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Abstract: The recent developments in the replacement of bulk MOSFETs with high-performance
semiconductor devices create new opportunities in attaining the best device configuration with drive
current, leakage current, subthreshold swing, Drain-Induced Barrier Lowering (DIBL), and other
short-channel effect (SCE) parameters. Now, multigate FETs (FinFET and tri-gate (TG)) are advanced
methodologies to continue the scaling of devices. Also, strain technology is used to gain a higher
current drive, which raises the device performance, and high-k dielectric material is used to minimize
the subthreshold current. In this work, we used stacked high-k dielectric materials in a TG n-FinFET
with three fins and a 10 nm channel length, incorporating a three-layered strained silicon channel
to determine the short-channel effects. Here, we replaced the gate oxide (SiO2) with a stacked gate
oxide of 0.5 nm of SiO2 with a 0.5 nm effective oxide thickness of different high-k dielectric materials
like Si3N4, Al2O3, ZrO2, and HfO2. It was found that the use of strained silicon and replacing only
the SiO2 device with the stacked SiO2 and HfO2 device was more beneficial to obtain an optimized
device with the least leakage and improved drive currents.

Keywords: TG FinFET; physical oxide thickness HOI device; stacked high-k; Silvaco TCAD; VTH; DIBL

1. Introduction

A FinFET device is a perpendicular-oriented device with multiple regions and is
surrounded by conductor gate material. The gate creates electrostatic control over nearly
the entire portion surrounding the device, providing efficient control over the inverted
nano-scaled channel [1]. In terms of performance, this results in an abrupt subthreshold
slope upon scaling, meaning higher figure sensitivity. Due to its ability to perform exact
assessments of technical progress, a FinFET also exhibits high consistency and repeata-
bility [2]. The utilization of a FinFET is the standard solution to eliminate SCEs. At the
nanoscale level, Heterostructure-on-Insulator (HOI) FinFETs [3–5] are preferred to enhance
drain current. In HOI FinFETs, the fin is created on buried oxide (BOX), and it boosts the
elimination of dependent capacitances and paired difficulty [6]. To continue Moore’s law,
FinFETs are a better option. The 3D design of FinFETs permits them to be used as multigate
devices. It is relatively possible to produce FinFETs using bulk and HOI technology where
the gate length used is 10 nm in the fabrication design. In a bulk FinFET, the fin area
is formed using the fin definition. In FinFETs, to increase the off current and boost the
current drive per fin, the oxide thickness should be narrowed, and several performance
aspects are focused on: (i) alternation of the effective oxide thickness, (ii) the use of di-
electric material like high-k materials, (iii) the elevation of channel doping, and (iv) the
incorporation of the strained silicon methodology in a device. Furthermore, a different
approach was introduced in device design by increasing the fin count [7] in the particular
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structure and optimizing the fin heights and fin proportions to achieve a trade-off in device
active currents. Hence, different architecture-based FinFETs have been developed, such as
single-fin FinFETs, double-fin FinFETs, triple-fin FinFETs, and quad-fin FinFETs. FinFETs
are replacing regular planar structures or double-gate field-effect transistors due to their
scaling down in channel length, better electrostatic control over approximately one-third of
the channel region, and occupation of less die area [8], leading to low power dissipation.

Since the beginning of CMOS technology, SiO2 has been the only material for gate
dielectrics. Scaling SiO2 exposes its elementary restrictions related to exponential increases
in gate leakage, process controllability, and consistency [9]. When the thickness of the
gate oxide drops, and an abrupt increase in the subthreshold current occurs due to SiO2
channeling; an alternate material for the oxide layer region (i.e., SiO2) has to be introduced
along with the high-k materials to diminish the leakage current of the gate in Si/SiGe/Si
channel HOI devices. In the strain methodology, a modification is made to the MOSFET
by growing a heterostructure channel with Si/SiGe/Si implanted within the structure.
HOI-strained silicon works enormously well, along with there being an improvement in
the drive current.

