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SSPNet: Predicting Visual Saliency Shifts

Huasheng Wang, Jianxun Lou, Xiaochang Liu, Hongchen Tan, Roger Whitaker, and Hantao Liu

Abstract—When images undergo quality degradation caused
by editing, compression or transmission, their saliency tends
to shift away from its original position. Saliency shifts indicate
visual behaviour change and therefore contain vital information
regarding perception of visual content and its distortions. Given
a pristine image and its distorted format, we want to be able
to detect saliency shifts induced by distortions. The resulting
saliency shift map (SSM) can be used to identify the region and
degree of visual distraction caused by distortions, and conse-
quently to perceptually optimise image coding or enhancement
algorithms. To this end, we first create a largest-of-its-kind
eye-tracking database, comprising 60 pristine images and their
associated 540 distorted formats viewed by 96 subjects. We then
propose a computational model to predict the saliency shift map
(SSM), utilising transformers and convolutional neural networks.
Experimental results demonstrate that the proposed model is
highly effective in detecting distortion-induced saliency shifts in
natural images.

Index Terms—Saliency, saliency shift, eye-tracking, trans-
former, convolutional neural networks.

I. INTRODUCTION

ALIENCY prediction aims to mimic where humans look
in a visual scene using computational technologies. Mod-
els of visual saliency are useful for many applications such
as image compression [1]-[3], image quality assessment [4],
[5], and salient object detection [6]-[10]. Eye movements
under free-viewing conditions serve as the psychophysical
foundations of saliency modelling [11]. In order to support
the development of computational saliency models, a number
of eye-tracking databases have been created. For example,
MIT dataset [12] is one of the most widely used databases
for visual saliency modelling, which consists of 1003 natural
indoor and outdoor scenes freely viewed by 15 observers.
CAT2000 [13] contains 4000 images from 20 different cat-
egories freely viewed by 24 observers. To make a large-scale
dataset, SALICON [14] employed mouse clicks as a proxy for
eye movement, generating a benchmark of 20,000 images.
Over the past few decades, notable progress has been made
in computational modelling of visual saliency. Various saliency
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Fig. 1. TIllustration of saliency shift map (SSM). (c) and (d) are saliency
maps of the pristine image (a) and distorted image (b). (e) visualises the
superimposition of (c) and (d), where the regions of visual saliency shifts are
highlighted in red colour. (f) represents the SSM.

models have been produced [15]-[25]. In early stage research,
the proposed approaches mainly adopt low-level hand-crafted
visual features, including texture, colour and intensity [15]-
[17]. Also, some heuristic saliency priors, e.g., texts and
faces [26] are integrated into saliency models to augment
their predictive ability. Due to the lack of higher-level visual
features, these models cannot adequately reflect human visual
attention. Recently, with the development of deep learning
techniques, convolutional neural networks (CNN) have ad-
vanced the models for saliency prediction, leading to signif-
icantly improved results. The Ensembles of Deep Networks
(eDN) [18] represents one of the deep learning-based models
that utilise shallow CNN to predict saliency of natural im-
ages. The visual representations learned by CNN are more
robust and comprehensive than hand-crafted features. Many
deep learning-based saliency models have been proposed and
achieved further success in visual saliency prediction. In the
literature, AlexNet [27], VGGNet [28], and GoogleNet [29]
have been applied on the pre-trained networks to learn features
for saliency prediction. By comparing these three CNN archi-
tectures, Huang et al. [20] found that VGGNet is more suit-
able than the other two architectures for saliency prediction.
Deep Visual Attention (DVA) [22] utilises one VGGNet-based
encoder and three decoders to generate multi-scale feature
representations for saliency detection. MSI-Net [23] employs
VGGNet as the backbone and a skip architecture to extract
multi-scale features that are fused by Atrous Spatial Pyramid
Pooling [30]. To simulate explicit mechanisms of the human
visual attention, Long short-term memory (LSTM) module is
integrated into a saliency prediction model [21].

In many real-world applications, digital images are in-
evitably subject to visual distortions caused by e.g., com-
pression, transmission or manipulation. Knowing viewers’
behavioural responses to these distortions via eye-tracking
would provide valuable information for the optimisation of
modern imaging systems from the human-centric perspective.
However, little is known about saliency of distorted images.



A recent study has shown that when distortions occur in
an image, its saliency tends to shift away from its original
position, as illustrated in Fig. 1. Being able to detect visual
saliency shifts (VSS) would benefit a variety of application
scenarios. First, in critical visual tasks e.g., diagnostic imag-
ing, the appearance of distortions in medical images impacts
radiologists’ diagnostic performance [31]. VSS can be used
to measure the image readers’ degree of distraction from the
lesion detection task, and consequently to improve the diag-
nostic efficiency and accuracy. Second, in image compression
and enhancement methods, performance optimisation can be
often achieved through smart parameterisations in the regions
of interest (ROI) and background regions (BR) [32]-[34], e.g.,
different levels of compression are applied to ROI and BR to
reduce bitrate without compromising overall image quality.
In such a scenario, VSS can be used to identify the BG that
would be actually attended by viewers when distortions occur,
and subsequently targeted parameterisation processes can be
effectively applied to these affected image regions. It should
be noted that the concept of “saliency shifts” is often used
to describe the attention changes (or shift of attention [35]) in
dynamic scenes. It refers to moving the focus of attention from
one location to another, which can be driven intentionally by
the use of visual cues or automatically by the abrupt onset of
a stimulus [36], [37]. For example, in [38], the term “saliency
shifts” is specifically used to indicate the phenomenon that
salient object(s) may dynamically change in the video. In the
context of image quality, the concept of “saliency shifts” refers
to the re-allocation of attentional resources when distortions
are introduced into a pristine image, and consequently indicat-
ing saliency that is shifted away from its original positions in
the pristine image. Now, this raises a new research question,
i.e., given a pristine image and its distorted format, how to
detect distortion-induced saliency shifts. To make a model to
predict the saliency shift map (SSM) as illustrated in Fig. 1, it
requires groud truth representations of VSS via psychovisual
experimentation and data. Then, the ultimate model aims to
generate a topographic map that represents saliency of scene
locations driven by distortions introduced to the pristine image.

