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Abstract 

Fog computing is a potential solution to overcome the shortcomings of cloud-based 

processing of IoT tasks. These drawbacks can include high latency, location awareness, and 

security attributed to the distance between IoT devices and cloud-hosted servers. Although 

fog computing has evolved as a solution to address these challenges, it is known for having 

limited resources that need to be effectively utilised. This is because its advantages could be 

lost. Moreover, the increasing number of IoT devices and the amount of data they generate 

make optimising Quality of Service (QoS) in IoT applications, computational offloading, and 

managing fog resources more challenging. In this context, the problem of computational 

offloading and resource management is investigated in online and stochastic fog systems. To 

deal with dynamic online fog systems, we propose a combination of two algorithms: dynamic 

task scheduling (DTS) and dynamic energy control (DEC). These methods were applied with a 

fixed offloading threshold (i.e., the criteria by which a fog node decides whether tasks should 

be offloaded to a neighbour, and which neighbour, rather than executed locally) with the aim 

to minimise overall delay, improve the throughput of user tasks, and minimise energy 

consumption at the fog layer while maximising the use of resource-constrained fog nodes. 

The approach is further enhanced by applying a dynamic offloading threshold. Compared to 

other benchmarks, our approach could reduce latency by up to 95.4%, improve throughput 

by 41%, and reduce energy consumption by up to 55.7% in fog nodes. For stochastic fog 

systems, we address the computational offloading and resource management problem. This 

is with the aim to minimise the average energy consumption of fog nodes while meeting QoS 

requirements of tasks. We formulated the problem as a stochastic problem and decomposed 

it into two subproblems. In order to solve this problem, we have proposed a scheme called 

Joint Q-learning and Lyapunov Optimization (JQLLO). Using simulation results, we 

demonstrate that JQLLO outperforms a set of baselines. 
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1 Introduction 

1.1 Research Context 

The Internet of Things (IoT) has recently grown to play a significant role in our day-to-

day lives, from the wearables we use to keep track of our health to the gadgets we use 

to control our lights and thermostats. Furthermore, it enables real-time data collection 

and analysis of various urban systems, including transportation, water management, 

energy, and public safety, to develop smart cities. As the number of connected IoT 

devices continues to expand, it is predicted that by 2025 there will be one trillion 

connected devices [1]. Due to the growing number of connected devices worldwide, 

large amounts of data are being generated.  

In this context, cloud computing and IoT applications are faced with significant 

challenges. Due to data transmission time, processing IoT tasks within the cloud can 

result in substantial latency and performance complications. Moreover, the centralized 

architecture of cloud computing can cause network congestion, further aggravating 

these issues. Thus, cloud computing may not be an appropriate solution for IoT tasks 

involving real-time analysis, data processing, and decision-making. 

An emerging paradigm called fog computing is designed to address the challenges of 

processing IoT tasks in the cloud [2], the architecture involving the use of fog computing 

systems is in Figure 1.1. Fog computing is an intermediate layer that exists between the 

cloud and IoT devices, providing location awareness, low latency, and a wide 

geographical distribution for IoT devices. As a result of processing data within the fog 

infrastructure, processing times will be shortened, network congestion will be reduced, 

and reliability will be increased.  
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Further, fog computing allows for the efficient handling of large amounts of data, 

improved security, and the ability to perform real-time data analysis, processing, and 

decision-making. It consists of limited-resource devices called fog devices/nodes, 

providing storage, processing, and networking resources close to IoT devices where 

tasks are produced. One of the key challenges that should be addressed effectively when 

running IoT applications in a fog computing environment is computational offloading 

and resource management.  

 

Figure 1.1: IoT-Fog-Cloud architecture. 

1.1.1 Computational Offloading in Fog Computing  

Computational offloading is an approach of resource management [3], it enables 

workload/computational tasks to be shared between IoT devices, fog nodes, and cloud 

servers. It is the process of transmitting tasks from resources with limited capacities to 

other resources with rich capacities to process these tasks within their Quality of Service 

(QoS) requirements [3]. When computational offloading occurs between fog nodes, this 

is called “fog cooperation” [4], in which overloaded fog nodes send part of their 

workload to other underloaded fog nodes. This is done to meet the QoS requirements 

of tasks such as processing tasks within their deadline and ensuring security. 
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Furthermore, the available fog system's computational resources can be exploited. In 

the process of computation offloading, primary fog nodes will decide where to process 

their received workloads. This decision will be made considering the status of the system 

and the requirements of these workloads. 

Computational offloading can be accomplished by offline, online, and stochastic forms 

[5].  

1. The offline setting addresses computational offloading before deploying the 

system in static environment. This is done by knowing the system's workload, 

network conditions and tasks requirements in advance [6], so that the decision 

on where to process tasks can be made before simulation begins [5].  

 

2. In online settings, computational offloading is addressed online. This is 

accomplished while the system is running, and tasks are arriving in a dynamic 

environment. Online computational offloading is well suited to mimic real-world 

dynamics. The decision maker in this manner has no prior knowledge of the 

system. Additionally, the decision of where to process tasks is made considering 

the current requirements of the tasks and the current status of the system such 

as available computational resources, energy, and bandwidth [5, 6].  

 

3. In stochastic settings, the computational offloading problem is analysed when 

uncertainty is involved. The characteristics of uncertainty can be influenced by 

workload, network conditions, or the status of entities. The process of stochastic 

offloading involves making decisions based on a probabilistic model of the state 

of the system. 

1.1.2 Resource Management in Fog Computing  

In fog computing, the resources are heterogeneous, dynamic, and constrained in that 

they are limited in terms of computation, power, and memory [7]. In light of this, 

resource management is one of the most challenging aspects of fog computing due to 
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the complexity involved [7]. The effectiveness of fog computing requires efficient 

resource management. Effective resource management means maximizing capacity, 

availability, utilization, and cost of resources in the fog system. By considering these, we 

can ensure the optimal utilisation of the available computational, storage, and 

communication capabilities of fog devices. The concept of resource management can be 

addressed in several approaches, including task offloading, resource scheduling, 

resource allocation, and resource provisioning [3].  

The concept of resource scheduling can be defined as a method or plan of calculating 

the number of resources required for IoT tasks, and the time when those resources will 

be needed [3]. The concept of resource allocation refers to allocating of available fog 

devices to perform IoT tasks while considering the requirements of a high quality of 

service, and other factors such as cost and energy [3]. Allocation of resources and 

resource scheduling are closely related and are frequently used together. 

Scaling up or down available fog resources to maximise their energy effectiveness, cost, 

and response time is a process known as resource provisioning [3]. In resource 

provisioning approach, one of the main crucial issue that directly influences the lifespan 

of the resources, total expenses, and ultimately the effectiveness of the system and the 

resources is energy consumption [8]. Considering the importance of energy 

consumption, researchers have proposed different approaches to improve it; however, 

more research is needed in this area and it is still in its infancy [8]. 

In resource management, energy consumption poses a significant challenge since 

resource-constrained fog devices typically have limited energy resources [7]. The 

efficient management of resources can contribute to the reduction of energy 

consumption, the optimization of system performance, and the fulfilment of the 

requirements of QoS for IoT applications. Integrating computational offloading and 

resource management is essential to effectively utilise fog resources. 
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1.2 Research Gap  

Most of the studies that addressed computational offloading problem to optimise 

system performance have focused on offline offloading [9-14] while online and 

stochastic offloading receives less attention. It would be beneficial to investigate and 

address these approaches further. This is because tasks that are generated by IoT 

applications in real-world scenarios are dynamic and unpredictable.  

Furthermore, previous studies that investigated the problem of online and stochastic 

computational offloading considered different aspects of resource management in 

conjunction. These aspects are mostly related to resource scheduling and allocation [15-

35]. However, resource provisioning in regard to energy saving at the fog infrastructures 

has not been considered. Saving energy in computing systems will lead to green 

computing, which helps to environmentally utilising computing resources in a user-

friendly manner while ensuring overall system performance [36]. Ensuring green 

computing is a challenge for computing systems [36].  

1.3 Research Aims 

The work presented in this thesis aims to achieve the following. 

▪ This study aims to explore the problem of computational offloading and resource 

management in online dynamic fog systems to minimise average delay and 

overall system’s energy consumption. 

▪ This study aims at investigating computational offloading problem and resource 

management with the purpose of minimising energy consumption under 

systems constraints in stochastic fog systems. 
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1.4 Research Objectives  

▪ Identifying and listing the most important principles, hypotheses, and 

conclusions of existing research in the field. 

▪ Developing a scheme that ensures minimising delay and energy in online 

dynamic fog systems with static offloading threshold. 

▪ Addressing the impact of cooperation between fog nodes by increasing the 

number of neighbours on system performance in online dynamic fog computing 

systems. 

▪ Developing and exploring the impact of dynamic offloading threshold in the joint 

problem of computational offloading and resource management on system 

performance in terms of throughput, average delay, and energy consumption in 

online fog systems. 

▪ Formulating the minimisation energy consumption problem in stochastic fog 

systems as an optimisation problem to be solved as two subproblems and find a 

solution for each sub-problem. 

▪ Designing and developing a learning approach that helps the learning 

agents/local controllers to learn about their environment faster and efficiently 

in order to manage energy resources in stochastic fog systems. 

▪ Addressing the impact of various learning parameters in the efficiency of the 

learning process.  

▪ Evaluating the proposed approach of minimising the average energy 

consumption in stochastic fog systems with other baselines and parameters to 

assess the feasibility and efficiency of the proposed approach. Thesis Outline 

1.5 Research Questions 

This thesis addresses the following research questions. 

Q1. What is the significance of addressing the issue of threshold modification in 

online computational offloading and resource management in dynamic fog 
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computing systems? How does this strategy compare to existing methods, and 

what implications does it have on delay, energy, and throughput? 

 

Q2. What role does addressing stochastic computational offloading along with 

resource provisioning have in reducing the time-average energy consumption of 

fog devices in stochastic fog systems? How to formulate the problem 

considering both aspects? 

 

Q3. How can cooperation between learning agents within stochastic fog systems be 

used to improve performance and scalability? How will this contribute to 

designing efficient dynamic resource management approaches within fog 

environments? 

 

1.6 Research Questions: Narrative Logic and 

Connections 

In this context, we provide a scenario of smart city applications like Public Transport and 

Smart Traffic Management that can be affected by highly congested events like a 

football match to highlight the logic and relationship between the stated research 

questions. Additionally, we demonstrated how addressing these research questions is 

important in optimising smart city operations.  

Public Transport system is a vital application in the smart city, offering efficient and 

reliable transportation for its residents. It depends on a set of deployed sensor and data 

sources in order to ensure an efficient arrivals and departures. However, during peak 

times and busy periods such as football matches, relying on a static computational 

offloading and resource management scheme could fail to meet the demand or lead to 

suboptimal results.  

Regarding the first research question, addressing threshold modification can help the 

smart city to dynamically adjusts computational offloading and resource management 

according to the anticipated traffic conditions. During highly congested events, fog 

devices, where this data is processed, can adapt their thresholds to distribute some of 
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the data to neighbouring fog devices. This adjustment serves to reduce response times, 

maximise data processing, reduces energy consumption and ensures efficient Public 

Transport operations.  

In terms of Smart Traffic Management, it depends on a set of sensors, real-time data 

sources, traffic cameras in order to optimise traffic flow. During unpredictable events, 

the system is challenged to perform effectively as the traffic patterns fluctuate 

significantly. The second research question plays a significant role in overcoming this 

problem. In order to control unforeseeable traffic flow at times of congestion, it is 

necessary to handle stochastic computational offloading and resource provisioning. 

During this congestion period, Smart Traffic Management can implement stochastic 

computational offloading scheme along with resource provisioning with the help of 

previous analysed data to respond in real time. This will lead to minimising traffic jam 

by smoothing traffic flow and reducing energy consumption.  

In dynamic and complex environment, where congestion can occur, several smart city 

applications dealing with real-time data operate independently such as Public Transport 

system and Smart Traffic Management. Since these applications are affected by the 

same events, such as a football match, analysing their data separately can lead to delays 

in response, negatively impacting system performance. However, when these 

applications begin cooperating by sharing analysed information, this dilemma can be 

overcome, as cooperation will help to expedite response times. For example, the 

cooperation of Smart Traffic Management and Public Transport systems can help to 

reduce traffic and maximises routes around the football stadium. This will improve 

overall efficiency, scalability, and performance even when managing the challenges 

posed by large events. The third stated research question introduces a critical element 

to this scenario.  

1.7 Research Hypotheses 

In this thesis, the following hypothesis is investigated: 
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In online and stochastic computational offloading and resource management, varying 

an offloading threshold upon which fog devices start sharing their workloads with their 

neighbours will have a significant impact on optimising average delay, throughput, and 

energy consumption. Additionally, the implementation of dynamic offloading threshold, 

which adjusts in response to the availability of neighbouring fog devices, will effectively 

optimize the system performance. 

1.8 Research Contributions 

Following is a summary of the contributions of this thesis. 

Presenting a review of state-of-the-art literature on computational offloading and 

resource management that aims to minimise delay or/and energy consumption to 

define the gap. This is achieved in chapter 2. 

Designing and evaluating a model of a joint algorithm that aims at minimizing delay and 

optimising energy consumption in online fog systems. This joint algorithm is composed 

of two algorithms named Dynamic Task Scheduling (DTS) and Dynamic Energy Control 

(DEC). The method is examined in a simulated environment to evaluate its performance 

in a variety of settings. In addition, examine the performance of the joint algorithm when 

the offloading threshold is varied. Furthermore, investigate how the performance of the 

joint algorithm changes when the number of neighbours increases. This is accomplished 

in accordance with Question 1 and achieved in chapter 3.  

Developing a dynamic offloading threshold that considers the workload status of the 

primary fog nodes and their neighbours in online dynamic fog systems. In addition, a 

simulation environment is utilised to compare the suggested solution against a set of 

baselines. The suggested threshold will be evaluated under various scenarios to 

establish its influence on average delay, throughput, and energy consumption. This is 

related to Question 1 and accomplished in chapter 3. 
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Establishing a novel stochastic optimization model that reduces energy consumption in 

stochastic fog systems. The optimization approach takes into account several stochastic 

factors, such as resource availability and network load, in order to produce an ideal 

solution. In addition, a decomposition strategy to solving the stated stochastic 

optimization issue is proposed. This strategy breaks the problem into two subproblems 

that are easier to tackle separately, and then combines the results to obtain the best 

solution to the original problem. The novel model presents a more effective and 

economical approach to tackling the energy consumption of fog computing systems. 

This is related to Question 2 and is achieved throughout chapter 4 and part of chapter 

5. 

 Designing a dynamic resource management scheme based on Q-learning, and this is 

accomplished by two proposals. First, a cooperative Q-learning (CQL) method is used to 

develop a model that facilitates knowledge and experience sharing between agents. 

Second, proposing a scheme called Eliminating Unacceptable Actions (EUAs) to help 

speed up the learning process of agents in such stochastic fog systems. Moreover, the 

proposed approach (CQL-EUAs) is evaluated by conducting a series of experiments 

designed to measure the impact of potential parameters on the efficiency of the 

proposed scheme. This is related to Question 3 and is achieved in chapter 5. 

Development of a novel optimization-based solution based on Lyapunov: this is 

accomplished by presenting a novel solution to the problem of computational offloading 

and processing decisions in stochastic fog systems. Using Lyapunov optimization, the 

proposed technique is intended to optimise energy consumption while meeting QoS 

requirements and system limitations. Using drift-plus-penalty theory, this approach 

decomposes the issue into three subproblems, which are addressed individually to 

achieve optimal solutions and reduce the complexity of the original problem. This is 

related to Question 2 and accomplished in chapter 5. 
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1.9 Thesis Structure  

The structure of this thesis is as follows: 

Chapter 2: Literature Review. This section provides an overview of the state-of-the-art. 

It is divided into two subsections. The first sub-section is on computational offloading 

problems and dynamic resource management in the area of fog computing. The second 

subsection is about investigating the joint problem of computational offloading and 

resource management in stochastic fog/edge computing systems. A comprehensive gap 

analysis concludes each subsection, describing how this research addresses the gap in 

the literature. 

Chapter 3: Minimising delay and energy in online dynamic fog systems. This chapter 

proposes a joint dynamic approach with the aim to minimise average delay and energy 

consumption using fixed offloading threshold. It also shows the impact of increasing the 

number of neighbouring fog devices in overall system performance. Moreover, it 

proposes the use of dynamic offloading threshold upon which the fog node is 

determined congested and starts sharing its workload with its neighbours. The efficiency 

of the proposed scheme is evaluated with various baselines.  

Chapter 4: Optimising the Energy Consumption in Stochastic Fog Computing Systems. 

The purpose of this chapter is to provide an overview of the system model and 

constraints, along with formulating the minimisation problem of energy consumption in 

stochastic fog system into two subproblems. In addition, it provides a brief description 

of the proposed solutions. 

Chapter 5: Dynamic Resource Management based on Q-Learning Algorithm. In this 

chapter the minimisation problem of energy consumption in regard to dynamic resource 

management is formulated as a constrained optimisation problem, where the learning 

agent/local controllers aim to maximise, its average received rewards in the system. The 

proposed solution is called CQL-EUAs is based on combining two approaches named 

Cooperative Q-learning (CQL) and Eliminating Unacceptable Actions (EUA). This is used 
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to solve the firs sub-problem. A set of experiments is conducted with different 

parameters and approaches. Additionally, this chapter aims at solving the second-sub 

problem regard finding the optimal computational offloading and processing decision in 

stochastic fog systems. The proposed approach is based on the framework of Lyapunov 

Optimisation and drift-plus-penalty theory. The results of the main optimisation 

problem are presented along with a set of benchmarks. 

Chapter 6: Conclusion. This chapter Provides a summary and conclusion of the results 

and contributions of the thesis. A discussion of potential future work is also included. 

 

 

 

 

 

 



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 2: Literature review and Background 

 

  

-13- 

2 Literature review and Background 

2.1 Introduction  

In this section, a literature review of subjects relevant to the dissertation is presented. 

The literature review chapter is organized into three sections. The first section focuses 

on online/offline computational offloading and dynamic servers' energy management in 

fog computing and related fields. The section discusses various research studies and 

findings related to these topics. It emphasizes their importance in improving the overall 

efficiency of optimising delay and energy consumption in fog computing and related 

fields. The second part of the literature review is dedicated to addressing the problem 

of computational offloading and resource management in stochastic fog computing 

systems and similar fields. The section provides an in-depth analysis of research studies 

and approaches that have been developed to optimise energy consumption, delay, and 

other factors in stochastic fog/edge computing systems. Finally, a background on 

Reinforcement Learning (RL), Q-learning, and cooperative Q-learning is provided. In this 

section, the importance of these approaches is discussed along with related works on 

the cooperative Q-learning approach. Overall, this section offers a comprehensive 

review of the literature related to the dissertation's research topics. 

2.2 Online/offline computational offloading and 

dynamic servers’ energy management  

This section is organised into three main parts. The first part focuses on computational 

offloading between entities within a specific system. A summary of relevant research 

studies is presented in Table 2.1. The second part addresses the impact of dynamically 

managing servers to enhance power efficiency in computing systems. This part provides 

an in-depth analysis of research studies and findings related to this topic, highlighting 



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 2: Literature review and Background 

 

  

-14- 

their importance in minimising energy consumption. Finally, the section provides a 

comparison of the state-of-the-art approaches in fog computing and related fields. This 

comparison highlights the strengths and weaknesses of different approaches and 

provides insights into the future direction of research in this area. 

2.2.1 Computational Offloading 

In this section, we focused on studies that addressed the offline and online 

computational offloading problem. In the literature, online and offline offloading 

sometimes are referred to as dynamic and static offloading [37, 38]. The main 

differences between online and offline offloading problem in distributed systems are 

summarised below. In regard to the timing of the offloading decision and system 

knowledge, in offline offloading, decision is made before the execution of the 

application and we have complete system information, such as the arrival of tasks and 

the availability of computing devices. In online offloading, decisions are made in real-

time during the execution of the application, and the system doesn't have complete 

knowledge of the task sequence or future states while making offloading decision. 

Regarding adaptability, in situations when the environment is stable or where events in 

the future can be predicated, offline offloading is more appropriate. In real-world 

applications with dynamic conditions, offline offloading may not be as adaptable to 

changes in the system state compared to online offloading. Online offloading is more 

adaptive to changing condition, including varying workloads, network latency, and 

resource availability. When classifying the work in the literature as to address online or 

offline offloading problem, few works have specified the type of offloading problem they 

have considered [39], while the majority did not specify that. To define the type of the 

addressed offloading problem in the literature, we analyse their model assumptions, the 

process of the offloading decisions, and the use cases. In more details, the problem is 

considered as an offline offloading problem if the following aspects is considered. The 

model assumes a stable or predictable environment with complete knowledge of 

variables like task arrival, resource availability, and network conditions. Moreover, if the 

described scenario or the use case is static or dealing with batch processing. 
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Furthermore, If the offloading decision is made collectively for a batch of tasks all at the 

same time and distribute them to available computing devices without considering the 

impact of these tasks on the availability of the computing devices, then the problem is 

defined as offline offloading problem. On the other hand, the offloading problem is 

considered an online problem if the following is satisfied. The used model deals with 

dynamic or unpredictable environment with incomplete system information. 

Additionally, if the used scenario or the use case is dynamic. Also, the offloading decision 

is made for each task upon its arrival considering the current system state. In offline 

implementation, all system information needed to make the offloading decision is 

previously known and is based on historical or predictive knowledge, such as the 

computational capabilities of fog nodes, the total number of IoT devices and their total 

workload (number of requests). This is applied during the system design stage. In online 

deployment, the computational offloading decision takes place at run-time and takes 

into account the current system status and process characteristics, such as the current 

waiting time and the current available computational resources, without prior 

knowledge of system inputs. A number of studies have explored computational 

offloading in offline deployment [9-11, 13, 14, 40-44].  

In IoT-Fog-Cloud architecture, Sun et al. [9] have investigated computational offloading 

and resource allocation in order to minimise the cost which represents the trade-off 

between the completion time for IoT tasks and the energy consumption for handling 

these tasks on cloud servers, fog servers, and IoT devices. the authors presented the 

“ETCORA” algorithm that consists of two parts. The first part aims to find the optimal 

offloading decision based on minimising delay and energy, and the second part 

optimises resource allocation in terms of transmission power allocation. Their proposed 

solution helps to minimise energy consumption and completion time of tasks compared 

to other schemes.  

In [10], Wang et al. investigated the optimised offloading problem to minimise task 

completion time given tolerable delay and energy constraints. The optimisation problem 

has been formulated as a mixed integer nonlinear programming problem that jointly 
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optimises the local computation capability for IoT devices, the computing resource 

allocation of fog nodes and the offloading decision. Wang et al. [10] decompose the 

problem into two independent sub problems to find the optimal amount of workload 

that should be processed locally at IoT devices and at fog nodes. A hybrid genetic-

simulated annealing algorithm has been developed for this purpose. In terms of 

completion time and energy usage, their results demonstrate that their proposed 

solution achieves considerable benefits over a set of baselines. 

Liu et al. [11] conducted research on a fog environment to address the multi-objective 

optimisation offloading problem, which aims to minimise execution delay, energy 

consumed at mobile devices, and offloading payment cost for using fog/cloud resources. 

In order to accomplish the specified goals, the authors attempted to determine the 

optimal offloading probability and transmission energy for each mobile device. The 

multi-objective problem is formulated into a single problem using the scalarization 

method, and proposed a solution based on the Interior Point Method (IPM) to solve it 

[11]. Based on simulation results, their suggested approach optimises delay, energy, and 

payment costs more effectively than existing schemes.  

Xiao and Krunz [13] investigated the topic of task offloading in fog networks. Under a 

given power constraint, fog nodes in their system select whether to offload a portion of 

their workloads to nearby nodes or to process them locally. When considering fog 

offloading, the authors examine the trade-off between service quality and energy 

efficiency. The problem is defined as a non-convex optimization problem and split into 

smaller problems that each fog node may tackle. A distributed optimization technique 

has been presented to handle the optimum workload allocation issue in order to 

maximise QoS in terms of response time under energy limitations. Their findings 

demonstrate that their suggested method substantially enhances the performance of 

fog computing systems. The authors proposed that the response time of end-user tasks 

should be set to its highest tolerable point to optimise energy consumption at fog 

computing systems. This enables most of the tasks to be processed at end-user devices, 

avoiding any offloading.  
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Chen and Hao [14] studied offloading problem in dense software-defined networks, 

formulating this as a mixed-integer nonlinear problem that is decomposed into: 

(i) deciding whether the task is processed locally at the end-user device or offloaded to 

the edge device; (ii) determining the computational resources that are dedicated to 

each task.  The authors developed an efficient software-defined task offloading scheme 

to solve these sub-problems. The results of their proposed scheme demonstrate the 

superiority of their approach at decreasing end user device energy consumption and 

overall task execution latency.  

Mukherjee et al. [40] developed an offloading technique with a focus on jointly 

optimising the computing and communication resources at fog systems to reduce end-

to-end latency. Their technique considers the trade-off between transmission delay and 

task execution delay when making the offloading decision. A fog node can obtain 

additional computational resources from either one of its neighbours or the cloud data 

centre to reduce task execution delay at the expense of the transmission delay. The 

authors transformed the optimisation problem into convex Quadratically Constraint 

Quadratic Programming and solved it using the CVX toolbar, a MATLAB-based modelling 

system for convex optimization. Their simulation results showed that their proposed 

solution minimises end-to-end latency compared to executing all tasks at end-user 

devices or executing all tasks at the primary fog nodes. 

Zhu et al. [41] presented a task offloading strategy based on execution time and energy 

consumption. This method allows mobile devices to make an appropriate decision on 

whether to process their tasks locally or offload them to a fog node or the cloud. During 

the decision-making process, mobile devices calculate the execution time and energy 

consumption required for executing the task locally and compare it with the execution 

time and energy consumption required for offloading and receiving the processed task 

on a fog node, without considering the energy consumed by the fog nodes. The mobile 

device selects the option with the lowest cost, which is the sum of execution time and 

energy consumption. The simulation results demonstrate that their approach is better 
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than Random, no offloading, and offloading based solely on execution time, as it 

optimizes the execution time and energy consumption of mobile devices.  

