCF7 cells’ response to chemotherapeutic drugs in relation with 
CLDN9 expression. MCF7 cells were tested on its wild type (Her-2 negative and CLDN9 positive) 
and its submodel, CLDN9 knockdown (CLDN9-KD). Neratinib (NER) had some inhibitory effects 
on the growth of both models. However, blocking Her-2 with neratinib did not influence cells re-
sponse to Gemcitabine (A), Methotrexate (B), Docetaxel (C), Cisplatin (D) in both cell models. ns > 
0.05, ** p < 0.01, *** p < 0.001 vs. control cells. 

Figure 8. Inhibition of Her-2 and SKBR3 cell’s response to chemotherapeutic drugs in relation with
CLDN9 expression. SKBR3 wild-type cells were tested on its wild type (Her-2-positive and CLDN9-
positive) and its submodel, CLDN9 knockdown (CLDN9-KD). Neratinib (NER) had a significant
inhibitory effects on the growth of both models. However, following blocking of Her-2 with neratinib,
the CLDN9-KD SKBR3 cells became more sensitive to Gemcitabine (A), Methotrexate (B), Docetaxel
(C), Cisplatin (D) (NER plus the respective drugs in SKBR3/CLDN9-KD cells). ** p < 0.01, *** p < 0.001
vs. control cells.
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Figure 9. Inhibition of Her-2 and MCF7 cells’ response to chemotherapeutic drugs in relation with
CLDN9 expression. MCF7 cells were tested on its wild type (Her-2 negative and CLDN9 positive)
and its submodel, CLDN9 knockdown (CLDN9-KD). Neratinib (NER) had some inhibitory effects on
the growth of both models. However, blocking Her-2 with neratinib did not influence cells response
to Gemcitabine (A), Methotrexate (B), Docetaxel (C), Cisplatin (D) in both cell models. ns > 0.05,
** p < 0.01, *** p < 0.001 vs. control cells.
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To further ascertain the intrinsic relationship between CLDN9 and ZO-1, we utilized 

immunofluorescence staining to explore expression and localization of the ZO proteins in 
CLDN9 knockdowns, MCF-7, MDA-MB-231 and SKBR3 cell models. We found that 
CLDN9 protein was colocalized with ZO-1 proteins in the control cells (Figure 11, top 
panel representative images from MCF-7 cells). Following CLDN9 knockdown, most cells 
showed reduced levels of CLDN9 protein staining. In the CLDN9 knockdown cells, ZO-1 
either remained in the tight junction areas (Figure 11 middle panel) or relocated to regions 
beyond tight junctions (Figure 11, middle and bottom panels) These data preliminarily 
demonstrated a correlation and colocalization between CLDN9 and ZO-1 protein in con-
trol cells that had expression of CLDN9 protein. When CLDN9 is lost or reduced, ZO-1 
localization to tight junctions is weakened, owing to its interaction with other tight junc-
tion proteins. 

Figure 10. Inhibition of Her-2 and MDA-MB-231 cells’ response to chemotherapeutic drugs in relation
with CLDN9 expression. MDA-MB-231 cells were tested on its wild type (Her-2-negative and CLDN9-
positive) and its submodel, CLDN9 knockdown (CLDN9-KD). Neratinib (NER) had some inhibitory
effects on the growth of both models. However, blocking Her-2 with neratinib did not influence cell
responses to Gemcitabine (A), Methotrexate (B), Docetaxel (C), Cisplatin (D) in both cell models.
ns > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control cells.

3.8. The Relationship between CLDN9 and ZO-1 and ZO-3, Respectively

To further ascertain the intrinsic relationship between CLDN9 and ZO-1, we utilized
immunofluorescence staining to explore expression and localization of the ZO proteins
in CLDN9 knockdowns, MCF-7, MDA-MB-231 and SKBR3 cell models. We found that
CLDN9 protein was colocalized with ZO-1 proteins in the control cells (Figure 11, top
panel representative images from MCF-7 cells). Following CLDN9 knockdown, most cells
showed reduced levels of CLDN9 protein staining. In the CLDN9 knockdown cells, ZO-1
either remained in the tight junction areas (Figure 11 middle panel) or relocated to regions
beyond tight junctions (Figure 11, middle and bottom panels) These data preliminarily
demonstrated a correlation and colocalization between CLDN9 and ZO-1 protein in control
cells that had expression of CLDN9 protein. When CLDN9 is lost or reduced, ZO-1