II. RELATED WORK AND CONTRIBUTIONS

Psychovisual studies have been undertaken to reveal
the phenomenon of distortion-induced visual saliency shifts
(VSS), demonstrating the significant difference in saliency
between a pristine image and its distorted format. In [39]
an eye-tracking study was conducted to prob the impact of
distortions on the saliency of pristine images. It is found that
visual distortions including white noise, blurring and compres-
sion artifacts significantly affect saliency patterns of pristine
images. In [40], the study shows that distortions caused by
JPEG compression can significantly change the saliency of
pristine images; and the degree of saliency changes is found
to be dependent on the level of compression. The eye-tracking
study in [41] demonstrates that saliency patterns alter as visual
distortions occur in a pristine image, and that the extent
of saliency changes is related to the strength of distortion.
These psychovisual studies provide empirical evidence that

visual distortions cause can significant saliency shifts [rom its
original places in the pristine images. Also, they suggest the
importance of collecting eye-tracking data under free-viewing
conditions for image quality research. This is to ensure the
obtained saliency reflects the bottom-up, stimulus-driven at-
tention rather than top-down, task-driven aspects of visual
attention [42], [43]. However, it should be noted that these
studies remain in an exploratory stage, representing a limited
number of human subjects and a small degree of stimulus
variability. A further critical issue for these studies is that their
eye-tracking data is strongly biased due to the involvement of
intensive stimulus repetition where observers learnt to detect
visual artifacts in viewing of the same natural scene content
(with multiple variations of distortion) repeatedly. In this case,
the recorded eye-tracking data is potentially contaminated due
to strong carry-over effects, and therefore cannot be used as
the ground truth to study the real interactions between pristine
scene saliency and unnatural visual distortions.

In a recent study [44], a refined experimental method-
ology is proposed to enable a reliable collection of eye-
tracking data for pristine images and their altered formats
containing distortions of various types and strength levels.
This methodology applies dedicated control mechanisms to
eliminate subject bias due the involvement of stimulus repe-
tition; and provide experimental conditions and requirements
for achieving saturated/stable ground truth saliency data. By
using this methodology, a highly reliable eye-tracking database
SIQ288 including 288 images distorted with different types of
distortion at various degradation levels was created [44]. An
exhaustive statistical analysis was performed to demonstrate
the significance of saliecncy changes caused by the addition
of distortions. Although the SIQ288 database represents the
best-of-its-kind in the literature, it only contains 18 pristine
images which might limit its use for computational saliency
modelling where the diversity in natural scene content plays a
critical role. This implies the need of a new benchmark which
encompasses sufficient image content diversity.

There are two main contributions we want to make in
this paper. First, we follow the experimental methodology
in [44] to create a new eye-tracking database specifically
for visual saliency shifts (VSS). The test images are taken
from the CUID database [45], which represents a large degree
of stimulus variability in terms of the amount and diversity
of natural scene content, as well as a systematic simulation
of different types and levels of distortions. The new eye-
tracking study results in a largest-of-its-kind ground truth
VSS dataset, comprising 600 visual stimuli of 10 different
categories (with multiple variations of distortion) and eye
movement recordings of 96 participants. The ground truth VSS
manifests itself as a function of natural scene category and
visual distortion. Second, we propose a novel model based
on deep convolutional neural network to predict the saliency
shift map (SSM) induced by distortion, namely saliency shift
prediction network (SSPNet). The SSPNet is built on an end-
to-end framework where saliency prediction of the pristine
image and that of the distorted image are jointly optimised.



III. EYE-TRACKING STUDY

The eye-tracking study aims to generate the ground truth
data for visual saliency shifts (VSS), reflecting a sufficient de-
gree of stimulus variability in terms of natural scene category,
as well as the type and level of distortion. More importantly,
the well-thought-out experimental design devised in [44] is
adopted in this study to ensure the validity and reliability of the
resulting eye-tracking data. Details of the study are described
below.

A. Stimuli

The stimuli were taken from the CUID database [45], which
included 60 high-quality pristine images (1920x 1080 pixels)
of 10 natural scene categories including ACT (Action), BNW
(Black and White), CGI (Computer-Generated Imagery), IND
(Indoor), OBJ (Object), ODM (Outdoor Manmade), ODN
(Outdoor Natural), PAT (Pattern), POT (Portrait), and SOC
(Social), as illustrated in Fig. 2. In the CUID database,
each pristine image was degraded with three distortion types
including contrast change (i.e., CC), JPEG compression (i.e.,
JPEG), and motion blur (i.e., MB) at three distortion levels. In
stimulating distortions, distortion parameters of each distortion
type were set/adjusted via visual inspection performed by
image quality experts. This process was to ensure that the
distorted images created from each stimulus (per distortion
type) reflected three distinct levels of perceived quality: Q1
(representing perceptible but not annoying artifacts), Q2 (rep-
resenting noticeable and annoying artifacts), and Q3 (repre-
senting very annoying artifacts). The details of implementation
can be found in [45]. This gives a total of 600 test stimuli
including originals.