Mukherjee et al. [42] formulated the offloading problem as an optimization problem 

with the goal of minimizing the total system cost, which is the sum of the total delay of 

end-users' tasks and the total energy consumed by end-users' devices due to local task 

processing and uploading tasks to the fog environment for processing. Their 

optimization problem considers both delay and energy constraints, and it has been 

converted into a Quadratically Constraint Quadratic Programming problem that has 

been solved using the semidefinite relaxation method. In a heterogeneous environment 

where fog nodes have varying computational resources, the proposed solution identifies 

the optimal amount of workload to be processed at end-user devices, primary and 

neighbouring fog nodes, and cloud servers. The offloading decision is based on the 

availability of computational resources. The authors noted that having higher 

computational resources at fog nodes can reduce the system cost. Additionally, an 

increase in the number of end-users leads to greater congestion at fog nodes, resulting 

in fog nodes preferring to send their workload to the cloud server for processing rather 

than to neighbouring fog nodes. 

In radio access networks, Zhao et al. [43] examined the computational offloading 

problem to decrease the weighted sum of total offloading latency plus total energy 

consumption. To enhance the allocation of computation and radio resources, the 

authors formulated the problem as a non-linear, non-convex joint optimization 

problem, and their solution is more effective than mobile cloud computing (MCC) and 

mobile edge computing (MEC) because it employs a combination of available resources 

at the cloud and fog nodes, rather than just cloud resources as in MCC or edge 

computing resources as in MEC. 

Hybrid-Computational offloading optimization problem has been investigated by Meng 

et al. [44]. Their research considered two types of models: cloud computational 

offloading and fog computational offloading. The authors aimed to reduce the energy 

consumption caused by processing and transmitting tasks on mobile terminals, fog, and 
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cloud servers while adhering to deadline constraints. They introduced a new concept 

called computation energy efficiency, which is defined as the number of computation 

tasks offloaded by consuming a unit of energy. The proposed solution involves 

offloading tasks to both fog and cloud servers for execution, and simulation results 

demonstrate its effectiveness compared to offloading tasks to either cloud or fog 

resources alone.  

The online deployment of computational offloading has not been extensively studied, 

as few studies have addressed this topic, including [4, 12, 39, 45, 46]. Al-Khafajiy et al. 

[4] have proposed an offloading mechanism that facilitates fog-to-fog collaboration in 

heterogeneous fog systems to minimize overall service latency. Their mechanism 

employs the FRAMES load balancing scheme to detect congested fog devices, determine 

the workload located at fog devices’ queues that require offloading based on their 

deadline requirement, and select the best fog node with minimal service latency for the 

workload. They evaluated their mechanism using simulation, which showed that their 

proposed model is effective in minimizing overall latency compared to different 

algorithms.  

In Fog-Cloud computing system, Gao et al. [12] investigate the issue of dynamic 

computational offloading and resource allocation. In order to reduce energy 

consumption and delay while having a stable queueing status, the authors formulate the 

problem as a stochastic network optimisation problem. They provide a predictive 

approach to computational offloading and resource allocation that depends on the 

trade-off between delay and energy use. Their approach implies that a delay reduction 

can be induced by increasing the allocation of computational resources at fog nodes, 

however, because of the processing of more tasks, energy consumption increases, and 

vice versa. Compared to other systems, the authors show the importance of their 

method.  

Yousefpour et al. [45] proposed a delay-minimization approach to reduce overall service 

delay. Their approach utilizes the estimated queueing delay as the offloading threshold, 

which determines whether a fog node processes its incoming task(s) or offloads them 
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to one of its neighbours or the cloud server. When the offloading threshold is reached, 

the best neighbouring fog node in its domain is selected to offload its upcoming tasks. 

The best neighbouring fog node is selected based on having the minimum total 

propagation delay and queuing delay. Their results showed the minimum average 

service delay compared to other models.  

Yin et al. [39] determine where to process end user tasks into task scheduling and 

resource allocation problems, where tasks are either processed locally at end-user 

devices or offloaded to fog nodes or cloud servers. In an intelligent manufacturing 

environment, the authors introduced fog computing and utilised the concept of the 

container within the fog system intending to reduce overall delay and optimise the 

number of concurrent tasks for the fog node. In their online model, generated tasks by 

end-users are transmitted to the Request Evaluator which is located at a fog node that 

decides whether to accept or reject the task based on its deadline requirement. If the 

task is accepted, then the task is transmitted to Task Scheduler which determines 

whether the task is processed at fog nodes or cloud servers based on the available 

resources and the execution time of this task which involves computation and 

transmission time. Finally, the Resource Manager responsible for reallocating the 

required resources to process the task at fog nodes. Experimental results show the 

effectiveness of their approach compared to other benchmarks.  

Mukherjee et al. [46] developed a scheduling strategy that manages to fulfil the deadline 

constraint of end-user tasks, taking into account computational resources. The deadline 

constraint of a given task and the availability of a neighbour, in their scheduling policy, 

help to decide on whether to place a given task in the fog node queue, e.g., in its high-

priority queue or low-priority queue, or offload it to one of its neighbouring fog nodes. 

Their findings illustrate the efficacy of their suggested strategy as opposed to the no 

offloading and random schemes.  
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2.2.2   Dynamic Server Energy Management 

Dynamic Server Energy Management has been implemented in the wireless local area 

network (WLAN) and the cloud, leading to improved power quality. However, this 

technique has not yet been widely used in the fog computing area. In WLANs, energy 

efficiency has been improved by placing access points (APs) in sleep mode or turning 

them off.  

In [47], Marsan and Meo proposed a system in which a single AP in each community 

would remain active and service incoming clients, while all other APs would be turned 

off. This approach was shown to reduce energy consumption by up to 40%. Additionally, 

up to 60% of energy consumption could be saved by turning off all APs during idle 

periods, such as at night. 

Li et al. [48] introduced an energy-saving method that involved an intermediary stage to 

reduce the frequency of AP state transformations, which can shorten an AP's service life. 

The authors also noted that the intermediary stage helps to prevent latency and energy 

overhead caused by frequently turning APs on and off. 

It has been suggested that servers could be periodically switched off [49, 50] or placed 

into sleep mode [51-53] in cloud computing systems to conserve energy resources. In 

[49-53], the authors examined the issue of the placement of virtual machines (VMs) to 

save resources concerning energy and yet retain QoS. When underutilised data centres 

are detected, all VMs are migrated to other active data centres, and these underutilised 

data centres are placed in sleep mode according to [51-53] or shutdown as per [49, 50]. 

This is intended to reduce the consumption of energy at cloud computing systems and 

is called ‘VM consolidation’. Numerous VM migration approaches have been suggested 

to assess which virtual machines can be migrated from overloaded data centres. 

Moreover, in order to satisfy the QoS specifications of the system, a switched-off data 

centre may also be activated to handle the migrated VMs. According to 

Mahadevamangalam [51], the energy demand for an idle data centre is as 70% of the 
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energy generated by a fully-utilized data centre. Thus, by switching off idle-mode data 

centres, up to 70% of the energy consumed can be saved in the cloud system. 

2.2.3 Comparison of the State-Of-The-Art 

Table 2.1 summarises the related research on computational offloading in fog 

computing systems, highlighting the architecture model such as IoT-Fog, which means 

that the local end-user tasks are either processed at IoT devices or offloaded to fog 

nodes. The table also mentions the use of fog cooperation, and the type of offloading 

threshold used to start offloading tasks from the primary fog nodes to their neighbours. 

Type of communication whether it is vertical or horizontal. The stated objectives of the 

work, e.g., delay, energy, throughput, and finally, the evaluation tools for both offline 

and online offloading decisions.  

It can be seen that when addressing the computational offloading problem, most 

research focused on offline deployment such as [9-11, 13, 14, 40-44]. However, online 

deployment of computational offloading receives less attention as in [4, 12, 39, 45, 46]. 

It is essential to investigate online computational offloading problems as it mimics the 

dynamics of real-world applications. 

In regard to the difference between the methodologies that applied in the literature to 

address offline and online offloading problems, we have noticed the following. In offline 

offloading problems, authors utilised optimisation techniques that have common 

characteristics. First, they require full knowledge of the systems’ parameters in order to 

make the offloading decisions. Furthermore, the decision-making process is made for 

batch of tasks all at the same time given full system information. Moreover, the 

proposed algorithms are based on optimisation techniques that iterate until 

convergence to an optimal solution, this iteration is a time consuming. The features 

required to run these algorithms make them suit the nature of the offline offloading 

problem. In more details, in [10] authors proposed an approach that combines  Genetic 

Algorithm (GA) and the Simulated Annealing (SA). Combining the two approaches can 

result in increased computational overhead as a result of combining the operations of 

both algorithms. Moreover, to ensure converges to an optimal or near-optimal solution, 
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more time is required. These features do not suit the nature of online scenarios where 

quick decisions are required.  

In [11], authors proposed a method based on Interior point method (IPM) to solve the 

optimisation problem. IPM is an iterative method and during each iteration, it solves a 

set of problems. The cost of computing this can be high, particularly for large-scale 

problems. Additionally, it starts with an initial feasible solution and iterates until 

convergence. A good starting point is not guaranteed, and it influences the final solution. 

Moreover, in real-time systems, there might not be enough time for the algorithm to 

iterate each time and finally converge to an optimal solution, especially if new 

data/tasks are arriving rapidly.  

In [40, 42], the optimisation problem is transformed as Quadratically Constraint 

Quadratic Programming (QCQP) problem and solved using existing solvers such as CVX 

program. QCQP is known as computationally intensive. This is problematic for online 

offloading where real-time or near-real-time solutions are often desired. Moreover, 

transforming the problem into QCQP and then solving it, requires full knowledge about 

system’s parameters. In more details, the coefficients of the quadratic and linear terms, 

which is part of the problem's objective and constraints, must be defined in advance. 

Solving a QCQP may be more difficult if the system's parameters are constantly changing 

or can only be observed in real-time. In such cases, transforming a problem into QCQP 

and then solving it, is not practical in online environment. additionally, QCQP problems, 

particularly non-convex ones, can be NP-hard. It may not always be feasible to solve 

them optimally within the time constraints due to the computing demands. 

Addition to that an optimisation problem in [43] is decoupled into four subproblems. 

Each of which is solved based on these approaches; closed-form solution, Interior point 

method, and dynamic programming. These proposed solutions are iterative and 

combining these together will increase the complexity of the proposed solution. 

Additionally, they require full knowledge of system parameters which in turn do not 

suite the nature of online offloading problems. The closed-form based solution is also 

adopted in [44]. Closed-form solutions are produced by deriving a thorough 
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comprehension of the whole problem space as well as knowledge of all the coefficients, 

constraints, and variables in advance. Also, it is known as computationally intensive 

approach. Closed-form solutions are deterministic and might not adapt well to the 

dynamic nature of offloading scenarios where conditions can change rapidly. 

Xiao and Krunz [13] proposed a solution based on distributed Alternating Direction 

Method of Multipliers (ADMM). The problem is divided into several sub-problems and 

solved accordingly. The proposed solution is based on finding the optimal solution that 

contains the amount of workload that can be processed locally at each fog node based 

on its local information. Then, the optimal solutions for all fog nodes are sent to the 

cloud to find the optimal coordination solution between fog nodes. ADMM in in its 

distributed form quite is complex and time-consuming. It requires knowledge about the 

global system in order to converge to an optimal solution. These features dop not suit 

the structure of online environment.  

Regard online offloading problem, the proposed solutions in the literature that address 

this problem is based on Heuristic and Algorithmic methods. In online environments 

with dynamic and unpredictable nature, it's essential to have solution methods that can 

deliver timely and efficient results. Heuristic and algorithmic methods inherent the 

following characteristics that meet the challenges of online offloading problems. One of 

these futures are being fast in producing good-enough solutions considering the current 

information that is available in the system. Furthermore, they can adjust the offloading 

decision based on changing conditions such as amount of workload and availability of 

computing devices. They can operate effectively with partial or imperfect information. 

Being flexible and provide robust solution.    

 In more details, the authors in [4], Al-Khafajiy et al proposed a solution based on 

Algorithmic methods. The reason for classifying their proposed solution based on 

Algorithmic methods is because the proposed solution contains a set of procedures. 

Each procedure follows a systematic process, and the process of the decision making 

follows specific conditions such as checking the queue size, service arrival rate, and 
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service rate. Furthermore, the behaviour of the proposed solution is deterministic given 

the current state.  

In terms of applying Heuristic-based methods, the works conducted by [45, 46] have 

proposed solutions based on this approach. In more details, in [45] the proposed 

approach is said to be a heuristic-based method because of the following reasons. First, 

the primary fog node makes decisions based on the current state of its queue. 

Moreover, the decision process is relatively straightforward. Additionally, applying a 

threshold to decide whether to add a task in its queue or not and then selecting a 

neighbouring fog node with the least waiting time plus propagation delay are both 

heuristic strategies. 

In [46], their proposed solution is said to be heuristic-based method because it appears 

to make an offloading decision based on constraints and thresholds. This behaviour is 

typical of heuristic approaches. Additionally, in their approach, instead of waiting for 

tasks to reach their completion time, it uses a predictive, rule-based strategy to 

determine resource requirements, and this is one of the characteristics of Heuristic 

methods. 

Moreover, when optimising delay and energy consumption in the literature, previous 

studies have focused on minimizing energy usage at IoT devices while neglecting energy 

consumption at the fog level [14, 43, 54]. Others have explored the trade-off between 

delay and energy consumption within fog systems [9, 12, 13]. 

In the case of optimising the energy consumption of fog/edge servers along with delay, 

most studies aim to balance delay and energy consumption by processing tasks on IoT 

devices, fog nodes, or cloud servers, depending on the quality-of-service requirements. 

However, there may be underutilized or idle fog nodes that could be turned off to save 

energy. This would enable them to reap the benefits of the fog architecture, such as 

processing more tasks at fog nodes and thereby reducing delay. To the best of our 

knowledge none of the previous studies have addressed both delay and energy 
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minimization simultaneously while implementing dynamic server energy management 

through the on/off switching of fog nodes in the fog system. 

Our approach primarily focuses on the online approach, which has not been explored in 

detail in previous literature. Fog computing aims to deploy computational resources in 

close proximity to end-users to reduce delay. Users send their requests to the nearest 

fog node, but if it is overwhelmed, current methods offload some of the work to the 

cloud for processing. However, other underloaded fog nodes in the vicinity could also 

help to process the workload and further reduce delay. This concept is known as "fog 

cooperation," but it has received limited attention in the literature [12, 13, 45, 46]. In 

this context, we exploit the concept of cooperation between fog nodes in online 

dynamic system. This is to minimise the average delay in the system.  

In addition to that and in order to conserve energy resources in a dynamic fog system 

we propose the use of switching on/off fog nodes, which has not been considered in the 

fog/edge computing systems.  

Additionally, none of the existing fog computing models have studied the impact of 

varying the offloading threshold on system performance, highlighting the need for 

further research in this area. In addition, to the best of the authors' knowledge, no 

literature has addressed the dynamic offloading threshold that increases and decreases 

based on the status of the primary fog nodes and all their neighbours. 

In summary, online computational offloading, and resource management in relation to 

energy conservation in dynamic fog systems have received limited attention so far. As a 

result, this sheds light on the importance of examining these aspects at the same time. 
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Table 2.1: Computational Offloading State-Of-Art Comparison. 
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2.3 Computational offloading and Resource 

management in stochastic fog computing 

system 

Computing offloading and resource management are two of the main mechanisms of 

fog computing. This is because they help to overcome resource restrictions at fog 

devices. They also enhance scalability and flexibility, ensure efficient use of computing 

resources, and therefore enhance system performance and reliability. Having a 

stochastic environment where the elements of the system are random and not known 

in advance including the arrival of computational tasks, the state of the available 

bandwidth, and the available computational resources, makes it difficult to ensure the 

effectiveness of computational offloading and resource management in such an 

unstable environment [28].  

In uncertain dynamic systems, several works addressed the computational offloading 

problem along with resource management to maximise the efficiency of the network 

resources and satisfy the QoS requirements in this regard, we conduct a comprehensive 

literature review that discusses the computational offloading problem and resource 

management in stochastic fog systems. Authors in this field mostly utilised one or both 

of the following two techniques to help solve such a problem: namely Lyapunov 

Optimisation technique and Reinforcement/Deep Reinforcement Learning. Based on 

the applied methodologies, relevant works are classified into the following. Works that 

applied Lyapunov Optimisation theory only, works that utilized Reinforcement and Deep 

reinforcement learning, and finally works that combined the two techniques. Following 

then, a state-of-the-art comparison of these works is provided. 

A summary of all the stated related works is shown in table 2.2. Table 2.2 of the related 

works presents the main objectives, the type of resource management involved when 

addressing the computational offloading problem, the issue of cooperation among 

edge/fog servers to allocate the proper computational resources and share workload, 



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 2: Literature review and Background 

 

  

-31- 

where tasks are processed, the heterogeneity of tasks in terms of types and deadlines, 

whether priority-aware scheduling is considered, and finally the proposed approach 

used to solve the considered problem.   

When addressing computational offloading and resource management in a stochastic 

fog system, several works have examined solutions based on Lyapunov Optimisation 

theory, including [15-24, 55]. In [15], the authors addressed the optimisation problem 

that aims at minimising the time average energy consumption caused by executing tasks 

on local mobile devices while imposing constraints regarding energy budget and over-

exploiting the resources of other mobile devices that might affect users' collaborations. 

In a stochastic environment, where the current available connections between devices 

and computation resources are unpredictable due to users’ mobility, the authors 

proposed an online task offloading algorithm based on Lyapunov theory that helps the 

network operator (e.g. base stations) to make the offloading decision for all users based 

on the current global network information. The proposed algorithm allows end users to 

share communication (bandwidth) and computation resources. As compared to local 

execution on mobile devices, around 40% of the energy is saved.    

The authors of [16], proposed a green computing framework for IoT-Edge-Cloud 

queueing computing systems, aiming to minimize energy consumption at edge and 

cloud servers while meeting user deadlines. In a stochastic environment, where task 

arrival is unknown in advance, the authors discuss the optimal allocation of tasks 

between local edge nodes, neighbouring edge nodes and the cloud. Their developed 

algorithm is named delay-based workload allocation (DBWA) which is based on 

Lyapunov drift-plus-penalty theory. In a scenario of three IoT regions and three edge 

nodes and one cloud, their numerical results demonstrated the superiority of the 

proposed algorithm over benchmark schemes, which are cloud-only and edge-only 

systems, in terms of achieving minimum energy consumption and meeting deadline 

constraints. The scalability issue is such a concern in their work, as they tested their 

proposed solution with only having three edge nodes in the system. Furthermore, the 

selection process of the best neighbour was not clearly handled in their work. 
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In the IoT Fog computing system, Chang et al [17] studied dynamic allocation of 

computational and radio resources and computation offloading. The problem has been 

formulated as an optimisation problem. It considered both the allocation of resources 

and finding the optimal offloading strategy. This was aimed at minimising the system 

cost which consists of the total energy consumption of mobile devices and overall 

latency. The offloading decision involved either processing tasks locally on mobile 

devices or offloading them to fog nodes. To solve the optimisation problem, the authors 

decomposed the main problem into several subproblems that are addressed in each 

time step. They proposed a dynamic algorithm based on Lyapunov optimization to solve 

it. As a result of the results, the proposed scheme outperforms other approaches.  

A study by Chen et al [18] examined peer offloading among MEC-enabled small-cell base 

stations (SBSs) in an edge environment. Based on energy budgets and deadline 

constraints, the optimisation problem is aimed at minimizing time average delays. An 

online algorithm based on Lyapunov theory is proposed. This algorithm does not require 

prediction of the future. Compared to other benchmarks that consider no peer 

offloading and only minimising delay, their results demonstrated that their developed 

algorithm shows high system performance without violating the energy budget 

constraint of SBSs.  

In [19], the authors developed an online energy-efficient computation offloading 

framework based on Lyapunov optimisation theory to solve the stochastic optimisation 

problem. Under CPU-cycle frequency constraints of the mobile device and fog devices 

and transmission power constraints, the system aims to minimize time-averaged energy 

consumption while maintaining system network stability. In their framework, the 

processing of computation tasks is done either at the mobile terminal or are offloaded 

to its associated fog device that called helper through device-to-device communication 

technology or offloaded them through cellular network to a single edge server that is 

assumed to have enough computing capacity to process all the upcoming tasks. 

Compared with MEC, where all tasks are processed at the edge servers, their proposed 

scheme shows its effectiveness.  
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In [20], Ni et al minimised the overall latency of all mobile devices while keeping the 

energy usage of the mobile devices to a minimum given deadline and long-term energy 

consumption constraints. They have developed an online framework based on Lyapunov 

optimization theory. This allows them to design a control algorithm that jointly 

optimises task offloading and data caching considering only current system information. 

Compared to other benchmarks, the proposed scheme effectively reduces latency and 

maintains long-term energy consumption.  

The problem of task offloading has been addressed along with service cashing in MEC-

enabled dense cellular networks, aiming to minimise overall latency given the constraint 

of long-term energy consumption in stochastic systems [21]. The developed online 

algorithm, called OREO (Online service caching for mobile edge computing) which is 

based on Lyapunov optimization and Gibbs sampling that integrates edge server 

cooperation. Their proposed solution optimizes task offloading and dynamic service 

caching simultaneously. Simulation results show the effectiveness of the proposed 

scheme.  

In an edge system consisting of one mobile device and one edge server, Zhang et al [22] 

conducted a study to investigate the trade-off between execution latency and energy 

consumption on the mobile device side. The authors proposed an online dynamic 

scheduling algorithm to solve the stochastic optimisation problem that aims to minimise 

energy consumption and delay under queue stability and battery level constraints. The 

algorithm proposed is based on the Lyapunov optimisation approach. The execution of 

tasks is done either locally on the mobile device or offloaded to the edge server. The 

authors stated that compared to other offloading schemes, the proposed scheme 

achieves the best results. However, based on their work, the scalability has not been 

investigated to prove the efficacy of their approach.  

The problem of energy efficiency and delay trade-off is addressed in wireless powered 

mobile-edge computing (MEC) systems with multi-access schemes by Mao et al [23]. 

The problem has been formulated as a stochastic optimisation problem under the 

constraints of queue stability, maximum energy consumption, maximum 
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communication, and computational resources. They have developed a Lyapunov 

optimization-based algorithm for joint computation offloading and resource allocation 

for multiple access schemes known as Time-Division Multiple Access and Frequency-

Division Multiple Access. Simulation results demonstrate the trade-off between energy 

efficiency and delay. Additionally, their proposed scheme outperforms the results of the 

equal bandwidth allocation scheme. 

Hazra et al [24] proposed an Energy-Efficient Task Offloading algorithm (EETO) based on 

the Lyapunov Optimisation technique. The authors aim to minimise the expected time-

average energy consumption for each task considering the energy for uploading, 

processing, and downloading. The authors developed an optimal scheduling policy that 

considers the priority of tasks and the most efficient offloading decision that ensures 

minimum energy consumption in a stochastic fog system. The priority of tasks is 

evaluated upon arrival of these tasks at gateways by assigning them to proper queues. 

Then gateways make the optimal offloading decision on where to process them, locally 

at IoT device, fog devices or cloud servers. Their proposed scheme reduces energy 

consumption in the system by around 23.79% compared to a set of baselines. While 

their proposed scheme offers several advantages, it also has one notable disadvantage. 

All gateways make the optimal offloading decision simultaneously at the beginning of 

each time slot. This imposes a challenge in a stochastic fog system, as when making the 

decision based on the current information and status of the system, a single fog device 

that ensures the minimum energy consumption might be selected by all gateways to 

process tasks. As a result, QoS requirements considered in their work will be violated. 

This will result in exceeding the allowed waiting time threshold in queues and dropping 

tasks because their deadlines cannot be met. Further, the selected fog device does not 

possess sufficient computing and/or energy resources to process all the offloaded tasks.  

Wang et al [55] aimed at minimising the long-term energy consumption of edge servers 

by developing an offloading strategy based on Lyapunov optimisation and a sleep 

control scheme. Their suggested strategy is based on the concept of putting edge servers 

in a sleeping cycle if the workload in their queues is below a threshold. Following that 
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Lyapunov optimisation is applied to determine the optimal offloading strategy. The 

authors stated that their proposed scheme saves more than 30% of total energy 

consumption compared to when no cooperation is involved, and no sleeping controller 

is included. Although the proposed scheme may have some potential benefits, there are 

also some concerns to consider, including: making a decision about sleep control. In 

more detail, a single edge server enters a sleeping cycle considering only its status and 

ignoring the status of all the neighbouring edge servers. This will lead to an outcome 

that violates QoS requirements and system stability. This will be noted if the system is 

extremely congested, and one edge server goes into a sleeping mode without helping in 

the process of the workload in other neighbours. Additionally, in a situation where all 

edge servers have workloads that are slightly below the sleeping threshold, all edge 

servers will enter a sleeping cycle. Therefore, no processing will occur.  

In regard to the concept of Reinforcement/ Deep Reinforcement Learning, it has 

proven its effectiveness in dealing with uncertain dynamic environments, and it has 

been applied in a number of studies, including [25-32]. A study of industrial fog 

computing, where device-to-device offloading is used, by Wang et al [25] sought to 

minimise system cost which reflects the trade-off between energy consumption at 

mobile devices and service delay. In their work, reinforcement learning was exploited to 

dynamically make offloading decisions in each time slot. Their proposed scheme takes 

into consideration resource constraints, vehicle mobility, and offloading requirements. 

The authors developed two algorithms based on RL, namely the dynamic RL scheduling 

algorithm and deep dynamic scheduling to find the optimal offloading strategy. 

Comparing their proposed scheme to other benchmarks, their results show the 

effectiveness of their proposed algorithm in regard to total energy consumption and 

service delay.  

A new paradigm was presented in [26], which combine digital twin networks with 

industrial Internet of Things (IIoT) in order to model network topology and mapping 

between physical entities and digital systems based on digital twin networks. With the 

aim to minimise the network efficiency which is the ratio of the long-term energy 
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consumption caused by local execution and transmission of tasks to the corresponding 

long-term total executed tasks, the authors formulated the optimisation problem that 

addressed the stochastic offloading and resource allocation problems under the 

constraints of bandwidth allocation, transmission energy and computational resources. 

Using deep reinforcement learning (DRL), the proposed solution optimizes offloading 

decisions based on the current system states which include available computing 

resources, maximum transmission power, and bandwidth. Comparing the proposed 

algorithm with other benchmarks, their results demonstrate its effectiveness.   