Biomedicines 2023, 11, 3136 16 of 21

localization to tight junctions is weakened, owing to its interaction with other tight junction
proteins.
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In this study, we report, for the first time, that claudin-9 (CLDN9) is expressed in 

mammary tissues and that the increased expression in breast cancer, particularly when 
co-expressed with its anchorage protein ZO1 and ZO3, forms a significant predictor for 
the survival of patients. This study further demonstrates that the expression pattern of 
CLDN9 has an important impact on patient response to chemotherapies, in that high lev-
els of CLDN9 indicated chemoresistance, except in Her-2-positive tumors in which 
CLDN9’s predictive power to drug response is lost. Using in vitro cell models, we further 
demonstrated that knockdown of CLDN9 in Her-2-negative breast cancer cells gave rise 
to cells that were more sensitive to chemotherapy drugs, a finding not seen in Her-2-pos-
itive SKBR3 cells. Additionally, blocking Her-2 with a permanent Her-2 inhibitor, nerat-
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Figure 11. The correlation between CLDN9 and ZO protein in terms of colocalization and expression
levels in the MCF-7 cell models. CLDN9 (green) and ZO-1 (red), as shown using IFC in wild-
type (top panel) and CLDN9 knockdown (bottom two panels). In control wild type cells, CLDN9
(green) and ZO-1 (red) were seen in the tight junction areas (indicated by white arrows) and had a
colocalization pattern (top right imposed image). Following CLDN9 knockdown, there were changes
in the localization of ZO-1 in that it partly remained in the tight junctions owing to its interaction
with other tight junction proteins (middle panel). In contrast, after losing a majority of the CLDN9
proteins, the remaining CLDN-9 was localized in regions unrelated to tight junction (yellow arrows
in the middle panel and bottom panel).

4. Discussion

In this study, we report, for the first time, that claudin-9 (CLDN9) is expressed in
mammary tissues and that the increased expression in breast cancer, particularly when
co-expressed with its anchorage protein ZO1 and ZO3, forms a significant predictor for
the survival of patients. This study further demonstrates that the expression pattern of
CLDN9 has an important impact on patient response to chemotherapies, in that high
levels of CLDN9 indicated chemoresistance, except in Her-2-positive tumors in which
CLDN9’s predictive power to drug response is lost. Using in vitro cell models, we further
demonstrated that knockdown of CLDN9 in Her-2-negative breast cancer cells gave rise to
cells that were more sensitive to chemotherapy drugs, a finding not seen in Her-2-positive
SKBR3 cells. Additionally, blocking Her-2 with a permanent Her-2 inhibitor, neratinib,
and CLDN9 knockdown in SKBR3 cells sensitized the cells to drugs, a finding not seen in
Her-2-negative MCF7 and MDA-MB-231 cells.

CLDN9 has been known to be a transmembrane protein located in the tight junction
area of many cell types. However, its role in cancers has been little studied and certainly
not in breast cancer. In a continued effort to establish the role of tight junction and tight
junctional proteins in breast cancer, we determined CLDN9 expression in breast cancer.
First, we confirmed that both CLDN9 transcript and the CLDN9 protein are seen in human
mammary tissues and breast cancer tissues. At transcript levels, breast tissues express
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significantly high levels and there is a clear indication that high levels of CLDN9 are
associated with poor clinical outcome of the patients; however, this connection is not seen
with Her-2-positive breast cancers. At the tight junction, CLDN9 is known to be anchored
to the cytoskeleton by interacting with the subcoat proteins, Zonula Occludens (ZOs), and
together they may play roles in orchestration [49]. Here, we also show that expression of
CLDN9 is significantly correlated with ZO-1 and ZO-3 and the integrated co-expression
of CLDN-9, ZO-1 and ZO-3 markedly improve the prognostic value in breast cancer. This
therefore establishes CLDN9 in combination with ZO-1 and ZO-3 as a significant prognostic
indicator for patient survival in breast cancer. Here, our limited data show that CLDN9
can be detected at locations of tight junctions particularly in normal mammary tissues.
However, the pattern appears to change in breast cancer tissues, in that more cytoplasmic
staining appears to be present. CLDN9 and ZO protein colocalization was partly confirmed
in our cell models, in which CLDN9 and ZO-1 proteins were colocalized to the tight
junctions in controls cells. However, following CLDN9 knockdown, the ZO-1 localization
to the tight junction was partly affected, owing to the fact that it is an anchorage protein
for rather large number of tight junction transmembrane proteins. Another intriguing
observation was the expression pattern of the CLDN9 mRNA and proteins in relation to
tumor grade. There appears to be high levels of CLDN9 gene transcript in grade 1 tumors,
compared with grade 2 and grade 3 tumors (Table 1). Yet, when assessed at protein levels
using the immunohistochemical method (on a different cohort), there does not appear to be
a significant difference between different grades (Table 3) and instead the difference seems
to reside in the cellular location of the proteins, namely membranous versus cytoplasmic.
This inconsistency between transcript and protein may be due to the variance in the
transcript and relative smaller size of the cohort. Indeed, there does not appear to be
a significant difference between different grades in a large TCGA transcript database,
suggesting that CLDN9 gene transcript levels may not significantly associated with tumor
grade. A larger cohort would be desirable to validate in future studies. Collectively, this
needs to be further confirmed, and the membrane and cytoplasmic CLDN9 proteins need
further investigation with regard to their possibly different roles.