B. Eye-tracking experiment

In our experiment, each pristine image is associated with
nine distorted images of the same scene content. The existence
of stimulus repetition poses significant challenges for eye-
tracking [44], leading to subject bias caused by carry-over
effects such as fatigue, boredom and learning from practice
and experience. To eliminate the bias we employ the experi-
mental methodology devised in [44] in our eye-tracking study.

Following the protocol of [44] for a between-subjects exper-
iment, we divided the set of stimuli into six partitions of 100
images each. In each partition, we only included a maximum
of two repeated formats of the same scene content. A total
of 96 subjects were recruited to partake in the experiment,
being 48 males and 48 females with ages ranging from 19
to 55 years. The subjects were divided into six groups of 16
subjects each (with 8 males and 8 females); and each group
was randomly assigned to one of the partitions of stimuli so
that each subject only had to complete one session of viewing
100 images. This provided a sample size of 16 subjects per
test stimulus, which has been proven sufficient for generating
a reliable saliency map [44]. To minimise carry-over effects,
we also divided each session per subject into two sub-sessions
with a “washout” period of 5 hours in between, which actually
allowed each subject to view 50 images (i.e., half partition

Fig. 2. Tlustration of the 60 source images of 10 distinct categories used in
our study. The categories are ACT (Action), BNW (Black and White), CGI
(Computer-Generated Imagery), IND (Indoor), OBJ (Object), ODM (Outdoor
Manmade), ODN (Outdoor Natural), PAT (Pattern), POT (Portrait), and SOC
(Social).

of stimuli) without stimulus repetition in a separate sub-
session. More specifically, we applied the following control
mechanisms for each partition of stimuli in our experiment:
(1) half of the subjects viewed the first half of stimuli first,
and half of the subjects viewed the second half first; (2) the
stimuli in each sub-session were presented to each subject in a
random order; (3) a mixture of all distortion types and the full
range of distortion levels was contained in each sub-session.

The eye-tracking experiment was conducted in the Visual
Computing laboratory at Cardiff University in a standard office
environment set up as per the International Telecommunication
Union (ITU) standards [46]. The laboratory represented a
fully controlled viewing environment to ensure consistent
experimental conditions, i.e., low surface reflectance and ap-
proximately constant ambient light. The test stimuli were
displayed on a 19-inch LCD screen, with a native resolution
of 1920x 1080 pixels. The viewing distance was maintained
around 60cm. The subjects’ eye movements were recorded
using a non-invasive SensoMotoric Instrument (SMI) Red-m
advanced eye tracking device at a sampling rate of 250 Hz.
Prior to the start of the actual experiment, each subject was
given written instructions about the testing procedure. The
subjects were instructed to view the stimuli in a natural way
“view the image as you normally would”. Each image was
presented for five seconds followed by a mid-gray screen of
two seconds.
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Tlustration of saliency maps for one of the natural scenes including the pristine content and various formats of distorted content. The top row shows

the stimuli. The label of the distorted image is expressed as type_level indicating the type and intensity level of distortion respectively. The type of distortion
includes CC (contrast change), JPEG (JPEG compression) and MB (motion blur); and the intensity level of 1, 2, and 3 denotes low, medium, and high
distortion, respectively. The bottom row shows the corresponding saliency maps.

C. Ground truth of visual saliency shifts

By use of the experiment protocol of [44], a saturated/stable
saliency map is produced via the stringent control of stimulus
presentation and requirement of subject sample size. By con-
verting the resulting data of our eye-tracking experiment to
a saliency map for each image, this guarantees the saliency
(as defined in the image quality context [44]) represents
stimulus-driven, bottom-up attention for an average human
observer [47]-[49]. To this end, fixations are extracted from
the raw eye movement data using the SMI BeGaze Analysis
Software. Note a fixation is rigorously defined by SMI’s
Software using the dispersal and duration based algorithm
established in [50]. To construct a saliency map each fixation
(out of all fixations over all 16 subjects) location gives rise
to a gray-scale patch that stimulates the foveal vision of the
human visual system. The activity of the patch manifests a
Gaussian distribution, with its width approximating the size
of the fovea (i.e., 2°0f visual angle converting to 45 pixels
width in our study). The saliency map (SM) is calculated as:

Ma,g) = Y ep |- BB g
i=1

where SM (z, y) represents the saliency map; (z;, y;) and N
represent the spatial coordinates of i-th fixation and the total
number of fixations, respectively; o is the standard deviation
of the Gaussian (0 = 45 pixels in our study), and the method
of its determination can be found in detail in [51]. Fig. 3
illustrates the saliency maps for one of the natural scenes
including the pristine content and various formats of distorted
content.