Li et al. [27] investigated cooperative MEC servers in an uncertain environment caused 

by vehicle mobility in dynamic MEC-enabled vehicular networks. The authors intend to 

reduce the service costs, which are represented by service delays and service failure 

penalties. The authors proposed a location-aware task offloading and computing 

strategy based on deep reinforcement learning to find the optimal offloading strategy. 

In their work, a neighbouring edge server that provides the least computing delay is a 

suitable candidate to help overloaded edge servers. As compared to other benchmarks, 

their results demonstrated that the proposed scheme achieves the lowest service cost 

in comparison with others.  

In heterogeneous vehicular networks, Ke et al [28] addressed the computational 

offloading problem in MEC system and explored its efficiency in uncertain environment 

caused by unstable wireless channel and the availability of bandwidth. The authors 

aimed to reduce the total system cost which considers the trade-off between energy 

consumption of mobile devices, bandwidth allocation and transmission delay with 

continuous action space. An adaptive offloading method using deep reinforcement 

learning is proposed to determine whether the task should be processed locally at the 

vehicle or offloaded to the edge. 

In a vehicular edge computing environment, Zhan et al [29] investigated the 

computational offloading problem aiming to minimise the system cost which is the 

trade-off between system delay and energy consumed by locally processing tasks at 

vehicle terminals and transmitting them. The authors model the stochastic optimisation 
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problem as a Markov decision process (MDP) and then use deep reinforcement learning 

to solve it. The developed algorithm helps to find the optimal offloading scheduling 

policy that defines where and when to schedule and process each task. Compared to 

other baseline algorithms, their simulation results show the effectiveness of their 

introduced scheme.  

In green industrial fog networks, service provisioning has been studied by Hazra et al 

[30]. In their work, Hazra et al analyse the optimization of energy and delay in 

conjunction with a weighting factor. Their proposed approach is a two-step scheme, 

consisting of task partitioning and intelligent service provisioning. In the task partitioning 

strategy, a large set of data is divided into a sequence of subtasks. To accomplish 

distributed workload optimization among computing devices, such as local IIoT, master 

fog nodes, near fog nodes, and cloud servers, an intelligent service provisioning model 

is built based on a DRL approach called Deep-Q Network (DQN). Simulation results 

demonstrate that the proposed framework minimises total energy consumption and 

delay by around 24.5% and 16.3% respectively compared to a set of benchmarks. 

Chen et al [31] addressed the problem of stochastic computational offloading in a sliced 

radio access network (RAN). The problem is transformed into a Markov decision process 

(MDP) with the objective of minimizing the system's long-term utility. The system utility 

includes task execution delay, task queueing delay, task dropping, the penalty of 

execution failure, and the payment of accessing services in edge servers. The authors 

proposed an online deep state-action-reward-state-action-based reinforcement 

learning algorithm (Deep-SARL) that combines the use of the Q-function and double 

DQN. According to the results of simulations, the proposed framework is superior to 

existing offloading algorithms from a system utility perspective. 

Yan et al [32] focuses on minimizing the weighted sum of task execution time and energy 

consumption of mobile devices in edge computing systems. To achieve this goal, the 

problem is formulated as a mixed integer optimization problem with the aim to optimise 

joint computational offloading and computation resource allocation. As part of the 

proposed solution, deep neural networks (DNNs) are used to learn from experiences 
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and improve offloading policies. In addition to that the offloading actions in DRL are 

based on a novel method called Gaussian noise-added order-preserving quantization. 

Additionally, a heuristic approach named the one-climb policy is developed to speed up 

the learning process in DRL. Based on their simulation results, the proposed scheme 

achieves near-optimal results. 

Moreover, few studies have considered applying solutions based on the combination 

of Lyapunov optimization and Reinforcement/Deep Reinforcement learning in 

stochastic environments, as in [33, 34] in order to address these problems. 

In a 5G-based smart city, Xu et al [33] developed a cloud-edge-terminal model for the 

joint optimization problem of communication and computational resources under 

energy consumption constraints to minimise overall processing delay. The authors first 

formulated the problem as an online optimisation problem and proposed Lyapunov 

optimisation with drift plus penalty to solve it. The framework of Lyapunov optimisation 

theory is exploited to design virtual energy queues in mobile devices and edge servers 

to monitor the status of energy consumption. Additionally, applying Lyapunov 

optimisation helps to decompose the long-term optimisation problem into two sub-

problems called task offloading and task migration. The task offloading problem is 

formulated as a MDP and solved using Q-learning in order to determine where the task 

should be processed locally at smart mobile devices, on edge nodes, or on cloud servers. 

Additionally, the task migration problem is solved based on the proposed Lagrange-

based migration algorithm. In this method, heavy-loaded edge nodes migrate their 

workload to under-loaded edge nodes. This is done to balance workload and improve 

resource utilisation. Their results reflect the efficiency of the proposed algorithm as 

compared to other approaches.  

Bae et al [34] developed a reinforcement learning approach to Lyapunov optimization 

to minimise the time-average penalty cost of energy consumption while maintaining 

queue stability in the system. The problem is transformed into MDP and solved based 

on the proposed scheme. In their proposed scheme, the reward function is created by 

taking into account the dynamic and penal functions that take into account the cost of 
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energy consumption in edge servers and the transition from the edge to the cloud along 

with the queue stability based on a one-step difference. The proposed scheme helps to 

find the optimal task offloading between edge nodes and the cloud server when the 

arrival process of computation tasks is random. The authors stated that the efficiency of 

their formulated reinforcement learning approach to Lyapunov optimisation is 

attributed to the effective design of the reward function and the state and action spaces. 

Applying a different scheme than Lyapunov theory and DRL, Zhang et al [35] investigated 

the problem of minimising delay in uncertain fog enabled IoT-eHealth networks where 

the movement of IoT-eHealth devices is random. In order to accomplish the stated 

objective, the authors propose a multi-stage stochastic programming approach that 

considers offloading decisions, resource allocation, and task migration between fog 

servers. In their work, the process of offloading consists of several stages that are carried 

out sequentially, the first stage starts when an eHealth device decides whether to 

offload its workload or not to the nearest fog server. This is based on its maximum 

energy consumption threshold. In the second stage, the fog server decides how much 

of its computational resources should be given and how much of workload can be 

processed. Finally, the associated fog server makes the task migration decision to a 

neighbouring fog node after processing the workload. This decision is made to return 

the processed workload to the eHealth mobile device based on its location. Compared 

to other baselines, their work achieves the least delay.  

2.3.1 Comparison of the State-Of-The-Art 

In table 2.2, an overview of all the cited relevant works is shown. It can be seen that 

when addressing the problem of stochastic computational offloading, previous works 

used techniques such as Reinforcement Learning (RL), Deep Reinforcement Learning 

(DRL), and Lyapunov over other Artificial Intelligence techniques such as Deep Learning 

(DL). The reason for that is attributed to the structure of these techniques that suits the 

features of stochastic environments and the problem of computational offloading. In 

more details, in stochastic environments where the input data such as the arrival of tasks 

is not known in advance, we don’t have labelled datasets. RL and DRL do not require 
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labelled datasets as the agents are learning through the interaction with their 

environment. However, techniques such as DL requires labelled datasets for training 

which is challenging to have in a stochastic setting.  

Additionally, the problem of computational offloading in stochastic environment, 

involves making a series of decisions that influence future states and rewards. So, the 

aim is to optimise a sequence of decisions over time. This can be accomplished through 

the use of RL/DRL as the learning agent will not only focus on maximising its current 

reward but also its future rewards. In DL, agent takes action based on the current inputs 

without taking into consideration the influence of this action in the future states.  

Furthermore, based on the structure of these techniques, RL/DRL are better suited to 

scenarios in which an agent interacts with its environment, updates its learning policy, 

and make decisions over time to accomplish a goal. Examples of such environments 

include training a robot, playing a game, and learning to drive autonomous vehicles. This 

is different in DL, DL performs better in tasks that involve classification, pattern 

recognition, and prediction based on large datasets. This well-suited to environments 

such as Medical Imaging to help Identifying tumours, Image Classification, and Speech 

Recognition. In our environment, the agent needs to learn about its environment to 

make the optimal or near-optimal offloading decisions, which makes the use of RL more 

suitable. 

After analysing related research studies concerning computational offloading and 

resource management in stochastic fog systems, several limitations were identified. It 

was determined that no scheme had addressed the optimization problem of energy 

consumption, delay, and security simultaneously. While various schemes deal with 

individual aspects of these challenges, such as energy efficiency and delay, a 

comprehensive approach that engages all three factors has yet to be developed [15-35, 

55]. 

Moreover, research on computational offloading and resource management in 

stochastic fog systems has increasingly focused on resource allocation rather than 



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 2: Literature review and Background 

 

  

-41- 

resource provisioning in regard to server energy management [15-35]. While allocating 

resources for tasks is a crucial component of the decision-making process associated 

with computational offloading problems, resource optimization is also critical, especially 

in resource-constrained environments such as fog systems that can help conserve 

energy. In stochastic fog systems, both resource allocation and resource optimization 

are crucial factors to consider when dealing with computational offloading problems, as 

they can have a substantial impact on the system's performance. 

Another important aspect that needs to be investigated in stochastic computing systems 

is the cooperation between fog/edge devices, where multiple devices work together to 

process workloads efficiently. While several studies have examined the benefits of such 

cooperation, it could negatively affect overall system performance. This is especially 

true when it comes to selecting the most suitable candidate to process a given workload 

in stochastic systems. Due to the inherent randomness and variability of the system, the 

main challenge is determining which server will provide the most effective and efficient 

processing [16, 18, 21, 27, 30, 33, 35, 55].  

Cooperation in stochastic systems has previously been investigated by selecting the 

most suitable neighbouring fog/edge device in a distributed or centralized manner. 

However, some studies have resulted in multiple fog/edge devices selecting the same 

neighbour, violating QoS requirements in the system [16, 21, 33]. In other studies, a 

cooperative centralized approach was used by local controllers, but the details of how 

the framework operated were not provided [18, 27, 35, 55]. In one study, IoT devices 

sent their tasks to a master fog node, which was aware of the status of all traditional fog 

nodes and assigned workloads to the proper fog node for processing [30]. Future 

research efforts should focus on proposing an appropriate approach that addresses the 

limitations encountered when cooperation is considered in stochastic systems.  

Prior research has mostly disregarded two crucial factors, namely priority scheduling 

and heterogeneous task characteristics, except for one study [24]. Considering these 

two factors can significantly influence the performance of stochastic fog systems as they 

closely resemble real-world scenarios. Although earlier research has made significant 
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contributions to energy optimization and delay reduction, their methods may not be 

adequate for the distinctive requirements of stochastic fog systems. Hence, further 

exploration is necessary to address these challenges and improve the performance of 

fog systems. 

To tackle all mentioned challenges, we propose a new approach, named Joint Q-learning 

and Lyapunov Optimisation (JQLLO) algorithm, which employs Reinforcement Learning 

and Lyapunov theory.  
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Table 2.2: Computational offloading and Resource management in stochastic fog computing system State-Of-Art Comparison. 
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Guo et al [16]   • Edge nodes 
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     • Local edge node 
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Chang  et al [17]   • Mobile devices       • Locally at mobile device 
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Chen et al [18]   
Edge servers  

      
• local server 

• neighbouring server    

Qingmin  et al 
[19]   Mobile devices      

• Mobile device 

• Fog device (helper) 

• Edge device  

  

Ni et al [20]   Mobile device      • mobile device 

• local edge server 
  

Xu et al [21]   
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• remote cloud server 
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Mao et al [23]   
End user devices & 
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Xu et al [33]   

Smart mobile devices 

Edge nodes  
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Bae et al [34]   Edge node      
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• Cloud node   

Zhang et al [35]         
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approach 
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2.4 Background on Reinforcement Learning 

(RL), Q-learning algorithm, and related 

works on Cooperative Q-learning 

This section describes the main components of RL and Q-learning. Additionally, previous 

studies that considered cooperative Q-learning are analysed.  

2.4.1 Reinforcement Learning (RL) 

Reinforcement learning (RL) refers to a technique in machine learning that trains agents 

to behave according to the information they obtain from their environment. The basic 

goal of RL is to identify an optimum strategy that maximises cumulative rewards over 

time. RL algorithms accomplish this objective by interacting with their environment, and 

depending on their actions they obtain feedback as rewards or punishments. Then using 

this input to enhance their decision-making process [56]. Numerous applications, such 

as natural language processing, control systems, and robotics, have made extensive use 

of RL.  

In uncertain and dynamic environments, RL has been applied as a solution to many 

resource-allocation and management problems and has proven its efficiency compared 

to other traditional approaches [57, 58]. RL problems with finite state spaces can be 

solved by three main approaches: Dynamic Programming (DP), Monte Carlo method 

(MC), and temporal-difference learning (TD) [59, 60].  

DP, MC, and TD are three main methodologies in the field of reinforcement learning 

[61]. A DP is a technique for addressing optimization problems in a recursive manner by 

decomposing them down into smaller subproblems, in order to recursively solve them. 

DP requires a comprehensive understanding of the environment, including transition 

probabilities and rewards [62]. MC can be considered a model-free learning method in 

which value functions are estimated by sampling interactions with the surrounding 

environment. MC can be applied in applications where there is no need for knowledge 
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about the environment and learning occurs from experience [62]. A TD is a model-free 

learning technique. Its value function is updated based on the difference between the 

current estimation and the previous estimation [62]. 

Since we are dealing with a stochastic environment where the transmission probability 

from one current state to another is not known in advance for the learning agent, we 

adopt the TD method and more specifically a model-free reinforcement learning 

algorithm called Q-learning [63-65]. The reason for selecting TD over DP is that the 

former does not require prior knowledge about the environment, e.g., a model, agent’s 

reward, and next state probability distribution [59, 66]. In stochastic environments, this 

information is not provided beforehand. Also, comparing TD to MC, in MC, the agent 

only gains knowledge after completing an entire episode, while in TD, the agent gains 

knowledge after each time step [59, 66]; which speeds up the learning process and the 

agent in TD learning learns more and faster compared to the agent in MC method. In 

conclusion, TD combines DP and MC [59]. Similar to DP in the sense that the agent learns 

about its environment at every step and updates its policy accordingly. This is without 

having to wait for an entire episode to end [59]. In addition, the learning agent in the TD 

approach can learn from repeated experiences, similarly to MC, without needing to have 

a model of the environment [59]. 

2.4.1.1 Elements of Reinforcement Learning 

The main elements of RL are agent, model of the environment, policy, a reward signal, 

and a value function [59].  

• In RL, agents are learning/intelligent entities that have the capability of 

observing their environment and making decisions based on the observations 

they have made.  

• A model of an environment is a model that mimics the properties of the 

environment that the agent needs to learn about in order to function effectively. 

The learning agent interacts with the environment which provides a state. The 

agent observes the state and then depending on its policy, the agent selects an 
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action. Following that and based on the selected action, the agent receives a 

reward, and a new state is encountered. Again, based on the received reward 

and the evolved state, the agent updates its policy and chooses an action. The 

process is continuous until the number of trainings is reached. The agent will 

learn based on trial and error in accordance with the received feedback from its 

performed actions.  

• The policy represents how the agent’s learning evolves, and it maps from a set 

of states to its most effective actions. The goal of reinforcement learning is 

determined by a reward signal that defines the goal of the problem.  

• Reward signal: The agent seeks to maximise its total long-term rewards, and 

rewards determine how successful the previously performed actions of the 

learning agent were in a previous state.  

• Value function: Rewards only shows how good or bad the action performed by 

the learning agent in the state; however, the value function not only determines 

how good the performed action was in the previous state but also how good it is 

in the upcoming states that could be encountered by the learning agent in the 

future. 

The agent-environment interaction in RL is shown in Figure 2.1. If this is the first 

encounter between the learning agent and its environment, the learning agent observes 

the current state, s(t), and based on its policy, the agent will perform an action a(t). 

Following that, the agent will receive a reward from its environment based on how 

efficient its actions were during the previous time step. After receiving the reward and 

observing the new state, the agent will update its policy, and then will make an action 

according to its policy. The process is repeated until the agent develops its policy that 

helps the agent to perform its most effective actions in its environment at any 

encountered state. 
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2.4.1.2 Markov decision process (MDP) 

To solve an optimised problem using RL, first the problem is transformed into MDP, 

which is a mathematical scheme used to design the decision-making process in the RL 

problem. In this context, MDP is used to describe an environment for reinforcement 

learning. An environment defined by MDP is denoted by < 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 > [66, 67], where 

𝑆 determines the set of states a learning agent observes when interacting with the 

environment, 𝐴 is a set of actions available for the learning agent, 𝑃 is represented as 𝑃 

(𝑠, 𝑎, 𝑠’) which is the probability distribution from the current state (𝑠) to next state 

(𝑠’) after performing an action 𝑎 which belongs to a set of actions 𝐴. 𝑅 is the received 

reward after performing an action 𝑎 by the learning agent. 𝛾 is a discount factor with a 

value between zero and one, and it shows the importance of future rewards compared 

to the current reward, if  𝛾 = 0, this means that the learning agent only concerns about 

maximising its current reward and when 𝛾 = 1, the agent only focuses on its future 

rewards.  

In our environment, the probability distribution from the current state to the next state 

is not constant and it changes over time due to the dynamics in the system. This is called 

a non-stationary environment [68]. A non-stationary environment can be defined as a 

system in which the underlying properties, dynamics, or parameters are not constant 

over time. This type of environment poses a challenge for traditional RL techniques. This 

Figure 2.1: Environment-agent interaction in Reinforcement 
Learning. 
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is because RL approaches are designed to operate in stationary environments where the 

underlying distributions and relationships remain constant. Applying RL approaches will 

help to find the optimal decisions in a stationary environment, however, in non-

stationary environments, RL approaches can lead to sub-optimal decisions [68]. In this 

manner we design an algorithm to complement the RL approach so that it performs well 

in such non-stationary environments. 

2.4.2 Q-learning  

Q-learning is a model-free reinforcement learning technique and TD control algorithm 

that known as off-policy [66]. As the name implies, Q-learning does not require the use 

of a model to train a learning agent, nor does it apply the transition probability 

associated with MDP for transforming from one state to another.  The definition of "off 

policy" requires an understanding of the difference between the behaviour policy and 

the update policy, because the two policies are involved in the process. The behaviour 

policy tells the agent how to act in a given situation. Based on a greedy algorithm, the 

agent will act randomly or select an action with the highest Q value in the state-action 

pair. In the update policy, the Q-value for the state-action pair is updated not only 

considering the current action taken, but also considering the expected suitable action 

in the next observed state [66]. In off-policy, the behaviour policy and update policy are 

different whereas they are the same in on-policy approach [66].  

The following terms should be defined when solving an optimisation problem with Q-

learning.                                                                                                                                                                                                                                                                                                                             

2.4.2.1 State Space: 

The state space in Q-learning describes the collection of all potential states that the 

agent may experience in the environment [59]. Depending on the characteristics of the 

surrounding environment, the state space may be discrete or continuous. It plays a vital 

role in measuring the success of Q-learning in addressing reinforcement learning 

problems. 
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2.4.2.2 Action Space: 

In Q-learning, the action space is the collection of all potential actions the agent may 

perform depending on the environment state [59]. Depending on the characteristics of 

the surrounding environment, the action space may be discrete or continuous. In order 

to find the optimal action-value function, the Q-learning method is used to map each 

state-action combination to a value that represents the projected reward that will result 

from a particular action taken from a particular state. 

2.4.2.3 Epsilon-greedy strategy: 

For the agent to select the optimal action in each state, the agent should first gain 

knowledge of its environment. As part of its analysis of the environment, the agent must 

take random actions in the current state and observe the reward and subsequent state. 

By doing so, it will be able to gain a better understanding of it. This is called exploration 

[59]. However, if the agent always explores the environment by taking random actions, 

the agent will not get the benefit of its previous knowledge of the environment. 

Therefore, the agent will not exploit what he has learnt, and this is called exploitation. 

Also, if the agent always relies on the knowledge he built and for each given state the 

agent selects the action with the highest Q-value, the agent will easily become stuck at 

a local optimum due to being trapped in a limited search area. In this manner, the 

learning agent should be capable of recognizing when to explore its environment and 

when to exploit it. In this context, several algorithms have been proposed to address the 

trade-off between the terms exploration and exploitation, and Epsilon-greedy is one of 

them [66]. 

At the beginning of the learning process, the learning agent has zero knowledge about 

the environment, and as the agent is interacting with its environment it builds its 

knowledge and its experience which help the agent to know its environment and act in 

an optimal manner. In the Epsilon-greedy strategy, we define a parameter called epsilon 

(𝜀)  which determines the agent’s action in each state. To put it another way, the agent 

will explore its environment by performing randomly, or exploit the knowledge it gains 
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about its environment by selecting an action with the highest Q value based on the 

epsilon value. This is shown in the following equation.  

𝐴𝑐𝑡𝑖𝑜𝑛 𝑎 (𝑡) = {
max Q (𝑠, 𝑎)                      𝑏 > 𝜀

 
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

At the beginning of the training, the epsilon value is set to one, and the agent at the 

beginning of each state, generates a random number (𝑏) between zero and one. If the 

generated number is higher than the epsilon value, then the agent will take the action 

that has the highest Q-value stored in the Q-table for the observed state. Otherwise, the 

agent will choose any action randomly. 

As Epsilon has a value of one, the agent will always choose random actions and observe 

the reward. At the end of each episode, the epsilon value decreases slightly. The epsilon 

keeps minimising each time as the agent learns about its environment until reaching a 

threshold value (e.g., 0.01).  

2.4.2.4 Reward Function: 

After taking an action in a particular state, the learning agent in Q-learning will receive 

a reward. The reward will determine how good or bad the performed action for the 

encountered state. In defining the reward function, it should be connected to the 

objective function [69, 70]. In RL, the learner aims to maximise the received reward.  

                 Shaped Reward Function 

To deal with non-stationary environments where state transition distributions is 

changing over time, a deterministic reward function may not help the learning agent 

know its environment, instead the agent will keep adjusting its policy, which makes the 

learning process difficult. Reward shaping helps to guide the learning agent during the 

learning process by incorporating the dynamic nature of its environment into its reward 

[71, 72]. Moreover, it is stated that a shaped reward function speeds up the learning 

process [73]. In recent works [74, 75], shaped reward functions have been considered 
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for non-stationary environments It is also stated that reward shaping can be formulated 

as a weight that is adjusted during the learning process. This weight considers the 

original reward and the punishment/penalty if the state space and action space are 

limited [76].   

2.4.2.5 Q-table  

One of the main components in Q-learning is the Q-table [59]. Q-table contains the Q-

values of the encountered pairs of states and actions, which are determined based on 

the received reward and discount factor of estimated received reward. It has the size of 

𝑆𝑋𝐴. The Q-values of all state-action pairs are zero at the beginning of the system. An 

example of the Q-table is shown in table 2.3, which stores the Q value for the state-

action pair, and it is updated after taking each action. 

 

Table 2.3: Initial Q-table with zero Q-values 

 

2.4.2.6 Updating Q-table  

At the beginning of the learning process, the Q-table initialised with zero Q-values as in 

table 2.3. After taking each action, the table is updated with the Q value associated to 

the (𝑠, 𝑎) pair.  

For a given state (s) after taking an action (a), observing the reward (r) and the 

following/transitioned/new state (s’), the Q-value for the pair state-action is updated in 

the Q-table following bellman equation below [59]. 

 States  

  <5,0,0,0,0,0,0> <4,1,0,0,0,0,0> <0,0,5,0,0,0,0> ……. <3,1,0,0,0,0,1> 

A
ct

io
n

s 

0 0 0 0 0 0 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 
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 𝑄𝑛𝑒𝑤(𝑠, 𝑎) =  𝑄𝑜𝑙𝑑(𝑠, 𝑎) +  𝛼 [ 𝑟 +  𝛾 𝑚𝑎𝑥𝑎′  𝑄( 𝑠
′, 𝑎′) − 𝑄𝑜𝑙𝑑(𝑠, 𝑎) ] (2.1) 

In the above equation, 𝑄𝑛𝑒𝑤(𝑠, 𝑎) is the new Q-value that we are calculating and 

𝑄𝑜𝑙𝑑(𝑠, 𝑎) refers to the stored Q-value in the Q-table for the pair state-action. Learning 

rate 𝜶 is a parameter between the value one and zero. If it is zero it means that the 

agent will not update the Q-value for the state-action pair, hence no learning is 

occurring. If it is set higher, e.g., 0.9, it means that the agent is learning and updating its 

Q-value considering the new received reward along with the expected maximum reward 

in the following state (s+1). Parameter 𝜸 is the discount factor and it is value is between 

zero and one, it measures how important do we find future rewards versus immediate 

reward, it is usually set high, e.g., 0.90, this is to help the agent to select the best action 

in the current state that will not only consider maximising its current reward but also 

maximising the upcoming rewards. 𝑚𝑎𝑥𝑎′  𝑄( 𝑠
′, 𝑎′) is the maximum Q-value that can 

be achieved in the next state (s’) by selecting its best action a’. 

2.4.3 Cooperative Q-learning (CQL) algorithm 

In a multi-agent learning system, there are many agents interacting and learning 

individually about their environment to achieve a common objective. In our work, each 

learning agent will learn its environment in its cluster and the action taken by a single 

learner will not influence the environment of other learners. In such a system, it is logical 

that agents who learn individually will accomplish their objective more quickly if they 

start sharing their experiences while learning as compared to when sharing is not 

occurring  [77], and this is called cooperation. Cooperation refers to the process when 

agents work together and sharing experiences to achieve a shared goal. When RL is 

applied as a learning tool in multi-agent systems, there are three possible approaches 

to applying cooperation [77]. First, by sharing instantaneous information such as the 

states encountered, the actions taken and the rewards received, which is referred to as 

sharing sensations [77]. Secondly, by exchanging episodes, where a single episode 

consists of state, action, and reward. Finally, by sharing the knowledge they gained 

represented by the learned policies.   
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The process when learning agents apply the Q-learning algorithm during the learning 

process of their environment, and share their knowledge and their learning outcomes is 

called cooperative Q-learning [78]. Cooperative Q-learning can be accomplished in two 

consecutive stages [78]. Firstly, each individual learner applies the Q-learning algorithm 

while interacting with its environment. During the learning process, each learner builds 

its experience represented by its Q-table while interacting with its environment. 

