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The behavior of a transverse domain wall (DW) interacting with a ferromagnetic NOT gate is

studied with specific emphasis on the role of the DW chirality (sense of rotation of magnetization

crossing the DW). We examine both the effect of the incoming DW chirality on the operation of

the NOT gate and the effect of the gate on the DW chirality. We find that the chirality of the

incoming DW does not affect the range of fields over which the NOT gate operates correctly. The

effect of the NOT gate on the DW chirality depends on the chirality of the incoming DW: when

the DW is incident on the NOT gate with the wide side of the DW on the inside of the V-shape

formed by the gate, the chirality is conserved, but when the DW is incident on the gate with its

wide side on the outside of the V-shape, the chirality may reverse. VC 2011 American Institute of
Physics. [doi:10.1063/1.3549599]

I. INTRODUCTION

The manipulation of domain walls (DWs) in ferromag-

netic nanostrips forms the basis of several proposed applica-

tions in memory, logic, and sensing. DWs in a nanostrip can

be used to store data1 or propagated through a complex nano-

strip network to perform logic operations.2 DW-based turn

sensors3 and devices for detection or manipulation of func-

tionalized magnetic beads4,5 have also been demonstrated.

Such devices require control of the DW motion, which in

turn may depend on the structure of the DW. In this paper,

we study the behavior of ferromagnetic NOT gates, 6,7 which

consist of a cusp-shaped structure (Fig. 1). DWs propagate

through the gate under the action of a rotating field with

head-to-head and tail-to-tail walls moving on opposite half

cycles of the rotating field; the direction of motion is fixed

by the sense of rotation of the field and is the same for both

head-to-head and tail-to-tail DWs. A NOT gate, or a series

of NOT gates, thus provides a mechanism for unidirectional

motion of DWs of opposite charge (head-to-head or tail-

to-tail) under a global field. The logical NOT operation of

the gate consists of reversing the magnetostatic charge

of the DW. In this paper, we do not concentrate on the role

of the DW charge but instead investigate how the internal

structure of the DW affects the operation of a NOT gate. The

equilibrium DW structure in thin and narrow nanostrips is a

transverse domain wall8,9 with an asymmetrical triangular

shape, which can be conveniently characterized by the sense

of rotation of the magnetization crossing the DW. This is of-

ten referred to as the DW handedness or “chirality.”10–12

Here we examine the chirality dependence of the NOT gate;

we study both the effect of the chirality of the incoming DW

on the operation of the gate and the effect of the NOT gate

on the chirality of the DW.

II. EFFECT OF DW CHIRALITY ON NOT GATE
OPERATION

NOT gates have two distinct failure modes. If the

applied field is too large, new domains nucleate whenever

the field changes direction, and switching at the output of the

gate is observed even when no DW is incident on the gate. If

the field is too small, no switching or intermittent switching

is observed. The onset of these two failure modes determines

the upper (nucleation) and lower (nonswitching) boundaries

of the “operating area” (also referred to as the “operating

margin”).7 The operating area is the area in the Hx–Hy plane

for which the NOT gate operates correctly, where Hx and Hy

are the semiaxes of the applied elliptical rotating field. In

this section, we examine whether the size of the operating

area is affected by the chirality of the incoming DW. To pro-

vide a DW of known chirality at the input of the gate, we

fabricated the structures shown in Fig. 1 using electron beam

lithography, thermal deposition of 10 nm of Permalloy

(Ni19Fe81), and a lift-off process. The NOT gates are pat-

terned on nanostrips of width 100 nm with L-shaped [Fig.

1(a)] or C-shaped ends [Fig. 1(b)]. Magnetization switching

of the nanostructures was measured using a magneto-optical

Kerr effect (MOKE) magnetometer with a focused laser spot

diameter of � 5 lm. The measurement is described in Fig. 2.