Once saliency maps are generated, the ground truth of visual
saliency shifts (VSS) is rendered. More specially, a saliency
shift map (SSM) is created as follows:

SSM = (SMg—SEM, )4, @)

where SM, and SM, represent the saliency maps for the
distorted image and pristine image, respectively; and ()4 de-
notes the operation of taking the positive values in the matrix.
As shwon in Fig. 1, SSM represents where people’s attention
is shifted when viewing an distorted image in comparison to
the pristine image. As per the reliability validation in [44],
saturation occurs in a saliency map with 12-16 participants
when following the designed protocol, meaning the saliency
map reaches the point at which no new information is ob-
served. Furthermore, the protocol used also eliminates subject
bias due to stimulus/content repetition. As a result, the visual

TABLE I
RESULTS OF THE ANOVA TO EVALUATE THE IMPACT OF DISTORTION
TYPE, DISTORTION LEVEL AND IMAGE CONTENT DIVERSITY ON THE
MEASURED VISUAL SALIENCY SHIFTS (VSS) USING CC, SIM OrR KLD.
“DF” DENOTES DEGREE OF FREEDOM, AND “SIG” DENOTES THE
SIGNIFICANCE LEVEL.

ANOVA CC SIM KLD

Source df Sig Sig Sig
Distortion type 2 0.04 0.03 <0.001

Distortion level 2 | <0.001 | <0.001 0.03
Image content diversity | 9 | <0.001 | <0.001 0.002

saliency shifts (VSS) faithfully reflect the re-allocation of
attentional resources when distortions are introduced into a
pristine image. This means the observed differences in saliency
between the pristine and distorted images (i.e., SSM) are
from the differences in the image properties rather than from
the subject and/or experiment bias. The saliency shift maps
(SSMs) of the 540 distorted images constitute a new ground
truth dataset for VSS, namely CUID-VSS database.

D. Statistical analysis

To verify the merits of the new CUID-VSS database,
we perform a statistical analysis on the observed tendencies
in the changes of VSS included by the changes of image
properties. To this end, hypothesis testing is conducted to
evaluate the impact of three categorical variables including
distortion type, distortion level and image content diversity on
the visual saliency shifts (VSS). VSS can be quantified by
a distribution-based saliency fidelity/similarity measure [52]
namely Pearson’s Correlation Coefficient (CC), Similarity
(SIM) or Kullback-Leibler Divergence (KLD). An analysis
of variance (ANOVA) is performed with the measured VSS
as the dependent variable (note the test for the assumption
of normality indicates that the dependent variable is normally
distributed), and the distortion type, distortion level and image
content diversity as independent variables. Table I summarises
the results of the ANOVA, and shows that all main effects are
statistically significant. Especially, as mentioned in Section
II, the image content diversity is a critical new feature of
the CUID-VSS database, which has been proven statistically
significant (P < 0.05 at 95% level) in impacting the VSS.
Overall, the statistical analysis demonstrates the statistical
validity of the CUID-VSS database in supporting the com-
putational modelling of the VSS.



IV. PROPOSED SALIENCY SHIFT PREDICTION MODEL

Our goal is to predict the saliency shift map (SSM) given
a pristine image and a distorted format of the same scene
content. The predicted SSM aims to be in close agreement
with the ground truth saliency shifts. To solve this problem,
we hereby propose a computational model based on deep
learning named Saliency Shift Prediction Network (SSPNet).
The overall architecture of SSPNet is shown in Fig. 4, which
contains one encoder and two decoders to achieve the saliency
shift prediction task. The input of SSPNet is composed of two
images, i.e., the pristine image and its associated distorted
image. The output is the saliency shift map (SSM). The details
of SSPNet are presented below.

A. Architecture

In the encoder phase, a deep CNN-based backbone network
(i.e., ResNet [53] or VGGNet [28]) is used as the saliency
feature extractor in our model. Because each of these backbone
network contains a variety of convolution layers, the SSPNet
can benefit from the features of the deeper layers that encode
more high-level semantics and of the shallower layers that
carry richer low-level details. In order to fit the architecture
to a saliency prediction task, similar to previous saliency
models [21], [22], [24], all the fully-connected layers and the
last pooling layer are discarded in the basic feature extraction
phase. In our implementation, the CNN encoder of SSPNet is
pre-trained on ImageNet [54], which is a widely used method
of feature extraction for visual saliency prediction [21], [23]-
[25], [55], [56]. In addition, we use the transformer technique
in our model, due to its demonstrable effectiveness enhancing
saliency prediction [57]. As can be seen from Fig. 4, the
F1, Fo, and F3 are the feature maps obtained from the end
of the third to last, second to last, and final blocks of the
encoder, respectlvely Their spatial dimensions are ¥ X g‘,
1% X 1’2, ;’é X And then a 1 x 1 convolution layer
is applied to reduce the computational burden, so that the
channels of these feature maps are 512, 768, and 768, which
is an established method in [46] for balancing computational
cost and performance efficacy. The parameters of the encoder
and transformer modules are shared by both of the decoders
in our model.

With regard to the decoder phase, we employ two decoders
with the same structure to predict two ‘“hidden” saliency
maps, one from the pristine image and one from the distorted
image as the output of the hidden layer. These two “hidden”
saliency maps are generated based on feature maps Fi;, Fa,
and F3; from the transformer encoders. These feature maps
are fused into the decoders by skip-connection and element-
wise production (also known as Hadamard product), leading
to multi-scale context-enhanced feature maps [57]. block_4
consists of two upscaling blocks and an additional sequence
of operations using as the final transformation. Each upscaling
block encompasses a 3x3 convolution, batch normalisation,
ReLU activation, and an upsampling operation. After these
two blocks, it proceeds with another sequence of operations
including a convolution-batch normalisation-ReLU chain, fol-
lowed by an additional convolution and ending with a sigmoid

activation. The design of block_4 aims to transform the feature
maps into a saliency map that matches the size of the input
image. Finally, the two “hidden” saliency maps are combined
using (2) to generate the output saliency shift map (SSM),
where the three elements in (2) are constrained by respective
loss functions (will be detailed below). Since the input image
is 32-scale down-scaled by the encoder network, 2-scale up-
samplings that adopt nearest-neighbor interpolation are per-
formed to the feature maps in each decoder to obtain a output
saliency map of the same size as the input. By adopting a dual-
decoder architecture, the SSM can be generated directly from
the model, which allows the loss function to constrain the SSM
generation to yield optimal quantitative results. The advantages
of using the dual-decoder are detailed in Section V-C.