Secondly, the interaction phase where learners share their learning outcomes with 

others, and based on the selected cooperative approach, they update their Q-tables.  

The impact of cooperation between agents while applying RL has been investigated by 

Tan [77]. The author addressed the problem of hunters whose goal is to chase preys. 

Moreover, the author investigated three cooperative approaches named sharing 

sensation, sharing episodes, and sharing learned policies which are mentioned above; 

and compared that to when cooperation is not considered. As a result of the 

experiments, the technique of sharing sensation appears to be beneficial if the 

information is related to the environment of other learners. Regarding the other two 

cooperative approaches, the results suggest that these tools are helpful for speeding up 

the learning process but at the expense of communication. Finally, having the same 

number of training episodes, cooperative agents can learn faster about their 

environment and converge sooner compared to non-cooperative agents.  

Another study that shows the impact of cooperative learning was conducted by 

Abedalguni et al [78]. Using well-known cooperative Q-learning algorithms named BEST-

Q, AVE-Q, PSO-Q, and WSS algorithms, Abedalguni et al [78] investigated the impact of 

these algorithms on the learning process and compared them to when cooperation was 

not involved. In their work, they classified the level of experience of learning agents 

based on the number of training episodes; for example, an agent who trained for 100 

episodes is more expert than an agent who trained for 50 episodes. Their results show 

that all well-known cooperative Q-learning algorithms impact the system in the same 

manner. Additionally, the results when cooperation is considered outperform those 

when no cooperation is involved if the level of agents’ experience is different. In more 
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detail, the authors stated that if cooperative agents have the same level of experience, 

sharing their knowledge is not beneficial. The system will perform similar to when no 

cooperation was considered. However, the authors did not specify the number of the 

level of experience upon which cooperation is not beneficial. This is because the agent 

could have the same small number of training episodes, for example 2 episodes, and 

cooperation in this case is still useful. Additionally, the authors did not give more 

information about the sequence of states different agents encounter, in terms of being 

the same sequence or not, and whether or not the same action is performed by these 

agents if they encounter the same state. Accordingly, we do not believe that we can 

make a definitive statement regarding whether or not cooperation is beneficial based 

solely on the level of experience agents have. This is represented by the number of 

training episodes. As cooperation is helpful even if agents have the same level of 

training, as in our experiment. Therefore, further clarification is needed in this regard. 

There are other factors that would impact on cooperation among agents while training. 

One of them is the sequence of events each agent has encountered in the environment, 

and how each agent acts towards these events. If all training agents are facing the same 

sequence of events, e.g., same states, and they perform different actions on these 

events, cooperation is still beneficial. Some agents would benefit from the experience 

of other agents who performed different actions from them and see how their 

environment acted. On the other hand, if agents are encountering the same sequence 

of events and they all perform the same actions, cooperation in this case could not be 

helpful.  

One of the well-known cooperative Q-learning algorithms is called BEST-Q approach and 

it has been investigated in [78-80]. BEST-Q algorithm has been proposed by Iima and 

Kuroe [80] along with other cooperative approaches called AVE-Q and PSO-Q 

algorithms. In BEST-Q algorithm, the highest Q-value for each state-action pair is 

determined, and then all agents will update the Q-value of the same state-action pair in 

their Q-tables by replacing their old value with the best Q-value. At the end of the 

updating process, all learning agents will have the same Q-table [78]. Among all 
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cooperative Q-learning approaches, we used the BEST-Q algorithm. Abed-Alguni in [81] 

states that it performs best among all cooperative approaches. 

In BEST-Q algorithm, the best Q-value is calculated using the following equation. 

𝑄𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 (𝑠, 𝑎)  ←  𝑄𝑗
𝑏𝑒𝑠𝑡(𝑠′, 𝑎′)  if s =  s’ & a =  a’              [78] 
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2.5 Conclusion  

This chapter provides related works that address the problem of offline/online 

computational offloading and resource management. Afterwards, works 

investigating computational offloading and resource management in 

stochastic fog systems are presented. Finally, a brief background on RL and Q-

learning algorithms is provided. In addition to that an introduction and 

literature review of cooperative Q-learning is discussed.  
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3 Minimising Delay and Energy in Online Dynamic Fog 

Systems 

3.1 Introduction  

In online fog systems, optimising delay and energy consumption is one of the critical factors 

to ensure efficiency, reliability, and performance. For real-world IoT applications, a delay can 

impair the system's ability to process data and make decisions in real-time. Furthermore, not 

managing the fog system's energy consumption can result in higher operational costs and 

shorter lifespans. In this chapter we address the problem of computational offloading and 

resource management with the aim to minimise the delay and energy consumption in online 

dynamic fog systems using static and dynamic offloading threshold that determines whether 

the task is processed locally or offloaded to a neighbour. This chapter is structured as follows. 

System modelling and constraints is described in section 3.2, which includes network diagram, 

application module description, communications and constraints between vehicles and fog 

nodes, between fog nodes, and between fog nodes and the cloud serves. The optimisation 

problem of minimising the delay and the energy consumption is formulated in section 3.3. In 

section 3.4, the proposed solution regarding the two methods is discussed. The performance 

evaluation including the environment settings, set of experiments, and the results is provided 

in section 3.5. In section 3.6, types of applied offloading thresholds and related results are 

discussed. Finally, the conclusion of this chapter is in section 3.7. 
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3.2 System Modelling and Constraints 

System model is presented in section 3.2.1, and Types of Connections and Constraints is 

described in section 3.2.2. 

3.2.1 System Model 

This section will discuss network diagram and application module. 

Network Diagram  

An overview of the fog computing architecture is shown in Figure 3.1 and consists of three 

layers: 

• The IoT devices layer: this layer contains of mobile vehicles. The vehicle node has a set of 

sensors. Each sensor transmits different types of tasks and an actuator and once they are 

within the coverage radius of a fog node, they will send their tasks. Two types of tasks are 

emitted by the mobile vehicle. The first type is non-urgent and contains information such 

as current location, speed, and direction of the vehicle. The second task is an urgent 

request that requires a quick response. For example, this task may contain a video stream 

of a moving vehicle’s surroundings, which requires quick processing by fog nodes to help 

avoid collisions. This might be important, especially for autonomous driverless vehicles. 

• Fog computing layer: this layer consists of a set of fog nodes and a fog controller. Fog 

nodes reside in roadside units (RSU) that are deployed in different areas of a city. Fog 

nodes can communicate with each other if they are located within each other’s vicinity 

[82]. Fog nodes can form an ad hoc network between themselves to share and exchange 

data. All fog nodes are logically connected to the fog controller which monitors the 

performance of all fog nods and manages the resources. The fog nodes are static and 

receive two different types of tasks from all vehicles within their radius. These tasks are 

called priority and non-priority tasks. Regarding priority tasks, fog nodes process requests 

generated by a user’s sensor and send the response back to the user. For non-priority 

tasks, fog nodes do some processing of the information provided by the vehicles within 

their range and send the results to the cloud for further analysis and storage for retrieval 

by traffic management organisations.  
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• Cloud computing layer: this layer contains cloud servers. It manages and controls the 

traffic at the city-level based on historical data received by fog nodes. 

 

Figure 3.1: Fog Computing Model. 

Application module description  

The application model of this study consists of three modules named Road Monitor, Global 

Road Monitor and Process Priority Tasks. The first two modules are responsible for traffic light 

control systems and the last module is only for processing end-user priority tasks. The 

function of each of these modules is as follows: 

• Road Monitor: this module is placed in fog nodes. If a vehicle enters an area within the 

coverage of a fog node, the sensor automatically sends the current car location, its speed, 

weather conditions and road conditions to the connected fog node for analysis. Then the 

module processes these data, and the results are sent to the cloud for further analysis. 

• Global Monitor: this module is placed in the cloud and receives the collected data from fog 

nodes (after being processed by the Road Monitor module), analyses these data, and stores 

the results. 
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• Process Priority task:  this module is placed in fog nodes and is responsible for processing 

the priority requests from the user. The results are then sent back to the user. The application 

in iFogSim is represented as a directed acyclic graph (𝐷𝐴𝐺)  =  (𝑀, 𝐸) where M is the set of 

application modules deployed = {𝑚1, 𝑚2, 𝑚3, . . . , 𝑚𝑛}, e.g., Process Priority Task, Road 

Monitor and Global Road Monitor modules. Between application modules, there is a set of 

edges belonging to E, which represents the data dependencies between application modules. 

This is shown in Figure 3.2. 

 

Figure 3.2: Directed Acyclic Graph (DAG) of the application model. 

3.2.2 Types of Connections and Constraints 

This section describes the connections between a vehicle and a fog node, between fog nodes, 

and between fog nodes and cloud. Also, the set of constraints involved within these 

connections. 

 



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 3: Minimising Delay and Energy in Online Dynamic Fog Systems 

  

-63- 

Connection between Vehicles and Fog nodes 

The connection between a vehicle and a fog node is made with communication and processing 

constraints. 

• Communication Constraints  

Vehicles connect to the fog node if and only if it is located within its communication range, as 

constraint (3.1) 

        𝐷𝑣,𝑓 ≤  𝑚𝑎𝑥 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑓;  ∀ 𝑣 ∈ 𝑉, ∀ 𝑓 ∈  𝐹𝑁 (3.1) 

Where V is all vehicles, v one vehicle, FN is all fog nodes and f is one fog node. Dv,f is the 

distance between a vehicle v and a fog node f, is calculated as 

        𝐷𝑣,𝑓 = √(𝑋𝑣 − 𝑋𝑓) + (𝑌𝑣 − 𝑌𝑓 );    ∀ 𝑣 ∈ 𝑉, ∀ 𝑓 ∈  𝐹𝑁 (3.2) 

where (XV, YV) and (Xf, Yf) are the coordinates of a vehicle and a fog node, respectively. If a 

vehicle is located within the coverage radius of more than one fog node it will connect to the 

nearest fog node. This to reduce delay because the expected arrival time of the task at the 

connected fog node depends on the transmission and the propagation delay, but the 

propagation delay depends solely on the distance between the two connected objects. 

Propagation delay (PD) is calculated as  

       𝑃𝐷 =
𝐷𝑣,𝑓

𝑃𝑆
  (3.3) 

Following [83], we assume that the speed of signal propagation (PS) is equal to the speed of 

light, c = 3 × 108. 

• Processing Constraints 

For fog nodes to process user tasks, application modules in which these tasks are processed 

should be placed at fog nodes. To ensure the placement of these application modules, 

application modules require CPU, Ram, and Bandwidth capacity so that fog nodes will have 
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enough CPU, Ram and Bandwidth capacity to place these application modules, thus 

processing end-user tasks at the fog paradigm. 

        ∑𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑀

𝑖=0

𝑚𝑖 ≤∑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓; ∀𝑚𝑖 ∈ M, ∀𝑓 ∈ FN (3.4) 

Where 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 for each application module = {CPU, Ram, Bandwidth} and the fog 

node capacity = {CPU, Ram, Bandwidth}. Constraint (3.4) ensures that the total required 

capacity of all application modules should not exceed the available capacity of the fog node 

in which they should be placed. In iFogSim, if the capacity required to place application 

modules exceeds the available capacity of fog nodes, the system will iterate through upper 

tiers fog computing system until it reaches the cloud and places these application modules. 

The CPU required for an application module is calculated as following: 

        𝐶𝑃𝑈 = 𝑁𝑉 ∗ (𝑅𝑎𝑡𝑒 ∗ 𝑇𝑎𝑠𝑘𝐶𝑃𝑈) (3.5) 

Where NV is the total number of connected vehicles to a fog node, and TaskCPU is the task 

CPU length which is the number of instructions contained in each task in Million Instructions 

Per Second (MIPS). Rate is calculated as: 

        𝑅𝑎𝑡𝑒 =
1

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑚𝑠
 (3.6) 

The placement of application modules in iFogSim is done before running the system and 

starting the emission of tasks. If the number of vehicles increases, this will impact the required 

CPU capacity for an application module. In this case the number of connected vehicles for 

each fog node is limited as constraint (3.7). 

        ∑𝑣𝑖

𝑉

𝑖=0

𝑓𝑗 ≤ 𝑀𝐴𝑋𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;  ∀ 𝑣𝑖 ∈ 𝑉, ∀ 𝑓𝑗 ∈  𝐹𝑁 (3.7) 
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Connection between Fog nodes 

This section describes the waiting queue for fog nodes in which the offloading decision is 

determined, how fog nodes communicate and the selection criteria for the best neighbouring 

fog node.  

• Fog nodes’ waiting queue.  

Each fog node maintains a waiting queue into which tasks are placed upon their arrival at the 

fog node. Fog nodes process one task at a time. Once the execution of that task is completed 

the fog node will check its waiting queue and process the next task according to its scheduling 

policy, i.e., first come, first served. This process continues until no tasks are in the waiting 

queue.  Following the work [45], the waiting queue time triggers the decision to start 

computational offloading to neighbouring fog nodes. To start sharing workloads, the queue 

waiting time (𝑻𝑸𝒖𝒆𝒖𝒆) should exceed the offloading threshold, e.g., 50ms, 100ms or 200ms. 

        𝑇𝑄𝑢𝑒𝑢𝑒  > 𝑀𝑎𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (3.8) 

𝑇𝑄𝑢𝑒𝑢𝑒  is calculated as  

        𝑇𝑄𝑢𝑒𝑢𝑒 = ∑𝑇𝑖 ∗  𝑇𝑖
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + ∑𝑇𝑧 ∗  𝑇𝑧

𝑝𝑟𝑜𝑐𝑒𝑠𝑠; ∀ 𝑖, 𝑧  ∈ 𝑇 (3.9) 

Where Ti and Tz are the total number of tasks of the type i and z, e.g., priority or non-priority. 

T is all tasks and 𝑇𝑖
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the expected execution time of a specific task and calculated as 

        𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 
𝑇𝑎𝑠𝑘𝐶𝑃𝑈

𝐹_𝑀𝐼𝑃𝑆 ∗ 𝑁 𝑜𝑓 𝑃𝑆
 (3.10) 

Where F_MIPS is the total mips available in a fog node and N of PS is the total number of 

processing units allocated in that fog node.  

• Coverage Method  

To achieve area coverage, several fog nodes are required. Fogs can also overlap to achieve 

maximum coverage as in  [84] see Figure 3.3. 
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Figure 3.3: Overlapping Fog Nodes. 

• Selecting the Best Neighbouring Fog Node 

The process of selecting the best neighbouring fog node follows the work in  [45]. It happens 

when a fog node reaches its offloading threshold, e.g., 50ms, 100ms or 200ms waiting queue 

time, for each upcoming task that is generated from vehicles in the coverage range of this fog 

node. The neighbouring fog nodes of a fog node are the fog nodes that are located within the 

coverage radius of the fog node itself. This is shown in constraint (3.11) 

    𝑑𝑖𝑗 ≤ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑟𝑎𝑑𝑖𝑢𝑠;  ∀ 𝑖, 𝑗 ∈  𝐹𝑁     (3.11) 

Where dij is the distance between fog nodes i and j. In Figure 3.3, FOG 2 and FOG 3 are the 

neighbouring fog nodes for FOG 1. Also, FOG 1, FOG 4, FOG 5 are the neighbouring fog nodes 

for FOG 3. The criteria for selecting the best neighbouring fog node depends on two factors. 

First, the neighbouring fog node should be within the communication range of the primary 

fog node. Second, and most importantly, a neighbouring fog node should have the minimum 

sum of waiting queue time plus propagation delay amongst all available neighbours.  

    𝑀𝑖𝑛  ∑𝑇𝑄𝑢𝑒𝑢𝑒 + 𝑃𝐷     (3.12) 

PD is calculated as 

        𝑃𝐷 =  
𝐷𝑓,𝑓′ 

𝑃𝑆
 (3.13) 
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(𝐷𝑓,𝑓′) is the distance between fog nodes f and f’, and it is calculated similar the distance 

between a vehicle and a fog node (𝐷𝑣,𝑓) and propagation speed PS is equal to the speed of 

light, its value 3×108, this done similar to the work in [83]. 

Between Fog Nodes and the Cloud  

When fog nodes finish the processing of non-urgent tasks the results are sent to the cloud 

for further analysis and processing by the application module named Global Road 

Monitor. In the current work, the cloud is the least to be considered in sharing the 

workload of fog nodes when they reach the offloading threshold. This is due to the 

availability of neighbouring fog nodes and in order to get maximum usage of the available 

resources in the fog system. However, if all neighbours reach their offloading threshold, 

the primary fog node will determine to send the task to the cloud if its queue waiting time 

is higher than transmission delay caused by sending the task for processing to the cloud 

and getting the results back. Due to the powerful computational capabilities at the cloud 

server compared to fog nodes, queueing delay is neglected so tasks are processed upon 

their arrival [85-87] . 

3.3 Problem Formulation 

The optimisation problem of minimising the delay and the energy consumption has been 

decomposed into two sub-problems: the delay minimisation problem and the energy saving 

problem. 

3.3.1 Delay Minimization Problem 

The response time includes the round-trip time for transmitting the workload between a user 

and the associated fog node. It includes the transmission delay, propagation delay, queuing 

delay and processing delay. If the workload is processed by the vehicle’s primary fog node, 

then the service latency is calculated as 

   𝑇 =  𝑇𝑠𝑇𝑣  + 2 𝑋 (𝑇𝑣𝑇𝑓
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛  + 𝑃𝐷𝑣𝑇𝑓 ) + 𝑇

𝑄𝑢𝑒𝑢𝑒  +  𝑇𝑝𝑟𝑜𝑐𝑠𝑠 + 𝑇𝑣𝑇𝑎      (3.14) 

Where 𝑇𝑠𝑇𝑣 and 𝑇𝑣𝑇𝑎 is the latency time between a vehicle and its sensor, and between the 

vehicle and its actuator, respectively. 𝑇𝑣𝑇𝑓
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛 is transmission delay between the vehicle 
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and its primary fog node. It is based on the network length of the task and the bandwidth, 

and it is calculated as 

     𝑇𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛 = 
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑇𝑎𝑠𝑘

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 
    (3.15) 

If the primary fog node decides to offload the workload to one of its neighbours, then the 

latency is calculated as  

 
𝑇 =  𝑇𝑠𝑇𝑣  +  2 𝑥 ( 𝑇𝑣𝑇𝑓

𝑇𝑟𝑎𝑛𝑠𝑚𝑠𝑖𝑖𝑜𝑛 + 𝑃𝐷𝑣𝑇𝑓  ) +  2 𝑥 (𝑇𝑓𝑇𝑓
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛  +  𝑃𝐷𝑓𝑇𝑓) +

               𝑇𝑄𝑢𝑒𝑢𝑒 + 𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑇𝑣𝑇𝑎 
(3.16) 

If the primary fog node decides to send the task to the cloud, then the latency is calculated as 

 

 
𝑇 =  𝑇𝑠𝑇𝑣 + 2 x ( 𝑇𝑣𝑇𝑓

𝑇𝑟𝑎𝑛𝑠𝑚𝑠𝑖𝑖𝑜𝑛 + 𝑃𝐷𝑣𝑇𝑓 )+ 2 x (𝑇𝑓𝑇𝑐
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ) + 𝑇𝑃𝑟𝑜𝑐𝑒𝑠𝑠 + 

              𝑇𝑣𝑇𝑎 
(3.17) 

In our system, fog nodes are overlapped in order to achieve full converge in the area. 

Regarding vehicles, we don’t consider the mobility aspect in our work, and we assume 

vehicles send requests and receive responds while they still in the coverage range of the 

primary fog node. Vehicles are randomly distributed and connected to the nearest fog node 

as long as the maximum number of connected vehicles for that fog node is not reached.  

In regard to the influence of the proposed type of connections and constraints that affect the 

delay formulation, we have the following: in terms of connections between vehicles and fog 

nodes, the delay associated with this constraint is between 1 ms and 5 ms depending on the 

distance between the vehicle and the primary fog node. This is shown in Table 3.5. For the 

processing constraint, to ensure the meeting of this constraint, we limited the number of 

connected vehicles to each fog node. This is done to ensure the placement of the required 

application modules offline before running the application to process different types of 

requests. As increasing the number of connected vehicles, will increase the amount of 

required resources to place each application module. In this case, the delay is not influenced 

by this constraint.  
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3.3.2 Energy Saving Problem 

By minimising the power consumption of fog nodes, the overall cost of electricity 

consumption and environmental impact is reduced. In the system, the energy spent by fog 

nodes is correlated to the state of the fog node as in [88-90]. There are five states of energy 

consumption; when processing tasks, transmitting tasks, receiving tasks, being idle, and 

powering on a previously switched-off fog node. So, the total energy spent by fog node i 

during the processing of tasks stage is calculated as  

        𝐸𝑒
𝑖 = ∑𝑇𝑥

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∗  𝑒𝑒 

𝑋

𝑥=1

  (3.18) 

Where X is the total tasks processed in fog node i during the system, and 𝑇𝑥
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the time 

required to process a single task x, 𝑒𝑒 is the unit of energy spent during the time of processing. 

For the transmission of tasks to neighbours and receiving of tasks from neighbours, the energy 

consumption associated is calculated as  

    𝐸𝑡𝑟
𝑖 = ∑𝑇𝑧

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛 ∗  𝑒𝑡𝑟

𝑍

𝑧=1

      (3.19) 

    𝐸𝑟𝑒
𝑖 = ∑ 𝑇𝑤

𝑟𝑒𝑐

𝑊

𝑤=1

 ∗  𝑒𝑟𝑒     (3.20) 

Where Z is the total number of tasks offloaded and W is the total number of received tasks 

after processing from neighbours, 𝑒𝑡𝑟 and 𝑒𝑟𝑒 are the units of energy spent during the 

offloading and receiving of tasks. The energy spent during the idle state is calculated as  

  𝐸𝑖𝑑𝑙𝑒
𝑖 = 𝑇𝑖

𝑖𝑑𝑙𝑒 ∗  𝑒𝑖𝑑𝑙𝑒     (3.21) 

The energy overhead associated with powering on fog node i if it was switched off previously 

is calculated as  

     𝐸𝑜𝑛
𝑖 = 𝑇𝑜𝑛 ∗  𝑒𝑜𝑛  (3.22) 

 

So, the total energy spent by fog node is calculated as  

𝐸𝑖 = 𝐸𝑒
𝑖 + 𝐸𝑡𝑟

𝑖 + 𝐸𝑟𝑒
𝑖 + 𝐸𝑖𝑑𝑙𝑒

𝑖 + 𝐸𝑜𝑛
𝑖  



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 3: Minimising Delay and Energy in Online Dynamic Fog Systems 

  

-70- 

Then, the total energy consumption in the system is defined as  

𝐸 =  ∑ 𝐸𝑖
𝑖 ∈𝐹𝑁

  

In regard to the influence of the proposed type of connections and constraints that affect the 

energy saving, we have the following: in terms of connections between vehicles and fog 

nodes, if the connected vehicle is far, more energy is consumed due to the long transmission 

delay. The energy required to transmit a single task is shown in equation (3.19). 

The problem of minimizing delay and energy is formulated as follows: 

Minimise 

 

∑ 𝑻

𝒙∈𝑻𝑨

+ ∑ 𝑬

𝒋 ∈𝑭𝑵

      
(3.23) 

 

Subject to Equations (3.1), (3.4), (3.7), (3.11)  

C1: 𝑇𝑖
𝑄𝑢𝑒𝑢𝑒  ≤ 𝑀𝑎𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∀ 𝑖 ∈ 𝑭𝑵  

C2: 𝑃𝐹  +  𝑃𝑁 = 1, 𝑃 𝐹 & 𝑃 𝑁  =  {0, 1}  

Equation (3.1) ensures the connection between a fog node and a vehicle that is located within 

its communication range. Constraint (3.4) ensures the placement of application modules at 

fog nodes. Equation (3.7) ensures the number of vehicles connected to one fog node does not 

exceed the threshold number. Constraint C1 ensures the stability of fog nodes’ queues so 

that, to process its upcoming tasks, the waiting queue time should not exceed its threshold. 

In constraint C2, PF and PN mean that if the task is processed in its primary fog node, then PF 

= 1 and PN = 0 and vice versa. Therefore, the task is either processed in the primary fog node 

or one of its neighbours. 
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3.4 Proposed Algorithms 

An approach that combines two algorithms has been proposed to solve the above stated 

problem. The first algorithm is called dynamic task allocation and the second is called 

dynamic resource saving. In this paper, both stated algorithms need to work together to 

achieve the intended outcome.  

3.4.1 Dynamic Task Scheduling (DTS): 

The aim of this algorithm is to minimise delay by allowing cooperation between fog nodes in 

terms of workload sharing, to maximise the resource utilization and maximise throughput. 

The fog controller is not involved in the selection of the best neighbouring fog node, it is 

mainly involved in the DEC algorithm. Also, in regard to DTS algorithm, if the best neighbour 

is switched OFF, the fog controller will send a signal to switch ON the selected best neighbour, 

this is further explained in section 5.2.   

The process of offloading a task based on the queue waiting time of the fog nodes was 

originally proposed by [45]. In [45], the task can be offloaded multiple times, which means 

that if the primary fog node decides to offload the upcoming task to its neighbour i, by the 

time this task arrives at fog node i, fog node i might have reached its offloading threshold. 

Then fog node i will select fog node j to offload this task to, resulting in offloading this task 

multiple times and adding additional transmission and propagation delay. As stated by [45], 

multiple task offloading will increase the delay compared to only allowing the task to be 

offloaded one time, and this is applied to the current work. The technique is shown in Figure 

3.4.  

When a fog node receives a task, if this task is the first task in its queue it will immediately 

process it, if not, it will check its queue waiting time. If its queue did not reach its offloading 

threshold, e.g., 50ms, 100ms or 200ms, the task will be added to its queue, but if the queue 

reaches its threshold the fog node will check if the task has been offloaded by another fog 

node. If it has, then it will add this task to its queue. If it has not been offloaded by another 

fog node it will select the best neighbour to offload this task to, according to the criteria 

described in section 3.1.2. If the best neighbour reaches its offloading threshold during the 
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selection process and the task of type priority, then the primary fog node will process the task 

locally.  

 

Figure 3.4: Flowchart of Dynamic Task Scheduling Algorithm. 

3.4.2 Dynamic Energy Control (DEC) 

The need for 24/7 availability of fog nodes poses a challenge on energy efficiency and cost 

since the fog provider needs to maintain available resources that may be used but are not 

continuously needed. If a fog node is not needed it should be turned off to save energy. 

