
On Unique Recovery of Integer
Bounded Signals

Abdullah Alasmari

2023

Submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

School of Mathematics
Ysgol Mathemateg





Summary

The thesis considers the problem of unique recovery of finite-valued integer

signals using a single linear integer measurement. A signal is an integer n-

dimensional vector x with absolute entries bounded by a positive integer r,

that is x ∈ [−r, r]n. We assume that the signal x is sufficiently sparse. Specif-

ically, the number of nonzero entries of x is assumed to be bounded by a

positive integer l with 2l < n. A single linear integer measurement is repre-

sented by an integer 1× n measurement matrix, or row vector, H. Naturally,

it is desirable to construct H with as small absolute entries as possible. We

give a constructive proof for the existence of measurement matrices H with

maximum absolute entry ∆ = O(r2l−1). The capital O in this bound contains

an implicit constant that depends on l and n and probably far from being

optimal, however the exponent 2l −1 is optimal. The optimality of the expo-

nent is the main advantage of the latter upper bound. Additionally, we show

that, in the above setting, a single measurement can be replaced by several

measurements with absolute entries sub-linear in ∆. The proofs make use

of results on admissible (n− 1)-dimensional integer lattices for m-sparse n-

cubes that are of independent interest. The main tools include the aggregation

of linear Diophantine equations and Siegel’s lemma. Additionally, we discuss
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some probabilistic aspects of unique recovery for finite-valued integer signals.
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Chapter 1

Preliminaries

1.1 Basics and notation

We denote by R the set of real numbers, by Q the set of rational numbers

and by Z the set of integers. For a real number x ∈ R, we denote by ⌈x⌉

the ceiling function of x , that is the least integer greater than or equal to x .

Similarly, ⌊x⌋ stands for the floor function of x , the greatest integer less than

or equal to x . The support of a vector x ∈ Rn is denoted by supp(x ). That

is supp(x ) = {i : x i ̸= 0} . Given K ⊂ Rn, we use the notation vol(K) for the

volume , i.e., the n-dimensional Lebesgue measure of the set K .

Norms

A general norm on a vector space can be defined as follows.

Definition 1. A function ∥ · ∥ : Rn → R is called a norm if it satisfies three

properties:

(i) ∥x∥ ≥ 0 for any vector x ∈ Rn, and ∥x∥= 0 if and only if x = 0.

1
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p = 1 p = 2 p =∞

Figure 1.1: The unit norm balls for ℓp-norms.

(ii) ∥αx∥= |α| ∥x∥ for any vector x ∈ Rn and any scalar α ∈ R.

(iii) ∥x + y∥ ≤ ∥x∥+ ∥y∥ for any vectors x , y ∈ Rn.

The first property is referred to as the positivity of the norm, and the

second expresses its homogenity, while the third is known as the triangle

inequality.

The most commonly used norms belong to the family of ℓp-norms, which

are defined for x ∈ Rn as

∥x∥p =

�

n
∑

i=1

|x i|
p

�1/p

,

where p ≥ 1 is a real number.

Here are some particularly important ℓp-norms:

• p = 1: the ℓ1-norm, which is also referred to as the Manhattan norm, is

∥x∥1 = |x1|+ |x2|+ · · ·+ |xn| .

• p = 2: the ℓ2-norm, which is also referred to as the Euclidean norm, is

∥x∥2 =
q

x2
1 + x2

2 + · · ·+ x2
n.
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• As p approaches the infinity, the ℓp norm approaches the ℓ∞-norm,

which is also referred to as the maximum norm,

∥x∥∞ = max
1≤i≤n
|x i| .

The unit norm balls {x ∈ R2 : ∥x∥p ≤ 1} for the above norms are shown

in Figure 1.1.

In this thesis, an important role will be played by the ℓ0-“norm”, widely

used in the theory of compressed sensing.

Definition 2. For a given vector x ∈ Rn, the ℓ0-norm ∥x∥0 is the cardinality

of the support of x , that is the number of non-zero entries of x

∥x∥0 = | supp(x )|.

In fact ℓ0-norm is not a proper norm, as it is not homogeneous. If x is a

non-zero vector and α ̸= 1, then

∥αx∥0 ̸= α ∥x∥0.

ℓ∞-norm of a matrix

The ℓ∞-norm for a vector x is the largest absolute value of its components.

For a matrix A= (ai j) ∈ Rm×n we define the ℓ∞-norm ∥A∥∞ in a similar way.

Definition 3. For a matrix A = (ai j) ∈ Rm×n, the ℓ∞-norm is the maximum

absolute value of the entries of A, that is

∥A∥∞ = max
1≤i≤m
1≤ j≤n

�

�ai j

�

� .
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(a) One-dimensional lattice in Z2. (b) Two- dimensional lattice in Z2.

Figure 1.2: Comparison of different lattices in Z2.

1.2 Lattices

Minkowski’s Geometry of Numbers provides a mathematical toolbox for this

thesis. One of the most important mathematical instruments that we use are

the lattices. We refer the reader to [30, 13] for an extensive introduction to

the geometry of numbers.

Definition 4. Let b1, . . . , bk ∈ Rn be linearly independent vectors. The set

Λ=

¨

k
∑

i=1

x i bi : x i ∈ Z

«

is a k-dimensional lattice with basis b1, . . . , bk. If n = k, then Λ is a full-

dimensional lattice, as illustrated in Figure 1.2b.

Let B = (b1, . . . , bk) ∈ Rn×k be a matrix with columns b1, . . . , bk, referred

to as a basis matrix. We can define the lattice Λ= Λ(B) as

Λ=
�

Bx : x ∈ Zk
	

.

Notice that, since the basis vectors b1, . . . ,bk are linearly independent,

any point y in the subspace spanned by the basis vectors can be written as a
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Figure 1.3: Two different bases generate the same lattice.

unique linear combination y = x1b1+x2b2+· · ·+xkbk, for some x1, x2, . . . , xk ∈

R. Therefore, y ∈ Λ if and only if x j ∈ Z for all j ∈ {1,2, . . . , k}.

Note that the choice of a lattice basis is not unique, the same lattice can

be generated by different bases, as we can see in the next example.

Example 1. Take

B =





1 0

0 1



 , and C =





1 2

1 1



 .

Then as it is illustrated by Figure 1.3, B and C generate the same lattice Z2, that

is Λ(B) = Λ(C) = Z2.

In general, one can wonder when two different sets of linearly indepen-

dent vectors generate the same lattice. The answer is given by the unimodular

basis transformations.

Definition 5. Let U ∈ Zk×k be an integer square matrix. Then U is called a

unimodular matrix if it has determinant det(U) = ±1.

Two basis matrices B and C generate the same lattice Λ(B) = Λ(C) if and

only if B = CU for a unimodular matrix U , see [46].
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Next, we will introduce the fundamental parallelepiped of a lattice. Let Λ ⊂

Rn be a lattice with basis matrix B = (b1, . . . , bk) ∈ Rn×k. The fundamental

parallelepiped of the lattice Λ associated with basis B is defined as

P(B) = {Bx : x ∈ Rn, 0≤ x i < 1} .

It is worth pointing out that because the column vectors in B form a basis

for Λ, it follows that the fundamental parallelepiped P(B) contains no other

lattice points except the origin, i.e. P(B)∩Λ= {0}.

It is clear that the fundamental parallelepiped P(B) depends on the basis

B of the lattice Λ. See Figure 1.4.

Definition 6. The determinant of the lattice Λwith a basis matrix B is defined

as

det(Λ) =
Æ

det (BT B) ,

where B⊤ denotes the transpose of B.

In the special case when Λ is a full-dimensional lattice (that is k = n), the

matrix B is a square matrix, and hence the determinant of the lattice is given

by det(Λ) = |det(B)|= vol(P(B)).

We will now show that the determinant is well defined, that is the value

of the determinant does not depend on the choice of a lattice basis. Let the

two bases B1, B2 ∈ Rn×k generate the same lattice Λ. We know that for some

unimodular matrix U ∈ Zk×k the equality B2 = B1U holds. Calculating the

determinant det(Λ) related to the bases B1 and B2 yields that

det(Λ) =
Ç

det
�

BT
2 B2

�

=
Ç

det
�

U T BT
1 B1U

�

=
Ç

det
�

BT
1 B1

�

holds. A sublattice of a full-dimensional lattice Λ ⊂ Rn is defined as a lattice
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Figure 1.4: Different fundamental parallelepipeds dependent on different
bases.

eΛ such that eΛ ⊂ Λ. If a and ā are lattice points in Λ, and eΛ is a sublattice of

Λ, then we write

a ≡ ā mod eΛ⇔ (a− ā) ∈ eΛ.

This means that a and ā belong to the same residue class of Λ with respect to

eΛ. It is important to note that there are exactly det eΛ/detΛ different residue

classes of Λ with respect to eΛ.

1.3 Convex sets and convex bodies

Minkowski’s Geometry of Numbers studies the interactions of lattices and

convex sets. For a comprehensive introduction to convex sets, and to convex

geometry in general, we refer the reader to [28].

Definition 7. A set C ⊂ Rn is called convex if for any x 1, x 2 ∈ C and for any
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Convex set. Non-convex set.

Figure 1.5: Examples of convex and non-convex sets.

θ ∈ [0, 1], we have

θ x 1 + (1− θ )x 2 ∈ C .

In other words, one can move from any point in a convex set C to any

other point via a line segment within the set. See Figure 1.5.

In what follows, we collect some basic properties that preserve convexity

(see e.g. [10])

1. The empty set ; and the whole space Rn are both convex.

2. The intersection of convex sets is convex.

3. Convexity is preserved by scaling. If C ⊂ Rn is a convex set and α ∈ R,

then the set α C = {αx : x ∈ C} is convex.

4. Convexity is preserved by summation. The Minkowski’s sum of two sets

C1 and C2 is defined as

C1 + C2 = {x + y : x ∈ C1, y ∈ C2} .

If C1 and C2 are convex, then C1 + C2 is convex.
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Figure 1.6: Visualisation of the set of points S (left) and its corresponding
convex hull (right).

5. The image of a convex set under a linear affine transformation is also a

convex set.