B. Loss function

In modelling visual saliency using deep learning, loss func-
tions are of fundamental importance [58]. In the literature of
saliency prediction [21], [23]-[25], [57], many loss functions
have been proven effective in improving the performance of
saliency models. In this paper, we employ a linear combination
of three metrics to form a loss function in our model, including
Kullback-Leibler Divergence (KLD), Linear Pearson’s Corre-
lation Coefficient (CC), and Similarity (SIM). As mentioned
above, three individual loss functions must be used to constrain
the generation of the saliency map of the pristine image,
the saliency map of the distorted image, and the saliency
shift map, respectively, we now give the details of these loss
functions. For the pristine image, we denote y,. and ¥, as the
predicted saliency map and the ground truth, and ¢ indicates
the ith pixel of y, and y,. The loss function is defined as:

Lr(:%wﬁr) = AILKLD(yT7yr) + >\2LCC(yr7?jr) (3)
+A3Lgrn (Yrs Ur)s
where A1, Ao, A3 are the weights, and
Lkrp(yryr) Z Yr, log( + €), 4)
where ¢ is a regularization constant and set to 1 x 1078 ;
. cov(Yr, Yr
LCC(y'rayr) = M Q)

a(yr)o(yr)’
where cov(-) represents covariance and o(-) represents stan-
dard deviation;

Lsim (Yr, r) me Yri> Yr,)- (6)

Note, y, and g, are normalised so that >, yr, = >, 4, = 1

Similarity, for the distorted image, we denote y4 and 3y as
the predicted saliency map and the ground truth. Therefore,
the loss function is defined as:

Lq(ya,ya) = MLrrpyd, Ya) + AeLoc(Ya, Ya)

N (7
+A3Lsrm(ya, ¥a),

where these weights are set to be the same as (3).
Finally, for the saliency shift map, we denote y; and s
as the predicted map and the ground truth, and Ls can be
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Fig. 4. Schematic overview of SSPNet. The proposed model contains one encoder and two decoders to predict the saliency shift map. The input of SSPNet
is composed of a pair of pristine image and its associated distorted image, which is first processed by the CNN and transformer encoders, and then processed
by different decoders. The saliency shift map is generated based on the outputs of the two decoders.

similarly defined as above. In addition, we add the square
root loss function (Ls) to L, to make the results smoother:

Ls(ysvyAs) :O‘Ld(ysa?js) +BL2(ysvyAs)- (8)
Hence, our total loss function is defined as follows,
Ltotal = ’YlLd(yda yAd) + fYZLr(y'm yAr) + 73Ls (y57 yAs) (9)

C. Backward propagation process

Since the ground truth saliency shift map (SSM) is obtained
by subtracting the reference from the distorted and then taking
the positive values of the resulting matrix as seen in (2), it is
worth discussing whether the model can be back-propagated
to optimise the prediction. Piecewise functions are only not
derivative at the breakpoints. For our model, the truncation
function will be employed on the procedure that generates
the SSM based on the saliency map of distorted image and
that of the reference (i.e., the last procedure of the model).
As a result of the above operation, the features that carry the
information of image quality alteration will propagate back
to update the parameters, and other irrelevant features will
not cause the model to update the parameters. Generally, the
truncation function is to facilitate the generation of SSM, and
it is derivative per se. Using this method instead of directly
subtracting the two saliency maps can avoid the problem that
the negative values of the matrix are forcibly converted into
255 pixel values (white points) due to the unit8 encoding of
images. Note the saliency shift map computed by (2) is able
to accurately characterise the offsets of human visual attention
as the image quality alters.

V. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to
validate the proposed SSPNet model in predicting the visual
saliency shifts. The details are given below.

A. Evaluation metrics

Various evaluation metrics have been proposed to assess the
performance of saliency models. Generally, these metrics can
be classified as location-based and distribution-based metrics
depending on how the ground truth is represented [52]; the
former adopts the fixation map (i.e., in the form of a binary
image) and the latter uses the saliency map (i.e., in the form
of a gray-scale image) as the ground truth for visual saliency
evaluation. Previous studies have suggested that the selection
of metrics used to evaluate saliency prediction results should
depend on the task in hand [52]. Because the ground truth
(i.e., saliency shift map) of our task is a density map, we
must use distribution-based metrics including KLLD, CC, and
SIM to quantify the general performance of saliency models
in this study. Details of these metrics can be found in [52]
and in Section IV-B. For KLD, the closer the value is to zero,
the better the agreement between prediction and ground truth.
For the other two metrics, CC and SIM, higher values indicate
higher performance.

B. Experimental setup

We divide the CUID-VSS database into training set and test
set according to the ratio of 9:1. More specifically, the training
set contains 540 images, including 54 pristine images and their
associated 486 distorted images; and the test set contains 60
images, including 6 pristine images and their associated 54
distorted images. It is worth noting that we split the dataset
randomly. The advantage of doing this is that it can increase
the generalisation ability of our model.