Recent demonstrations of HOI-strained silicon channel FinFETs with stacked high-k
suggest that flexible strain in the strained Si layer increases the current and facilitates
electron transportation along the channel’s orientation. However, as FinFETs are scaled
down, a major hindrance is observed in the form of surface roughness scattering. The
roughness at the interfaces affects electron conduction in the channel, influencing electron
mobility [10] and degrading drain currents. For generations, an equivalent oxide thickness
(EOT) has been applied with various high-k gate dielectric materials [11,12]. On the other
hand, when high-k dielectric materials are directly placed on silicon, the device performance
could decline. Due to reduced interface eminence and development compatibility as well
as emerging difficulties, such as stability and reliability, the device presentation needs to
be upgraded. A high-k dielectric is used in place of the gate oxide, whereas an alternative
gate stack (GS) method with a thin interfacial SiO2 layer is the obvious solution to resolve
this problem [13–18]. To moderate this problem, a gate stack (GS) configuration has been
introduced. In the GS structure, a very thin layer of SiO2 is initially positioned on silicon to
strengthen the interface quality, and then, high-k dielectrics are placed over the SiO2 layer
to decrease the gate tunneling current.

Currently, arrays of fins in FinFETs [19] are being realized in today’s technical era for
higher switching speeds in digital circuits. Though, with silicon or with Silicon-on-Insulator
(SOI) array FinFETs or HOI array FinFETs [20] that are incorporated in various devices,
there is a determination to meet the requirements set by the International Roadmap of
Devices and Systems (IRDS) 2022 for the 3 nm technology node [21]. Multi-fin FETs have a
higher packaging density compared to Gate-All-Around Field-Effect Transistors (GAAFETs)
because there are still challenges surrounding pitch scaling in design technology and area
reduction, where process-related dimension control is required. The 3D stack structure, as
a future IRDS proposal, is therefore not yet considered to have enhanced performance in
the nano regime. Researchers are characterizing and analyzing device scaling to meet these
challenges, particularly the fabrication process of GAAFETs on a single silicon substrate.
Therefore, to build a faster and optimized device, the existing and developed FinFET
technology is implemented here since there is still a requirement to reach the proposed
performance of a 3 nm technology node, as per IRDS 2022. Hence, the need arises to
design and optimize a high-k stacked three-fin FinFET nanodevice system to meet the
requirements of optimized and enriched performance.

Bha et al. [22] designed FinFET devices with a channel length of 10 nm on the buried
oxide layer, which showed reduced leakage current and high transconductance. Thereafter,
Nanda et al. [23,24] simulated a channel-engineered TG FinFET with a channel length of
10 nm and found the device characteristics to be on par with the 3 nm technology node
with a strained-silicon channel system. The device showed an efficient reduction in the
SCEs and better device performance. Even though the on current is improved when using
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a strained-silicon channel, achieving the requirement of high speed with minimal power
consumption, there is a need to increase the total performance further by implementing
stacked high-k dielectrics in a HOI structure; hence, developing a three-fin stacked high-k
HOI FinFET device system is the consensus.

In the present work, a TCAD mixed-mode simulator is used to compare and analyze
the SCEs incorporating a high-k dielectric material in a three-fin TG FinFET device. The GS
configuration is used throughout the study. This paper presents an analysis of three-fin gate
stack high-k dielectric material-based strained-channel HOI FinFETs along with quantum
analysis results from the optimized structure detected here.

2. Device Structure

The characteristics of a MOSFET are well explained by channel engineering, which is
applied in various MOSFETs, where the channel electric field, Ex, is reduced appreciably
compared with the vertical electric field implementing Poisson’s equation in 1D form. So,
WC throughout the channel is specified by the potential in 1D, but this estimation is best
suited when the gate length, L, is bigger than WC.

Following the estimation made, the inversion layer charge is observed to be small
enough in the channel region and, hence, the charge is given as:

Qin = Cox
(
Vgs − VTH − Vpc,s

)
(1)

where Vpc,s is the channel potential with respect to the source. In the source, Vpc,s = 0,
and in the drain, Vpc,s = Vds. In the source end and drain end, X = 0 and X = L are added
simultaneously.