Given points x1, x2, . . . , x t in Rn, a convex combination of these points is

the point in the form

θ1x1 + θ2x2 + · · ·+ θt x t ,

where θ1 + θ2 + · · ·+ θt = 1 and θi ≥ 0 for i = 1, 2, . . . , t.

Given a set C in Rn , its convex hull, denoted conv(C), is the smallest with

respect to inclusions convex set that contains C . Equivalently, conv(C) is the

set of all convex combinations of points in C , See Figure 1.6.

Definition 8. A compact (that is closed and bounded) convex set C ⊂ Rn

with nonempty interior is called a convex body.

We will denote the set of all convex bodies in Rn byK n, and the set of all

0-symmetric convex bodies by K n
0 .
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C D(C)

Figure 1.7: Example of Set of Points C (left) and its Difference Set D(C)
(right).

Definition 9. Given a set C ∈ Rn, the difference set of C is defined as

D(C) = C − C = {x − y : x , y ∈ C}.

Clearly, D(C) is 0-symmetric. If C ∈K n, then D(C) ∈K n
0 , see for example

Figure 1.7.

1.4 Minkowski’s first fundamental theorem

The first Minkowski’s fundamental theorem considers the following question:

when does an origin-symmetric convex set contain a non-zero lattice point?

Theorem 1 (Minkowski’s 1st fundamental theorem). Let S ⊂ Rn be an 0-

symmetric convex set of volume vol(S), and let L ⊂ Rn be a lattice with deter-

minant det(L). If vol(S)> 2n det(L), then S contains a nonzero point u ∈ L.

This remarkable result paved the way for many discoveries in number

theory, as well as implications in combinatorics, computational complexity,
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Figure 1.8: A two-dimensional lattice L and an 0-symmetric box C such that
vol(C)> 4 det(L).

cryptography and other disciplines. Figure 1.8 provides a illustration for the

Minkowski first fundamental theorem.

We will include in this thesis a proof of Theorem (1) based on the follow-

ing beautiful result of Blichfeldt. We refer the reader to the classical book of

Cassels [13] for a detailed introduction to the geometry of numbers.

Lemma 2 (Blichfeldt’s Lemma). Let L be a lattice in Rn and S ⊂ Rn a set of

volume vol(S). Suppose that vol(S) > det(L), then there exist points x 1, x 2 ∈

S, x 1 ̸= x 2, such that x 1 − x 2 ∈ L.

Proof. Let b1, . . . , bn be any basis of the lattice L, and F be the corresponding

fundamental paralleplepiped of L. It follows that vol(F) = det(L). Further-

more, any point x ∈ Rn can be expressed as x = u + v , where u ∈ L and

v ∈ F . For each u ∈ L let R(u) be the set of points v such that

v ∈ F, u + v ∈ S.

Then
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Figure 1.9: The sum of the volumes of the sets R(u) for each u in L is equal
to the volume of the set S.

∑

u∈L

vol(R(u)) = vol(S).

Suppose that vol(S)> det(L) Then

∑

u∈L

vol(R(u))> vol(F).

Since R(u) are all contained in F , see Figure 1.9, there must be at least one

point v0 ∈ F which belongs to at least two of the R(u), say

v0 ∈ R (u1) and v0 ∈ R (u2) ,

where u1 ̸= u2. Then the points

x 1 = v0 + u1, x 2 = v0 + u2

are in S by definition of R(u) and

x 1 − x 2 = u1 − u2 ∈ L\{0}.

The lemma is proved.
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We are now ready to prove the Minkowski’s first fundamental theorem.

Proof. The set
1
2

S =
§

1
2

x : x ∈ S
ª

,

has volume

vol
�

1
2

S
�

=
1
2n

vol(S).

Therefore, by the statement of the theorem

vol
�

1
2

S
�

> det(L),

This enables us to apply Lemma 2 to the set (1/2)S. In this case, we have

x 1, x 2 ∈
1
2

S, x 1 ̸= x 2, (1.1)

such that

x 1 − x 2 ∈ L.

Obviously,

x 1 =
1
2

u1, x 2 =
1
2

u2,

where u1, u2 ∈ S, u1 ̸= u2. We have by (1.1)

1
2

u1 −
1
2

u2 =
1
2

u1 +
1
2
(−u2) ∈ L.

Given that S is symmetric with respect to the origin, we have −u2 ∈ S. More-

over, since S is convex, it follows that

0 ̸=
1
2

u1 +
1
2
(−u2) ∈ S.

The geometry of this argument is illustrated by Figure 1.10. Therefore

0 ̸=
1
2

u1 +
1
2
(−u2) ∈ S ∩ L.

Theorem is proved.
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Figure 1.10: Midpoint of the line segment between u1 and u2.

1.5 Successive minima

Successive minima of convex bodies with respect to lattices were defined and

investigated by Minkowski in the context of the geometry of numbers [35].

Definition 10. Let C ∈K n
0 and Λ ⊂ Rn be a full-dimensional lattice. The ith

successive minimum λi(C ,Λ), 1 ≤ i ≤ n, of C with respect to the lattice Λ is

defined by

λi(C ,Λ) =min{λ > 0 : dim(λC ∩Λ)≥ i}, 1≤ i ≤ n.

In other words, the ith successive minimum is the smallest positive dilation

factor λ such that λC contains at least i linearly independent points of the

lattice Λ.

Clearly we have,

0< λ1 ≤ λ2 ≤ · · · ≤ λn.

Example 2. Consider the cube C2(1/2) = {x ∈ R2 : ∥x∥∞ ≤ 1/2}, and the
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Figure 1.11: The first and second successive minima of convex body C with
respect to the lattices Λ(B).

lattice Λ(B) with basis matrix

B =





2 1

1 −1



 .

The first and second successive minima of C2(1/2) with respect to Λ(B) are

λ1 = 2 and λ2 = 4 . See Figure 1.11.

Any full-dimensional lattice Λ can be expressed as Λ = AZn, where A is a

non-singular n×n basis matrix. Consequently, we haveλi(C ,Λ) = λi

�

A−1C ,Zn
�

and |C ∩Λ|=
�

�A−1C ∩Zn
�

�.

Furthermore, there exists a basis b1, . . . , bn for Λ, such that the linear hull

of any i of n linearly independent lattice points a1, . . . , an is equal to the linear

hull of b1, . . . , bi for 1≤ i ≤ n. This means that

lin{a1, . . . , ai}= lin{b1, . . . , bi}.
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In particular, if z i ∈ Zn, 1 ≤ i ≤ n, are n linearly independent lattice vectors

that satisfy z i ∈ λi(C ,Zn)C , then there exists a unimodular matrix U ∈ Zn×n

such that

U z i ∈ (λi (UC ,Zn)UC)∩ lin {e1, . . . , e i} , 1≤ i ≤ n, (1.2)

where e i ∈ Rn denotes the i-th unit vector. Moreover, it can be observed that

for n linearly independent lattice points a1, . . . , an of a lattice Λ satisfying

ai ∈ λi(C ,Λ)C , the definition of the successive minima implies

int (λi(C ,Λ)C)∩Λ ⊂ lin {0, a1, . . . , ai−1} ∩Λ, 1≤ i ≤ n, (1.3)

where int denotes the interior.

1.6 Minkowski’s theorem on successive minima

Minkowski’s convex body theorem has many extensions and refinements. See

for example Gruber and Lekkerkerker [29] and Lagarias [27]. An important

refinement is the second fundamental theorem of Minkowski, also known as

Minkowski’s theorem on successive minima [28]. It gives optimal upper and

lower bounds for the product of the successive minima of an origin-symmetric

convex body with respect to a lattice.

Theorem 3 (Minkowski [35]). Let C ∈ K n
0 and Λ ⊂ Rn be a full-dimensional

lattice. Then we have,

2n

n!
det(Λ)≤

n
∏

i=1

λi(C ,Λ) vol(C)≤ 2n det(Λ) ·

The difficult part of the proof is to show the right-hand inequality. The

original proof of Minkowski [35] is rather involved. Alternative proofs were
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found by Bambah, Woods and Zassenhaus [8] and others. Below we include

an elegant proof due to Henk [31].

Proof. Without loss of generality, we will assume that Λ = Zn. For conve-

nience, we denote λi = λi(C ,Zn), and set Ci =
λi
2 C . Moreover, we assume that

z1, . . . , zn are n linearly independent lattice points such that z i ∈ λiC∩Zn, and

the linear space of z1, . . . , z i is equal to the linear space of e1, . . . , e i, where

1≤ i ≤ n. For shortness, we denote the linear space lin{e1, . . . , e i} by Li.

Let M n
q = {z ∈ Z

n : |zi| ≤ q, 1≤ i ≤ n} be a set of lattice points in Zn where

each coordinate is bounded by q ∈ N. For 1 ≤ j ≤ n− 1, let M j
q = M n

q ∩ L j.

Since C is a bounded set, there exists a constant γ, which depends only on C ,

such that

vol
�

M n
q + Cn

�

≤ (2q+ γ)n. (1.4)

Using the definition of λ1, for any two distinct lattice points z, z̄ ∈ Zn, the

intersection of (z + int (C1)) and (z̄ + int (C1)) is empty. This is because oth-

erwise, we would obtain a contradiction z − z̄ ∈ (int (C1)− int (C1)) ∩ Zn =

int (C1 − C1)∩Zn = int (λ1C)∩Zn = {0}. Therefore, we have the following

vol
�

M n
q + C1

�

= (2q+ 1)n vol (C1) = (2q+ 1)n
�

λ1

2

�n

vol(C). (1.5)

We will now show that for 1≤ i ≤ n− 1, the following inequality holds

vol
�

M n
q + Ci+1

�

≥
�

λi+1

λi

�n−i

vol
�

M n
q + Ci

�

. (1.6)

Thus, we can assume that λi+1 > λi and consider two lattice points z and z̄

in Zn that differ in the last n− i coordinates, i.e., (zi+1, . . . , zn) ̸= (z̄i+1, . . . , z̄n).