To reduce the computational cost, all input images are
resized and padded to a same size of 384 x 288 pixels, i.e.,
the dimensions of both the reference and distorted images are
384x288x3 (w x h x c¢). The network was implemented with
the PyTorch framework on a single NVIDIA RTX 3060 GPU.
Following a similar procedure in the state-of-the-art [21], [22],



[24], our model is initialised by the weights pre-trained on
ImageNet [54] to reduce the risk of overfitting. Based on the
pre-trained ResNet-50 backbone, our network features an end-
to-end model for the whole training stage. For training, the
Adam algorithm [59] is used to minimise the value of loss
function. The learning rate is set to 5 X 10~°, which is then
multiplied by 0.1 for every 10 epochs. Models are trained
with a batch size of 4 for 50 epochs with a stop patience
of 5 epochs. At each stop patience, the model that performs
best on the three evaluation metrics (i.e., CC, SIM, and KLD)
is saved and then is used in the test phase. With regard to
the hyperparameters A1, Aa, A3, o, 5,71, 72,73, we set them
to 5, -2, -1, 2, 0.5, 0.5, 0.5, 1, respectively base on our
empirical experiments. The approach taken to determine these
hyperparameters consists of two main steps including initial
assignment and fine-tuning. More specifically, for the visual
saliency loss (i.e., L, and Lg), A1, A2, A3 are initially assigned
as different levels of importance to the sub-metrics/sub-losses
to balance their contribution to the final loss as the sub-
losses’ values use different scales. Also, as a lower value
of KLD (a higher value of CC or SIM) represents a higher
agreement between predicted saliency and ground truth, A\;
should intuitively be set to negative and A2, A3 should be
positive. Based on above, the assignment of these hyperpa-
rameters can be initially determined, as the same principles
applied in previous studies [21], [25], [57]. Then, we perform
a “grid search”-like method, i.e., fine-tuning individual weights
by adjusting one weight and fixing the remaining weights to
optimise the performance on the validation set [60]. The goal
is to find a combination of weights that allows the model to
achieve good and balanced scores on the saliency evaluation
metrics. Similarly, the set of weights 71, 72,73, and the set
of weights «, 3 are determined based on the same approach
of initial assignment combined with grid search. It should
be noted that hyperparameter optimisation is a challenging
task for a deep-learning model, and there are no formal rules
for hyperparameter tuning [60]. We follow the conventional
process to search the space of possible decisions and find the
best-performing ones empirically.

Since k-fold cross-validation is a robust measure to prevent
overfitting, providing a more reliable estimate of a model’s
performance on completely unseen data [57], [60], we imple-
ment k-fold (k = 6) cross-validation in our experiments. More
specifically, we divide the dataset into six non-overlapping
folds, each containing 90 distorted images (originated from
10 source scenes as shown in Fig. 2). To ensure that there
is no data leakage, no shared source scenes between folds is
allowed — each fold contains scenes extracted from one of the
columns of the 10 x 6 grid gallery as shown in Fig. 2. In the
6-fold cross-validation process, one fold is used as the test set,
one fold as the validation set, and the remaining four folds as
the training set. This process is repeated six times, with each
of the six folds used exactly once as the test set. The six
results are then averaged to produce a single estimation for
the model’s generalisation performance.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODEL DESIGN CONCEPTS:
SINGLE-DECODER VERSUS DUAL-DECODER

. CUID-VSS
Model Design cCt SIMt KLD |
Single-decoder | 0.332 | 0.341 13.576
Dual-decoder 0.739 | 0.623 0.764
TABLE III

PERFORMANCE COMPARISON OF MODEL VARIANTS USING DIFFERENT
ENCODER BACKBONE NETWORKS

Encoder Backbone cc 4 Cgﬁ\]/){—}/SS KLD |
VGG (SSPNet) 0.692 | 0.577 0.856
ResNet-18 (SSPNet) | 0.721 0.589 0.799
ResNet-50 (SSPNet) | 0.739 | 0.623 0.764

C. Ablation study

Now, we want to verify the design of our proposed model.
To quantify the relative importance of different key compo-
nents of the model, we conduct a comprehensive ablation
study. First, it is critical to justify the necessity for using a
dual-decoder architecture for predicting saliency shifts, which
is the core design concept of our proposal. Without the dual-
decoder, the alternative is to use a single decoder to predict the
saliency of the pristine image and that of the distorted image
separately, and to generate the saliency shift map (SSM) using
(2). We would argue that our proposed dual-decoder design
gives better predictive performance due to its back-propagation
ability as described in Section IV-C. To verify this, we conduct
experiments to analyse the effectiveness of single-decoder
design versus dual-decoder design in predicting the visual
saliency shifts. Table II illustrates the performance comparison
of the single-decoder design versus dual-decoder design. It
demonstrates that our proposed model design outperforms the
single-decoder design. There are two benefits for our end-to-
end approach towards predicting the SSM. First, our approach
is more efficient than the single-decoder method, because it
can directly generate the final SSM instead of synthesising
the SSM using the output of the network. Second, during
training, the loss function is used to constrain the generation
of the SSM, so that the results are automatically optimised.
However, the single-decoder method inevitably suffers from
the superposition of prediction errors, i.e., errors of predicting
the saliency map of the pristine image and errors of predicting
the saliency map of the distorted image. In addition, we also
demonstrate the performance comparison of using different en-
coder backbone networks, i.e., VGG, ResNet-18, and ResNet-
50, as the results shown Table III. According to previous
studies [61], CC and SIM are the best metrics for measuring
the distortion-induced saliency variation. Therefore, we rely
on CC and SIM to assess different backbones. By comparing
VGG, ResNet-18, and ResNet-50, it is found that ResNet-50,
which has higher capability of representation, can provide on
average better performance. Therefore, ResNet-50 is adopted
as the backbone encoder in the implementation of this study to
construct the SSPNet. Transformers have been proven useful in
augmenting saliency prediction [57]. Since saliency prediction