The drain current in the channel, IDr, is the drift current instigated by the electric field
Ex in the channel:

IDr =
QinWCLC

tC
(2)

where WC is the width of the channel and tC is the time of carrier transit.
Qin does not decrease to zero when Vgs ≤ VTH. In the off-state condition, the leakage

current generated is unwanted because it degrades the device performance based on the
current flowing through the device. This leads to conversion from the depleted channel to
the inverted channel for uniform Vgs, which is the subthreshold voltage. The drain current
acquired at this point, which holds on for Vgs ≤ VTH, is the subthreshold current. The
subthreshold drain current is, therefore, specified by:

IDr = µe f f Cox
WC
LC

(n − 1)
(

KT
e

)2
e

q(Vgs−VTH )
nKT

(
1 − e−eVds/KT

)
(3)

When the drain voltage is greater than KT/e,
(

1 − e−eVds/KT
)
≈ 1, so the following is

acquired:

IDr = µe f f Cox
WC
LC

(n − 1)
(

KT
e

)2
e

q(Vgs−VTH )
nKT (4)

It is obvious that the subthreshold current is free from Vgs − Vds and decays gradually
with decreasing Vgs. The Ioff is usually described as the ID current when Vgs = 0 and
Vds = Vdd. It is defined as IDr. This Ioff is calculated considering certain parameters such as
the physical dimension of the channel, depth of the source or drain junction, gate oxide
width, doping concentration for the channel or surface, and Vdd. Ioff is expected to increase
by nearly 10 times for a 100 mV decay of VTH.
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The charge carrier mobility, µeff,n and µeff,p, in the inversion region can be defined via
the following general equations [25]:

For the electron mobility, µe f f ,n =
638

1 +
(

Ee f f / 7 × 105
) 1.69 (5)

For the mobility for hole, µe f f ,p =
240

1 +
(

Ee f f / 2.7 × 105
) (6)

where Eeff is the effective channel electric field of the device. This can be observed as µeff
declining very fast with increasing Eeff.

In cases where Vgs > VT, IDr is given by:

IDr =
WC
LC

µe f f Cox

[
(V gs − VTH

)
Vds −

nVds
2

2
(7)

In a linear system, the ID can be stated as:

IDr =
WC
LC

µe f f Cox

[
(V gs − VTH

)
Vds (8)

When Vds is increased further, the increase in IDr seems to be parabolic in nature and
is given by:

IDr = ID,sat =
WC
LC

µe f f Cox

(
Vgs − VTH

)2

2n
(9)

IDr = µe f f Cox
WC
LC

(n − 1)
(

KT
e

)2
e

e(Vgs−VTH )
nKT (1−e−eVds/KT) (10)

where n = 1 + Cdep/Cox.
A linear plot of ln(ID) as a function Vgs in the subthreshold region is achieved and

the slope for subthreshold swing (SS) is attained as a degree of the efficiency of Vgs in
IDr modulation. A minor slope for subthreshold is, hence, needed for converting the off
current for the transistor. In low Vgs, the current decreases from the subthreshold region to
the off-current state. This controls the Ioff current and the power dissipation in the device
circuitry.

For Vgs < VTH, one can describe the subthreshold region using a direct equation of
drain current in the subthreshold regime for a double gate, given by:

ID =
WC
LC

µn4Csi

(
KT
q

)2(
1 − e(−

q
KT )(

QD
8Csi

)
)
·
[

1 − e−(
qVds
KT )

]
·eq/KT(Vgs−VFB−[

QD
2

Cox ]−2ϕ f ) (11)

where µn = electron mobility as CSi = εSi/tSi is the thin film on silicon, while Vds and Vgs are
the drain-to-source and gate-to-source voltages, respectively. The difference in IDr current
of the device with respect to the difference in Vgs at the subthreshold region gives the
subthreshold slope as:

SS =
δVgs

δ(logId)
=

δVgs

δϕS
· δϕS
δ(logId)

(12)

where δVgs
δϕS

= the m-factor for the body and defines the coupling between the gate and the

surface potential, though δϕS
δ(logID)

, called the n-factor, is incomplete for a minimum value
that corresponds to the Fermi–Dirac distribution. For a bulk MOSFET, the subthreshold
slope can further be expressed as:

SS = n·m =
KT
q

ln(10)
(

1 +
CD + Cit

Cox

)
= 59

(
1 +

CD + Cit
Cox

)
mV/dec (13)
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where CD and Cit = capacitances in the depletion region and the trap interface states,
respectively. The SS is constant and also not dependent on either Vgs or Vds. An ideal FET
has an SS0 = 59 mV/dec at room temperature (300 K). Approaching the ideal value, the
full-depletion set-up agrees with the thin-film system developed here. The charge varies
with depletion at the front gate and is given as δQDr/δVgs = 0, meaning that CD ≈ 0 and the
SS, therefore, obtains its theoretical value with m = 1, so the subthreshold slope is given as

SS ∼=
KT
q

log(10) ≡ SS0 (14)

In downscaling, for a thin-film device with the same parameters as a bulk device or
thick-film device, the subthreshold slope will be steeper. Every change in the gate voltage,
Vgs, in the subthreshold domain is, therefore, precisely linked to the surface potential, ϕS,
resulting in an identical rise in both the variables due to the traps at the Si-oxide interface
contact, and the theoretical limit is never met in a practical device.

A number of three-fin tri-gate FinFETs were developed here involving different chan-
nel oxides by replacing the regular SiO2 layer with different high-k dielectric materials such
as Si3N4, Al2O3, ZrO2, and HfO2, which were then stacked on the existing SiO2 separately
considering the different equivalent oxide thickness (EOT) for the same physical thickness
and low leakage for a dielectric. The equivalent oxide thickness calculations (15) are shown
as follows [26]:

EOT = thigh-k
kSiO2

khigh-k
(15)

where thigh-k = the high-k material’s physical thickness, kSiO2 = the SiO2 dielectric constant,
and khigh-k = the high-k material dielectric constant.

TG FinFETs containing different high-k dielectric materials are expected to be im-
mensely beneficial for providing low off currents for the proposed device and, hence, an
improvement in the device characteristics is expected. The device schematic was adjusted
for a 10 nm channel length and is presented in Figure 1. The physical width of the channel
oxide was kept constant. Keeping the 1 nm physical thickness of the stacked high-k dielec-
tric material fixed, the device modification was carried out for different high-k amounts in
the device. Here, in this structure, to maintain the same physical thickness, 0.5 nm of high-k
dielectric material over the channel region of the device was added on top of 0.5 nm of
SiO2, which was used as the stack gate oxide. The physical thickness of the high-k dielectric
material layer used was 0.5 nm; hence, the total physical thickness was 1 nm, while the EOT
was analyzed to determine the effective gate oxide thickness in the device. When using
strained technology along with a high-k stack and a tri-layered silicon channel nanosystem
in a three-fin FinFET, the control of the short-channel parameters is expected to be highly
beneficial. The SiGe layer is placed in between two silicon layers, and a strained silicon
region is developed, primarily forming a three-layered channel. As a result, the device is
expected to provide enhanced performance due to induced strain in the channel for the
10 nm channel length FinFET, while improved off current is expected by controlling the
SCEs through high-k gate oxide stack systems, which is the motivation of this paper.

The dimension specifics of the device are summarized in Table 1, where the structure
is presented placing three different layers on the channel. In the 10 nm three-fin HOI TG
FinFET, the 1.5 nm thick silicon layer of the channel is strained and is displayed along
with the 3 nm thick SiGe layer. Analysis of the device performance was carried out using
Silvaco Atlas TCAD tools [27]. The structure of the stacked high-k three-fin FinFET with a
tri-layered strained silicon channel is displayed in Figure 1. The physical dimensions and
the EOT of all the high-k dielectrics used in the paper are tabulated in Table 2.
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Figure 1. (a) Three-fin FinFET structure, (b) inset of the cross-section of a single fin, and (c) dimen-
sional representation of the three-fin HOI FinFET. 

  

Figure 1. (a) Three-fin FinFET structure, (b) inset of the cross-section of a single fin, and (c) dimen-
sional representation of the three-fin HOI FinFET.



Nanomaterials 2023, 13, 3008 7 of 19

Table 1. Parameters of the three-fin strained HOI FinFET.