It follows that

[z + int (Ci+1)]∩ [z̄ + int (Ci+1)] = ;. (1.7)
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If this is not the case, then the i + 1 linearly independent lattice points z −

z̄, z1, . . . , z i would belong to the interior of λi+1C , contradicting the minimal-

ity of λi+1. Hence, from equation (1.7), we obtain

vol
�

M n
q + Ci+1

�

= (2q+ 1)n−i vol
�

M i
q + Ci+1

�

,

vol
�

M n
q + Ci

�

= (2q+ 1)n−i vol
�

M i
q + Ci

�

.

To verify equation (1.6), it suffices to show

vol
�

M i
q + Ci+1

�

≥
�

λi+1

λi

�n−i

vol
�

M i
q + Ci

�

. (1.8)

Let f1 and f2 be linear maps from Rn to Rn defined as

f1(x ) =
�

λi+1

λi
x1, . . . ,

λi+1

λi
x i, x i+1, . . . , xn

�⊤

,

f2(x ) =
�

x1, . . . , x i,
λi+1

λi
x i+1, . . . ,

λi+1

λi
xn

�⊤

.

Using the fact that M i
q + Ci+1 = f2

�

M i
q + f1 (Ci)

�

, we have

vol
�

M i
q + Ci+1

�

=
�

λi+1

λi

�n−i

vol
�

M i
q + f1 (Ci)

�

.

To prove equation (1.8), we have to show

vol
�

M i
q + f1 (Ci)

�

≥ vol
�

M i
q + Ci

�

. (1.9)

Let L⊥i be the (n − i)-dimensional orthogonal complement of Li, and it is

obvious that for any x ∈ L⊥i , there exists a t(x ) ∈ Li such that Ci ∩ (x + Li) ⊂

( f1 (Ci)∩ (x + Li)) + t(x ). Thus, we have

�

M i
q + Ci

�

∩ (x + Li) ⊂
��

M i
q + f1 (Ci)

�

∩ (x + Li)
�

+ t(x ).
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From this, we obtain

vol
�

M i
q + Ci

�

=

∫

x∈L⊥i

voli
��

M i
q + Ci

�

∩ (x + Li)
�

dx

≤
∫

x∈L⊥i

voli
��

M i
q + f1 (Ci)

�

∩ (x + Li)
�

dx

= vol
�

M i
q + f1 (Ci)

�

,

where voli(·) denotes the i-dimensional volume. This implies (1.9), so we

have proven (1.6). Finally, from (1.4), (1.5) and (1.6) we have

(2q+ γ)n ≥ vol
�

M n
q + Cn

�

≥
�

λn

λn−1

�

vol
�

M n
q + Cn−1

�

≥
�

λn

λn−1

��

λn−1

λn−2

�2

vol
�

M n
q + Cn−2

�

≥ · · · · · ·

≥
�

λn

λn−1

�

·
�

λn−1

λn−2

�2

· . . . ·
�

λ2

λ1

�n−1

vol
�

M n
q + C1

�

= λn · . . . ·λ1
vol(C)

2n
(2q+ 1)n

and so

λ1 · . . . ·λn vol(C)≤ 2n ·
�

2q+ γ
2q+ 1

�n

.

Since this inequality holds for all q ∈ N, the theorem is proven.

1.7 Number of lattice points in a convex body

and successive minima

Henk [31] used Minkowski’s second theorem to give an upper bound on the

number of lattice points in an origin symmetric convex body C in terms of

the successive minima in the following way:
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Theorem 4 (Henk [31]). Let n≥ 2, C ∈K n
0 and Λ ⊂ Rn be a full-dimensional

lattice then

|C ∩Λ| ≤ 2n−1
n
∏

i=1

�

2
λi(C ,Λ)

+ 1
�

.

For completeness we include a proof of this result as given in [31].

Proof. Without loss of generality, let Λ= Zn, and we can assume that (cf. 1.2

and 1.3),

int (λi (C ,Zn)C)∩Zn ⊂ lin {0, e1, . . . , e i−1} ∩Zn, 1≤ i ≤ n. (1.10)

Let’s denote qi =
�

2
λi(C ,Λ) + 1

�

, where 1≤ i ≤ n, for abbreviation. We need to

determine n numbers ui ∈ N such that

un = qn, qi ≤ ui < 2qi, and ui+1 divides ui, 1≤ i ≤ n− 1. (1.11)

To determine uk, we consider two cases, assuming that we have already found

un, . . . , uk+1 with the properties mentioned earlier. If uk+1 ≥ qk, then we simply

set uk = uk+1. This satisfies qk ≤ uk = uk+1 < 2qk+1 ≤ 2qk, since qk ≥ qk+1.

Otherwise, if uk+1 < qk. We can express qk as qk = m · uk+1+ r, where m ∈ N,

m ≥ 1, and 0 ≤ r < uk+1. In this case, we set uk = qk + uk+1 − r, and it

can be easily verified that uk satisfies the requirements of (1.11). Let eΛ ⊂

Zn be the lattice generated by the vectors u1e1, u2e2, . . . , unen. It follows that

det eΛ/detΛ = u1 · u2 · . . . · un, and combining this with the upper bounds on

the values of ui as given in Lemma 2.1, in [31] we obtain

|C ∩Λ| ≤ |2C ∩ eΛ|
n
∏

i=1

ui < |2C ∩ eΛ|2n−1
n
∏

i=1

�

2
λi(C ,Λ)

+ 1
�

.

To verify the theorem, it is sufficient to show that 2C ∩ eΛ= {0}. Let’s assume

that there exists a non-zero element g ∈ 2C∩eΛ, and let k be the largest index
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where g has a non-zero coordinate, i.e., gk ̸= 0, while gk+1 = · · · = gn = 0.

Then we can express g as

g = z1 (u1e1) + z2 (u2e2) + · · ·+ zk (ukek) ∈ 2C ,

where zi ∈ Z. Since uk is a divisor of u1, . . . , uk−1, and we have 2/uk <

λk(C ,Zn) (1.11), we can deduce that

1
uk

g ∈
�

2
uk

C
�

∩Zn ⊂ int (λk (C ,Zn)C)∩Zn.

However, this violates condition (1.10) since gk ̸= 0. Therefore, we conclude

that 2C ∩ eΛ= {0}, proving the theorem.

1.8 The generalised Hermite constant

The generalised Hermite constant γr,s, as defined by Rankin [39], is a positive

real number defined as the infimum over all γ such that every latticeΛ of rank

r in Rr has a sublattice Γ of rank s and determinant

det(Γ )≤ γ1/2(det(Λ))s/r . (1.12)

In other words, γr,s is the smallest constant for which this inequality holds for

all lattices Λ of rank r and for all choices of sublattice Γ of rank s.

The generalised Hermite constant is an important constant in lattice the-

ory and has applications in number theory, cryptography, and coding theory.

The value of γr,s is known exactly for some small values of r and s, but it

is generally difficult to compute or estimate for larger values. We refer the

reader to the papers [43, 50] for known results on the Rankin constant.

Note that in (1.12) γr,1 = γr,r−1 = γr represents the ordinary Hermite

constant [18].





Chapter 2

Compressed sensing for integer

valued signals

2.1 Introduction

This chapter gives a brief introduction to the mathematical aspects of com-

pressed sensing relevant to this thesis. It is based on the references [23, 24,

26, 33, 37, 42].

The main objective of compressed sensing is to design and efficiently solve

underdetermined systems of linear equations

Ax = b, (2.1)

with A ∈ Rm×n and b ∈ Rm, m < n, under an additional assumption that

the solution x ∈ Rn is “sparse”. Here a solution vector x is “sparse” or, more

specifically, s-sparse if the number of its non-zero elements is less than or

equal to s. In other words, ∥x∥0 ≤ s.

23
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The matrix A has been traditionally referred to as a measurement matrix,

b as a vector of m measurements and a solution vector x as a signal. In a

basic scenario, there is an unknown s-sparse signal x and we want to know

what conditions for the measurement matrix A will allow us to uniquely and

efficiently recover x from the measurements b. That is, in particular, x must

be the unique s-sparse solution to the system (2.1).

The feasibility of this problem in various practical settings is by now well-

justified, and sparsity of data has been identified as a new paradigm in signal

processing. Various sufficient conditions for precise recovery of the signal x

have been found in terms of the properties of the measurement matrix A

and the sparsity of x . We refer the reader to [19] for an extensive survey. In

the following section, we briefly discuss probably the most studied recovery

approach.

2.2 Unique recovery using basis pursuit

A natural way to recover sparse signals from an underdetermined linear sys-

tem would be to solve an ℓ0-minimisation problem, that is the problem

min∥x∥0 subject to Ax = b . (2.2)

This problem, however, is known to be NP-hard [36], which makes solving

it unpractical. A popular and by now well-understood approach to avoid the

NP-hardness barrier is to replace (2.2) with a convex optimisation problem

min∥x∥1 subject to Ax = b
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Figure 2.1: The 1-sparse vector x0 can be uniquely recovered via ℓ1-
minimisation since the null space of A intersects the cone only at the origin.

which is known as basis pursuit [16]. As this problem is convex, it can be

solved efficiently using convex optimisation methods. A necessary and suffi-

cient condition under which a signal x 0 is uniquely recovered by basis pursuit

is given as follows: The set of all feasible solutions, x 0 + ker(A), intersects

with the set
�

x : ∥x∥1 ≤ ∥x 0∥1
	

exactly at x 0. This condition provides a use-

ful geometric intuition about properties of measurement matrices to ensure

uniqueness of the solution. One of those properties is the so-called Null Space

Property (NSP). To describe it we need to introduce a useful notation. Let

M ∈ Rm×n and let τ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < i2 < · · · < ik. We will

denote by Mτ the m× k submatrix of M with columns indexed by τ. In the

same manner, given x ∈ Rn, we will denote by xτ the vector (x i1 , . . . , x ik)
⊤.

The complement of τ in {1, . . . , n} will be denoted as τ̄.
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Figure 2.2: When the ℓ1 ball intersects with the solution set of Ax = b in a
single point (left), then ℓ1 minimisation can provide the same solution as ℓ0

minimisation.

Now the NSP is given by

ker(A)∩
�

w ∈ Rn : ∥wτ∥1 ≥ ∥wτ̄∥1
	

= {0} ,

where τ= supp (x 0). See Figure 2.1.