Figures 2(a) and 2(d) show the applied field sequence and

schematics of the magnetization configurations obtained

when the NOT gate operates correctly. Figures 2(b) and 2(e)

show plots of the applied fields and the Kerr signal measured

at the point indicated by the asterisk in Figs. 2(a) and 2(d).

The top Kerr trace corresponds to correct operation of the

NOT gate, and the lower traces correspond to the two failure

modes as described in the following text. Figures 2(c) and

2(f) show the applied fields with Hy plotted as a function of

Hx; the points at which switching occurs for correct opera-

tion of the NOT gate are indicated by the filled circles.

A saturating field pulse is applied along (�1, �1) [i in

Figs. 2(a)–2(c) and 2(d)–2(f)] to create two DWs: one at one

a)Author to whom correspondence should be addressed. Electronic mail:

e.lewis06@imperial.ac.uk.
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corner of the L- or C-shape and one on the right-hand side of

the NOT gate. A small field along þx is then applied to expel

the right-hand DW [ii in Figs. 2(a)–2(c) and 2(d)–2(f)] and

thus switch the magnetization in the right-hand part of the

structure. This switching event is detected using the MOKE,

producing an upward step in the Kerr signal. In the case of

the L-shape, the small field along þx also causes the left-

hand DW to move to the left-hand edge of the NOT gate; for

the C-shaped structure, an additional field step is necessary

[iii in Fig. 2(d)] to bring the left-hand DW around the curve

of the C-shape and up to the edge of the NOT gate. We label

the configuration as “out” when the wide side of the incom-

ing DW is on the outside of the V-shape formed by the NOT

gate [iii in Fig. 2(d)] and “in” when the wide side of the DW

is on the inside of the V-shape [ii in Fig. 2(a)]. Two full

cycles of an anticlockwise rotating field are then applied. If

the NOT gate is operating correctly, the DW moves through

the gate during the first half cycle [ii–iv in Figs. 2(a)–2(c)

and iii–v in 2(d)–2(f)], again switching the magnetization in

the right-hand part of the structure, and no switching is

observed on the subsequent half cycles. This corresponds to

the topmost (black) Kerr signal trace in Figs. 2(b) and 2(e).

If the rotating field is large enough to cause renucleation,

switching is observed on every half cycle of the rotating

field, as in the middle (gray) Kerr signal trace. If the rotating

field is too small, no switching is observed until the saturat-

ing field is reapplied, as in the bottom (gray) Kerr signal

trace. These three distinct switching patterns allow us to map

out the operating area. Figure 3 shows the operating areas

for different DW chiralities in two types of NOT gate. The

data do not provide evidence for any dependence on chiral-

ity. This is consistent with previous work6,7 in which the

NOT gate operated correctly as part of a ring oscillator struc-

ture; in a ring oscillator, the chirality is not controlled and

may reverse as the DW travels several tens of microns

around the loop.13–15

Note that chirality reversal might also be expected for

the C-shaped structures used here because the DW must

travel � 2.5 lm around the C-shape before reaching the

NOT gate, and the minimum distance for chirality reversal

in a straight nanostrip of similar dimensions has been

FIG. 1. SEM images of structures used for chirality dependence measure-

ment. (a) Structure with L-shaped end. (b) Structure with C-shaped end. The

right-hand part of each structure is a straight nanostrip extending for 9 lm

past the NOT gate.

FIG. 2. Testing the chirality dependence of a NOT gate. (a) Schematics showing the applied field sequence and resulting magnetisation configurations for

L-shaped structures, where the DW is incident on the gate in the “in” configuration. The position of the MOKE laser spot is indicated by the gray asterisk in