Constraints Measurements

Drain/source length 10 nm
Channel length 10 nm

Lateral oxide (SiO2) thickness 0.5 nm
Physical thickness of the high-k material 0.5 nm

Silicon fin thickness/height 6 nm
Thickness of the strained Silicon in the channel 1.5 nm

Thickness of the SiGe in the channel 3 nm
Substrate + BOX height 80 nm

Channel-doping concentration 1015 cm−3

Drain/source doping 1018 cm−3

Table 2. Stack (GS)-configured high-k dielectric oxide thickness.

Gate Stack Materials Physical Thickness of
the High-k Material

Dielectric Constant of
the High-k Material EOT (nm)

SiO2 - - 1.0
HfO2 + SiO2 0.5 nm 25 0.078
ZrO2 + SiO2 0.5 nm 23 0.085
Si3N4 + SiO2 0.5 nm 7 0.279
Al2O3 + SiO2 0.5 nm 8 0.244

3. Results and Discussion

The linear (inside) and logarithmic characteristics graph of the stacked high-k three-fin
strained TG FinFET is shown in Figure 2. The drain current versus gate voltage transfer
plots of the stacked high-k three-fin strained FinFETs with different stacked high-k gates are
compared and plotted in Figure 2, where the HfO2-based devices show better performance.
The logarithmic plot of drain current versus gate voltage displays the off current and SCE
parameters for all the devices.
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Figure 2. ID–Vgs transfer plot of three-fin TG FinFETs on a log scale at Vds = 1.0 V.

The threshold voltages (VTH) of the developed devices with SiO2 added to the high-
k material (like Si3N4, Al2O3, ZrO2, and HfO2) to form the stack gate for the 10 nm
three-fin TG FinFETs are calculated to be 0.218, 0.235, 0.212, and 0.238 V, respectively, as
shown in Figure 3. The device with only a SiO2 gate has a threshold voltage of 0.197 V. A
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comparison of only the SiO2 dielectric and stacked high-k dielectric materials was made,
and it was observed that the HfO2-based device had the highest threshold voltage; hence,
a replacement for SiO2 and other stacked high-k materials should be considered in the
stacked arrangement for three-fin FinFET devices to provide improved voltage control.
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Figure 3. Different threshold voltages (VTH) of stacked 3-fin TG strained FinFETs with several
gate dielectrics.

The on current (Ion) was 446.54 µA/µm for the SiO2-only device, whereas 498.90,
357.73, 585.92, and 612.24 µA/µm were observed, respectively, for the Si3N4-, Al2O3-,
ZrO2-, and HfO2-based devices. The maximum on current was exhibited for the HfO2
stacked high-k device due to the high dielectric value with an average work function, as
seen in Figure 4. This difference was due to the use of several gate metals in the three-fin
device, in which the work functions were variable. The maximum on current (Ion) is clearly
shown in Figure 4.

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 20 
 

 

ison of only the SiO2 dielectric and stacked high-k dielectric materials was made, and it 
was observed that the HfO2-based device had the highest threshold voltage; hence, a re-
placement for SiO2 and other stacked high-k materials should be considered in the 
stacked arrangement for three-fin FinFET devices to provide improved voltage control. 

 
Figure 3. Different threshold voltages (VTH) of stacked 3-fin TG strained FinFETs with several gate 
dielectrics. 

The on current (Ion) was 446.54 µA/µm for the SiO2-only device, whereas 498.90, 
357.73, 585.92, and 612.24 µA/µm were observed, respectively, for the Si3N4-, Al2O3-, 
ZrO2-, and HfO2-based devices. The maximum on current was exhibited for the HfO2 
stacked high-k device due to the high dielectric value with an average work function, as 
seen in Figure 4. This difference was due to the use of several gate metals in the three-fin 
device, in which the work functions were variable. The maximum on current (Ion) is 
clearly shown in Figure 4. 

 
Figure 4. Different on currents (Ion) of stacked three-fin TG strained FinFETs with several gate die-
lectrics. 