It is well-known that, if A fulfills the NSP with respect to some subset

τ ⊂ [n], every signal x 0 supported on τ is the unique minimiser of (2.2) with

b = Ax 0 (cf. [17, 20, 21, 22, 24]). Figure 2.2 illustrates this concept.

By using random matrices A such as a matrix with independent and iden-

tically distributed Gaussian entries, it is possible to achieve a very high prob-

ability of A having the NSP and therefore of (2.2) to succeed, given that the

number of measurements satisfies m ≥ Cs log(n), where s is the sparsity of

the signal x 0 and C some positive constant not depending on s and n [11].



2.3. UNIQUE RECOVERY OF INTEGER SIGNALS 27

2.3 Unique recovery of integer signals

In some applications, additional information on the signal x is known and one

can say that the signal belongs to a certain signal space S that possesses certain

additional structure. Hence, we face a natural question: how the structure of S

can be exploited to improve recovery guarantees? In this thesis, we will focus

on the integer-valued signals, which appear, for instance, in MIMO systems

[41], wideband spectrum sensing [7] and error correcting codes [12]. We will

work in the setting introduced by Fukshansky, Needell, and Sudakov [26].

Further, in this thesis we will consider the signals with bounded entries.

We will focus on the conditions that guarantee the uniqueness of the solution.

Let us fix a set S ⊂ Zn which will be our signal space. Fukshansky, Needell,

and Sudakov [26] introduced and studied the problem of unique recovery

of a signal x 0 ∈ S from a relatively small number of noisy linear integer

measurements. Specifically, given a number of measurements m with m< n,

we aim to construct an integer measurement matrix A ∈ Zm×n such that any

signal x 0 ∈ S can be uniquely recovered from m measurements represented

by the vector b ∈ Rm of the form

b = Ax 0 + e (2.3)

with an unknown noise vector e ∈ Rm. To allow unique recovery we assume

that

∥e∥2 < c ,

where ∥ · ∥2 denotes the ℓ2-norm and c is a suitably chosen constant. Note

that, the number of measurements m is independent of the choice of the

constant c.
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Based on [26], we will use the following recovery approach. For a set

Q ⊂ Zn we denote by R(Q) the set of all integer matrices A such that

∥Ay∥2 ≥ 1 for any nonzero y ∈Q . (2.4)

Recall that the difference set D(X ) of a set X ∈ Rn consists of all points x − y

with x , y ∈ X . We set c = 1/2 and consider measurement matrices A∈ R(Q)

with Q = D(S). In this case, for any e ∈ Rm with ∥e∥2 < c = 1/2, the signal

x 0 is the unique point of S satisfying the bound

∥Ax − b∥2 ≤
1
2

. (2.5)

Indeed, for any x ∈ S, x ̸= x 0, satisfying (2.5), we would have

∥A(x − x 0)∥2 = ∥Ax − b− (Ax 0 − b)∥2

= ∥Ax − b+ e∥2

≤ ∥Ax − b∥2 + ∥e∥2 < 1 ,

contradicting (2.4). Therefore, x 0 can be recovered by any algorithm that,

given input b ∈ Rm computes a vector x ∈ S satisfying (2.5).

By Zn
l we will denote the set of l-sparse n-dimensional integer vectors:

Zn
l = {z ∈ Z

n : ∥z∥0 ≤ l} .

Given positive integers n, r, we denote by Cn(r) the n-dimensional cube de-

fined as Cn(r) = {x ∈ Rn : ∥x∥∞ ≤ r}.

We will be interested in unique recovery of l-sparse signals with entries

from a finite integer alphabet [−r, r]∩Z. Specifically, we will work with the

signal space

Sn
l (r) = Cn(r)∩Zn

l ,
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where 2l < n.

The space Sn
l (r) is finite and hence allows using a single measurement for

unique recovery of its signals. From the computational and error-correcting

perspectives (see [26] for more details), the measurement should have as

small as possible absolute integer entries. Hence, given l, n ∈ Z with 1 ≤ l <

n/2, r ∈ Z>0 and letting Q = D(Sn
l (r)), we face the optimisation problem

min{∥H∥∞ : H ∈ Z1×n, H ∈ R(Q)} . (2.6)

In Chapter 4 we obtain general estimates for the minimum in (2.6).

2.4 Recent results on unique recovery over Zn
l

The papers [26, 25, 33, 32] consider the problem of unique recovery over the

signal space Zn
l , where l is a positive integer with 2l < n. In this setting, the

difference set D(Zn
l ) consists of 2l-sparse integer vectors, D(Zn

l ) = Z
n
2l . The

unique recovery of signals from Zn
l involves constructing matrices A ∈ Zm×n

with m = 2l and as large as possible n, that belong to R(Zn
m). From the

computational and error-correcting perspectives (see [26] for more details),

it is also desirable to fix or bound the maximum absolute entry ∥A∥∞ of the

matrix A.

Konyagin [32, Theorem 3] proved the following theorem.

Theorem 5. For integers k, m≥ 2, and integer n with

m< n≤
c−mkm/(m−1)

log(k)

there exists an integer m× n matrix A ∈ R(Zn
m) such that ∥A∥∞ = k, where c

is an absolute constant.
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The proof of Theorem 5 employs probabilistic arguments to show exis-

tence of the desired measurement matrices. Subsequently, Konyagin and Su-

dakov [33, Theorem 1.3] (see also Ryutin [42]) proved the following result

using an explicit and easily computable construction.

Theorem 6. Let k ∈ Z>0, m ∈ Z>0, m≥ 2, and

m< n≤max(k+ 1, km/(m−1)/2) . (2.7)

Then there exists an m× n integer matrix A∈ R(Zn
m) such that ∥A∥∞ ≤ k.

Theorem 6 implies the following result.

Corollary 7. For any given m, n ∈ Z>0, 2≤ m< n there exists an m×n integer

matrix A∈ R(Zn
m) with

∥A∥∞ ≤∆(m, n) =min(n− 1, (2n)(m−1)/m) .

We will use Corollary 7 in the proofs of our results given in Chapter 4.



Chapter 3

Main tools: consolidation of linear

Diophantine equations and

Siegel’s lemma

3.1 Consolidation/aggregation of linear

Diophantine equations

The proof of one of the main results of this thesis (see Theorem 18) is based

on consolidation/aggregation of linear Diophantine equations. This topic has

been extensively studied in the literature. We refer the reader to the papers

[38, 40].

Let D ⊂ Zn be a set of integer points, A∈ Zm×n, 2≤ m< n, be a matrix of

rank rank(A) = m, and b ∈ Zm.

31
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Let B ∈ Zl×m, l < m, be a matrix of rank l such that

{x ∈ D : (BA)x − Bb = 0}= {x ∈ D : Ax − b = 0} .

Following [40], we will call B an m-into-l consolidating matrix and (BA)x−

Bb = 0 an m-into-l consolidation of Ax − b = 0 with respect to the set D.

Let further C ∈ Zm×(m−l) be an integer matrix of rank(C) = m− l such that,

for some consolidating matrix B, the columns of C span the kernel ker(B) =

{x ∈ Rm : Bx = 0}. That is, denoting by spanR(C) the subspace spanned by

the columns of C , we have spanR(C) = ker(B). We will call C an aggregating

matrix for Ax − b = 0 with respect to the set D.

We will write

F(x ) = Ax − b ,

and denote by Fi(x ) the ith entry of the vector F(x ), that is

F(x ) = (F1(x ), . . . , Fm(x ))
⊤.

Consider the set

F o = {F(x ) : x ∈ D}= {Ax : x ∈ D} − b .

This is the image of D under the linear mapping determined by the matrix A

translated by the vector −b. The following well-known lemma describes very

important properties of the consolidation/aggregation.

Lemma 8. Let B ∈ Zl×m, l < m, be a matrix of rank l and C ∈ Zm×(m−l) be a

matrix of rank m− l. Then

(i) B an m-into-l consolidating matrix for Ax − b = 0 if and only if F o ∩

ker(B) ⊂ {0}.
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(ii) C is an aggregating matrix of Ax − b = 0 if and only if F o ∩ spanR(C) ⊂

{0}.

We will need the following lemma, given in [6, Theorem 6]. For complete-

ness, we include a proof of this result as given in [40, Example 4.1].

Lemma 9. Assume that qi ∈ Z satisfy |Fi(x )| < qi for every x ∈ D such that

Fi(x ) = · · ·= Fi−1(x ) = 0, i = 1, . . . , m−1. Then F1(x )+q1F2(x )+q1q2F3(x )+

· · ·+ q1 · · ·qm−1Fm(x ) = 0 is an m-into-1 consolidation of F(x ) = 0.

Proof. We have to show that B = (1, q1, . . . , q1 · · ·qm−1) is an m-into-1 con-

solidating matrix for F(x ) = 0. Let C = (ci j) ∈ Zm×(m−1) be defined by

c1,k = q1δ1,k for k = 1, . . . , m − 1 and ci j = qiδi, j − δi−1, j for i = 2, . . . , m,

j = 1, . . . , m− 1. Here δi, j stands for the Kronecker delta. That is

C =































q1 0 · · · 0 0

−1 q2 · · · 0 0

0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 qm−1

0 0 · · · 0 −1































.

We will show that C is an aggregating matrix for F(x ) = 0. It is sufficient

to check that the inclusion F o ∩ spanR(C) ⊂ {0} in the part (ii) of Lemma 8

holds. Suppose

C v = F(x ) (3.1)

for some v ∈ Rm−1 and x ∈ D.

Observe that the greatest common divisor of m × m subdeterminants of

C is equal to one. It follows that the columns of C form a basis of the lattice
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spanR(C)∩Zm. Next, by (3.1) we have C v ∈ Zm. Therefore, v ∈ Zm−1. The first

coordinate of C v is q1v1, hence |q1v1|= |F1(x )|< |q1| implies v1 = F1(x ) = 0.

The second coordinate of C v is q2v2 − v1 = q2v2 = F2(x ). Now by definition

of q2 we have |q2v2|= |F2(x )|< |q2| and, consequently, v2 = 0. Proceeding in

this way we get v = 0.