TABLE 1V
PERFORMANCE COMPARISON OF SSPNET WITH VERSUS WITHOUT
TRANSFORMERS. BOLD FONT INDICATES THE BEST PERFORMANCE

SCORE.
CUID-VSS
Model Name cCt SIM{1 KLD |
SSPNet (without transformers) | 0.575 | 0.497 6.724
SSPNet (with transformers) 0.739 | 0.623 0.764
TABLE V

PERFORMANCE COMPARISON OF OUR PROPOSED SSPNET WITH

INTUITIVE APPROACH (IA) APPROACH USING STATE-OF-THE-ART

SALIENCY MODELS ON THE CUID-VSS DATABASE. BOLD FONT
INDICATES THE BEST PERFORMANCE SCORE.

CUID-VSS
Model Name cCct SIMt  KLD |
IA_EML-NET [24] 0.299 | 0.296 13.954
IA_SAM-VGG [21] 0.344 | 0.315 12.865
IA_SAM-ResNet [21] | 0.365 | 0.319 12.681
TA_UNISAL [25] 0.396 | 0.378 12.105
TA_MSI-Net [23] 0.405 | 0.392 11.241
SSPNet (Ours) 0.739 | 0.623 0.764

forms the key component of the SSPNet architecture, adding
transformers is naturally expected to benefit the overall model
performance. In additional, the long-range representational
capabilities of transformers may help characterise the saliency-
specific differences and correspondences between the pristine
and distorted images for the SSPNet. To verify the added value
of transformers in the proposed architecture, we perform ex-
periments to compare the performance of SSPNet with versus
without transformers. As the results illustrated in Table 1V, the
contribution of transformers to the SSPNet is rather significant.

D. Comparative experiments: SSPNet versus Intuitive ap-
proach (IA)

In this paper, we have taken a new approach to building
a dedicated model for the prediction of saliency shifts. In-
tuitively, one way to achieve saliency shifts is to separately
predict the saliency maps of the pristine and distorted images,
and generate the saliency shifts by comparing these two
resulting saliency maps. However, this approach is prone to
multiple sources of error, i.e., one source of error from the
saliency prediction of the pristine image and the other from the
saliency prediction of the distorted image. Combing the results
of two erroneous prediction tasks will further deteriorate the
final estimation of saliency shifts. The rationale behind our
approach is to directly predict a saliency shift map (SSM)
via learning a dual-decoder network, and consequently to
minimise the overall error for the prediction task. This ap-
proach takes into account the saliency-specific differences and
correspondences between the pristine and distorted images,
resulting in a more accurate estimation of the saliency shifts.

To quantitatively verify the contribution of the proposed
approach taken in our model, we conduct comparative exper-
iments using state-of-the-art saliency prediction models (i.e.,
as per the MIT saliency benchmark [62]). First, we apply the
intuitive approach (IA) where a single-decoder model is used
to predict saliency once for the pristine image and once for

TABLE VI
PERFORMANCE COMPARISON OF OUR PROPOSED SSPNET WITH MODEL
COMPETITORS (MC) BASED ON STATE-OF-THE-ART SALIENCY MODELS
ON THE CUID-VSS DATABASE. BOLD FONT INDICATES THE BEST
PERFORMANCE SCORE.

CUID-VSS
Model Name CcC+ SIM{1 KLD |
MC_EML-NET [24] 0.286 | 0.296 13.385
MC_SAM-VGG [21] 0.568 | 0.501 7.664
MC_SAM-ResNet [21] | 0.581 | 0.509 6.548
MC_UNISAL [25] 0.641 | 0.553 1.915
MC_MSI-NET [23] 0.708 | 0.601 1.253
SSPNet (Ours) 0.739 | 0.623 0.764

the distorted image, and then the SSM is generated by taking
the difference of the two saliency maps using equation (2).
For fairness, all IA models were fine-tuned (using the same
training strategy as described in Section V.B) on the CUID-
VSS dataset (note 60 pristine images and 540 distorted images
for respective fine-tuning tasks) to achieve the best possible
performance on the task of VSS prediction. Table V lists the
performance of the IA approach using different saliency mod-
els, compared with the performance of the proposed SSPNet.
Fig. 5 provides the visual comparison of the performance of
these models. It can be seen from the table and figure that
the IA approach generally fails in predicting saliency shifts,
which implies the need of a dedicated approach towards this
specific application. Our proposed SSPNet can sufficiently
capture the distortion-induced saliency shifts in natural scenes,
demonstrating the effectiveness of the proposed solution.