The other highly interesting finding is the highly significant connection between
CLDN9 and drug response in breast cancer. High levels of CLDN9 transcripts clearly
indicate resistance to chemotherapies in all breast cancer subtypes, including triple-negative
breast cancers (TNBC), other than Her-2-positive breast cancers. Where Her-2-positive is
detected, there is no difference in the levels of CLDN9 between those who resisted and
those who responded to chemotherapies. This is very interesting and suggests that the
presence of Her-2 receptor kinase may offer a yet unidentified mechanism by which it
overcomes CLDN9-mediated drug resistance. This possibility is partially confirmed in
our experiment in that when Her-2 is inhibited by way of therapeutic Her-2 inhibitor and
CLDN9 is reduced by genetic knockdown, we were able to sensitize the otherwise resistant
Her-2-positive breast cancer to chemodrugs. Additionally, the Her-2 inhibitor and CLDN9
inhibition may have additive value in sensitizing cancer cells. This finding thus has clinical
implications. In Her-2-negative breast cancers including TNBC breast cancer, high CLDN9
expression generally indicates a likelihood of patient resistance to chemotherapy, which
may be reflected in the poor clinical outcome of the patients. However, in patients with
Her-2-positive breast cancers, if there are concurrently low levels of CLDN9, a combination
of Her-2 inhibitor and chemotherapies may offer benefits to the patient; a clinical study
would be highly valuable to confirm this.

The cellular mechanism by which CLDN9 confers drug resistance remains to be elu-
cidated. CLDN9 is not alone in this regard. Previous studies have shown that CLDN2,
CLDN6 and CLDN7 are involved in patient response to chemotherapies in cancers includ-
ing breast cancer and colorectal cancer, yet with no clear mechanism identified. CLDN
proteins are well known components of tight junctions, the structure and function of which
controls apical and paracellular permeability to molecules including certain drugs. One
could argue that high levels of CLDNs in endothelial cells may result in tightly controlled
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paracellular permeability, resistance drugs to penetrate the endothelium, and preventing
them reaching cancer cells from the circulation. This may be an important mechanism in
clinical settings. Whilst this is a possibility, it is not entirely supported by the present and
indeed others’ findings, as all the findings were confirmed directly on cancer cells minus
the presence of endothelial cells. There are likely other mechanisms unrelated to tight
junction that may operate here, including the possibility of the junctional role for CLDN9 in
cancer cells themselves. Tight junctions in cancer may also govern paracellular permeability
and hence intratumor drug penetration; thus, CLDN9 proteins at the tight junctions in
cancer cells may participate this restriction of intratumor availability in drugs. However, it
is worth noting that most small compound drugs, such as the ones tested in the present
study, require specific drug transporters on cell membrane, for example, SLC28A1 and
SLC29A1 for gemcitabine. This again suggests other possible mechanism(s) here, including
possibility of interplay between claudins and membrane drug transporters in cancer cells
such as the solute carrier family (SLC). Indeed, it has been shown that CLDN12 can be
affected in coordination with SLC9A3, and, in particular, in brain endothelial cells [50–52].
There have been indications that certain SLC members, namely SLC22A5, may be regulated
by a common subcoat protein with claudins, such as ZO1 [53]. Thus, the shared intracellu-
lar regulatory pathway between CLDN proteins and SLC protein may also influence the
response. The high correlation between CLDN9 and ZO1/ZO3 and the integrated pattern
between CLDN9 and the two ZOs may provide some indirect evidence here. The brief
finding that CLDN9 is also seen in the cytoplasmic regions of breast cancer may contribute
to this suggestion. However, many tight junction proteins when “switched off” relocate
to the cytoplasm and away from the membrane area. Presently, it is unclear what role
the cytoplasmic CLDN9 protein performs in cell functions; this will be very interesting to
explore in the future.

5. Conclusions

CLDN9 is expressed in mammary tissues and in breast cancer tissues. High levels of
CLDN9 in breast cancer present as a potentially significant prognostic indicator for patients
with breast cancer who are Her-2-negative. CLDN9 expression is also a pivotal factor in
assessing patient responses to chemotherapies. Her-2 is a negating factor for the treatment
response prediction value of CLDN9 and negating Her-2 and CLDN9 may enhance breast
cancer cell response to chemotherapeutic drugs.
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