Finally, it is easy to see that the columns of C span ker(B). Hence B is an

m-into-1 consolidating matrix for F(x ) = 0.

3.2 Siegel’s lemma

Consider a system of homogeneous linear equations


















a11 x1 + · · ·+ a1n xn = 0 ,
...

am1 x1 + · · ·+ amn xn = 0 .

(3.2)

Let A= (ai j) ∈ Zm×n, m< n. We can write the system (3.2) in the form:

Ax = 0 . (3.3)

Since m < n, the system (3.3) must have a non–trivial solution in integers.

If the entries of A are small integers, then one can expect that there will be

a solution in relatively small integers. This idea was applied by Thue in [49]

to Diophantine approximations. Subsequently, Siegel [47, Bd. I, p. 213, Hilf-

ssatz] was the first to state this principle formally.

Recall that we denote by ∥A∥∞ the maximum absolute value of an entry

of A, that is ∥A∥∞ =maxi j |ai j|. In what follows, without loss of generality we

may assume that A has rank m. Following Siegel’s work, Schmidt [45] states

the following result.
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Theorem 10 (Siegel’s Lemma). The system (3.3) has a solution x ∈ Zn with

0< ∥x∥∞ < 1+ (n∥A∥∞)m/(n−m) . (3.4)

The exponent m/(n−m) on the right hand side of (3.4) is optimal.

In general, Siegel’s lemma refers to a family of results that link the proper-

ties of lattice points in the kernel space of the matrix A and the characteristics

of the matrix, such as its maximum absolute entry or certain functions of its

subdeterminants.

Bombieri and Vaaler [9] proved, by using geometry of numbers, the fol-

lowing version of Siegel’s lemma which involves n−m solutions to the system

(3.3).

Theorem 11 (Bombieri and Vaaler [9]). The system (3.3) has n−m linearly

independent integer solutions x 1, . . . , x n−m ∈ Zn, with

n−m
∏

i=1

∥x i∥∞ ≤
p

det(AAT )
gcd(A)

,

where gcd(A) is the greatest common divisor of all m×m subdeterminants of A.

In this thesis, Siegel’s lemma in the form of Theorem 11 plays an important

role in the proof of Theorem 19. In what follows we will give a short overview

of selected results related to Siegel’s lemma in line with a recent paper [4].

Recall that Cn(1) = [−1,1]n and let ker(A) = {x ∈ Rn : Ax = 0}. Consider

the section S(A) = Cn(1) ∩ ker(A) of the cube Cn(1) and the lattice Λ(A) =

Zn∩ker(A). The latticeΛ(A) has determinant det(Λ(A)) =
p

det(AAT )/gcd(A).

The (n − m)-dimensional subspace ker(A) can be considered as a usual Eu-

clidean (n−m)-dimensional space. This immediately extends the definition of
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successive minima to o-symmetric bounded convex sets with nonempty rel-

ative interior in ker(A) and (n−m)-dimensional lattices in ker(A). Theorem

11 is an immediate corollary of the following result.

Theorem 12. Let A∈ Zm×n, m < n, be an integral matrix of rank m. Then the

inequality
n−m
∏

i=1

λi(S(A),Λ(A))≤ det(Λ(A)) (3.5)

holds.

Proof of Theorem 12: Using a result of Vaaler [51], we have voln−m(S(A)) ≥

2n−m. Hence, Minkowski’s theorem on successive minima gives

n−m
∏

i=1

λi(S(A),Λ(A))≤
2n−m det(Λ(A))
voln−m(S(A))

≤ det(Λ(A)) .

In what follows, we will discuss the special case m = 1, that is when A is

just an n-dimensional nonzero row vector. Refinements for this case imply a

slight improvement of the bound (4.13).

Theorem 11 implies that for every nonzero vector a in Zn, n ≥ 2, there

exists a vector x in Zn, such that

a · x = 0 , 0< ∥x∥n−1
∞ ≤

p
n∥a∥∞ . (3.6)

The exponent n− 1 in the latter bound is optimal. Let us define

c(n) = sup
a∈Zn\{0}

inf

x∈Zn\{0}

a·x=0

∥x∥n−1
∞

∥a∥∞
.

That is c(n) is the optimal constant in the bound (3.6).
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It is easy to see that c(2) = 1. Further, the equality c(3) = 4/3 is implicit

in [15]. Namely, the inequality c(3) ≤ 4/3 is contained in [15, Lemma 4],

while the inequality c(3)≥ 4/3 is a consequence of [15, Lemma 7]. We have

also c(4) = 27/19. The inequality c(4) ≥ 27/19 was proved by Chaladus in

[14] and its counterpart c(4) ≤ 27/19 was obtained in [2] (see also [44]).

For n> 4, the exact values of the constants c(n) remain unknown.

A general result that gives a geometric interpretation for the constant c(n)

was given by Schinzel [44]. Given an origin-symmetric convex body K we

denote by ∆(K) its critical determinant.

Theorem 13 (Schinzel [44]). For n≥ 3

c(n) = sup∆(Hα1,...,αn−3
)−1 ,

where Hα1,...,αn−3
is a generalised hexagon given by

Hα1,...,αn−3
=

¨

x ∈ Rn−1 : ∥x∥∞ ≤ 1,

�

�

�

�

�

n−3
∑

i=1

αi x i + xn−2 + xn−1

�

�

�

�

�

≤ 1

«

and the supremum is taken over all rational numbers α1, . . . ,αn−3 in the interval

(0,1].

Based on the values of c(n) for n ≤ 4, the following conjecture was pro-

posed in [2].

Conjecture 14. The equality

c(n) =∆(H1,...,1)
−1

holds. Here H1,...,1 is a generalised hexagon in Rn−1.



38
CHAPTER 3. MAIN TOOLS: CONSOLIDATION OF LINEAR DIOPHANTINE

EQUATIONS AND SIEGEL’S LEMMA

The bound in Theorem (11) immediately implies

c(n)≤
p

n . (3.7)

In [2], the constant c(n) was estimated as

c(n)≤ σ−1
n , (3.8)

where σn is the sinc integral

σn =
2
π

∫ ∞

0

�

sin t
t

�n

d t .

The bound (3.8) asymptotically improves on (3.7) with factor
p

π/6. The

numbers σn are rational, the sequences of numerators and denominators of

σn/2 can be found in [48] (sequences A049330 and A049331).



Chapter 4

Unique recovery of finite-valued

integer signals

This chapter presents the main results of the thesis, published in [1].

4.1 Unique recovery of sparse bounded integer

signals

In this thesis, we will obtain general estimates for the minimum in (2.6).

Using condition (2.4), to get an upper bound for (2.6), it is sufficient to find

an 1×n measurement matrix H such that its kernel space does not share any

nonzero integer points with the convex hull of D(Sn
l (r)). This straightforward

approach, however, results in the estimate

∥H∥∞ = O(rn−1) , (4.1)

where the implicit constant depends on l and n.

39
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The first result of this thesis shows that the exponent n− 1 in (4.1) can

be replaced with 2l − 1. Let

pm,n(r) = (m∆(m, n)r + 1)m−1 +∆(m, n)
m−2
∑

i=0

(m∆(m, n)r + 1)i ,

where ∆(m, n) =min(n− 1, (2n)(m−1)/m).

Theorem 15. For any l, n ∈ Z with 1 ≤ l < n/2 and r ∈ Z>0 there exists an

1× n integer matrix H such that H ∈ R(Q) with Q = D(Sn
l (r)) and

∥H∥∞ < p2l,n(2r) . (4.2)

The proof of Theorem 15 is constructive. To obtain the bound (4.2) we

combine known results on unique recovery over Zn
l , outlined in Section 2.4,

with aggregation techniques, outlined in Section 3.1.

The second result gives a lower bound for the minimum in (2.6). Notably,

it shows that the polynomial p2l,n(2r) in (4.2) cannot be replaced by a poly-

nomial in r with degree smaller than 2l − 1.

Theorem 16. For any l, n ∈ Z with 1 ≤ l < n/2, r ∈ Z>0 and 1 × n integer

matrix H ∈ R(Q) with Q = D(Sn
l (r)) the bound

∥H∥∞ >
r2l−1

p
2l

(4.3)

holds.

Based on Theorems 15 and 16 we pose the following question. Let us fix

the sparsity level l and dimension n. In this setting, it would be interesting to

find optimal upper bounds for minimal ∥H∥∞/r2l−1 when r tends to infinity.

Specifically, given l, n ∈ Z>0 with 1≤ l < n/2, to estimate

c1(l, n) = lim sup inf
∥H∥∞
r2l−1

, (4.4)
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where the supremum limit is taken over all positive integers r and the infi-

mum is taken over all 1× n integer matrices H ∈ R(Q) with Q = D(Sn
l (r)).

Theorems 15 and 16 give a large interval for values of this quantity

1
p

2l
≤ c1(l, n)≤ (4l∆(2l, n))2l−1 .

Although for finite signal spaces a single measurement is sufficient for

unique recovery, one can ask whether allowing extra measurements would

result in reducing measurements’ entries. In this vein, we obtain the following

general result. Let Q ⊂ Zn be an arbitrary set. Suppose that we have an 1× n

matrix H ∈ R(Q). We show that, for any integer m with 1 < m < n, there

exists an m×n matrix A= (ai j) such that A∈ R(Q) and the maximum absolute

entry ∥A∥∞ =maxi, j |ai j| is sub-linear in ∥H∥∞.

Recall that γr,s denotes the generalised Hermite constant, introduced in

Section 1.8.

Theorem 17. Let Q ⊂ Zn and let H be an 1× n matrix such that H ∈ R(Q).

For any integer m with 1 < m < n, there exists an m × n matrix A such that

A∈ R(Q) and

∥A∥∞ ≤ c2(m, n)∥H∥
n−m
n−1
∞ , (4.5)

where c2(m, n) = γ1/2
n−1,n−mn(n−m)/(2(n−1)).