Thereafter, an analysis of the characteristics of the different material-based gate di-
electric devices, like subthreshold swing, off current (Ioff), and DIBL, was carried out to 
conclude which dielectric is suitable for the three-fin optimized device. The off current 
can be calculated using the below-mentioned formula [28]: 𝐼௢௙௙(nA) = 100 𝑤𝐿  10ି ௏೅ಹ/ௌௌ (16)

where W = the width of the channel and L = the length of the channel, VTH = the threshold 
voltage, and SS = the subthreshold swing. The off current (Ioff) variations for different gate 
dielectrics with high-k stacks were 0.94, 1.72, 3.11, 1.04, and 1.55 pA/µm for HfO2, Si3N4, 
SiO2, ZrO2, and Al2O3, respectively, as displayed in Figure 5. For improved device char-

Figure 4. Different on currents (Ion) of stacked three-fin TG strained FinFETs with several
gate dielectrics.

Thereafter, an analysis of the characteristics of the different material-based gate di-
electric devices, like subthreshold swing, off current (Ioff), and DIBL, was carried out to
conclude which dielectric is suitable for the three-fin optimized device. The off current can
be calculated using the below-mentioned formula [28]:

Io f f (nA) = 100
w
L

10−VTH/SS (16)

where W = the width of the channel and L = the length of the channel, VTH = the threshold
voltage, and SS = the subthreshold swing. The off current (Ioff) variations for different
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gate dielectrics with high-k stacks were 0.94, 1.72, 3.11, 1.04, and 1.55 pA/µm for HfO2,
Si3N4, SiO2, ZrO2, and Al2O3, respectively, as displayed in Figure 5. For improved device
characteristics, the off current should be as low as possible, and it was found that the device
with a SiO2 and HfO2 gate stacked oxide combination was the best alternative.
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Figure 5. Different off currents (Ioff) of stacked three-fin TG strained FinFETs with several
gate dielectrics.

Next is the comparison of the Ion/Ioff ratio, which is shown in Figure 6. For enhanced
device performance, this ratio needs to be as high as possible. The Ion/Ioff factors for
SiO2, Si3N4, Al2O3, ZrO2, and HfO2 were observed to be 1.44, 2.90, 2.31, 5.62, and 6.51
(×105), respectively. So, the device structure with HfO2 fulfils the requirement of providing
the maximum on current with minimum leakage, so it can be concluded that the HfO2
dielectric material as the gate oxide is the most suitable in a stacked three-fin strained-
channel FinFET device.
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The next parameter, subthreshold swing, was analyzed using a linear plot, as shown in
Figure 7. Here, the value of subthreshold swing of the SiO2 with HfO2 was 67 mV/decade,
whereas it was 71.05 mV/decade for the SiO2-only device, thereby clearly showing that the
stacked three-fin TG strained FinFET of SiO2 + HfO2 achieved enhanced performance in
comparison to the others. For SS calculation, we applied the following equation [28]:

SS
(

mV
dec

)
=

dVgs

d(log10(IDS))
(17)
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where dVgs = the shift in the gate voltage and d(log10(IDS)) = the shift in the logarithmic
drain current. The variations in the SS of different high-k stacked three-fin TG strained
FinFETs are displayed in Figure 7.
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Figure 7. Different SSs of stacked three-fin TG strained FinFET with several gate dielectrics.

The last-compared factor presented here is the DIBL, and the results are shown in
Figure 8: 59.73, 49.78, 48.65, 42.90, and 40.99 mV/V for the SiO2-only gate oxide material
followed by the high-k stacks of Si3N4, Al2O3, ZrO2, and HfO2, respectively. The lowest
DIBL value, and hence the best performance, was observed for the HfO2-based device, as
displayed in Figure 8.
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Figure 8. Different DIBL values of stacked three-fin TG strained FinFETs with several gate dielectrics.

As a result, it is evident that the high-k dielectric material with a stacked arrangement
of 0.5 nm of SiO2 and HfO2 of 0.5 nm physical thickness is the best fit to substitute SiO2 for
managing SCEs at a channel length of 10 nm.

This demonstrates the effects of creating an enhanced three-fin technology device
incorporating HfO2-based high-k material to improve the performance and meet the IRDS
2022 specifications for 3 nm technology node data.