(a) i. (b) Plots of Hx and Hy as a function of time (upper panel) and examples of the measured Kerr signal (lower panel). The top trace (black) shows the meas-

ured switching pattern when the NOT gate is operating correctly; the middle trace (gray) shows the switching pattern when the magnitude of the elliptical rotat-

ing field is too large; and the bottom trace (gray) shows the switching pattern when the rotating field is too small. The dashed lines labeled i–iv correspond to

the stages i–iv shown in (a). (c) An alternative way to visualize the applied field and switching pattern. The black line shows Hy as a function of Hx and the

black filled circles indicate the points at which switching occurs. The data shown correspond to correct operation of the NOT gate. (d)–(f) Equivalent sche-

matics and plots for C-shape structures, where the DW is incident on the gate in the “out” configuration.
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measured as 1.6 6 0.25 lm.16 However, this chirality rever-

sal is a dynamical effect15 that occurs during continuous

motion of the DW. Such a continuous motion is not

expected to occur on the C shape because the rate of rota-

tion of the field is slow compared with the domain wall

motion: the rate of change of the field is less than 10 kOe

s�1, and the minimum DW velocity is around 50 m s�1,17

corresponding to a travel time over 3 lm of 60 ns. The

maximum change in the field during this time is less than

1 mOe. Thus, the magnetization always relaxes to an equi-

librium configuration before there is an appreciable change

in the field, and the DW is expected to make a series of

small steps around the curve of the C-shape. Therefore, it

is not expected that chirality reversal should occur as the

DW moves toward the NOT gate.

III. EFFECT OF NOT GATES ON DW CHIRALITY:
TESTING FOR CHIRALITY CONSERVATION

In the previous section, we looked at the effect of the

incoming DW chirality on the operation of the NOT gate; in

this section, we examine the effect of the NOT gate on the

chirality of the DW. Specifically, we test whether the chiral-

ity of the incoming DW is preserved as it passes through the

NOT gate. (A head-to-head DW with core magnetization

pointing along character has the same chirality as a tail-to-

tail DW with core magnetization pointing along 6 y.) To test

whether the NOT gate is chirality-conserving, the experi-

ment described in the preceding text is extended by adding a

chirality-dependent trap at the output of the NOT gate. The

chirality of the DW exiting the gate can be detected by meas-

uring the field required to transmit this DW through the trap.

We used T-shaped traps, for which the switching fields for

DWs of different chiralities are well-separated as described

in Ref. 18.

Before testing the NOT gate structures with traps, it is

necessary to measure the switching fields for each different

DW–trap configuration (without a NOT gate). These meas-

urements were already carried out in Ref. 18, but for

nanostrips of different dimensions, which were fabricated

using focused ion beam patterning rather than electron beam

lithography. We therefore fabricated additional structures

with a trap only (no NOT gate) and measured the transmis-

sion field for each different DW-trap configuration. There

are four possible configurations, because the magnetization

in the core of the DW may be either parallel or antiparallel

to the magnetization in the transverse arm of the T-shape,

and the transverse arm may be either on the wide or the nar-

row edge of the DW. The four configurations are labeled

wide-P (parallel), wide-AP (antiparallel), narrow-P, and nar-

row-AP, as illustrated in Fig. 4. The transmission fields (val-

ues of Hx at which the DW passes the trap) are lower in the

two parallel cases: from measurements on five structures of

each type, we obtained values of 30 6 8 Oe (narrow-P) and

128 6 8 Oe (wide-P), whereas in the antiparallel configura-

tions, the switching fields were 249 6 12 Oe (narrow-AP)

and 230 6 5 Oe (wide-AP). (These switching fields were

measured in the presence of a constant Hy� 10-20 Oe.) Dis-

tinguishing between DWs of opposite chiralities corresponds

to distinguishing between parallel and antiparallel switching

fields (i.e. distinguishing narrow-P from wide-AP or wide-P

from narrow-AP); the clear difference in magnitude between

the parallel and antiparallel switching fields means that dif-

ferent chiralities can reliably be distinguished. Note that

micromagnetic simulations18 showed that in the narrow-AP

case, the DW incident on the trap splits into two DWs; the

second DW moves along the vertical arm and switches it. In

the wide-AP case, the “transmission field” does not corre-

spond to transmission of the DW past the trap, but instead to

re-nucleation of a new domain next to the trap.18

Having established the switching fields for each

different DW-trap configuration, we can proceed to test

FIG. 3. Operating areas for DWs of different chiralities. The plots show

measured operating areas for two types of NOT gate (SEM images in the

insets) for DWs incident on the gate in the “in” (black) and “out” (gray) con-

figurations. Each trace corresponds to a separate structure.