The proof of Theorem 17 makes use of results on rational subspaces ob-

tained in [5]. Note that (4.5) improves the immediate bound ∥A∥∞ ≤ ∥H∥∞

when ∥H∥∞ > c2(m, n)(n−1)/(m−1).
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Figure 4.1: The lattice Λ does not intersect with the 0-symmetric convex body
C in any non-zero points. This means that the lattice Λ is admissible for C .

4.2 Admissible lattices of m-sparse n-cubes

By a rational subspace of Rn we understand a subspace generated by inte-

ger vectors. A rational hyperplane can be written as P = {x ∈ Rn : Hx =

0}, where H = (H11, . . . , H1n) is an 1 × n integer matrix with gcd(H) :=

gcd(H11, . . . , H1n) = 1. We say that P has height h(P) = ∥H∥∞.

A lattice Λ ⊂ Rd is (strictly) admissible for a set X ⊂ Rd if Λ ∩ X = {0}.

See, for example, Figure 4.1. For a comprehensive introduction to the theory

of lattices we refer the reader to [13, 29].

Let r be a positive integer and m be a positive integer with 1 < m < n.

We will consider an m-sparse n-dimensional cube

Cn
m(r) = {x ∈ Cn(r) : ∥x∥0 ≤ m} .

An example of this m-sparse n-dimensional cube can be seen in Figure 4.2.

Constructing single measurements for unique recovery of sparse integer

signals is closely linked to constructing admissible (n − 1)-dimensional lat-

tices for Cn
m(r). From the unique recovery perspective, it is desirable to find a
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Figure 4.2: The set of all 2-sparse signal S3
2 inside a three dimensional cube

C3(3) = {x ∈ R3 : |x i| ≤ 3 where 1≤ i ≤ 3}.

rational hyperplane P of smallest possible height such that the lattice P ∩Zn

is admissible for Cn
m(r). Similarly to (2.6), we consider the following optimi-

sation problem. Given m, n ∈ Z with 1< m< n and r ∈ Z>0, find

min{h(P) : P is a rational hyperplane in Rn and the lattice P ∩Zn is

admissible for Cn
m(r))} .

(4.6)

The proofs of Theorems 15 and 16 will be based on the following estimates

for the minimum in (4.6) that are of independent interest.

Theorem 18. For any m, n ∈ Z with 1 < m < n and r ∈ Z>0 there exists a

rational hyperplane P in Rn such that the lattice P ∩Zn is admissible for Cn
m(r)

and

h(P)< pm,n(r) . (4.7)
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To prove Theorem 18 we combine constructions from the proof of The-

orem 6 with aggregation techniques outlined in Section 3.1. The next result

shows that the polynomial pm,n(r) in (4.7) cannot be replaced by a polyno-

mial in r of degree smaller than m− 1.

Theorem 19. For any m, n ∈ Z with 1< m< n, any r ∈ Z>0 and any rational

hyperplane P in Rn such that the lattice P ∩Zn is admissible for Cn
m(r) we have

h(P)>
rm−1

p
m

(4.8)

holds.

Similarly to (4.4), for m, n ∈ Z with 1< m< n, it would be interesting to

estimate

c3(m, n) = lim sup inf
h(P)
rm−1

, (4.9)

where the supremum limit is taken over all positive integers r and the infi-

mum is taken over rational hyperplanes P in Rn such that P∩Zn is admissible

for Cn
m(r). Theorems 18 and 19 imply the bounds

1
p

m
≤ c3(m, n)≤ (m∆(m, n))m−1 .

4.3 Proofs of Theorem 18 and Theorem 15

We will begin with proving Theorem 18. The proof of Theorem 6 (Konyagin

and Sudakov [33, Theorem 1.3]) gives two explicit constructions that can be

used to obtain matrices A∈ R(Zn
m) that satisfy conditions of Corollary 7. For

completeness, we will outline these constructions here.
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Proof of Theorem 18

Observe first that A ∈ R(Zn
m) if and only if all m × m subdeterminants of A

are nonzero. Therefore, if for some d satisfying m < n < d there exists an

m× d matrix A∈ R(Zd
m), then an m× n matrix in R(Zn

m) can be obtained by

removing any d−n columns from A. Set first k = n−1. The first construction

gives A = (ai j) ∈ R(Zd
m) with d ≥ k + 1. The dimension d is chosen as an

odd prime number satisfying k + 1 ≤ d ≤ 2k + 1. Subsequently, the entries

of the matrix A are defined as ai j ≡ j i−1(mod d) with |ai j| ≤ (d − 1)/2 ≤ k.

In particular, for all j we have a1 j = 1. Next, set k = (2n)(m−1)/m. The second

construction gives A = (ai j) ∈ R(Zd
m) with d ≥ km/(m−1)/2. One can assume

that km/(m−1)/2 > k + 1 and, in particular, k ≥ 3. The dimension d is now

chosen as a prime number with km/(m−1)/2 ≤ d ≤ km/(m−1). The entries of

the matrix A satisfy ai j ≡ li j j
i−1( mod d), where li j are certain integers not

divisible by d chosen in a such way that |ai j| ≤ k. In particular, for all j one

can take l1 j = 1, so that a1 j = 1.

In both constructions above, renumbering the rows of A, we may assume

that amj = 1 for all j. Set k =∆(m, n) and for s = m k r + 1 take

B = (1, s, . . . , sm−1)

and

H = BA .

We will show that the hyperplane P = ker(H) satisfies the conditions of The-

orem 18.
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Let F(x ) = Ax and let Fi(x ) denote the ith entry of F(x ), that is

F1(x ) = a11 x1 + · · ·+ a1n xn ,
...

Fm(x ) = am1 x1 + · · ·+ amn xn .

For any x ∈ Cn
m(r) and any i ∈ {1, . . . , m}, we have

Fi(x )≤ ∥x∥0∥A∥∞r ≤ m k r < s .

Lemma 9, applied with D = Cn
m(r)∩Z

n and qi = s for i = 1, . . . , m−1, implies

that

{x ∈ Cn
m(r)∩Z

n : Hx = 0}= {x ∈ Cn
m(r)∩Z

n : Ax = 0} . (4.10)

Since A∈ R(Zn
m) we have

{x ∈ Cn
m(r)∩Z

n : Ax = 0}= {0} . (4.11)

Consequently, combining (4.10) and (4.11), the lattice P ∩ Zn is admissible

for Cn
m(r).

Finally, we obtain the bound

h(P)≤ ∥H∥∞ ≤ sm−1 + k
m−2
∑

i=0

si

that implies (4.7).

Remark 1: For given sparsity level m, dimension n and cube size r the set

{F(x ) : x ∈ D} constructed in the proof will likely allow a more accurate

choice of parameters qi in Lemma 9, resulting in an improvement on the

bound (4.7). Further, aggregation techniques can be also applied to the ma-

trices in R(Zn
m) obtained using a probabilistic approach from the proof of

Theorem 5 (Konyagin [32, Theorem 3]).
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Proof of Theorem 15

Let m= 2l and let P be a rational hyperplane inRn such that the lattice P∩Zn

is admissible for Cn
m(2r) ∩ Zn. We can write P = ker(H) for an 1× n integer

matrix H with h(P) = ∥H∥∞.

The inclusion

D(Sn
l (r)) ⊂ Sn

m(2r) = Cn
m(2r)∩Zn

implies the condition (2.4) with Q = D(Sn
l (r)). Hence H ∈ R(Q). Finally, the

bound (4.2) immediately follows from (4.7).

4.4 Examples of measurement matrices

In this section, we compute examples of m × n integer matrix A using the

method outlined in the proof of Theorem 15. Specifically, we set the maxi-

mum absolute entry of A to k = n−1 and k = ⌈(2n)(m−1)/m⌉. Subsequently, we

verify that all m×m square submatrices of A were nonsingular. Next, we fix a

positive integer r and set s = m k r +1. Then we construct a one-row matrix

B which has powers of s as its entries, and multiply it by A to generate the

measurement matrix H. Afterwards, we used a Python program to recover the

signal x by solving the equation Hx = b, where b is a measurement vector.

We tested two measurement matrices under different scenarios by modi-

fying the sparsity level and the bound on entries of the signal x . In Examples

3 and 4, the Python program successfully recovered a unique signal x that

satisfied Theorem 1.
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Example 3. Let n = 10 and m = 4. Using the method in the proof of Theorem

18, we construct a matrix A as follows:

A=

















1 2 3 4 5 6 7 8 9 −1

1 4 9 5 3 3 5 9 4 1

1 8 5 9 4 7 2 6 3 −1

1 1 1 1 1 1 1 1 1 1

















.

The maximum absolute value is k = 9. Every m × m submatrix of A is non-

singular.

Next, we set r = 2, s = mkr + 1= and compute 1× 4 matrix B as :

B =
�

1 s s2 s3
�

=
�

1 73 5329 389017
�

.

We now create a sensing matrix H by multiplying A by B, which gives us:

H =
�

394420 431943 416322 437347 410557 426545 400047

421656 405305 383760
�

.

Note that H satisfied (4.2).

Finally, we use the sensing matrix H to recover a signal

x 0 = (−1, 0,1, 0,0, 0,0, 0,0, 0)⊤ .

by solving the system Hx = b, where b = Hx 0 = 21902. Notice that ∥x 0∥0 = 2

and the absolute values of its entries are bounded by one. Using a Python pro-

gram we checked that x 0 is the unique solution over the signal space set S10
2 (2).

Thus, we have successfully recovered the sparse signal x using the measurement

matrix H and the set of linear equations Hx = b.
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Interestingly, only replacing S10
2 (2) with a substantially larger set S10

4 (3) we

obtain one extra solution to Hx = 21902:

x 1 = (0, 0,0, 3,−2,−3, 0,0, 2,0)⊤ .

In this situation H /∈ R(D(S10
4 (3))).

Example 4. Next we construct an integer m × n matrix A with m = 4 and

n = 12, with maximum absolute value k = ⌈(2n)(m−1)/m⌉ = 11, such that all

m×m submatrix are non-singular:

A=

















1 2 3 4 5 6 7 8 9 10 11 −1

1 4 9 3 −1 10 10 −1 3 9 4 1

1 8 1 −1 8 8 5 5 1 −1 5 −1

1 1 1 1 1 1 1 1 1 1 1 1

















.