Table 3 shows a detailed comparison, indicating better threshold voltage, on current,
off current, SS, and DIBL for the 10 nm HOI high-k (HfO2) stack than the existing 10 nm
HOI three-fin FinFET; therefore, the former is considered to have enhanced performance in
comparison to the standards suggested by IRDS 2022 [21].

The 10 nm HOI high-k (HfO2) stack is reported to be adequate, despite the 82 mV/decade
subthreshold swing (SS) as per IRDS 2022 for HP devices.
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Table 3. Comparison of parameters of 10 nm HOI and HOI with high-k stacked 3-fin FinFET.

Parameters 10 nm HOI Three-Fin
FinFET

10 nm HOI High-k (HfO2)
Stacked Three-Fin FinFET

Threshold voltage 0.193 V 0.238 V
On current 466.63 µA/µm 612.24 µA/µm
Off current 1.54 nA/µm 0.94 nA/µm

Ion/Ioff current ratios 3.03 × 105 6.51 × 105

Subthreshold swing 71 mV/decade 67 mV/decade
DIBL 61.8 mV/V 40.99 mV/V

Quantum Results

In the gate, electrons are exhibited with regards to the semiconductor, and holes in
the semiconductor are exhibited with regards to the gate. Figure 9 displays an energy
band diagram of the accumulation region. In the semiconductor region, the band-bending
curves were observed to rise. The middle s-SiGe and lower s-Si near the HOI structure
are much closer to the conduction band than the valence band. From Figure 9, it can be
seen that the band cutline occurs in the strained-channel regions, where charge carriers are
narrowed and confined towards the s-SiGe level, owing to the development of a quantum
well arrangement in the channel. In the tri-layered channel, the effective mass due to
the bandgap is reduced with the increased mobility of the carriers along with the biaxial
strain incorporated into the channel region, which in turn affects the band bending in the
quantum barrier of the channel in the nano-regime.
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Figure 9. Energy band formation in FinFET structure.

Owing to the reduced channel dimensions due to the effective mass, mobility is
improved for the tri-layered strained silicon channel device. The currently developed
device with an interfacial layer thickness of less than 2 nm and hafnium-based dielectrics
has inferior electron mobility than the device with only a SiO2 dielectric. The mobility
exhibits more degradation via remote phonon scattering in the HfO2 dielectric than the SiO2
one, which can be successfully isolated by presenting a stacked high-k system in the tri-
layered n-FinFET strained silicon technology device. Due to their quantization, the effective
masses and charge carriers degenerate the strained silicon in the channel region, and,
therefore, the mobility begins to increase. In the case of a tri-layered strained technology
structure where high-k materials are used as the gate dielectric, the mobility is reduced to
~850 cm2/Vs in the middle s-SiGe layer, whereas it increases to 2700 cm2/Vs in the lower
and upper s-Si layers, as clearly observed in Figure 10a; Figure 10b shows the mobility
variation contour diagram. It was found that the HfO2 dielectric was significantly more
affected by remote phonon scattering than the SiO2 dielectric, since the dielectric constant
was high. From the electron mobility contour diagrams, increased electron mobility can be
seen in the lower s-Si across the QW channel length, which is a strain-induced nano-regime
structure with a 10 nm gate length for the 3 nm technology node, initiating quantum
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tunneling via ballistic transport using the s-SiGe well region. As a result of the shorter
channel length (10 nm) of the device, ballistic transport occurs and only minor scattering
roughness is observed in the system, which is undoubtedly witnessed in the mobility
contours (Figure 10b), indicating a smooth passage for electrons in the device across the
strained-Si layer.
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From the drain to source region, the electric field passes, allowing quantum carriers
with minor constraint in the s-SiGe well region of the hetero-band structure channel in the
quantum well barrier system to create a tunneling path, as shown in Figure 11a. The contour
for the electric field in the 10 nm gate length FinFET device is displayed in Figure 11b,c.
An extremely high electric field is noticeable due to the reduced gate length structure
with an informal doped channel that introduces velocity saturation in the device. These
interpretations are attributed to the occurrence of quasi-ballistic carrier transport because
of the gate length limitation, which is induced by carrier regulation in the strain-induced
thin s-Si well region of the quantum well barrier nanosystem device. This ballistic transport
condition with carrier confinement is recognized in the HOI structure combination of the
nano-channel device, which leads to the tunneling of the quantum charge carriers.