FIG. 4. Switching fields for different DW–trap configurations. The switch-

ing fields were measured on five nominally identical structures of each type.

FIG. 5. SEM images of NOT gate structures with traps. The scale is the

same for all three images.
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chirality conservation in the NOT gate. We performed the

experiment with both chiralities of DW at the input of the

NOT gate. Figure 5 shows scanning electron microscope

(SEM) images of the NOT gate structures with traps. Figure

6 illustrates the measurement for the “in” configuration (L-

shaped structures). The MOKE laser spot is positioned on

the right-hand part of the structure, as indicated by the aster-

isks in Fig. 6. The schematics show the applied field

FIG. 7. Testing for chirality conservation when the DW is incident on the gate in the “out” configuration. The schematics show the applied field sequence and

resulting magnetization configurations assuming chirality conservation, and the experimental results are displayed on the plots at right. The position of the

MOKE laser spot is indicated by the asterisk. The dashed and dotted lines on the plot indicate the switching fields for the two possible DW–trap configurations

(see Fig. 4): the dashed line indicates the expected switching field if the chirality is conserved, and the dotted line indicates the expected switching field if the

chirality reverses. The symbol assignments are as in Fig. 6. When the trap is present (a), the second transition (triangles) may occur at two different fields,

showing that the chirality is not always conserved.

FIG. 6. Testing for chirality conservation when the DW is incident on the gate in the “in” configuration. The schematics show the applied field sequence and

resulting magnetisation configurations, assuming chirality conservation. The position of the MOKE laser spot is indicated by the asterisk. The experimental

results are displayed on the plots at right. The dashed and dotted lines indicate the switching fields for the two possible DW-trap configurations (see Fig. 4): the

dashed line indicates the expected switching field if the chirality is conserved, and the dotted line indicates the expected switching field if the chirality reverses.

The black line shows Hy as a function of Hx, and the first and second switching events occur at the points marked by the circles and triangles, respectively.

Each circleþtriangle pair corresponds to a separate structure; 9 or 10 structures of each type were measured. The roman numerals on the plots indicate the cor-

responding schematic. For both trap positions (a), (b), the second transition (triangles) always occurs in an antiparallel configuration and corresponds to chiral-

ity conservation.
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sequence and resulting magnetization configurations in the