We set r = 2, s = mkr+1= and compute a 1×4 matrix B =
�

1 s s2 s3
�

,

where s = 89. We then obtain the sensing matrix H by multiplying A by B:

H =
�

712980 768695 713694 697319 768253 769233 745471

744493 713166 697859 744941 697136
�

.

One can verify that (4.2) is satisfied. We take

x 0 = (0, 0,0,−1,0, 1,0, 0,0, 0,0, 0)⊤ .

and solve the system Hx = b, where b = Hx 0 = 71914, to recover the sparse

signal x . A Python program was used to verify the uniqueness of the solution

over S12
2 (2).

Interestingly, replacing S12
2 (2) by S12

4 (4) gives extra solutions to Hx = 71914:

x 1 = (0, 3,0,−2,−4,0, 0,3, 0,0, 0,0)⊤,
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and

x 2 = (0,−3,0, 0,4, 2,0,−3, 0,0, 0,0)⊤ .

Clearly, by changing the signal space the unique recovery is no longer guaran-

teed. In this situation H /∈ R(D(S12
4 (4))).

4.5 Proofs of Theorem 19 and Theorem 16

We will first prove Theorem 19.

Proof of Theorem 19

Let A ∈ Zm×n, m < n, and let τ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < i2 <

· · · < ik. Recall that we denote by Aτ the m× k submatrix of A with columns

indexed by τ. In the same manner, given x ∈ Rn, we denote by xτ the vector

(x i1 , . . . , x ik)
⊤. The complement of τ in {1, . . . , n} is denoted as τ̄. For matrices

A of rank m, the notation gcd(A) will be used for the greatest common divisor

of all m×m subdeterminants of A.

The proof makes use of Theorem 11, which is a version of Siegel’s Lemma

obtained by Bombieri and Vaaler [9, Theorem 2].

Suppose, to derive a contradiction, that Theorem 19 does not hold. Then

for some m, n ∈ Z>0 with 1 < m < n, and r ∈ Z>0 there exists a rational

hyperplane P in Rn such that P ∩Zn is admissible for Cn
m(r) and

h(P)≤
rm−1

p
m

. (4.12)

There exists an 1×n integer matrix H such that P = ker(H) and h(P) = ∥H∥∞.

Take τ = {1, . . . , m}. Observe that H cannot have zero entries, as otherwise
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its kernel P would contain the corresponding standard basis vectors. Hence,

Hτ ̸= 0. By Theorem 11, applied with M = Hτ, there exists an integer vector

xτ ∈ ker(Hτ) such that

0< ∥xτ∥m−1
∞ ≤

∥Hτ∥2
gcd(Hτ)

≤
p

m∥Hτ∥∞ ≤
p

m h(P) . (4.13)

By the upper bound (4.12) we have

∥xτ∥∞ ≤ r .

Consequently, the lifted vector




xτ

0τ̄



 ∈ Cn
m(r)∩ P ∩Zn,

contradicting the assumption that P∩Zn is admissible for Cn
m(r). The obtained

contradiction completes the proof of Theorem 19.

Remark 2: A minor improvement of (4.13) can be obtained using a refine-

ment of Siegel’s lemma proved in [3]. The latter refinement is also discussed

for completeness in Section of this thesis; see the bound (3.8). Further, the

last inequality in (4.13) can be slightly strengthened using the following ob-

servation. Since P∩Zn is admissible for Cn
m(1) and m≥ 2, we may assume that

H11 < H12 < · · ·< H1n. This allows choosing Hτ with ∥Hτ∥ ≤ ∥H∥∞ − n+m.

Proof of Theorem 16

Take any l, n ∈ Z>0 with 1 ≤ l < n/2, r ∈ Z>0 and any 1× n integer matrix

H ∈ R(Q) with Q = D(Sn
l (r)). Consider the hyperplane P = ker(H). Set

m= 2l and observe that

Cn
m(r)∩Z

n ⊂Q .

Therefore, the lattice P ∩Zn is admissible for Cn
m(r) and (4.8) implies (4.3).
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4.6 Proof of Theorem 17

The proof of Theorem 17 is based on the following result, which is a special

case of Proposition 1 (ii) in [5].

Theorem 20. Let S be an one-dimensional rational subspace of Rn. When 1 <

m< n, there is a rational subspace T ⊃ S of dimension m in Rn with

det(T ∩Zn)≤ γ1/2
n−1,n−m det(S ∩Zn)(n−m)/(n−1) . (4.14)

The constant γ1/2
n−1,n−m here is best possible.

Take any Q ⊂ Zn and suppose that we are given an integer 1× n matrix

H ∈ R(Q). Let m be an integer with 1 < m < n and let T be the subspace

from Theorem 20, applied to the rational subspace S of Rn spanned by the

row vector H.

By Theorem 11, applied with any (n−m)× n integer matrix M with T =

ker(M), there exist m linearly independent integer vectors g 1, . . . , g m ∈ T

such that

∥g 1∥∞ · · · ∥g m∥∞ ≤
p

det(M M T )
gcd(M)

= det(T ∩Zn) . (4.15)

For a proof of the last equality in (4.15) we refer the reader to [45, Corol-

laries 5I-J]. Now we can form a matrix A with rows g⊤1 , . . . , g⊤m, so that S ⊂

spanR(A
⊤). Observe that ker(A) ⊂ ker(H) and hence, A∈ R(E).

Finally, combining (4.15), (4.14) and the bound det(S∩Zn)≤
p

n∥H∥∞,

we get the estimate (4.5):

∥A∥∞ ≤ γ
1/2
n−1,n−mn(n−m)/(2(n−1))∥H∥(n−m)/(n−1)

∞ .



Chapter 5

Probability of uniqueness of

sparse solutions with integer

bounded entries

In this chapter, we consider the uniqueness of sparse integer solutions of un-

derdetermined linear systems from a probabilistic point of view. In the case

of unbounded solutions, Konyagin [32] proved the following two theorems.

Theorem 21 (Konyagin [32]). Consider an m × m random matrix M with

independent elements, each of which takes any integer value from −k to k with

probability 1/(2k+1). Then the probability of the determinant of M being zero

is at most Cm2
k−m(log k+ 1)m−1, where C > 0 is an absolute constant.

This result is linked to sparse solutions of a system Ax = b with A∈ Zm×n,

m< n, since any l-sparse solution with l ≤ m of the latter system corresponds

to a singular m×m submatrix M of A. Theorem 21 was subsequently used to

prove Theorem 5, which we recall here for convenience of the reader.

53
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Theorem 5 [Konyagin [32]]

For integers k, m≥ 2, and integer n with

m< n≤
c−mkm/(m−1)

log(k)

there exists an integer m× n matrix A ∈ R(Zn
m) such that ∥A∥∞ = k, where c

is an absolute constant.

The assertions of Theorem 21 and 5 are nontrivial if k is sufficiently large

and m≤ c log k, c > 0.

Our goal is to obtain a result similar to Theorem 21 which utilises the

boundedness of the integer signals and apply it to estimate the probability

of uniqueness of bounded integer sparse signals (see Theorem 25). A future

direction of work is to use Theorem 25 to obtain an analog of Theorem 5 in

the bounded setting.

The proofs of Theorems 24 and 25 below are based on the proof of The-

orem 21. We will start with developing auxiliary tools required for dealing

with bounded integer signals. Given A∈ Zm×n and b ∈ Zm, we will denote by

Γ (A, b) the set of integer points in the affine subspace

H(A, b) = {x ∈ Rn : Ax = b} ,

that is

Γ (A, b) = H(A, b)∩Zn .

The set Γ (A, b) is either empty or an affine lattice of the form Γ (A, b) = r +

Γ (A), where r is any integer vector with Ar = b and Γ (A) = Γ (A,0) is the

lattice formed by all integer points in the kernel ker(A) = {x ∈ Rn : Ax = 0}

of the matrix A.
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Lemma 22. Let n> m≥ 2l, and A∈ Zm×n. If for any m×2l submatrix M of A

Γ (M)∩ D(Sn
l (r)) = {0} (5.1)

then any x 0 ∈ Sn
l (r) is the unique solution to the system Ax = Ax 0 over Sn

l (r).

Proof. Take any x 0 ∈ Sn
l (r). Suppose, to derive a contradiction, that there

exists a vector x 1 ∈ Sn
l (r) such that x 0 ̸= x 1 and Ax 0 = Ax 1. Set y = x 0−x 1 ̸=

0 and τ = supp(y). Take any set of indices σ ⊂ [n] such that |σ| = 2l and

τ ⊂ σ. Then

yσ ∈ Γ (Aσ)∩ D(Sn
l (r)) ,

contradicting (5.1).

In what follows, we will consider the case m = 2l < n. Given U ∈ Zm×m

with rows uT
1 , . . . , uT

m and rank d ≤ m−1, we will denote by Σ(U) the lattice

formed by all integer points in the subspace spanR(u1, . . . , um) spanned by

u1, . . . , um. That is

Σ(U) = spanR(u1, . . . , um)∩Zm .

Let λi(Σ(U)) = λi(Cm(1),Σ(U)) be the ith successive minimum of the

cube Cm(1) with respect to Σ(U). Note that 1≤ λ1(Σ(U))≤ · · · ≤ λd(Σ(U)).

Lemma 23. Suppose that rank(U) = m− 1 and

λ1(Σ(U))> R= (2r
p

m)1/(m−1).

Then for K = Sn
m(r) we have

Γ (U)∩ D(K) = {0}.
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Proof. Since λ1(Σ(U))> R, the lattice Σ(U) is admissible for the cube section

S = Cm(R)∩ spanR(u1, . . . , um). Therefore,

det(Σ(U))>∆(S) , (5.2)

where ∆(S) is the critical determinant of the set S. Further, by Theorem 5 in

Section 17.3 of [29],

∆(S)≥
vol(S)
2m−1

. (5.3)

The cube-slicing inequality of Vaaler [51] implies that vol(S) ≥ (2R)m−1.