Dynamic energy control (DEC) has been proposed in order to optimise resource utilisation by 

dynamically deciding when to switch off an active fog node(s) and conserve overall system 

energy. The pseudo code of our proposed algorithm is given in Algorithm 3.1. 

In this system, the ON and OFF switching of fog nodes is carried out by the fog controller 

which runs algorithm 3.1 each time it receives information about the system. Fog nodes 

update the fog controller with their information so that fog controller can make the 

appropriate decision to save energy. At the beginning of the simulation, all fog nodes are 

switched OFF. This happens each 10 ms, fog nodes send their information to the local 

controller. This information will help the local controller determine whether each fog node 

should be turned off or on based on its status. The priority in our proposed scheme is to 

minimise the average delay in the system, so fog nodes only switched off is there is no tasks 
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waiting in its queue, in the case where the system is congested, fog nodes will stay powered 

on to process as much tasks as required, unless it notifies local controller about its status 

which specifies that its queue is empty and it is in its idle state.  

Algorithm 3.1: Dynamic Energy Control. 

Dynamic Energy Control Algorithm 

Input: System Data: 1- current waiting time; 2- current processing states; 3- 
if awaiting task/s 

Output: Sending signals to switch ON/OFF determined FNs 
1: Fog Controller receives System data 
2: for all FNs do: 
3:   if (FN. status ==OFF) 
4:     if (FNQueueSize! = 0) 
5:       Send Signal ON 
6:     else 
7:   else 
8:     if (processingStatus =1) //fog node is not processing task/s 
9:       Send Signal OFF 

10:     else  
11:   end if 
12: end for 

 

Algorithms DTS and DEC are not independent. DTS runs by each primary fog node to decide 

whether to process its arrival task/s locally or send them to the best neighbour. If the best 

neighbour is switched off, the primary fog node will notify the local controller, and the task 

will be sent to the switched-off fog node and placed in its queue. The local controller will 

check if the time since switching off this neighbour has exceeded the minimum allowed time 

of 5 ms. If it has, the fog node will be switched on; otherwise, it will remain off, and the tasks 

in its queue will wait. In DEC, local controller receives information from fog nodes each 10 ms. 

Then, based on this information, the local controller will determine the states of each fog 

node in regard to being off or on. Thus, the fog node is switched off by local controller through 

the use of DEC algorithm, and then switched on by the notification of primary fog node to the 

local controller through the use of DTS algorithm.  
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3.5 Performance Evaluation 

In this section, we first provide the details of the simulations, then we investigate the 

performance of our two combined algorithms.  

3.5.1 Simulation Environment Settings 

iFogSim has been used to simulate the environment. It is a toolkit developed by Gupta et. al 

[91], which is an extension of the CloudSim simulator. It is a toolkit allowing the modelling 

and simulation of IoT and fog environments and is capable of monitoring various performance 

parameters, such as energy consumption, latency, response time, cost, etc. For this research, 

the three-tier fog system was established first as shown by the simulation in Figure. 1. The 

simulation was run with one cloud server, seven fog nodes, the fog controller, and a total of 

50 vehicles. Two fog nodes connected to 25 vehicles each, but the other five fog nodes are 

not connected to any vehicles and are willing to help with the processing of the offloaded 

tasks. Each vehicle transmits two different tasks every 3ms. The parameter values used in the 

simulation is in Tables 3.1 – 3.5.  

Table 3.1: Energy consumption parameters 

Energy Consumption  Parameter value  

Idle power 𝑒𝑖𝑑𝑙𝑒 0.01 W [90] 

Processing power 𝑒𝑒 0.9 W [90] 

Transmitting and receiving 
power 𝑒𝑡𝑟 , 𝑒𝑟𝑒 

1.3 W and 1.1 W 
[90] 

Power overhead for activating a 
switched off FN 𝑒𝑜𝑛 

0.002 W 

 

 

Table 3.2: Application Modules Requirements. 

Module CPU (mips/vehicle) BW (Mbps) Ram (GB) 
Process priority task 333.33 1000 10 

Road Monitor 300 1000 10 
Global Road Monitor 99.99 1000 10 
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Table 3.3: Tasks details. 

Task Type Processed module 
CPU length 

(MIPS) 
Network Length 

(Mbps) 
Request (urgent) Process priority task 1000 1000 

Sensor (nonurgent) Road Monitor 900 500 
Statistical traffic data Global Road Monitor 300 500 

Table 3.4: Entity Configurations in iFogSim. 

Characteristics Vehicle Fog nodes Cloud servers 
CPU (MIPS) 0.0 15100 448000 
RAM (MB) 0 40000 40000 

Uplink BW (Mbps) 1000 1000000 1000000 
Downlink BW (Mbps) 1000 1000000 1000000 

Rate Per MIPS 0.0 0.001 0.01 
Level 2 1 0 

Table 3.5: Latency values between entities. 

Between Link latency (ms) 
Cloud Fog node 100 ms 

Fog node Neighbouring FN 2 ms 
Vehicle Fog node [1-5] depends on location 

Sensor/Actuator Vehicle 1 ms 

 

3.5.2 Performance Metrics  

The metrices used to measure the performance are: 

• Service latency is the average round trip time for all tasks processed in the fog environment. 

Two control loops are used in the simulation:  

Control loop A: Sensor -> Process Priority Tasks -> Actuator. This control loop represents the 

path of priority requests.  

Control loop B: Sensor -> Road Monitor -> Global Road Monitor. This control loop represents 

the path of non-priority requests. 

• Throughput, which is measured as the percentage of processed tasks within a time window 

and calculates as follows. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 % = 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑  𝑡𝑎𝑠𝑘𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  𝑡𝑎𝑠𝑘𝑠
 *100 
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• Total Energy Consumption in fog environment caused by powering on fog nodes, 

processing, and offloading tasks. 

3.6 Offloading thresholds 

In this section, we discuss the use of static offloading thresholds and dynamic offloading 

thresholds and their impact on the system. In the static offloading thresholds, we examine 

the effects of varying the threshold value in the system and increasing the number of 

neighbours. Within the context of dynamic offloading thresholds, we explore the system 

model that deploys dynamic thresholds and highlight the distinctions between static and 

dynamic offloading thresholds. Furthermore, we present a set of benchmarks within the 

system, and analyse the consequences of increasing the number of neighbours and vehicles. 

3.6.1 Static offloading thresholds 

Static offloading means that offloading thresholds for fog nodes remain the same during the 

experiment. 

3.6.1.1 Experiments  

The conducted experiments are shown in Table 3.6.  

Table 3.6: Set of Conducted Experiments Details. 

EXPERIMENT DYNAMIC TASK 
SCHEDULING 

DYNAMIC 
ENERGY 

CONTROL NO Name Yes/No When 

1 No offloading no - No 
2 no - Yes 
3 Offloading-10 yes 10 ms No  
4 yes 10 ms Yes  
5 Offloading-30 yes 30 ms No 
6 yes 30 ms Yes 
7 Offloading-50 yes 50 ms No 
8 yes 50 ms Yes 
9 Offloading-100 yes 100 ms No 

10 yes 100 ms Yes 
11 Offloading-200 yes 200 ms No 
12 yes 200 ms Yes 
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3.6.1.2 Experiment’s structure  

The structure of the conducted experiments is shown in Figure 3.5.

 
Figure 3.5: experiments structure. 

3.6.1.3 Average round trip time 

There are two control loops in the simulation: 

• Sensor → Process Priority Tasks → Actuator. This control loop represents the path of the 

priority requests, and it is called Control loop A. 

• Sensor → Road Monitor → Global Road Monitor. This control loop represents the path of 

the non-priority requests, and it is called Control loop B. 

Experiment 
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Figure 3.6: Average Round Trip Time with no-offloading and different Offloading Thresholds 

 The aim here is to minimise the average round-trip time for control loop A, in which the result 

is sent back to the users, compared to control loop B, in which the user tasks should be 

processed at fog nodes and the results sent to the cloud for further analysis and storage. The 

results in Figure 3.6 show that when a fog node is not offloading its tasks to neighbouring fog 

nodes, the average round trip time for all the processed tasks for control loop A is 203.01 ms. 

This is due to the long queueing delay.  

Also, it can be seen that as we decrease the offloading threshold, the average delay is 

decreased accordingly. However, if the offloading threshold is decreased by more than 30 ms, 

the results seem to have a negative impact. Based on the proposed algorithm, when the 

offloading threshold is set to 10 ms, the primary fog node will share its workload earlier than 

the 30-ms offloading threshold. As a result, there will be congestion, however, as neighbours 

will reach the 10-ms waiting time faster. As a result, the primary fog node will not share more 

workload, but instead will schedule the task to be processed locally.  

Accordingly, it can be said that the optimal offloading threshold in the system is influenced 

by the amount of received workloads. In this experiment, the 30-ms offloading threshold 

seems to be the optimal value that helps to distribute workload among the computing devices 

in the system. This is because the lowest average latency is achieved when the offloading 
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threshold is set to 30 ms. With a 30-ms threshold, the average latency of control loop A was 

reduced by 85.5% compared to the no-offloading method.   

3.6.1.4 Throughput Evaluation 

 According to the results in Figure 3.7, the poorest percentage of executed tasks is when no 

offloading is involved. Additionally, it can be seen that similar to the impact on the average 

delay, as we decrease the offloading threshold, the percentage of executed tasks is improved 

until reaching the optimal offloading threshold, which is 30 ms, upon which the percentage 

of executed tasks decreases. Because of the 10-ms offloading threshold, neighbours will get 

congestion faster, resulting in the primary fog node scheduling tasks locally. This will result in 

higher queueing delay in the primary fog nodes and thus processing less tasks compared to 

the 30-ms offloading threshold. 

The percentage of executed tasks is increased by around 40% when the 30-ms offloading 

threshold is considered compared to the no-offloading method. As with the no-offloading 

method, many tasks are waiting to be executed in the queue compared to when the 

offloading threshold is set to 30 ms. 

Furthermore, the highest percentage of processed tasks occurs when the offloading threshold 

is set to 30 ms. This is followed by the offloading thresholds of 50 ms, 10 ms, 100 ms and 200 

ms, respectively, at 94.56%, 94.1%, 91.52%, and 88.50%. Comparing the offloading threshold 

values, the 200-ms threshold has the lowest processing percentage. This is because fog nodes 

will wait until the waiting time of their queues has exceeded 200 ms in order to start sharing 

their tasks. 
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Figure 3.7: Percentage of executed Tasks in Fog Nodes with no offloading and different Offloading 
Thresholds 

3.6.1.5 Total Energy Consumption 

In cases where a dynamic energy control algorithm is not applied the highest energy 

consumption in the fog environment occurs when the offloading threshold is set to 30 ms. 

This is because more fog nodes are involved in the execution process and are in their busy 

power mode. This compares to the no-offloading method where only two fog nodes are busy 

processing tasks while the rest of the fog nodes are not doing any processing and are in their 

idle power mode (see Figure 3.8). In the no-offloading method, DEC saves around 75% of 

power. This power was spent powering on unused fog nodes, which cause a wastage in 

resources.  

Applying the DEC algorithm helps to minimise the total energy consumed in the fog 

environment by around 27.2%, 28%, 28.3%, 30.2%, and 31.1% with the various offloading 

thresholds of 30 ms, 50 ms, 10 ms, 100 ms and 200 ms, respectively. The reason for a low 

energy saving with various offloading thresholds compared to a high energy saving with the 

no-offloading approach is that the workload of the primary fog nodes is high, thus sharing 

some of their workloads with their neighbours. As a result, neighbours staying ON most of the 

time helps to process these tasks.  
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Figure 3.8: Total Energy Consumed in the fog environment with no offloading and different 
offloading thresholds with and without Dynamic Energy Control (DEC) algorithm. 
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attributed to a linear increase in communication overhead as the number of neighbours rose. 

This is due to sending the status to all neighbours each time the status is changed. The 

following table demonstrate the impact of increasing the number of neighbours when the 

offloading threshold is 30 ms.  

 Number of neighbours in 30-ma offloading threshold 

 3 4 5 6 7 8 9 10 

Control Loop A 140 90 38 33 28 22 23.5 25 

Control Loop B 210 170 118 113 108 104 103.5 105 

 

At the offloading thresholds of 50 ms, 100 ms and 200 ms, the average delay decreases until 

having five neighbours in the system. After that, the average latency of control loops remains 

stable with a slight increase. The reason for the pattern of stability is because the primary fog 

node processes most of its tasks and only offloads tasks to its neighbours when its offloading 

threshold reaches its limit (e.g., 50 ms). This is not the case when the offloading threshold is 

set to 30 ms. In this case, the average delay decreases as we increase the number of 

neighbours. This increases until there are eight neighbours in the system. As a result, the 

average delay remains the same with a slight increase. The optimal number of neighbours 

required for each offloading approach depends on the threshold. Additionally, increasing the 

number of neighbours in the system more than the required optimal number may impact the 

system negatively. This is due to increased energy consumption and delays caused by 

communication overhead.  
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Figure 3.9: Impact of Increasing Number of Neighbours with Various Offloading Threshold on 
Service Latency 

3.6.1.7 Impact of increasing the number of neighbours on throughput  
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having a 30-ms offloading threshold. The same reasons mentioned earlier are also responsible 

for this. 

 

Figure 3.10: Impact of increasing the number of neighbours on throughput with various offloading 
thresholds. 
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threshold, the highest percentage of processed tasks is accomplished and fog nodes and their 

neighbours are busy processing as many tasks as needed, thus consuming more energy.  

 

Figure 3.11: Impact of increasing the number of neighbours on throughputs with various 
offloading thresholds. 

 

Overall, it can be seen that as we increase the number of neighbours, the system will benefit 

from additional computational resources. This is seen as improving average delay and 
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thresholds as a result of processing more tasks. As a result of using the DEC method, some 

energy can be saved. 

3.6.2 Dynamic offloading thresholds  

3.6.2.1 System Model  

In this chapter we apply the same system model and constraints stated above. Moreover, 

additional changes have been made to the proposed fog node architecture which are 

described below. 

Fog Node Architecture 

The proposed fog node architecture consists of a task scheduler, best neighbour selector, and 

threshold monitor (see Figure 3.12). Task scheduler receives tasks generated from IoT devices 

within the proximity of the primary fog node and from other neighbouring fog nodes. If a fog 

node receives a task that is already offloaded from another neighbour, task scheduler 

immediately inserts this task in the processing queue. If the task is generated from other IoT 

devices, then task scheduler will check the offloading threshold and compare this to the 

queuing delay at the current node. If the queueing delay reaches the offloading threshold, 

then task scheduler sends this task to the best neighbour selection, which in turn decides the 

best neighbour node to offload this task to.  

The selection of the best neighbour is described earlier in section 3.2.2. Threshold monitor is 

responsible for dynamically increasing and decreasing the offloading threshold for both the 

primary fog node and all its neighbours, based on the workload and the availability of other 

neighbours: this is done from the perspective of the primary fog node. On the one hand, it is 

assumed that fog nodes are cooperative and accept tasks coming from their neighbour nodes, 

even if this exceeds their threshold.  

On the other hand, each neighbour has its own threshold monitor, and the primary fog node 

and all its neighbours may not have the same threshold value. In Figure 3.13 (a), we can see 

that primary fog node A set its threshold to 9 ms for itself and all its neighbours. At the same 

time, primary fog node B in Figure 3.13 (b) set its threshold to 6 ms, even for its neighbour 
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fog node A; therefore, it can be seen that fog node A is congested and will not be selected as 

the best neighbour for fog node B. Determining when to increase and decrease the offloading 

threshold is described in Algorithm 3.2. 

The term “dynamic” in the context of the offloading scenario refers to the concept that the 

offloading decision is influenced by the continuous change of the system’s conditions. This 

encompasses variables such as current workloads on fog devices, available computational 

resources in the neighbouring devices, and shifting user requirements or priorities. This is 

opposite to static offloading scenario, where system’s conditions are fixed and predictable. In 

the offloading scenario, the terms “dynamic“ and “static“ are also referred to as “online“ and 

“offline” offloading, respectively. 

 

Figure 3.12: Fog Node Architecture Model. 
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Figure 3.13: Example of Offloading Threshold values for the Primary Fog Node and all its 
Neighbours at the same Time. 

 

3.6.2.2 Proposed Dynamic Offloading Threshold 

The dynamic threshold is managed by the Threshold Monitor, which adjust its value 

periodically according to the received workload and the availability of other neighbours, as 

described in Algorithm 3.2. The first part of the algorithm (Procedure 1) determines whether 

to increase the offloading threshold of the primary node and its neighbours. This runs each 

time a new task arrives at the primary fog node. It starts by checking if the current threshold 

exceeds the maximum offloading threshold calculated in equation (3.24), if this occurs then 

the best decision for the arrival task is to be migrated to the cloud for processing.  

 

     Maximum Threshold =  2 ∗ (𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑙𝑜𝑢𝑑 
𝑑𝑒𝑙𝑎𝑦

)  (3.24) 

Otherwise, it checks whether the queuing delay of the primary fog node has reached its 

offloading threshold, i.e., to decide whether to process the task locally and add it to its queue 

or select the best neighbour with the least queueing delay as per lines 4-16. The current 

threshold is then updated using equation (4.2) and procedure 2 is called.  

 𝛿𝑛+1 = {

𝛿𝑛 − 𝑝,              𝑄 ≥ 𝛼, 𝑉𝑄 < 𝑥 
𝛿𝑛,                       𝑄 ≥ 𝛼, 𝑉𝑄 ≥ 𝑥
𝛿𝑛,                                        𝑄 < 𝛼
𝛿𝑛 + 𝑝, 𝑄 ≥ 𝛿𝑛, 𝑉𝑄 ≥  𝛿𝑛

      ∀ 𝑥, 𝛼, 𝑝 > 0 (3.25) 
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The parameters involved in equation (3.25) and all parameters used for Dynamic Threshold 

Algorithm is defined in table 3.7. 

The second part of the algorithm (Procedure 2) determines whether the threshold should be 

decreased. This runs each time a new task is received, and when the fog node finishes the 

execution of a task. It starts by checking if the current threshold of the primary fog node is 

larger than a threshold, as per line 25. If this occurs, then the average queueing delay for all 

the neighbours is calculated as in (3.26) and the current threshold is updated, as per lines 26-

27. The computational complexity of the proposed algorithm is O(n).  

     𝑉𝑄 =  
∑ 𝑄𝑠𝑁𝑠
𝑠=0

𝑁𝑠
  (3.26) 

 

 

Table 3.7: Description of Parameters used for Dynamic Threshold Algorithm. 

Symbol Description 

𝜹𝒏 Refers to the initial offloading threshold and the current threshold. 

VQ Average queueing delay of all the neighbours 

𝜹𝒏+𝟏 New offloading threshold. 

x x = 𝛿𝑛 /2. 

Ns All neighbouring fog nodes 

Qs Set of all queueing delay of all its neighbours 

QNeighbours Set of all neighbours and their queueing delay 

𝜶 
When the queuing delay reaches this threshold, the fog node might 
consider decreasing its offloading threshold. 

N The Best neighbour fog node 

T The arrival task 

Q Queuing delay in the primary fog node 

p 
A number bigger than zero that determines how much to modify the 
offloading threshold based on the current offloading threshold 

QN Queueing delay of one neighbour 
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Algorithm 3.2: Dynamic Offloading Threshold. 

 

 

 

 

 

3.6.2.3 Baseline Approaches  

To evaluate the effectiveness of our proposed algorithm, the comparisons with various 
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of fog nodes, and the size of the generated tasks to be identical for fair comparison. In 

particular, the following four schemes are selected as benchmarks: 

Benchmark 1: No Offloading Scheme (NO): in this scheme, each primary fog node processes 

all the tasks without cooperation with other neighbouring fog nodes. 

Benchmark 2: Joint Task Offloading and Resource Allocation Scheme (JTORA) [40]: in this 

scheme, if the primary fog node does not have enough computational resources that meet 

the delay requirement of a task, then the task will be offloaded to a neighbouring fog node 

within the proximity of the primary fog node that has enough computational resources. Any 

underutilised neighbour is a candidate of processing the overload, ignoring the selection of 

the least utilised fog node. In this scheme, a static threshold is applied.  

Benchmark 3: Workload Offloading Scheme (WO) [92]. In their work, end users offload their 

computational tasks to a broker node that manages the system, the broker node will send 

tasks to a fog node closest to end users (primary fog node). If the primary fog node is 

congested (e.g., its queueing delay reaches 50ms), then the broker node will offload the task 

to any underutilised neighbouring fog node. In this scheme, a static threshold is determined. 

Benchmark 4: Static Threshold 50ms Scheme (ST50): where offloading threshold is set to 

50ms, upon which the primary fog node makes the decision on whether to process the task 

locally or offload it to the best neighbouring fog node. The four benchmarks are compared to 

the proposed offloading policy called Dynamic Threshold (DT). 

3.6.2.4 Experimental results structure  

The structure of the conducted experiments is shown in Figure 3.14. 
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Figure 3.14: Experimental results structure. 

 

We do not compare the total energy consumption with different baselines and when 

increasing the number of vehicles. This is because the set of baselines do not consider 

minimising energy in their work. In regard to addressing the impact of increasing the number 

of vehicles, in this experiment we compare this impact with the same stated baselines that 

do not consider energy consumption.   
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In Figure 3.15, the impact of various offloading schemes on average latency is addressed. It 

can be seen that delay is very high in the no offloading scheme; this is due to a long queueing 
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congested (e.g., reaching its offloading threshold), it selects any underutilised neighbour to 

share the workload, rather than selecting the least utilised neighbour, as in ST50 and DT. 

Furthermore, the delay is higher in the WO scheme compared to JTORA; this is due to a 

communication overhead caused by sending tasks to a broker node first, which in turn decides 

whether to process these tasks; either at the primary fog node or any underutilised 

neighbour. The least delay is achieved for both control loops when applying our proposed 

algorithm, DT, compared other benchmarks. Regarding Control Loop A, DT approach helps to 

minimise the average delay by 55.9%, 70.6%, 72.5%, and 95.4% compared to ST50, JTORA, 

WO and No Offloading approaches. Moreover, in Control Loop B, DT approach helps to save 

the average latency by 4.2%, 28.6%, 29.5%, and 74.1% for the same set of benchmarks. 

Comparing ST50 with DT, DT reduces delay by 4% in Control loop B, and around 56% in Control 

loop A. 

3.6.2.6 Impact of the proposed scheme and different offloading 

schemes on throughputs  

The impact of various offloading schemes on throughput is shown in Figure 3.16. It can be 

seen that the lowest percentage of executed tasks is when no offloading is applied; this is 

obvious as most of the tasks are waiting in the queue to be executed by the primary fog nodes. 

Sharing workload with any underutilised neighbours has a strong impact on WO and JTORA. 
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It results in almost 90.88% and 91.06% of tasks being processed, as opposed to 93.56% and 

97.67% with ST50 and DT schemes. The highest percentage of processed tasks is in DT, due 

to the characteristics of the proposed scheme. When comparing ST50 and DT, there is around 

4% improvement in the throughputs. The reason DT does not outperform ST50 with a higher 

rate is attributed to the fact that the simulation ends while there are still tasks in queues 

waiting to be executed. 

 

Figure 3.16: The comparison of the throughputs with various offloading schemes. 

3.6.2.7 Impact of increasing number of vehicles on delay with 

different offloading schemes 

The impact of increasing the number of vehicles investigated to see how the delay is 
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3.17 we can observe that when the number of vehicles is small, between 4 to 12 vehicles, the 

DT, ST50 and JTORA schemes exhibit an identical pattern. This is because the generated 

workloads are small, resulting in the primary fog nodes processing most of these workloads 

themselves. When the number of vehicles increases, all three approaches ST50, JTORA and 

WO show a dramatic increase in delay compared to DT, which displays a stable pattern with 

a slight increase in delay that increases as the number of vehicles increased.  
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The reason for the huge increase in delay for ST50, JTORA and WO is that increasing the 

workload makes the primary fog nodes almost reach their offloading threshold (e.g., 50ms), 

but not always exceeding it, resulting in the primary nodes processing most of the workload 

with little help from neighbouring nodes. The impact of selecting the best neighbour to share 

the workload becomes clear when the number of vehicles is high (i.e., 28 vehicles). The overall 

results show the effectiveness of the DT scheme even when increasing the number of 

vehicles. 

3.6.2.8 Impact of increasing number of vehicles on throughputs with 

different offloading schemes 

     The impact on throughput has also been investigated while increasing the number of 

vehicles, see Figure 3.18. When there is a small number of vehicles, ranging from 4 to 12, all 

the offloading schemes operate in a similar way; this is because the workload is minimal and 

can be processed at the primary fog nodes without using capacity of neighbours. When the 

number of vehicles is increased, DT achieves the highest throughput, with almost 97.5% 

compared to other schemes, which accomplish 93.5%, 91% and 90% for ST50, JTORA and WO, 

respectively. Additionally, it is noticed that when the number of vehicles reaches 24 vehicles, 

Figure 3.17: Impact of Increasing Number of Vehicles on average delay with 
Different Offloading Schemes 
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the pattern of all approaches will remain the same even when increasing the number of 

vehicles. Stability can be attributed to the behaviour of these approaches because this is the 

highest percentage of tasks they can accomplish. Overall, our approach ST50 helps to improve 

throughputs compared to a set of benchmarks, and this is overcome by the DT by around 4%. 

             

 

Figure 3.18: Impact of Increasing Number of Vehicles on throughputs with Different Offloading 
Schemes 
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of their workloads until the offloading threshold is reached. While at the dynamic threshold, 

the primary fog node will start sharing its workload once there are available neighbours. This 

is because the offloading threshold is changing dynamically by not only considering the status 

of the primary fog node itself, but also the status of all the computing devices in the system. 

This will help to exploit the available resources in the system more than when the fixed 

threshold is involved. 