E. Comparative experiments: SSPNet versus model competi-
tors (MC)

In the SSPNet, a new dual-decoder architecture is proposed
to solve the specific problem of saliency shift prediction.
To the best of our knowledge, there is no existing model
so far in the literature that dedicates to the visual saliency
shifts (VSS). However, the saliency prediction component
embedded in the architecture of the SSPNet plays a crucial
role in achieving the VSS prediction task. Therefore, to
critically evaluate the proposed SSPNet, we conduct further
comparative experiments by implementing model competitors
(MC). To rigorously create a model competitor, we replace
the saliency prediction component in the proposed SSPNet
using a state-of-the-art saliency model (i.e., as per the MIT
saliency benchmark [62]) and adapting it to the dual-decoder
architecture. For fairness, all MC alternatives were fine-tuned
(using the same training strategy as described in Section V.B)
on the CUID-VSS dataset to achieve the best possible perfor-
mance on the task of VSS prediction. Also, all models were
implemented using the same coding/experimental environment
including settings of learning rate, optimizer and other relevant
parameters. Table VI lists the performance of the MC based on
different saliency models, compared with the performance of
the proposed SSPNet. Fig. 6 provides the visual comparison of
the performance of these models. It can be seen from the table
and figure that our proposed SSPNet significantly outperforms
other model competitors in predicting saliency shifts.
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ground truth saliency, ground truth saliency shift map (SSM), and the prediction outputs of our model and five models using the intuitive approach (IA) based

on state-of-the-art saliency models, respectively.

TABLE VII
RESULTS OF STATISTICAL SIGNIFICANCE TESTING FOR MODEL PERFORMANCE QUALIFIED BY CC, SIM OR KLD. “1” MEANS THAT THE DIFFERENCE IN
PERFORMANCE IS STATISTICALLY SIGNIFICANT (P<0.05 AT THE 95% CONFIDENCE LEVEL). “0” MEANS THAT THE DIFFERENCE IN PERFORMANCE IS
NOT STATISTICALLY SIGNIFICANT.

MC_EML-NET | MC_SAM-VGG

MC_SAM-ResNet | MC_UNISAL | MC_MSI-NET

CC-SIM-KLD CC-SIM-KLD

CC-SIM-KLD CC-SIM-KLD | CC-SIM-KLD

SSPNet(ours) 1-1-1 1-1-1

1-1-1 1-1-1 1-1-1

To verify whether the results of model performance as listed
in Table VI are statistically significant, hypothesis testing is
conducted using the statistical methods in [44]. The signifi-
cance evaluation is based on 540 VSS outputs (note inputs
of 540 distorted stimuli originated from 60 originals) of all
testing results in a 6-fold cross-validation for each of the
models. Therefore, each model produces 540 data points for a
performance measure calculated by CC, SIM, or KLLD between
the ground truth VSS and predicted VSS. Now, we compare
the performance between two models using their CC, SIM or
KLD data points (540 each). When two samples in question
are both normally distributed, an independent samples ¢-test
is performed; otherwise, in the case of non-normality, a non-

parametric version (i.e., Mann-Whitney U test) analogy to
an independent samples ¢-test is performed. The results of
the statistical evaluation are listed in Table VII. This means
our proposed model is statistically significantly (P<0.05 at
the 95% confidence level) better than every other model in
predicting the visual saliency shifts.

VI. DISCUSSION

The selection of backbone networks has been demonstrated
an important approach to improving the performance of deep-
learning models [63], [64]. In particular, recent studies [57],
[65] show that using backbones with a superior represen-
tational capability could further boost a saliency prediction
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saliency models, respectively.

model’s performance for both general and specific appli-
cations. The same trend holds for saliency shift prediction
in this paper as evidenced by the ablation study for VGG,
ResNet-18 and ResNet-50 in Section V.C. While comparing
the added value of different backbones to the performance
of a deep-learning model is useful, other methods could be
sought to compare their representational ability as alternative
ways to assess the contribution of different backbones. For
example, methods for visualising high-dimensional data, e.g.,
t-SNE [66] could be applied to compare different backbones
in terms of separability of features in the latent space. We
have conducted a preliminary experiment for SSPNet on one
test set from our k-fold cross-validation using t-SNE. We took
these 90 test images, extracted the features of Fj, Fo, and
F3 from our SSPNet architecture and then used t-SNE to
compute a 2-dimensional embedding that respects the high-
dimensional distances [58], [66]. This was done three times
each using VGG, ResNet-18 or ResNet-50 as the backbone.
By visualising the embeddings where images are displayed
at their embedded locations, we found that ResNet-50 indeed
shows the best discriminative capability (with ResNet-18 being
the second best).

In this paper, we limit the loss functions for the saliency
prediction component of SSPNet to the category of “saliency-
inspired” loss functions. It should, however, be noted that the
choice of loss functions plays a significant role in modelling
visual saliency [58]. In [58], the study provides a compre-
hensive analysis of the impact of the use of four different
categories of loss functions (including saliency-inspired and
non-saliency-inspired) and use of six linear combinations
of different losses on saliency prediction. It shows that a

careful design of the loss function can significantly improve
the performance of a saliency prediction model. We would
expect that improving the predictive power of the saliency
prediction component will enhance the overall performance of
the saliency shift prediction of SSPNet. Although designing a
dedicated and robust loss function is outside of the scope of
this paper, this will be treated in a separate contribution in the
future work.

VII. CONCLUSION

In this paper, we have presented our work towards pre-
dicting visual saliency shifts (VSS) induced by distortions.
To tackle this new research problem, we first carried out
an eye-tracking experiment to gain ground truth of VSS,
resulting in a new CUID-VSS database. Then, we devised
a computational model SSPNet to predict VSS using deep
learning. By integrating transformers into CNNs, our proposed
SSPNet model significantly benefits from capturing long-range
spatial information at multiple perceptual levels, leading to
state-of-the-art performance in predicting VSS. The software
and database will be made publicly available to facilitate
further research on visual saliency shifts.
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