Therefore, by (5.2) and (5.3),

det(Σ(U))> Rm−1 . (5.4)

Note that Σ(U) = Γ (U)⊥ := {x ∈ Zm : x⊤y = 0 for all y ∈ Γ (U)}. Hence,

by [34], det(Σ(U)) = det(Γ (U)) and, using (5.4), we have

det(Γ (U))> Rm−1 . (5.5)

Therefore, the one-dimensional lattice Γ (U) is generated by a basis vector

v with ∥v∥2 > Rm−1 = 2r
p

m. Since D(K) ⊂ Cm(2r), we have Γ (U)∩ D(K) =

{0}.

Theorem 24. Fix R ∈ R>1, k ∈ Z>0 and consider a random matrix M =

(ai j) ∈ Zm×m with independent entries that take integer values from −k to k

with probability (2k + 1)−1. Then the probability that M is a singular matrix

with λ1(Σ(M))≤ R is at most

15m2−mR(log(k) + 1)m−2

km
. (5.6)
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Proof. Consider the set

M = {M ∈ Zm×m : rank(M)≤ m− 1,∥M∥∞ ≤ k,λ1(Σ(M))≤ R}.

We will obtain an upper bound for |M| using the following strategy. LetP be

the set of primitive m−1 dimensional lattices Ω ⊂ Zm with λ1(Cm(1),Ω)≤ R

and λm−1(Cm(1),Ω) ≤ k. First, we will construct a function φ : M → P .

Second, we split P into subsets of lattices Pλ1,...,λm−1
that correspond to the

fixed values of successive minima λ1, . . . ,λm−1 and write

P =
⋃

1≤ λ1 ≤ R

1≤ λ2, . . . ,λm−1 ≤ k

Pλ1,...,λm−1
.

Then we use the estimate

|M| ≤
∑

1≤ λ1 ≤ R

1≤ λ2, . . . ,λm−1 ≤ k

|Pλ1,...,λm−1
| · Lλ1,...,λm−1

, (5.7)

where Lλ1,...,λm−1
= maxΩ∈Pλ1,...,λm−1

|φ−1(Ω)|. The desired bound is then ob-

tained by estimating |Pλ1,...,λm−1
| and Lλ1,...,λm−1

.

Given M ∈ M , we construct the lattice φ(M) as follows. If rank(M) =

m− 1, we set φ(M) = Σ(M). Suppose now that rank(M) < m− 1 and take

any basis b1, . . . , bl of the lattice Σ(M). There exist the standard basis vectors

e i1 , . . . , e im−1−l
such that the linear subspace S spanned by b1, . . . , bl , e i1 , . . . , e im−1−l

has dimension m− 1. We set φ(M) = S ∩Zm. Note that φ(M) ∈ P as in this

case λ1(Cm(1),φ(M)) = 1 and λm−1(Cm(1),φ(M))≤ k.

Let us now fix the values λ1, . . . ,λm−1 and estimate the size of the set

Pλ1,...,λm−1
. Given a lattice Ω ∈ Pλ1,...,λm−1

, there exist linearly independent vec-
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tors x 1, . . . , x m−1 ∈ Ω such that

∥x i∥∞ = λi(C
m(1),Ω) . (5.8)

The lattice Ω is the intersection of the m− 1 dimensional subspace S of Rm

spanned by x 1, . . . , x m−1 and Zm. Consequently, Ω is uniquely determined by

x 1, . . . , x m−1.

The number of vectors x ∈ Zm with ∥x∥∞ = λ is

(2λ+ 1)m − (2λ− 1)m < 2m(2λ+ 1)m−1 < 3mmλm−1 < 5mλm−1 .

Therefore,

|Pλ1,...,λm−1
| ≤ 5m2−m

m−1
∏

i=1

λm−1
i .

Further,

|P | ≤ 5m2−m
R
∑

λ1=1

k
∑

λ2=1

· · ·
k
∑

λm−1=1

m−1
∏

i=1

λm−1
i

≤ 5m2−m
k
∑

λ2=1

· · ·
k
∑

λm−1=1

 

R
∑

λ1=1

m−1
∏

i=1

λm−1
i

!

≤ 5m2−mRm
k
∑

λ2=1

· · ·
k
∑

λm−1=1

m−1
∏

i=2

λm−1
i .

Next, for fixed values λ1, . . . ,λm−1, we will estimate Lλ1,...,λm−1
. For a lattice

Ω ∈ Pλ1,...,λm−1
and, consequently, for vectors x 1, . . . , x m−1 satisfying (5.8),

|φ−1(Ω)| is the number of matrices M ∈ M with Ω = φ(M). Observe that

the number of possible jth rows of such a matrix M is bounded from above

by |Ω∩ Cm(k)|.

Let µi = λi(Cm(k),Ω), so that

µi =
λi

k
.
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By Theorem 4 ([31, Theorem 1.5]), we have

|Ω∩ Cm(k)| ≤ 2m−2
m−1
∏

i=1

�

2
µi
+ 1

�

.

Hence

|Ω∩ Cm(k)| ≤ 6m−1
m−1
∏

i=1

1
µi
= 6m−1km−1

m−1
∏

i=1

λ−1
i .

Therefore, the number of matrices M ∈M with Ω= φ(M) is at most

|Ω∩ Cm(k)|m ≤ 6m2−mkm2−m
m−1
∏

i=1

λ−m
i .

Using (5.7), we get the bound

|M| ≤ 30m2−mkm2−m
R
∑

λ1=1

k
∑

λ2=1

· · ·
k
∑

λm−1=1

m−1
∏

i=1

λ−1
i

≤ 30m2−mkm2−mR
k
∑

λ2=1

· · ·
k
∑

λm−1=1

m−1
∏

i=2

λ−1
i .

Next,
k
∑

λ2=1

· · ·
k
∑

λm−1=1

m−1
∏

i=2

λ−1
i =

�

k
∑

λ=1

λ−1

�m−2

≤ (log(k) + 1)m−2 .

It is now sufficient to observe that the number of matrices M ∈ Zm×m with

|M | ≤ k is (2k+ 1)m
2
. Therefore, the required probability is

≤ 30m2−mkm2−mR(log(k) + 1)m−2(2k+ 1)−m2

≤ 15m2−mk−mR(log(k) + 1)m−2 .

The bound (5.6) is smaller than the bound for the unbounded case in

Theorem 21 provided that R< log(k) + 1.

Theorem 25. Consider a random matrix A = (ai j) ∈ Zm×n, m = 2s < n with

independent entries that take integer values from −k to k with probability (2k+
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1)−1. Then the probability that any x 0 ∈ Sn
m(r) is the unique solution to the

system Ax = Ax 0 over Sn
m(r) is at least

1−

�n
m

�

· 15m2−mR(log(k) + 1)m−2

km
, (5.9)

where R= (2r
p

m)1/(m−1).

Proof. By Theorem 24 and the union bound, the probability that there exists

a singular submatrix M of A with λ1(Ω(M))≤ R= (2r
p

m)1/(m−1) is at most

�

n
m

�

· 15m2−mk−mR(log(k) + 1)m−2 ,

Therefore, by Lemma 23, with probability at least (6.1) the matrix A sat-

isfies condition (5.1). The result now follows by Lemma 22.



Chapter 6

Conclusions

In this final chapter, we give a brief overview of the contributions obtained in

this thesis and, additionally, outline possible directions for future research.

6.1 Conclusions

The main results of the thesis are included in Chapter 4. Firstly, for integer

bounded l-sparse n-dimensional signals, we obtained general estimates for

the minimum size of a measurement matrix that corresponds to the mini-

mum in (2.6). A straightforward approach, based on constructing admissible

lattices for convex hulls of the sparse sets, would only show existence of a

measurement 1× n matrix H with

∥H∥∞ = O(rn−1) ,

where r is the entry size and the implicit constant depends on the sparsity

level l and dimension n. Here 2l < n. We showed that the exponent n − 1

in (4.1) can be replaced with 2l − 1. Specifically, for a polynomial p2l,n(r) of
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degree 2l − 1, Theorem 15 gives the bound

∥H∥∞ < p2l,n(2r) .

Secondly, we give a lower bound for the minimum in (2.6). Roughly speaking,

for any measurement matrix H in our setting, Theorem 16 shows that

∥H∥∞ >
r2l−1

p
2l

This implies that the polynomial p2l,n(2r) above cannot be replaced by a poly-

nomial in r with degree smaller than 2l − 1.

Although for finite signal spaces a single measurement is sufficient for

unique recovery, it is interesting to know whether allowing extra measure-

ments would result in reducing measurements’ entries. We indeed confirmed

that such a reduction possible.

Avoiding technical details, given any 1× n measurement matrix H, The-

orem 17 states existence of m× n measurement matrices A with entries sub-

linear in ∥H∥∞:

∥A∥∞ ≤ c2(m, n)∥H∥
n−m
n−1
∞ ,

where c2(m, n) is a constant.

Another group of our results considers admissible lattices of m-sparse n-

cubes Cn
m(r). In fact, constructing single measurements for unique recovery

of sparse integer signals is directly linked to constructing admissible (n −

1)-dimensional lattices for Cn
m(r). Such lattices can be described in terms of

rational hyperplanes. Then the height of a hyperplane P, denoted in the thesis

by h(P) corresponds to the maximum absolute entry of a measurement matrix

associated with P.
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Theorem 18 shows existence of an admissible lattice determined by a ra-

tional subspace P of a relatively small height. Specifically,

h(P)< pm,n(r) .

As its counterpart, Theorem 19 shows that the polynomial pm,n(r) in the latter

bound cannot be replaced by a polynomial in r of degree smaller than m− 1:

h(P)>
rm−1

p
m

holds.

Additionally, in Chapter 5, we consider the uniqueness of sparse integer

solutions of underdetermined linear systems from a probabilistic perspective.

Our main contribution here gives a result, similar to Theorem 21, which

utilises the boundedness of the integer signals. Avoiding technical details,

Theorem 25 gives a lower bound for the probability of obtaining a measure-

ment matrix for integer signals from m-sparse hypercubes. This probability is

at least

1−

�m
n

�

· 15m2−mR(log(k) + 1)m−2

km
,

where r is the cube size, k bounds measurement matrix absolute entries and

R = (2r
p

m)1/(m−1). Hence, as k grows, the probability of unique recovery

rapidly tends to one.
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