 

Figure 3.19: impact of increasing number of vehicles on the percentage of processed tasks locally 
in dynamic and fixed offloading threshold 
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workload, as most of the generated tasks have been processed. We note that DT 

accomplished the least delay for both control loops as the number of neighbours is increased, 

compared to the other schemes: ST50, JTORA and WO. With three neighbours, DT decreases 

delay by 10.80%, 13.38% and 15.29% compared to ST50, JTORA and WO, respectively. When 

the number of neighbours is five, the DT scheme reduced delay by 55.94%, 70.64% and 

72.55% in comparison to ST50, JTORA and WO, respectively. When comparing DT to ST50 in 

control loop B, it can be observed that there is a slight difference in the average delay, and 

this remains unchanged even when increasing the number of neighbours. This is because 

tasks in control loop B should be processed in the cloud servers. Regarding control loop A, DT 

helps reduce the average delay by around 30% when the number of neighbours is 3 and 4. A 

further increase in the number of neighbours will lead to a reduction of the average delay by 

approximately 56%. 

 

Figure 3.20: impact of increasing number of neighbours on average delay in control loops with 
various offloading schemes 

3.6.2.11 Impact of increasing number of neighbours on throughputs 

with various offloading schemes  

The impact of increasing the number of neighbours on throughput shows a similar pattern as 

increasing the number of neighbours to decrease delay. Results is shown in Figure 3.21. As 

the number of neighbours increases, the percentage of processed tasks increases, until a 
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certain number of neighbours is achieved (e.g., five neighbours), after which the pattern 

remains almost stable.  

In terms of the comparison with other schemes, DT improves throughputs by 2.7% when the 

number of neighbours is three, 3.5% when the number of neighbours is four, and 4.2% when 

the number of neighbours is five, six, seven, eight, nine and ten, compared to ST50 scheme. 

When the optimal number of five neighbouring fog nodes is reached, the DT processed 

97.66% of the total generated tasks, while ST50, JTORA and WO processed 93.55%, 91.06% 

and 90.5%, respectively. The DT scheme improves throughput compared to other stated 

schemes as the number of neighbouring fog nodes was increased. 

It can be observed that when the number of neighbours is small, e.g., 3, both approaches, DT 

and ST50, achieve lower percentages of throughputs at approximately 72.1% and 69.07%, 

respectively. This is primarily due to the highly congested environment and the system's 

limited computational resources. However, with four neighbours, both approaches perform 

better compared to having three neighbours. In this scenario, DT and ST50 achieve 

throughput percentages of 85.22% and 81.03%, respectively. Increasing the number of 

neighbours to five or more will further improve throughput compared to having four 

neighbours. In this case, DT will accomplish a throughput percentage of 97.67%, while ST50 

achieves 93.56%. 
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Figure 3.21: impact of increasing number of neighbours on throughputs with various offloading 
schemes 

3.6.2.12 Impact of increasing number of neighbours on energy 

consumption with various offloading schemes  

The impact of increasing the number of neighbours on energy consumption is investigated 

with various offloading schemes, as shown in Figure 3.22. When increasing the number of 

neighbours, the energy consumption in the system is increased because of operating 

additional fog nodes. Addressing the impact of increasing the number of neighbours helps to 

find the optimal number of neighbouring fog nodes that is necessary to achieve optimum 

results. When having five neighbours the difference between the energy consumed with and 

without DEC is very low; then as we increase the number of neighbours, the difference starts 

to increase. In the no offloading scheme, the impact of utilising DEC can be observed, i.e., 

reducing the wastage of energy by 55.72% when the number of neighbours is three, and up 

to 80.74% when the number of neighbours is ten. This method can also be applied to ST50 

and DT, as DEC saves up to 38.58% and 32.16% of energy for each scheme respectively, when 

the number of neighbours is ten.  
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Without applying DEC, DT consumes slightly more energy than ST50. This is because, in both 

methods, all fog devices are switched on continuously. In addition to that ST50 does not 

process more tasks in the system compared to DT, and most of the time, fog devices remain 

in an idle state. When comparing ST50 to DT after applying DEC, DT consumes more energy. 

This is due to the nature of this scheme, where more tasks are processed in DT than in ST50. 

The energy consumed during the processing of these tasks leads to an overall increase in 

energy consumption within the system.  

  

 

Figure 3.22: impact of increasing number of neighbours on Energy consumption with various 

offloading schemes 
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3.7      Conclusion  

In this chapter, we studied the problem of minimising service latency and power consumption 

in online fog computing systems and proposed a combination of two efficient and effective 

algorithms named: dynamic task scheduling (DTS) and dynamic energy control (DEC). We have 

demonstrated their performance on various static offloading thresholds and when increasing 

the number of neighbours in the system. Compared to the no-offloading scheme along with 

other offloading approaches with various offloading thresholds, the experimental results 

validate that our proposed solution can reduce up to 89.16% of the task round-trip time and 

save up to 70% of the total energy consumption. In addition to that it enhances throughput 

by almost 40% compared to the no-offloading approach. Then, we proposed a dynamic 

offloading threshold that allows a fog node to adjust its threshold dynamically, and we 

investigated its influence of system performance with a set of benchmarks. Various numerical 

results are included, and the performance evaluations were presented to illustrate the 

effectiveness of the proposed scheme and demonstrate the superior performance over 

existing schemes. 

It is also noticed that determining the offloading threshold upon which fog nodes start sharing 

their workloads with neighbours, and the optimal number of available neighbours play a 

significant role in the performance of the system. The values of these parameters cannot be 

determined in advance in such a dynamic online system. In this regard, it is necessary for us 

to propose a dynamic offloading threshold that takes into considering the status of the fog 

node and all its neighbours which is addressed in the next chapter.
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4 Optimising the Energy Consumption in Stochastic 

Cooperative Fog Computing Systems 

4.1 Introduction  

By integrating fog computing into IoT systems, new levels of flexibility and scalability 

have been introduced to data processing. However, as the number of IoT devices and 

the volume of data generated continue to increase, this will pose a burden on the 

system. Consequently, the deployment of a significant number of fog devices is expected 

to increase in order to meet QoS requirements. In this context, it becomes increasingly 

important to manage energy consumption in these systems. This is to ensure that 

resources are being used efficiently at minimum cost, and that the system is operating 

at optimal levels by avoiding any failure caused by overloading or overheating of servers. 

In this chapter, the optimisation problem that considers minimising the energy 

consumption in the fog computing system in stochastic environment under certain 

constraints is investigated. The rest of this chapter is organized as follows; Section 5.2 

defines the system model, and the communication model between system entities is 

described in section 5.3. Section 5.4 presents the Queueing model, and workload model 

is described in section 5.5. Processing model, Delay model, and energy consumption 

model are defined in sections 5.6, 5.7, and 5.8, respectively. In section 5.9, the 

optimisation problem is formulated along with system constraints. A plan to solve to the 

optimisation problem is provided in section 5.10, and finally, section 5.11 summaries 

this chapter. 
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4.2 System model 

In our proposed system architecture, we have a set of IoT regions, fog nodes (FN), local 

controllers, global controller, and cloud servers. Each set of fog nodes with one local 

controller are grouped as a cluster, and there is K clusters in the system. The global 

controller monitors the performance of all local controllers. In each IoT region, we have 

a set of IoT devices that produce heterogenous tasks stochastically. These tasks will 

arrive at the primary fog node, in which these IoT devices located under its coverage. 

For each primary fog node (PFN), there is a set of neighbours (N), which are willing to 

cooperate and help processing its workload to achieve overall system goal. Each primary 

fog node connects to its neighbours and to the local controller via wireless links, while 

it connects to the cloud data centres over wired links. The interactions among fog nodes 

belonging to the same cluster is allowed but there are no interactions between fog 

nodes which belong to different clusters.  

In this system, we have a time-slotted structure, indexed by 𝑡 ∈ {0, 1, 2, …, T-1}, and the 

length of each time slot is constant and its ∆𝑡. Each fog node is characterized by {𝑓𝑖, 𝛿𝑖(t-

1), 𝛿𝑖(t), memory}. 𝑓𝑖  determines its computational capacity and is measured in mips, 

and 𝛿𝑖(t-1) determines the previous status of fog node in time slot (t-1) in terms of being 

active or asleep, which is specified by its local controller, and 𝛿𝑖(t) specifies the current 

status of the fog node. If 𝛿𝑖(t)=1, it means that the status of fog node i in time slot (t) is 

active, and asleep otherwise. In time slot (t), the number of active fog nodes in a cluster 

is referred as (AN) and (SN) for sleeping fog nodes. We consider a stochastic task arrival 

model, where the arrival of tasks is not known in advance. Each task i ∈ 𝑇𝑡𝑎𝑠𝑘 generated 

from IoT devices is characterized by a tuple represented as {Typei, 𝑀𝑖, 𝑆𝑖, 𝐷𝑖, MEi}, where 

Typei is the type of task i, which is either private, semi-private and public, 𝑀𝑖  is the 

processing requirements of task i and is defined as million instructions (MI). 𝑆𝑖 is the size 

of task i in bits, 𝐷𝑖  is the maximum deadline for task i. MEi is the required memory to 

store ith task in the arrival queue before processing it. 
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The parameters used to represent the system is shown in Table 4.1. 

Table 4.1: System model parameters definitions. 

Parameter  Definition  

𝐹𝑁 Set of fog nodes in the cluster  

𝑃𝐹𝑁 Primary fog node  

𝑁 Set of neighbours  

𝐴𝑁 Active fog nodes  

𝑆𝑁 Sleeping fog nodes  

𝑓𝑖  
Determines the computational capacity of fog node i and measured 
in mips 

𝑡 Time slot  

∆ 𝑡 Length of time slot in ms 

𝑇𝑡𝑎𝑠𝑘  Set of all tasks in the system  

𝑀𝑖  The processing requirements of task i in MI 

𝑆𝑖 The size of task i in bits 

𝛿𝑖 
The status of the fog node i in regard to being active or in a sleep 
mode 

𝐷𝑖  Maximum deadline for task i 

𝑀𝐸𝑖 The required memory to store ith task in the arrival queue 

𝑄𝑖 Arrival queue of fog node i 

𝐿𝑄𝑖 Local queue of fog node i 

𝐻𝑄𝑖 Help queue of fog node i 

𝑏𝑖
𝑒(𝑡) 

The amount of workload that can be assigned to fog node i in time 
slot (t), 

𝑏𝑖,𝑚𝑎𝑥
𝑒  

Is the maximum amount of workload that can be processed by fog 
node i in time slot (t) 

𝛾𝑖 (𝑡) Decision vector  to ith fog node in time slot (t) 

𝑇𝑒 , 𝑇𝑡𝑟 , 
𝑇𝑖𝑑𝑙𝑒, 𝑇𝑠𝑙𝑒𝑒𝑝,𝑇𝑠𝑜 

execution delay, transmission delay, time for being idle, sleeping 
time, time overhead for activating a sleeping fog node, respectively  

𝐸𝑒 , 𝐸𝑡𝑟 , 𝐸𝑟𝑒 , 
𝐸𝑖𝑑𝑙𝑒 , 𝐸𝑠𝑙𝑒𝑒𝑝,𝐸𝑠𝑜 

 

Execution energy, transmission energy, receiving energy, being idle 
energy, sleeping energy and energy overhead for activating a 
sleeping fog node, respectively. 

𝐸𝑐(𝑡)̅̅ ̅̅ ̅̅ ̅ Time average energy consumption for all fog nodes 

4.3 Communication model  

The proposed system architecture is shown in Figure 4.1. In time slot (t) which refers to 

the time duration [t-1, t), each IoT region i generates a number of tasks referred to as 

𝐴𝑖(𝑡). These tasks enter the arrival queue of the PFN i until the decision is made on 
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where to process them. Each 𝐹𝑁𝑖 maintains three types of queues called, arrival queue 

𝑄𝑖, local queue 𝐿𝑄𝑖and help queue 𝐻𝑄𝑖. Arrival queue contains tasks that are arriving 

from IoT regions, and local queue contains tasks that are transferred from the arrival 

queue and the decision is made to process them locally. Help queue contains tasks that 

are offloaded from other neighbours to process them in 𝐹𝑁𝑖. More details about the 

queues are provided in the Queue model.  

 

Figure 4.1: The proposed architecture in IoT-Fog-Cloud system in one cluster. 

A number of N fog nodes are grouped in one cluster and controlled by one local 

controller. This is done to deal with a large-scale system with stochastic arrival of tasks 

and dynamic changes in system status. In this manner, the local controller is aware of 

the status of all fog nodes under its controller at the beginning of each time slot, and 

thus make the optimal offloading decision. The responsibility of a local controller in each 

cluster are to: 

• Monitor the system. 

• Analyse the conditions of the fog nodes under its controller and determine the 

status of each fog node in terms of being active or sleep. 



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 4: Optimising the Energy Consumption in Stochastic Cooperative Fog Computing 
Systems 

 

  

-107- 

• Make the optimal offloading decision between fog nodes considering the status 

of the computing devices.  

The communication between each PFN, the local controller, and its neighbours in one 

cluster is shown in Figure 4.2. At the beginning of each time slot (t), the following 

procedures are accomplished in the following order. 

1) Each PFN sort tasks upon their arrival to the 𝑄𝑖 based on their types and deadlines, 

this is described more in the workload model.  

2) Then, each PFN determines the amount of workload that will leave its Q(t) and 

enters its LQ(t) based on the policy. 

3) Each FN forms an information vector 𝑋𝑖(t) contains the status of its queues and 

sends it to the local controller. 

4) Then the local controller receives and analyses the global information from all FN 

under its controller as  

𝑋(t) ≜ [ 𝑋1(t), 𝑋2(t),…… , 𝑋𝑘(t)], 𝑡 ∈ [1, 2, … , 𝑇] 

5) Based on the received information, the local controller applies Q-learning to 

determine the status 𝛿𝑖(t) of each FN as  

𝛿(t)  ≜  [𝛿1(𝑡), 𝛿2(𝑡), …… , 𝛿𝑘(𝑡) ], 𝑡 ∈ [1, 2, … , 𝑇] 

6) The proposed strategy is then applied based on Lyapunov optimisation and creates 

the optimal offloading decisions for all its FNs regarding which neighbours process 

which workloads, as 

𝛾(𝑡)  ≜ [ 𝛾1(t), 𝛾2(t),…… , 𝛾𝑘(t)], 𝑡 ∈ [1, 2, … , 𝑇] 

Where 𝛾𝑘(t) is the decision vector of the kth FN.  

7) The decision vector 𝛾𝑖(t) is defined as  

𝛾𝑖(t) = [ℎ𝑖0, ℎ𝑖1 , … . , ℎ𝑖𝐴𝑁] 
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Where ℎ𝑖0 determines the amount of workload that will be transmitted from PFN i 

to neighbour 0.  

8) Then, the local controller notifies each PFN with its status and offloading decisions 

along with the expected amount of workload that will be received from all 

neighbours.  

9) Then, two cases of PFN are considered and classified as sleeping FN, and active FN.  

10) Each sleeping FN will offload its tasks based on the offloading decision and then 

enter a sleeping mode. At the end of time slot (t), the PFN will be activated to 

receive the processed workload from its neighbours and the cloud.  

11) Each AN will offload some of its workload to other neighbours based on the decision 

vector created by the local controller. The Lyapunov optimisation is then applied to 

determine the amount of workload that should be processed in time slot (t) from 

its LQ(t) and HQ(t), which referred to as 𝑝𝑙(𝑡) and 𝑝ℎ(𝑡).  

 
Figure 4.2: Sequence diagram of communications between system entities within a cluster. 
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4.4 Workload model  

Upon the arrival of tasks in 𝑄(𝑡), each PFN ranks the arrival tasks based on their types 

and deadlines. Private tasks will be located at the head of 𝑄(𝑡), followd by semi-private 

tasks and public. The reason for organising tasks based on their types is to make it easier 

when making the offloading decision to process each task, which is described in the 

Lyapunov Optimisation section in Chapter 5. In each section, tasks are ranked based on 

their deadlines, where tight-deadline tasks will be at the top and tasks with loose 

deadlines are located at the end. Regarding the ranking of tasks based on their 

deadlines, this is done to meet various deadline requirements and speed up the process 

of executing tight-deadline tasks to avoid dropping them as the result of being in the 

queue for a long time.  

Upon the arrival of public type of tasks, if its deadline is not violated by processing it in 

the cloud, the task is sent upon its arrival to the cloud. In this context, loose-deadline 

public tasks are sent to the cloud for processing, and tight-deadline public tasks are 

processed within the fog infrastructure. This is to assure having enough fog resources to 

process private and semi-private tasks which can only be processed within the fog 

infratsture along with public tasks with tight deadlines.  

In the proposed framework, we consider IoT tasks differing in processing requirements, 

deadlines, priorities, and security requirements. Each IoT device generates six types of 

tasks with heterogeneous characteristics as shown in the Table 4.2. 
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Table 4.2: Characteristics of various types of tasks. 

Type Priority Where to process 
Processing 

requirement 
in MI 

Deadline 

Private 1 - PFN Low Loose 
Private 2  PFN High Tight  

Semi-private 1 - PFN & AN Low Loose 
Semi-private 2 - PFN & AN High Tight 

Public 1 - PFN & AN & C  Low Loose 
Public 2 - PFN & AN & C High Tight 

We investigated three main types of tasks regarding their security level, Private, Semi-

private, and public tasks. Private tasks can only be processed locally within the primary 

fog nodes. Semi-private tasks can be processed within the fog infrastructure, for 

example, the primary fog node and any of its neighbours. Public tasks can be processed 

in any computing device located in the fog system and the cloud system. In each of these 

types, we have two different categories. The first category is computational-light tasks 

with loss deadline and the second are computational-intense tasks with tight deadlines. 

Moreover, we assign a priority for processing private2 tasks. This is to examine how the 

system would perform with various tasks’ characteristics when assigning a priority to a 

specific task. The security level of tasks is ranked as  

 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑡𝑎𝑠𝑘𝑠 > 𝑆𝑒𝑚𝑖 − 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑡𝑎𝑠𝑘𝑠 > 𝑃𝑢𝑏𝑙𝑖𝑐 𝑡𝑎𝑠𝑘𝑠  (4.1) 

For computing devices, the primary fog node is considered as high-secured computing 

device, neighbours are semi-secured, and the cloud server is not secured, and they are 

ranked as  

 
𝐻𝑖𝑔ℎ − 𝑆𝑒𝑐𝑢𝑟𝑒𝑑 𝑑𝑒𝑣𝑖𝑐𝑒 > 𝑆𝑒𝑚𝑖 − 𝑆𝑒𝑐𝑢𝑟𝑒𝑑 𝑑𝑒𝑣𝑖𝑐𝑒 > 𝑁𝑜𝑡 − 𝑆𝑒𝑐𝑢𝑟𝑒𝑑 𝑑𝑒𝑣𝑖𝑐𝑒 

(4.2) 
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4.5 Queueing Model  

As seen in Figure 4.1 each primary fog node maintains three queues. The first queue is 

called arrival queue 𝑄𝑖 and is utilized to store all tasks arriving from the IoT devices under 

their coverage area. The arrival tasks will not departure from the arrival queue unless 

the decision is made to where to process them. At the beginning of each time slot 𝑡ℎ the 

vector of the arrival queues of all FNs are  

 𝑄(𝑡ℎ) = (𝑄1(𝑡ℎ), 𝑄2(𝑡ℎ), 𝑄3(𝑡ℎ), … , 𝑄𝑘(𝑡ℎ)) (4.3) 

The arrival queue of a single fog node evolves in the next time slot (t+1) as  

 𝑄𝑖(𝑡 + 1) = max [𝑄𝑖(𝑡) − 𝑙𝑖(𝑡) − ∑ ℎ𝑖𝑗
𝑗∈𝐴𝑁,𝑖≠𝑗

(𝑡), 0] +  A𝑖(t) (4.4) 

Where 𝑙𝑖(𝑡) is the amounts of workload that leaves the arrival queue 𝑄𝑖 based on the 

proposed policy and enters the local queue 𝐿𝑄𝑖. ℎ𝑖𝑗  is the amount of workload that 

transmitted from the arrival queue of fog node i to the help queue 𝐻𝑄𝑗 of neighbour j.  

The second queue is called local queue 𝐿𝑄𝑖, this queue contains tasks that are 

transmitted from the arrival queue to it based on the proposed algorithm, so it only 

contains tasks that belong to IoT devices under its coverage. At the beginning of each 

time slot 𝑡ℎ the vector of the local queues of all FNs are  

 𝐿𝑄(𝑡ℎ) = (𝐿𝑄1(𝑡ℎ), 𝐿𝑄2(𝑡ℎ), 𝐿𝑄3(𝑡ℎ),… , 𝐿𝑄𝑘(𝑡ℎ)) (4.5) 

 The evolution of the local queue in time slot (t+1) is as follows:  

 𝐿𝑄𝑖(𝑡 + 1) = max[𝐿𝑄𝑖(𝑡) − 𝑝𝑙𝑖(𝑡), 0] +  𝑙𝑖(𝑡) (4.6) 

Where 𝑝𝑙𝑖(𝑡) is the amounts of tasks that leave local queue for processing in time slot 

(t).  
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The third queue is called the help queue (𝐻𝑄𝑖), 𝐻𝑄𝑖 belongs to fog node i and contains 

tasks that are offloaded from the neighbouring fog nodes to be processed in fog node i. 

At the beginning of each time slot 𝑡ℎ the vector of the help queues of all FNs are  

 𝐻𝑄(𝑡ℎ) = (𝐻𝑄1(𝑡ℎ),𝐻𝑄2(𝑡ℎ),𝐻𝑄3(𝑡ℎ),… , 𝐻𝑄𝑘(𝑡ℎ)) (4.7) 

𝐻𝑄𝑖 evolves as 

 𝐻𝑄𝑖(𝑡 + 1) = max[𝐻𝑄𝑖(𝑡) − 𝑝ℎ𝑖(𝑡), 0] + ∑ ℎ𝑗𝑖(

𝑗∈𝐹𝑁,𝑖≠𝑗

𝑡) (4.8) 

Where 𝑝ℎ𝑖(𝑡) is the amount of workload that leaves the help queue based on the policy 

and determined to be processed in time slot (t). ℎ𝑗𝑖(𝑡) is the amounts of workloads that 

received from other neighbours and enters the help queue of fog node i.  

4.6 Processing model  

Following that each fog node determines the total amount of workload that is selected 

from the local queue and the help queue to be processed in the current time step (t) 

based on its proposed policy. These amounts of workload should not exceed the 

available computational resources in the computing device. The maximum amount of 

workload that can be processed in fog node i referred to as 𝑏𝑖,𝑚𝑎𝑥
𝑒  (𝑡) and it is defined 

as  

 𝑏𝑖,𝑚𝑎𝑥
𝑒 = (∆ 𝑡 − 𝑥) ∗  𝑓𝑖  (4.9) 

∆ 𝑡 is the length of the time slot, for example, 5 ms, and 𝑥 is the latency overhead 

associated if fog node i was in a sleep state in time slot (t-1). 𝑓𝑖  is the computational 

capacity of fog node i and measured in mips. According to that the following constraint 

should be met.  

 𝑝𝑙𝑖(𝑡) + 𝑝ℎ𝑖(𝑡)  ≤  𝑏𝑖,𝑚𝑎𝑥
𝑒  (4.10) 
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4.7 Delay model  

In our system, once the tasks are generated from the IoT regions, they are transmitted 

to the fog infrastructure, and queued in an arrival queue of each primary fog node, until 

the decision is made where to optimally process them. The waiting time of the tasks in 

the arrival queue, local queue and help queue is unpredictable due to having a stochastic 

system [93]. In more details, tasks will be waiting in the arrival queue until the beginning 

of the time slot (t) where the PFN decides to move some tasks from its arrival queue to 

its local queue or the local control decides which neighbour/s to handle them in their 

help queue/s. However, if there are not enough computational and energy resources 

within a cluster in the fog computing system in time slot (t), tasks will be waiting in the 

next time slot (t+1) until the availability of the fog resource. Moreover, the availability 

of the fog resources cannot be determined in advance due to the randomness of the 

arrival of tasks in different IoT regions. To avoid having tasks being in the queues for 

several time slots and to control the waiting time of tasks in queues, we introduce the 

following constraint. 

 𝐷𝑚𝑎𝑥
𝑖 < 𝐷𝑚𝑎𝑥 (4.11) 

 Where 𝐷𝑚𝑎𝑥
𝑖  represents the worst-case delay. This constraint will be further clarified in 

Lyapunov chapter. 𝑇𝑎
𝑖 represents the waiting time in the arrival queue, 𝑇𝑙

𝑖 and 𝑇ℎ
𝑖  are the 

waiting time in the local queue and the help queue respectively.  

The worst-case delay defined in the optimisation problem, which controls the maximum 

waiting time of a task in each queue, is replaced with a virtual queue following the work 

in [94, 95].  

A virtual queue is created for each actual queue in the system, and the virtual queue 

correlated to the arrival queue is denoted as 𝑋𝑖
𝑄, initially 𝑋𝑖

𝑄(0) = 0, and it evolves as  
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 𝑋𝑖
𝑄(𝑡 + 1) = max [𝑋𝑖

𝑄(𝑡) − 𝑙𝑖(𝑡) − ∑ ℎ𝑖𝑗
𝑗∈𝐴𝑁,𝑖≠𝑗

(𝑡), 0] +  𝜖𝑖1 

Where 𝜖𝑖1 is a constant value added at each time slot if the actual arrival queue 𝑄𝑖 is not 

empty. The concept of introducing virtual queues is useful when making the offloading 

decision. For example, if there is one task is in the arrival queue and it has been waiting 

for several time slots to be transmitted to the local queue or to the help queue of other 

neighbours, however, the system is focusing on the congested queues to process as 

much of its workload to ensure stability in the system over the queue that contains one 

task whose deadline is nearly violated. As each time slot passes, the value of the virtual 

queue increases by 𝜖𝑖1 which drive the attention of the system to process this task. With 

regards to the local queue, its virtual queue 𝑋𝑖
𝐿𝑄, and initially in time slot (0), 𝑋𝑖

𝐿𝑄(0) =

0, and it evolves as  

 𝑋𝑖
𝐿𝑄(𝑡 + 1) = max[𝑋𝑖

𝐿𝑄(𝑡) − 𝑝𝑙𝑖(𝑡), 0] +  𝜖𝑖2 

The concept of constant 𝜖𝑖2 is similar to 𝜖𝑖1. 