case where the chirality of the DW is conserved. The

experimental results are shown on the graphs, which illus-

trate the switching behavior of the structures: the black line

shows Hy as a function of Hx, and the fields at which the first

and second switching events occur are indicated by the

circles and triangles, respectively, where each circle–triangle

pair corresponds to a separate structure. The arrows indicate

the trajectory in the Hx–Hy plane, and the roman numerals

indicate the corresponding schematic. The dashed lines on

the plots indicate the switching fields for the two possible

DW–trap configurations when the second DW exits the NOT

gate as given on Fig. 4. The measurement was performed

with the trap on the upper side of the nanostrip [Fig. 6(a)],

with the trap on the lower side of the nanostrip [Fig. 6(b)],

and without any trap [Fig. 6(c)]. When the trap is on the

upper side of the nanostrip [Fig. 6(a)], the first DW is in the

narrow-P configuration and passes the trap at Hx¼ 13 6 3

Oe, Hy¼�58 Oe; if the chirality is conserved, the second

DW will reach the trap in the narrow-AP configuration for

which the switching field is � 250 Oe, whereas if the chiral-

ity reverses, the DW will reach the trap in the wide-P config-

uration for which the switching field is � 130 Oe (Fig. 4). As

shown on the Hy vs. Hx plot, all 10 of the measured struc-

tures show a second transition at Hx¼�260 6 2 Oe,

Hy¼�80 6 16 Oe, which is consistent with chirality conser-

vation. When the trap is on the lower edge of the nanostrip

[Fig. 6(b)], the first DW is in the wide-P configuration and

passes the trap at Hx¼ 119 6 6 Oe, Hy¼�56 Oe, whereas

the second will be in the wide-AP configuration (switching

field � 230 Oe) if the chirality is conserved and the narrow-P

configuration (switching field �30 Oe) if it is not. Again, the

experimental data are consistent with chirality conservation

because the second transition occurs at Hx¼�207 6 17 Oe,

corresponding to the wide-AP configuration. Finally, the

bottom panel [Fig. 6(c)] shows the results when the same

field sequence is applied to a NOT gate with no trap; the

transitions occur at Hx¼ 17 6 4 Oe, Hy¼�58 Oe and

Hx¼�12 6 4 Oe, Hy¼ 105 6 1 Oe. These fields are compa-

rable to those plotted in Fig. 2(c) and indicate that the NOT

gate is operating correctly on application of this field

sequence.

For the C-shape structures, only two types of measure-

ment were performed: one with the trap on the upper edge of

the nanostrip and one with no trap. The measurements are

illustrated in Fig. 7. Figure 7(a) shows the measurement with

the trap. In this case, the first DW is in the narrow-P configu-

ration and passes the trap at Hx¼ 10 6 5 Oe, Hy¼�99 Oe.

If the chirality is conserved, the second DW will reach the

trap in the wide-P configuration and pass the trap at �130

Oe; if the chirality reverses, the DW will reach the trap in

the narrow-AP configuration and pass the trap at �250 Oe.

The plot in Fig. 7(a) shows that both switching patterns are

observed: 6 of the 10 measured structures have a second

transition (corresponding to the second DW exiting the NOT

gate and passing the trap) at (Hx¼�123 6 5, Hy¼ 23) Oe,

consistent with chirality conservation, but the remaining four

structures have a second transition at (Hx¼�251 6 1,

Hy¼�43 6 14) Oe, corresponding to chirality reversal. This

higher switching field is close to that shown in Fig. 6(a),

which is consistent with the DW being in the narrow-AP

configuration in both cases. The DW chirality must therefore

have changed at some point after its initial creation: before it

reaches the NOT gate, during the transmission through the

NOT gate, or in moving from the NOT gate to the trap. As

described in the previous section, it is not expected that the

DW chirality should reverse as it travels around the curved

section of the nanostrip preceding the NOT gate. In addition,

measurements on structures with a trap only did not show

any evidence of this behavior. One other possibility is that

the transverse arm itself might switch. However, we tested

this by repeating the measurement of Fig. 7 but with both the

applied field and the sample rotated through 90�, so that the

Kerr effect measurement was sensitive to the magnetization

direction in the transverse arm. No switching was observed

on the five structures measured. The results of these tests

suggest that it is the interaction with the NOT gate itself that

gives rise to chirality reversal in some cases in the “out” con-

figuration. The fact that nominally identical structures in the

“out” configuration behave differently from each other sug-

gests that the switching process in this case depends sensi-

tively on small structural imperfections or small variations in

the applied field. Note that micromagnetic simulations of an

alternative NOT gate design19 showed different switching

mechanisms in the “in” and “out” cases but with chirality

conservation observed in both cases.

IV. CONCLUSIONS

In this paper, we have studied the chirality dependence

of a ferromagnetic NOT gate. We examined both the effect

of the DW chirality on the NOT gate operating area (the

range of fields for which the gate operates correctly) and the

effect of the gate on the DW chirality. We do not see evi-

dence of any chirality dependence of the operating area. The

effect of the NOT gate on the DW chirality appears to

depend on the chirality of the incoming DW: when the DW

is incident on the NOT gate with the wide side of the DW on

the inside of the V-shape formed by the gate, the chirality is

conserved, but when the DW is incident on the gate with its

wide side on the outside of the V-shape, the chirality may

reverse.
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