Nanomaterials 2023, 13, 3008 13 of 19
Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 20 
 

 

 
(a) 

 
(b) 

 
(c) 
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Concentrating on bandgap moderation, extreme electrostatic potential changes through
s-SiGe deposition, concerning Vgs for 1 V, were attained. The tri-gate FinFET with stacked
high-k material established had a 10 nm channel length with 1018 cm−3 doping for the
source and drain region; however, the tri-layered strained HOI quantum well barrier chan-
nel was moderately doped with a concentration of 1015 cm−3. The potential observed
close to the source and the drain end increased with the increase in the drain voltage (Vds),
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causing the potential of the inside strained layers to develop in the channel of the structure.
The potential graph is shown in Figure 12a, and a detailed analysis of the potential contours
is displayed in Figure 12b,c.
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This improved mobility begins to act on the electron velocity, and the transformation
of the TG strained-channel nano-FET device with a gate length of 10 nm is displayed
in Figure 13. The electron velocity was analyzed under extreme velocity conditions up
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to 1000 cm/s, as observed from the contour diagrams visualized in Figure 14a,b for the
shorter-gate-length device. This improvement in electron mobility gave increased drive
current with extra electron velocity, while maintaining minimal gate-induced drain leakage
in the device.
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A high electron velocity and electric field in the strained-channel device were detected
at the middle s-SiGe layer due to quantum carrier confinement. This is directly attributed to
the improved carrier mobility with charge inversion occurring in the narrow- and reduced-
channel-length devices with an s-SiGe well in the channel. It should be noted that due
to the uniform electric field, the peak electron velocity was observed to be higher in the
channel region.

In the strained-channel device, the mobility was improved because of the biaxial strain
in the TG layered FinFET, while the SCEs induced an extreme inversion of the total charge
density within the channel region; the doping variations at the fin edge and at the gate
edge are displayed in Figure 15.
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Figure 15. Total current density developed across the channel.

With the technically enriched gate control over the device, the current mostly passes
through the upper s-Si region of the channel gate, while the middle s-SiGe layer experiences
very low current, as depicted in Figure 16a,b. Upon applying external bias via the electric
field, the current flows through the strained silicon channel region. From the total current
density graph, it can be observed that the current density was higher in the upper s-Si layer
than the middle s-SiGe and lower s-Si layers, while the overall total current density was
found to be 600 A/cm2 from the contours in Figure 16a,b.
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4. Conclusions

Three-fin HOI n-FinFETs, using three-layered s-Si/SiGe/s-Si as 10 nm length channels,
were developed here via the insertion of strain technology to extensively enhance the drive
current of the devices. To this end, the gate oxides of the devices were built up in view
of high-k stacks like Si3N4, ZrO2, Al2O3, and HfO2, keeping the physical thickness of the
high-k material at 0.5 nm. The drain and source were fitted with a height and width of 6 nm.
The threshold voltage, drive current, leakage current, Ion/Ioff current ratios, subthreshold
swing, and DIBL were acquired for all the devices developed here and were compared.
It was observed that the TG FinFETs’ performance was improved using strained silicon
channels along with high-k stacked dielectrics, instead of a SiO2-only gate oxide. These
three-fin strained stacked high-k devices provided reduced leakage current and enhanced
drive current, particularly when adding HfO2-based high-k material. For the SiO2-only
device, the VTH was 0.197 V, whereas for the stacked SiO2 and HfO2 device, the VTH was
0.238 V. Similarly, the DIBL for the stacked gate oxide device was 40.99 mV/V, which
was quite low in comparison to the DIBL of 59.73 mV/V for the SiO2-only device. This
proves that the device with HfO2 provided optimized results, performed the best, and had
improved control over SCEs with very low leakage and improved switching. It was also
observed through the cutline views of the band diagram that, due to its electron mobility,
electric field, potential, electron velocity, and total current density, the HfO2-based stacked
device is the most suitable alternative for the future.
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