The virtual queue related to the help queue denoted as 𝑋𝑖
𝐻𝑄 and it has the value zero in 

time slot (0), and it evolves as  

 𝑋𝑖
𝐻𝑄(𝑡 + 1) = max[𝑋𝑖

𝐻𝑄(𝑡) − 𝑝ℎ𝑖(𝑡), 0] +  𝜖𝑖3 

  

4.7.1 Execution delay  

The execution delay (𝑇𝑒 )  is calculated as  

 𝑇𝑒 = 
𝑀𝑖
𝑓𝑗
  (4.12) 
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4.7.2 Transmission delay 

Transmission latency (𝑇𝑡𝑟 ) is the time taken for a task to transmit from the primary fog 

node to the neighbouring node/cloud server, and after processing the task, the 

processed result is sent back to the primary fog node.  

The transmission latency is related to the size of the offloaded task (𝑆𝑖) and the 

bandwidth rate (𝑅𝑖
𝑡𝑟). The bandwidth rate is defined as  

 𝑅𝑖𝑗
𝑡𝑟 = 𝐵𝑖𝑗

𝑡𝑟𝑙𝑜𝑔2 ( 1 + 
𝑃𝑖
𝑡𝑟 ℎ𝑝𝑗

𝑖

𝜉2
 ) (4.13) 

Where 𝐵𝑖𝑗
𝑡𝑟refers to the channel bandwidth between the primary fog node i and its 

neighbour j.  𝑃𝑖
𝑡𝑟 is the required transmission power to offload task i to fog device j. ℎ𝑝𝑗

𝑖  

is the channel gain between fog node i and j,  

, and 𝜉2 is the white Gaussian noise.  

Then, the transmission delay (𝑇𝑡𝑟 ) is calculated as  

 𝑇𝑡𝑟 = 
𝑆𝑖
𝑅𝑖𝑗
𝑡𝑟 (4.14) 

After processing task i, the results are transmitted back to the primary fog node i, and 

the time taken to send the processed task 𝑇𝑟𝑒  is. 

 𝑇𝑟𝑒 = 
𝑆𝑅𝑖
𝑅𝑗𝑖
𝑡𝑟  (4.15) 

Where 𝑆𝑅𝑖 is the size of the processed task i.  

4.7.3 End-to-end delay 

If the optimal decision is to process the task x locally on the primary fog node i, end-to-

end delay (𝑇𝑡𝑜𝑡𝑎𝑙 ) is calculated as  
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 𝑇𝑡𝑜𝑡𝑎𝑙
𝑥 = (𝑇𝑎

𝑖 + 𝑇𝑙
𝑖 + 𝑇 𝑒

𝑖 ) + (1 − 𝛿𝑖(𝑡 − 1))( 𝑇 𝑠𝑜
𝑖 )    (4.16) 

Where 𝛿𝑖(𝑡 − 1) represents the status of ith fog node in last time step (t-1). If ith fog 

node previous status is active, then 𝛿𝑖(𝑡 − 1) = 1 and 0 otherwise. 𝑇 𝑠𝑜
𝑖   is the latency 

overhead for activating the sleeping ith fog node. If the best decision is to process the 

task x in the neighbouring fog node j, 𝑇𝑡𝑜𝑡𝑎𝑙 is defined as  

𝑇𝑡𝑜𝑡𝑎𝑙
𝑥 = (𝑇𝑎

𝑖 + 𝑇 𝑡𝑟
𝑖𝑗 + 𝑇ℎ

𝑗
+ 𝑇 𝑒

𝑗 + 𝑇 𝑟𝑒
𝑗𝑖 ) + (1 − 𝛿𝑖(𝑡 − 1))( 𝑇 𝑠𝑜

𝑖 )

+ (1 − 𝛿𝑖(𝑡 − 1))( 𝑇 𝑠𝑜
𝑗 ) 

(4.17) 

𝑇 𝑟𝑒
𝑗𝑖 is the transmission delay for sending the results back from the neighbouring fog 

node j to the primary fog node i. If the optimal decision is to process the task in the cloud 

server, 𝑇𝑡𝑜𝑡𝑎𝑙 is calculated as  

 𝑇𝑡𝑜𝑡𝑎𝑙
𝑥 = (𝑇 𝑡𝑟

𝑖𝑐 + 𝑇𝑎
𝑐 + 𝑇 𝑒

𝑐

 
+ 𝑇 𝑟𝑒

𝑐𝑖 ) + (1 − 𝛿𝑖(𝑡 − 1))( 𝑇 𝑠𝑜
𝑖 )   (4.18) 

The average end-to-end latency for all tasks of the same type that are processed in the 

system is calculated as  

 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 
∑ 𝑇𝑡𝑜𝑡𝑎𝑙

𝑥𝑋
𝑥=1

𝑋
 (4.19) 

Where X is the total number of tasks of the same type in the system. 

4.8 Energy Consumption model  

In the time-slotted system, the energy is renewed at the beginning of each time slot, 

and each fog node has a maximum amount of energy that should not exceed during the 

time slot (t). If a fog node exceeds the maximum threshold of its energy, tasks will not 

be executed, and the device will shut down. The energy model considered in the 

offloading system is the energy spent during executing, transmitting, and receiving 
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tasks, being idle and in a sleep mode. We only consider the energy consumption in the 

fog computing system.  

The energy consumption in each fog node in time slot (t) is calculated based on its 

state/s, 𝑠 ∈ 𝑆, which is defined as  

𝑆 = {𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑟𝑒𝑐𝑖𝑣𝑖𝑛𝑔 , 𝑏𝑒𝑖𝑛𝑔 𝑖𝑑𝑙𝑒, 𝑏𝑒𝑖𝑛𝑔 𝑠𝑙𝑒𝑒𝑝, 𝑠𝑙𝑒𝑒𝑝 𝑜𝑣𝑒𝑟ℎ𝑎𝑒𝑑}  

The energy consumed at each state is correlated to the time spent during that state (𝑇𝑠)  

[88-90] and it is defined as  

𝐸 = 𝐸𝑠 ∗  𝑇𝑠 𝑠 ∈ 𝑆   

𝐸𝑠 = {𝐸𝑒 , 𝐸𝑡𝑟 , 𝐸𝑟𝑒 , 𝐸𝑖𝑑𝑙𝑒 , 𝐸𝑠𝑙𝑒𝑒𝑝,𝐸𝑠𝑜} 

𝑇𝑠 = {𝑇𝑒 , 𝑇𝑡𝑟 , 𝑇𝑟𝑒 , 𝑇𝑖𝑑𝑙𝑒 , 𝑇𝑠𝑙𝑒𝑒𝑝,𝑇𝑠𝑜} 

 𝐸𝑒 > 𝐸𝑡𝑟 + 𝐸𝑟𝑒 > 𝐸𝑖𝑑𝑙𝑒 > 𝐸𝑠𝑙𝑒𝑒𝑝 + 𝐸𝑠𝑜 (4.20) 

𝑇𝑖𝑑𝑙𝑒 is the time spent for the computing device while not doing any processing. The 

total energy consumption for fog node i in time slot (t) is calculated as follows. 

𝐸𝑖(𝑡) =  (1 − 𝛿𝑖(𝑡 − 1))(𝐸𝑠𝑜)⏟            
𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑖𝑓 𝑓𝑜𝑔 𝑛𝑜𝑑𝑒 𝑖 𝑤𝑎𝑠 

𝑎 𝑠𝑙𝑒𝑒𝑝 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡(𝑡−1)

+ (𝐸𝑖
𝑒 ∗  ∑𝑇 𝑥

𝑒

𝑝𝑙𝑖

𝑥=1

)

⏟          
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑡𝑎𝑠𝑘𝑠

+ 

(𝐸𝑖
𝑡𝑟 ∗  ∑𝑇 𝑗

𝑡𝑟

ℎ𝑖𝑗

𝑗=1

) + (𝐸𝑖
𝑟𝑒 ∗  ∑ 𝑇 𝑗

𝑟𝑒

ℎ𝑖𝑗−𝑏+𝑎

𝑗=1

)

⏟                          
𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑡𝑠 𝑡𝑎𝑠𝑘𝑠 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

+ 

(𝐸𝑖
𝑡𝑟 ∗  ∑ 𝑇 𝑗

𝑡𝑟

𝑋𝑐𝑙𝑜𝑢𝑑

𝑗=1

) + (𝐸𝑖
𝑟𝑒 ∗  ∑ 𝑇 𝑗

𝑟𝑒

𝑋𝑐𝑙𝑜𝑢𝑑−𝑏+𝑎

𝑗=1

)

⏟                            
𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑡𝑠 𝑡𝑎𝑠𝑘𝑠 𝑡𝑜 𝑐𝑙𝑜𝑢𝑑

+ 

 

(4.21) 
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(𝐸𝑖
𝑟𝑒 ∗  ∑𝑇 𝑗

𝑟𝑒

ℎ𝑗𝑖

𝑗=1

) + (𝐸𝑖
𝑒 ∗  ∑ 𝑇 𝑗

𝑒

𝑝ℎ𝑗𝑖

𝑗=1

)+ (𝐸𝑖
𝑡𝑟 ∗  ∑𝑇 𝑗

𝑡𝑟

𝑝ℎ𝑗𝑖

𝑗=1

)

⏟                                  
𝑓𝑜𝑔 𝑛𝑜𝑑𝑒 𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑡𝑎𝑠𝑘𝑠 

+ 

(𝐸𝑖𝑑𝑙𝑒
𝑖 ∗  𝑇 𝑖𝑑𝑙𝑒

𝑖 )⏟        
𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑏𝑒𝑖𝑛𝑔 𝑖𝑑𝑙𝑒 

 

The first part of the energy consumption calculation is related to the energy overhead 

for activating a sleeping fog node in time slot (t-1). The second part is related to the 

energy consumption of processing its own tasks, where 𝑝𝑙𝑖 is the number of tasks that 

processed locally in time slot (t). The third part regards the energy consumed caused by 

transmitting a set of ℎ𝑖𝑗 tasks to its neighbours and receiving a set of ℎ𝑖𝑗 − 𝑏 + 𝑎  

processed tasks from the neighbours. ℎ𝑖𝑗 ≠ ℎ𝑖𝑗 − 𝑏 + 𝑎  as the number of tasks 

transmitted to all neighbours will not be processed in the same time slot (t), instead 

there will be 𝑏 amount of these tasks that will be waiting in the help queue of the 

neighbours to be processed in the next time slot, and 𝑎 is the number of tasks that had 

been in the help queues of the neighbours in the previous time slot. The same is applied 

for transmitting and receiving the processed tasks from the cloud. The fifth part is 

related to the energy consumed by fog node i to handle its neighbours’ workload, where 

ℎ𝑗𝑖  is the number of tasks that offloaded from its neighbours to be processed in fog node 

i, and 𝑝ℎ𝑗𝑖  is the number of tasks that is processed in time slot (t) by fog node i that 

belongs to its neighbours, and ℎ𝑗𝑖 ≠ 𝑝ℎ𝑗𝑖. Finally, the energy that is consumed when the 

fog node is active and not doing any processing. 

The total energy consumption of all fog nodes in one cluster is calculated as  

 𝐸𝑐(𝑡) =  ∑ 𝐸𝑖(𝑡)

𝑖 ∈ 𝐹𝑁

 (4.22) 
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4.9 Problem formulation  

In IoT environment, a large number of intelligent devices and industrial manufacturing 

will produce a huge energy consumption. Furthermore, there will be an increase in 

energy consumption at the fog infrastructure if an inefficiency fog resource 

management is considered, which will entail an increase in operational costs. Moreover, 

it may result in a reduction in the lifespan of the computing device and environment 

pollution. In addition to that, as the IoT environment and fog infrastructure consume 

more energy, possible resource depletion may result. 

Energy conservation and emission reduction has become an important task of modern 

society. Thus, we focused on the minimisation of the energy consumption in a 

collaborative fog computing system. To be more specific, we aimed at minimising the 

expected time average energy consumption for all fog nodes in the system, which is 

expressed as  

 𝐸𝑐(𝑡)̅̅ ̅̅ ̅̅ ̅ =  lim
𝑇 →∞

1

𝑇
 ∑∑𝔼 { 𝐸𝑖

𝐹𝑁

𝑖=1

𝑇−1

𝑡=0

(𝑡)} (4.23) 

Where 𝐸𝑖(𝑡) is the total energy consumed at fog node i during time slot (t)  

The considered problem can be considered as a constrained optimisation problem as 

follows. 
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𝑷𝟏:  𝑴𝒊𝒏𝒊𝒎𝒔𝒆 𝑬𝒄(𝒕)̅̅ ̅̅ ̅̅ ̅                                                     (4.24) 

Subject to   

C1: 𝑄̅𝑖 = lim
𝑇→∞

sup 
1

𝑇
 ∑𝑄𝑖(𝑡) < ∞

𝑇−1

𝑡=0

  

C2: 𝐿𝑄̅̅̅̅ 𝑖 = lim
𝑇→∞

sup 
1

𝑇
 ∑𝐿𝑄𝑖(𝑡) < ∞

𝑇−1

𝑡=0

  

C3: 𝐻𝑄̅̅ ̅̅ 𝑖 = lim
𝑇→∞

sup 
1

𝑇
 ∑𝐻𝑄𝑖(𝑡) < ∞

𝑇−1

𝑡=0

  

C4: 𝑄𝑖  ≤  𝑄𝑖
𝑚𝑎𝑥, 𝐿𝑄𝑖  ≤  𝐿𝑄𝑖

𝑚𝑎𝑥, 𝐻𝑄𝑖  ≤  𝐻𝑄𝑖
𝑚𝑎𝑥  

C5: 0 < 𝐸𝑖 (𝑡) < 𝐸𝑚𝑎𝑥
𝑖  (𝑡), ∀  i ∈ FN  

C6: 𝑇𝑡𝑜𝑡𝑎𝑙
𝑖  ≤ 𝐷𝑖   ∀  i ∈ T

𝑡𝑎𝑠𝑘  

C7: 𝑆𝐸𝑖 ≤ 𝑆𝐸𝑗    ∀  i ∈ T
𝑡𝑎𝑠𝑘,  ∀  𝑗 ∈ (AN ∪ C)  

C8: ∑𝑀𝑘(𝑡) ≤  𝑏𝑗,𝑚𝑎𝑥
𝑒

𝐾

𝑘=1

 (𝑡), ∀  j ∈ FN, ∀  K ∈  T𝑡𝑎𝑠𝑘   

C9: ∑𝑆𝑘(𝑡) ≤  𝐵𝑗
𝑖

𝐾

𝑘=1

 (𝑡), ∀  i ∈ FN, ∀  j ∈ (AN ∪ C), ∀  K ∈  T𝑡𝑎𝑠𝑘   

C10: 𝐷𝑚𝑎𝑥
𝑖 < 𝐷𝑚𝑎𝑥 , ∀  i ∈ {𝑄𝑖, 𝐿𝑄𝑖, 𝐻𝑄𝑖}  

C11: 𝑑𝑖
%(𝑡) ≤  𝑑𝑚𝑎𝑥

% (𝑡)  

The average long-term energy consumption 𝐸𝑐(𝑡)̅̅ ̅̅ ̅̅ ̅ is defined in (4.23). Constraints C1 to 

C3 means that arrival queues, local queues, and help queues of all the primary fog nodes 

should be stable in the average time sense, which in turn ensures the stability in the fog 

computing systems. Constraint C4 is to ensure that the size of the arrival queues, local 
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queues, and help queues have an upper bound. Constraint C5 ensures that the 

estimated energy consumed in a single fog node in time slot (t) is not exceeding the 

maximum allowed energy in a time slot (t). constraint C6 ensures that the end-to-end 

latency for task i is not violating the deadline requirement of task i. Constraint C7 

indicates that, if the computing device j is selected to process task i, the computing 

device should have equal or higher security level than that of task i. the security levels 

of tasks and computing devices are defined in equations (4.1) and (4.2). constraint C8 

states that the total processing requirement to process a number of tasks in the current 

time slot (t) should not exceed the maximum available computing resources in the fog 

node. Constraint C9 is to ensure that the total size of tasks transmitted from fog node i 

to the jth computing device should not exceed the available bandwidth between them. 

In constraint C10 we ensure the maximum waiting time for tasks in queues is not 

exceeding the worst-case delay. In constraint C11, 𝑑𝑖
%(𝑡) refers to the percentage of 

dropped tasks in ith fog node at time slot (t) which it should not exceed the maximum 

allowed percentage of drooping tasks 𝑑𝑚𝑎𝑥
% (𝑡). 

4.10 Plan of solutions: 

The long-term energy consumption in the online fog infrastructure can be minimised by 

efficiently addressing the problems of resource management and computational 

offloading and processing decisions. In this manner, an efficient energy management 

scheme for fog nodes based on sleeping cycle is proposed. This is accomplished through 

exploiting the advantage of Q-learning approach while still meeting the QoS 

requirements and the system constraints. Additionally, energy savings can be further 

maximised if an efficient computational offloading and processing decisions scheme is 

considered based on Lyapunov optimisation theory.  

In this context, the problem of minimising energy in the fog computing systems can be 

expressed as two subproblems. The first subproblem is concerned with developing an 

efficient cooperative dynamic energy management scheme, which is explained in 
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chapter six. Moreover, the second subproblem is concerned with finding the optimal 

offloading decision for each fog node, which is described in section seven. The proposed 

solution based on cooperative Q-learning and Q-learning runs on the global controller 

and local controllers of each cluster, respectively. Regarding the solution based on 

Lyapunov optimisation, it is applied by local controllers of each cluster and each fog 

node. Our proposed solution which is based on Q-learning and Lyapunov Optimisation 

is called Joint Q-Learning and Lyapunov Optimisation Algorithm (JQLLO).  

4.10.1 Brief description of the proposed solution  

In this section, the rules accomplished by the entities in the system represented by the 

global controller, local controllers, and each fog node in order to achieve the proposed 

solution is summarised.  

4.10.1.1 The global controller  

The global controller is responsible for applying cooperative Q-learning. This is 

accomplished once the global controller receives all Q-tables from all local controllers, 

then the optimised Q-table is created. Following that the global controller sends the 

optimised Q-table to all local controllers. The process is summarised in Figure 4.3. Full 

details are provided in chapter 5.  
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Figure 4.3: An overview of the main operations performed by the global controller at the 
beginning of each time step. 

4.10.1.2 Local controllers  

The sequence order of the main functions for each local controller at the beginning of 

each time step is summarised in Figure 4.4. First, local controller receives the system 

status of all FNs in its cluster which includes the total number of tasks in their arrival 

queues, plus local queues, help queues, and the corresponding virtual queues. This 

information represents the congestion level in each fog node. Accordingly, each local 

controller ranks fog nodes in its cluster based on their congested level in ascending 

order, starting from the least to the most congested. Following that and based on the 

received reward and the Q-learning policy, a set of fog nodes is determined to be in a 

sleep mode, the least congested fog nodes.  

Then, based on the local queues and the corresponding virtual queues, local controller 

ranks sleeping FNs starting from the most congested to the least. Then local controller 

ranks active FNs based on the arrival queue plus its virtual queue starting from the most 

congested to the least. Following that the local controller ranks neighbours based on 

their help queues and its corresponding virtual queues. Then, the optimal offloading 

decision is made for the sleeping fog nodes by selecting one of the neighbours and then 

updating its help queue.  
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The process of finding the optimal offloading decision for active fog nodes is based on 

Lyapunov optimisation and follows the same process of finding the optimal offloading 

decision. The local controller then sends offloading decisions to all FNs. Following this, 

each local controller receives a reward and observes the new system status and 

accordingly update its Q-learning policy. Then each local controller sends its Q-table to 

the global controller to perform cooperative Q-learning and accordingly, each local 

controller receives the optimised Q-table and updates their Q-learning policy based on 

it. 

 

Figure 4.4: An overview of the main operations performed by local controllers at the 
beginning of each time step. 
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4.10.1.3 Fog nodes  

The main rules of fog nodes are summarized in Figure 4.5. In arrival queues, tasks are 

sorted by type with private tasks at the top, then semi-private tasks and finally public 

tasks. Moreover, tasks are sorted according to their deadline, with tight-deadline tasks 

at the top followed by loose-deadline tasks. Then at the beginning of each time step, 

each fog node applies Lyapunov to determine the number of tasks transformed from its 

arrival queue to its local queue. Following that an information vector is created by each 

fog node containing information regarding the actual and virtual queues and sent to the 

local controller. Fog nodes, then, receive information about the optimal offloading 

strategy, the expected amount received from neighbours, and the status after the local 

controller makes its decisions. Following that each fog node will perform accordingly. 

Each active fog node applies Lyapunov optimization to determine the amount of 

workload that belongs to local and help queues that will be processed in the current 

time slot (t). This process is repeated at each time step. 

 
Figure 4.5: An overview of the main operations performed by local controllers at the 

beginning of each time step. 
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4.11 Conclusion 

This chapter represents the proposed system architecture along with system models 

and the main components considered in the system. The optimisation problem has been 

formulated with the objective of minimising long-term energy consumption in stochastic 

dynamic systems under certain constraints. Then, the main optimisation problem has 

been decomposed into two sub-problems and solved using a combination of Q-learning 

and Lyapunov Optimisation. A brief overview of the main operations performed by the 

entities in the system has been provided. In the next chapter, we propose a cooperative 

dynamic energy management scheme based on sleeping cycles as a solution to the first 

subproblem. As part of chapter 5, we describe how Q-learning, cooperative Q-learning, 

and a proposed approach are being incorporated into a learning agent's learning process 

to help it learn its environment more efficiently and quickly. Furthermore, in chapter 5, 

Lyapunov optimisation has been presented as an optimisation scheme that helps to 

solve the second subproblem regarding finding the optimal offloading and processing 

strategy. This is done to minimise energy consumption and ensure system stability. 
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5 Dynamic Resource Management, Computational 

Offloading and Processing Decisions Problems  

5.1 Introduction 

The process of allocating and managing resources in a system based on the changing 

demands and conditions of the system is referred to as dynamic resource management. 

For improving system performance, resource management aims to utilise limited 

network resources, such as energy and computation, as efficiently as possible. This is 

done while meeting QoS requirements and system constraints. In such a stochastic fog 

system designing an efficient dynamic resource management scheme is challenging and 

is not addressed in the literature adequately. Additionally, computational offloading and 

processing decisions is a crucial aspect of fog computing systems. Addressing 

computational offloading and processing decisions in an efficient manner will lead to an 

improvement in system performance and enhancement of the user experience. 

In this chapter, the two subproblems are addressed, namely: Dynamic Resource 

Management problem as in section 5.2 and Computational Offloading and Processing 

Decisions Problem as in section 5.3. In section 5.2.1, Q-learning and its structure are 

described. The proposed solution (CQL-EUAs) that is based on the Cooperative Q-

learning (CQL) algorithm along with the Eliminating Unacceptable Actions (EUAs) 

algorithm is described in section 5.2.2. In section 5.2.3, the results of experiments are 

described. The framework of Lyapunov Optimisation and drift-plus-penalty theory is 

addressed in section 5.3.1. In section 5.3.2 the problem transformation is provided along 

with the proposed solution. The set of conducted experiments and the results are in 

sections 5.3.3 and 5.3.4. Finally, the conclusion of this chapter is provided in section 5.4. 
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5.2 Dynamic Resource Management problem  

This chapter addresses the first sub-problem stated in the plan of solutions in chapter 

five, regarding dynamic resource management. To optimise resource management in 

stochastic fog systems regarding energy efficiency, we propose the concept of putting 

some fog nodes in sleep mode. This will reduce energy consumption within the fog 

infrastructure without violating the QoS requirements. The problem is considered as a 

stochastic optimisation problem with the objective of maximising the number of 

sleeping fog nodes in order to save energy consumption within the fog infrastructure 

while meeting the QoS requirements in the system, and is represented as follows: 

   max∑𝛼𝑖

𝐾

𝑖=0

𝐹𝑁𝑖  , ∀ 𝑖 ∈ 𝐾 (5.1) 

s.t C1: 𝛼𝑖  ∈ {0, 1} , ∀ 𝑖 ∈ 𝐾  

 C2: ∑𝑀𝑘(𝑡) ≤  𝑏𝑗,𝑚𝑎𝑥
𝑒

𝐾

𝑘=1

 (𝑡), ∀  j ∈ FN, ∀  K ∈  T𝑡𝑎𝑠𝑘  

 C3: 𝑐𝑜𝑠𝑡𝑖 < 𝑐𝑜𝑠𝑡𝑚𝑎𝑥  , ∀ 𝑖 ∈ 𝐾 

 C4: 0 < 𝐸𝑖 (𝑡) < 𝐸𝑚𝑎𝑥
𝑖  (𝑡), ∀  i ∈ K 

The aim is to maximise the number of fog nodes that are in sleep mode. In constraint 

C1, 𝛼𝑖 is a binary variable that represents the status of fog node 𝐹𝑁𝑖, if 𝛼𝑖 = 1, this 

means that fog node 𝐹𝑁𝑖 is in sleep mode, and 𝐹𝑁𝑖 is active if 𝛼𝑖 = 0. Constraint C2 

ensures that the total CPU resources required to process a set of assigned tasks K in a 

fog node i should not exceed the available CPU resources in fog node I. C3 is to ensure 

that the cost for offloading tasks that belong to a sleeping fog node is not exceeding the 

maximum budget for the sleeping fog node. Constraint C4 is to ensure that each fog 

node is not exceeding its maximum energy consumption in each time slot (t). 
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 Traditional optimisation methods become nontrivial and challenging in dynamic and 

stochastic environments where tasks arrive unexpectedly, and computational and 

energy resources are not known in advance. The optimisation problem, in this context, 

is transformed into a Markov decision process (MDP) problem and then solved using a 

model-free Reinforcement Learning (RL) approach called the Q-learning Algorithm. 

5.2.1 Q-learning  

The following terms are defined in relation to the problem we are solving using Q-

learning.                                                                                                                                                                                                                                                                                                                             

5.2.1.1 State Space: 

In this work, at the beginning of each time slot (t), the local controller receives an 

information vector from all fog nodes under its controller  

𝑋(t) ≜ [ 𝑋1(t), 𝑋2(t),…… , 𝑋𝑖(t)], 𝑡 ∈ [1, 2, … , 𝑇] 

Where 𝑋𝑖(t) is defined as. 

𝑋𝑖(t) ≜ [ 𝑄𝑖(𝑡), 𝑋𝑖
𝑄(𝑡), 𝐿𝑄𝑖(𝑡), 𝑋𝑖

𝐿𝑄(𝑡), 𝐻𝑄𝑖(𝑡), 𝑋𝑖
𝐻𝑄(𝑡)] 

Where 𝑄𝑖(𝑡),  𝑋𝑖
𝑄(𝑡),  𝐿𝑄𝑖(𝑡), 𝑋𝑖

𝐿𝑄(𝑡), 𝐻𝑄𝑖(𝑡), and 𝑋𝑖
𝐻𝑄 represent arrival queue, virtual 

arrival queue, local queue, virtual local queue, help queue, and virtual help queue. More 

details of Actual queues and virtual queues are described in chapter 4, sections 4.5 and 

4.7. Each component plays a significant role in characterising the state of the fog node 

at a given time slot (t). For example, the length of the arrival queue represents the 

number of incoming tasks from IoT devices awaiting processing. A longer arrival queue 

signifies a higher flow of tasks, which in turn is a sign of congestion. For the virtual queue 

associated with the arrival queue, it mainly motivated by its function in overseeing and 

controlling latency within the fog computing ecosystem. This is an important factor to 

take into account, especially if there is just one task in the real arrival queue. This single 

task could have been waiting for several time slots.  Thus, failing to include the virtual 
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arrival queue in the state vector will lead to the task being dropped due to extended 

waiting and exceeding its deadline. This concept is applied to the remaining queues. 

Then, to determine the state of fog node i, the local controller calculates the sum of all 

queue lengths as 

𝑆𝑖 =  𝑄𝑖(𝑡) + 𝑋𝑖
𝑄(𝑡) + 𝐿𝑄𝑖(𝑡) + 𝑋𝑖

𝐿𝑄(𝑡) + 𝐻𝑄𝑖(𝑡) + 𝑋𝑖
𝐻𝑄 

The outcome of 𝑆𝑖 represents a numerical value by which the local controller classifies 

the fog node. The fog node's state can be categorized as empty, Stage-One low 

congestion, Stage-Two low congestion, Stage-One Medium congestion, Stage-Two 

Medium congestion, Stage-One High congestion, and Stage-Two High congestion. Table 

5.1 shows the classification of fog nodes based on the total size of tasks in their queues, 

where i is the total size of tasks. 

Table 5.1: classification of fog nodes based on their state. 

Classification 𝑆𝑖 value 

Empty i = 0 

Stage-One Low congestion 0 < i < 50 

Stage-Two Low congestion 50 < i < 100 

Stage-One Medium congestion 100 < i < 150 

Stage-Two Medium congestion 150 < i < 200 

Stage-One High congestion 200 < i < 250 

Stage-Two High congestion i >= 250 

 

Each local controller will create a state vector of the fog nodes under its control. The 

observed state is represented as a vector <A, B, C, D, E, F, G>, where A is the number of 

empty fog nodes in the cluster, B is the number of Stage-One Low congestion fog nodes, 

and so on. For example, the state <5,0,0,0,0,0,0> means that all five fog nodes, which is 

the maximum number of fog nodes in one cluster, are empty, and state <1,0,0,1,3,0,0> 

means that one fog node is empty, one fog node is Stage-One Medium congestion, and 

three fog nodes are in Stage-Two Medium congestion. The state <0,0,0,0,0,0,5> means 

that all fog nodes are Stage-Two High congestion. The size of the queues is limited in 
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each fog node which makes the number of states finite, thus making the use of the Q-

learning algorithm feasible. 

5.2.1.2 Action Space: 

The action here is to determine the number of fog nodes that will be put in sleep mode 

after observing the current state. The action is determined by the total number of fog 

nodes in the system. 

𝒂(𝒕) ∈ 𝑨 = {𝟎, 𝟏, 𝟐, 𝟑, … . . , 𝑲 − 𝟏} 

Where K is the total number of fog nodes in a cluster, and zero means that all fog nodes 

are active. We prevent the learning agent from putting all fog nodes in sleep mode in 

any time slot (t). This is to ensure the processing of tasks in each time slot and prevent 

unwanted congestion that threatens the stability of the system which is a concern in the 

second-sub problem, which is described in more detail in chapter seven.   

5.2.1.3 Reward Function: 

After taking an action, the local controller will receive a reward based on its action. In 

defining the reward function, it should be connected to the objective function [69, 70]. 

Accordingly, the objective function of the problem here is to maximise the number of 

sleeping fog nodes. This is done to save energy consumed of the fog system. In RL, the 

learner aims to maximise the received reward. However, if we don’t put any constraints, 

the learner will put the maximum allowed number of fog nodes in its cluster in each time 

step in a sleep mode. Putting all fog nodes in sleep mode will impact the QoS 

requirements of the user. In this case, we should add some punishment [96].  

In the reward design, the punishment component is essential. This is because it helps to 

balance the decision-making process in the fog computing systems. It serves as a 

discouragement to unwanted behaviours that can to poor performance which results in 

higher energy consumption and costs. Incorporating punishment will promote 
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appropriate decision-making, which is in accordance with dynamic fog computing's 

goals of resource optimisation, energy efficiency, and cost savings. 

As the reward function consists of two parts, it is idle to normalise the value of each 

part. This is to ensure fairness and consistency in the decision-making process of the 

agent. As a result of normalizing the rewards, we are able to prevent the agent from 

becoming unduly influenced by one attribute of the reward function over another, 

resulting in suboptimal behaviour. 

So, the reward function is calculated as following: 

 𝑹(𝒔(𝒕), 𝒂(𝒕)) =  𝝎(
∑ 𝛼𝑖
𝐾
𝑖=0 𝐹𝑁𝑖
𝐾

) − (𝟏 − 𝝎)𝑷 (5.2) 

𝛼𝑖 is a binary variable that represents the status of fog node 𝐹𝑁𝑖, if 𝛼𝑖 = 1, this means 

that fog node 𝐹𝑁𝑖 is in sleep mode, and 𝐹𝑁𝑖 is active if 𝛼𝑖 = 0. 𝝎 is a weight parameter 

its value ranges between [0, 1], it determines the relative importance of the two factors 

in the calculation of the reward function: the number of sleeping fog nodes and the 

punishment 𝑷. The total number of fog nodes in one cluster is 𝑲. The value of 𝝎 is 

determined based on the observed state by the agent, and it is described in more details 

in the following section.  

When putting a fog node in sleep mode, the delay of tasks increases as they wait in the 

queue. In some cases, this will result in drooping of tasks by violating their deadlines. 

However, as tasks in our system can wait several time slots to be executed, we cannot 

measure the immediate delay or drooping of tasks that is caused by the previous action 

taken in time slot (t-1). This is because the delay and the drooping of tasks might be 

affected by a previous action taken in time slot (t-x). In this case, to measure the 

immediate effect of putting a set of fog nodes in a sleep mode in the system, we enforce 

the sleeping fog node to pay cost when offloading its tasks to active fog node/s to be 

processed. Additionally, as the sleeping fog node offloads its tasks to active neighbours, 

this will increase the energy on the active fog nodes side. This is because of processing 

tasks that belongs to sleeping fog node/s. In this case, the punishment is calculated as  
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 𝑃 =  [𝜎 (
(
∑ 𝐸𝑖(𝑡)𝑖∈𝐾

𝐾
)

𝐸𝑚𝑎𝑥(𝑡)
) + (1 − 𝜎)(

(
∑ 𝑐𝑜𝑠𝑡𝑖(𝑡)𝑖∈𝑆𝑁

𝑆𝑁
)

𝑐𝑜𝑠𝑡𝑚𝑎𝑥(𝑡)
)] (5.3) 

The trade-off parameter 𝜎 indicates the importance of normalised energy consumption 

over normalised costs. 𝐸𝑚𝑎𝑥(𝑡) and 𝑐𝑜𝑠𝑡𝑚𝑎𝑥(𝑡) are the maximum total energy spent by 

a single fog node and the maximum cost allowed for each fog node respectively. 

The cost spent by each sleeping fog node is correlated with the number of tasks 

offloaded to active neighbours, and it is calculated as  

𝑐𝑜𝑠𝑡𝑖(𝑡) = 𝑈 ∗ 𝑇
𝑆𝑁  

Where 𝑈 is the unit/task and 𝑇𝑆𝑁 is the total tasks offloaded from a sleeping fog node. 

Sleeping fog nodes will not offload all of its tasks as it is limited to the maximum budget. 

More details about the process of offloading tasks are in chapter seven.  

5.2.1.4 Shaped Reward Function 

In this work, reward shaping is used to reflect the status of the current state in the 

calculation of the reward function by introducing a trade-off parameter 𝝎. It is 

employed to dynamically balance the trade-offs between service quality and resource 

conservation, enabling the agent to make actions that are in line with the particular 

goals and environmental circumstances at any given time. 

The value of 𝝎 changes dynamically and is influenced based on the environment the 

agent observes. There are several reasons why the use of dynamically changing 𝝎 is 

crucial in this environment. This is because it makes it possible to adjust in real time to 

the constantly changing environmental circumstances. Fog computing environments are 

by nature dynamic, experiencing variations in resource availability, traffic, and 

congestion. Introducing a dynamic weighting factor ensures that the system can adapt 

its resource allocation and decision-making processes in response to these changing 
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circumstances. This adaptability results in improved QoS, cost savings, energy efficiency, 

and resource utilisation that is optimised. 

On the other hand, a static weighting factor could negatively impact the system due to 

its inflexibility in adapting to the dynamic environmental conditions, a key characteristic 

of fog systems. One of these consequences is the failure of adopting to the changing 

traffic patterns, resource availability, or congestion levels. The lack of flexibility in the 

system may result in poor performance, as it can fail to adjust resource utilisation with 

actual requirements. This might lead to higher energy consumption and costs during 

periods of low demand or missed energy-saving opportunities when available. 

For example, if the environment is extremely congested, the value of 𝝎 will be set close 

to 0, which means that the importance of the total energy and cost in the system is 

higher compared to the number of sleeping fog nodes. In this case, the agent will receive 

a lower reward for keeping more fog nodes sleeping and a higher reward for keeping 

more fog nodes active, which will encourage the agent to reduce energy consumption 

and total cost.  

In another case, where the state of the environment is slightly empty or fully empty, the 

value of 𝝎 is set close to 1, which means that the importance of the number of sleeping 

fog nodes is higher compared to the total energy in the system and the cost. In this case, 

the agent will receive a higher reward for keeping more fog nodes sleeping and a lower 

reward for keeping more fog nodes active, which will encourage the agent to keep more 

fog nodes sleeping.  

In this work, the learning agent after observing the environment regarding fog nodes 

status and creating the state vector, the agent uses a lookup table to find the best value 

of 𝝎. The lookup table is a decision table that has been predetermined and maps 

particular state vectors to matching values of 𝝎. Based on the present state of the 

system and environment, this approach enables the system to optimise its decisions and 

resource allocations in real-time to meet specified objectives, such as improving QoS or 

minimising energy usage. 
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An example of the lookup table of values of 𝝎 is shown in the following.  

State Value of 𝝎 

<5,0,0,0,0,0,0> 1 

<4,1,0,0,0,0,0> 0.96 

…………  

<0,0,0,0,0,1,4> 0.05 

<0,0,0,0,0,0,5> 0 

 

The creation of the lookup table takes into account all possible states that can be 

encountered in the environment, and it is finite, given that the number of fog nodes in 

each cluster is limited. Using a ranking method, the system ranks the states according to 

the degree of congestion in order to systematically prioritise these states. This places 

the state with empty fog nodes at the top of the lookup table, followed by the slightly 

congested states, progressing towards the most congested state. Following that, the 

highest value of 𝝎 will be associated with the empty state and gradually decreased as 

the level of congestion intensifies.  

To solve the problem stated in equation (5.1), the problem is transformed into a 

constrained optimisation problem as follows: 

 max
1

𝑇
∑𝑅(𝑠(𝑡), 𝑎(𝑡))

𝑇−1

𝑡=0

 (5.4) 

s.t C1: 𝑅𝑒𝑤𝑎𝑟𝑑𝑗 (t) ≥ 𝑅𝑒𝑤𝑎𝑟𝑑𝑚𝑖𝑛  , ∀ 𝑗 ∈ 𝑋 

 C2:  𝑐𝑜𝑠𝑡𝑖 < 𝑐𝑜𝑠𝑡𝑚𝑎𝑥  , ∀ 𝑖 ∈ 𝐾 

Where X is local controllers and K is fog nodes. The aim here is to maximise the mean 

amount of rewards that are received. Constraint C1 is to ensure that the received reward 

in a time slot (t) for a learner/local controller j is bigger than or equal to the allowed 

minimum reward in the system. Constraint C2 is to ensure that the cost of each sleeping 

fog node offloading its tasks is below a threshold value.  
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5.2.2 Proposed Approaches 

We proposed CQL-EUAs algorithm to solve the problem stated in equation (6.4) which 

combines Cooperative Q-learning (CQL) algorithm along with Eliminating Unacceptable 

Actions (EUAs) algorithm. Further details are provided below.   

5.2.2.1 Cooperative Q-learning (CQL) algorithm 

In our work, learning agents (local controllers) don’t share their experiences represented 

by their Q-tables in a direct manner with each other, as they are only responsible for 

managing the resources of the fog nodes under their control. Additionally, this process 

is repeated after each episode, which adds an additional burden to local controllers. 

Here we assign this mission to the main controller who receives all the Q-tables from all 

local controllers and then analyses these data, and finally generates one optimised Q-

table. After generating the optimised Q-table, it is distributed to all local controllers. In 

BEST-Q algorithm, the best Q-value is calculated using the following equation. 

𝑄𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑 𝑡𝑎𝑏𝑙𝑒 (𝑠, 𝑎)  ←  𝑄𝑗
𝑏𝑒𝑠𝑡(𝑠′, 𝑎′)  if s =  s’ & a =  a’        [78] 

Where j is the local controller that has the best Q-value for a state 𝒔′ for an action 𝒂′. In 

addition to applying BEST-Q algorithm, we added the following two features when 

creating the optimised Q-table.  

• BEST-Q algorithm does not consider the fact that if an individual learner has 

encountered a new state that has not been encountered by other learners. In 

such a situation, the Q-values corresponding to that state is added to the 

optimised Q-table. Sharing information regarding this state with other learners 

is extremely beneficial, regardless of the fact that they have never experienced 

it before, since the information can be applied to future situations when they 

encounter it. 

• Additionally, before applying BEST-Q algorithm, we first compare the level of 

experience between learners. In other words, a learning agent is said to be more 

expert than other learners, if this learning agent has explored more actions for a 



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 5:  Dynamic Resource Management, Computational Offloading and Processing 
Decisions Problems 

  

-137- 

Experience  Experience  

given state. In this case, BEST-Q algorithm is only applied if the learning agents 

have the same level of expertise.  

The reason for prioritising the level of experience an agent has over the BEST-Q 

algorithm is because in some circumstances this might mislead agents and drift them 

from performing the best action in a given state. The example of misleading agents that 

is caused by only applying the BEST-Q algorithm is demonstrated in Figure 5.1. In Figure 

5.1, it can be seen that for state 𝑠1, the highest Q-value is gained when performing 

action 𝑎1. This is located in the Q-table of the least expert agent. However, this agent 

did not perform action 𝑎2 when encountering state 𝑠1. In this case, applying BEST-Q 

algorithm will result in adding the state-action pair (𝑠1, 𝑎1) that belongs to the least 

expert agent to the optimised Q-table. However, when considering the level of 

experience the agents have, it is ideal to perform 𝑎2 for the state 𝑠1, and adding the 

state-action pair (𝑠1, 𝑎2)  to the Optimised Q-table.  

More expert agent Least expert agent Results of the Optimised Q-table 

 
 

 
 

 

 

 

 

 s1 

a1 0.34 

a2 0.55 

a3 - 

 
 

 s1 

a1 0.76 

a2 - 

a3 - 
 

 

 

 

 

Results of BEST-Q algorithm only 
 

 s1 

a1 0.76 

a2 0.55 

a3 - 
 

Results when experience is 
considered 

 

 s1 

a1 0.34 

a2 0.55 

a3 - 
 

Figure 5.1: Comparison example between BEST-Q only and when experience is considered in the 
creation of the Optimised Q-table. 

Regarding the creation of the optimised Q-table, Figure 5.2 shows an example of this. 

When creating an optimised Q-table, the main controller in the system compared the 

states in Q-tables and the level of experience in local controllers (Figure 5.3). 

Furthermore, the main controller analyses the first state in controller A, which is named 
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“s1”, this state also exists in controller B. Controller B is more expert than controller A 

as controller A has explored two actions called “a1” and “a2” while controller B has 

applied the three actions, “a1”, a2”, and “a3”. In this case, the main controller takes the 

state “s1” and all its corresponding Q-values from the Q-table that belongs to controller 

B and adds it to the optimised Q-table. This is also applied to state “s2”, where controller 

C is more expert than controller A.   

In regard to state “s3”, this state only exists in controller A, then it is moved directly to 

the optimised Q-table. For state “s4”, both controllers B and C have the same level of 

expertise, in this manner, we apply BEST-Q algorithm, for action “a1” the highest Q value 

is noted in controller B, which is 50, and for action “a2”, the highest Q -value is 4 and it 

belongs to controller C, whilst for action “a3”, controller B has the highest Q-value. 

Finally, state “s5” only exists in Controller C, thus it is moved directly to the optimised 

Q-table.  

At the end of creating the optimised Q-table, all learners will have the same Q-table. 

Following on from this, each individual learner will exploit its updated Q-table and add 

to it the experience they gain from exploring their environment. The process is repeated 

until reaching the termination episode. This algorithm is referred to as Optimised Q-

table (OQT) algorithm and is shown in algorithm 5.1. 

Q-table for 
Controller A 

Q-table for 
Controller B 

Q-table for 
Controller C 

The Optimised Q-table 

 
 
 

 s
1 

s2 s
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a
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8 1
5 
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a
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7 0 1 

a
3 

0 0 2 
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a
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a
3 

7 5 
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1
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6 4 8 
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0 0 1
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s4 s5 

a
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0 5
0 

9 

a
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6 6 1 4 8 

a
3 

7 0 2 5 1
0 

 

Figure 5.2: Example of optimisation Q-table 
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Algorithm 5.1: Optimised Q-table (OQT) algorithm. 

5.2.2.2 Eliminating Unacceptable Actions (EUAs) Algorithm 

 To enhance the search speed in the Q-learning method and fasten the learning process 

for the agents, Eliminating Unacceptable Actions (EUAs) method is proposed. This 

method will help the learning agent to remove an unacceptable action or a sequence of 

actions that lead/s to unwanted rewards from the action space for a given state. By 

doing that we can minimise the search space for a given state and speed the processes 

of finding the optimal action. This enhancement improves the performance of pure Q-

learning. 

 In the Q-learning algorithm, each agent has a Q-table to store the Q-values for the state-

action pairs. Regarding EUAs algorithm, each learning agent has an additional table 

called “updated action space table” to keep track of the updated action space for each 

state. For instance, if a learning agent observed the state <0,0,5,0,0,0,0>, and the action 

Optimised Q-table (OQT) algorithm  

INPUT Q_table0, Q_table1, Q_table2, ……., Q_tablej j ∈ X 

OUTPUT Optimised Q_table 

        While (No_episode < Termination_episode) 

 

Calculate experience for all j ∈ X 

Analyse Q-tables   

For each statei do 

IF (statei = statej) -> the state is experienced by agenti and agentj 

     IF (agenti_experience > agentj_experience) 

          addOptimisedTable (statei, Q-valuesi) 

     Else IF (agentj_experience > agenti_experience) 

          addOptimisedTable (statej, Q-valuesj) 

     Else IF (agentj_experience = agenti_experience) 

          Apply BEST-Q [78] 

          updateOptimisedTable 

IF (statei ≠ statej) -> the state is only experienced by agenti 

     addOptimisedTable (statei, Q-valuesi) 

Send Optimised Q-table to local controllers 
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applied is based on the Epsilon-greedy strategy is to put four fog nodes in a sleep mode. 

If the received reward caused by this action has exceeded the minimum allowed reward, 

the agent will remove action four from the action space related to this state, this is 

shown in Figure 5.3. Given another example, if the encountered state is <0,1,0,0,1,3,0>, 

and the agent has applied action three, that means putting three fog nodes in a sleep 

mode, and again the received reward is not acceptable, the agent will update the action 

space by removing action three and all higher actions, which is action four in this case. 

The algorithm of EUAs is shown in algorithm 5.2. 

 

 

 

 

 

 

5.2.2.3 The proposed CQL-EUAs algorithm  

The proposed algorithm combining cooperative Q-learning algorithm (CQL) and 

Eliminating Unacceptable Actions algorithm (EUAs) is shown in algorithm 5.3. in this 

work, each learning episode lasts for up to the 500th time step. The length of each time 

step is 5 ms and in each time step each learner will encounter a state from its 

environment that might be different from other learners. The episode terminates for 

the following reasons: 

State  <5,0,0,0,0,0,0> <4,1,0,0,0,0,0> <0,0,5,0,0,0,0> ……. <0,1,0,0,1,3,0> 

Action 
space 

{0, ..., k-1}  {0, ..., k-1} {0, ..., 3} 
{0, ..., 
k-1} 

{0, ..., 2} 

Figure 5.3: Example of updating the action space table. 

Algorithm 5.2: Eliminating Unacceptable Actions (EUAs) algorithm. 

Eliminating Unacceptable Actions (EUAs) algorithm 

INPUT (statei, actioni) statei  ∈ S, actioni ∈ A 

OUTPUT Updated Action Space Table  

        While (actioni ≤ K-1) 

 Update action space table (statei,  actioni) 

Increase actioni 
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1- An agent receives a reward that is below the minimum allowed reward.  

2- The number of time slots in one episode has reached its maximum allowed time 

per episode, which is 500 time slots.  

3- The number of episodes has reached to the termination episode number, which 

is 500 episodes. 

At the beginning of each episode, each learning agent sends its Q-table to the main 

controller and the OQT method is called, this is shown in line 3. If the number of time 

slots in the episode has not reached its maximum, the agent observes its state S(t) and 

receives its reward R(t) in lines 5 and 6. From line 7 to 20, if the received reward is not 

acceptable, the EUAs method is invoked. Then the agent calculates its average rewards, 

and the value of 𝜀 decreased if it is higher than the minimum value, and the number of 

episodes increases, and the episode terminates. 

 From lines 21 to 31, if the received reward is acceptable, the agent will update its Q-

table based on equation (5.4), and then make its action. The selection of an action 

considers the available actions from the action space and can be a random action or an 

optimal action with the highest Q-value based on the Epsilon-greedy strategy. If the 

applied action should be selected optimally, and however, the state has not been 

encountered before, the agent will select any action randomly. Then, the number of 

time slot increases. From lines 32 to 36, if the number of time slots has reached its 

maximum, the agent will calculate its average rewards and the epsilon value will 

decrease if it is higher than the minimum threshold. Then the number of episodes 

increases, and the episode terminates. This is repeated until the maximum number of 

episodes has been reached (e.g., 500 episodes). 
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CQL-EUAs algorithm 

INPUT 𝛼:  learning rate, 𝛾:  discount factor, 𝜀: epsilon = 1 

OUTPUT Updated Q (s, a) 

1 While (no_episode < termination_episode) 

2  𝑡 = 0   

3  OQT (Q_table) 

4  While (𝑡 < 𝑇) 

5  Observes the state S (t) 

6  Receives reward R (t) of state S (t-1) based on equation (5.2) 

7  IF (reward <= X) 

8   EUAs (S (t-1), a (t-1)) 

9   Calculate 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =  (𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 / 𝑡) 

10   IF ( 𝜀 > Minimum value) 

11      𝜀 =  𝜀 – minimise 

12   Increase no_episode 

20   End Episode, Go to line 1 

21  Update Q-table (S (t), R (t), S (t-1)) based on Equation (2.1) 

22  Generate Z in range [0,1] randomly 

23  Choose a ∈ A(a) using 𝜖-greedy algorithm 

24  IF (Z <=  𝝐) 

25   Select a randomly from A 

26  Else 

27   IF (S(t) ∈ Q (s, a)) 

28    a = arg maxa Q (s, a) 

29   Else  

30    Select a randomly from A 

31  𝑡 =  𝑡 + 1, Go to line 4 

32   Calculate 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =  (𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 / 𝑡) 

33  IF ( 𝜀 > Minimum value) 

34   𝜀 =  𝜀 – minimise 

35  Increase no_episode 

36  End Episode, Go to line 1 

  37 End Training Episodes 

 

Algorithm 5.3: The proposed CQL-EUAs algorithm 
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5.2.3 Experiments 

Based on the proposed scheme, there are several parameters and aspects that influence 

the results of learning and show the effectiveness of the proposed scheme. In this case, 

we examine the impact of various epsilon approaches during the learning process. 

Moreover, the effect of the minimum allowed reward that causes episode termination 

is investigated with various values. Also, the impact of varying the average arrival rate 

for each type of task generated from the IoT devices is addressed. Furthermore, the 

impact of the proposed EUAs method on the learning process is analysed. Finally, we 

investigated how cooperative learning would influence the learning process for agents 

compared to single learning, where cooperation is not considered.  

In each set of experiment, there are three main parameters that impact the results. 

These parameters are the maximum allowed received reward, the average arrival rate 

of tasks, and the epsilon approach. When running each experiment, we vary one 

parament while making the other two constants. The set of conducted experiments is 

shown in Table 5.3. 

5.2.3.1 Environment 

In all sets of experiments, the same environment is applied. Additionally, local 

controllers are learning simultaneously, and in each time step, each local controller 

might encounter a different state from others. Moreover, the action taken by a single 

local controller does not impact the environment of other local controllers. The value of 

the parameters considered in the experiments is shown in Table 5.2.  
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Table 5.2: simulation settings. 

Parameter Value 
Length of time slot (∆ 𝑡) 5 ms 

Number of clusters 3 

Number of FNs in each cluster  5 fog nodes  

Maximum number of SN in a cluster 4 fog nodes 

Number of IoT devices in each IoT region 10 devices  

Average arrival rates of tasks  [1-20], [1-30], [1-40], [1-50] ms 

Maximum time slots in an episode 500 time slots   

Maximum number of episodes  500 episodes  

Minimum reward thresholds 0, -0.05, -0.10, -0.15, -0.20 

𝛼:  learning rate 0.01 

𝛾:  discount factor 0.9 

𝜀: epsilon initial value  1 

𝜎: weight in punishment components  0.3 

 

Table 5.3: Experiment details. 

 Experiment Values 
Performance 

metric/s 
Other 

parameters 

1 

The impact of 
selecting epsilon 

approaches  
 

Epsilon A 

Average rewards per 
episode 

[1-40] 
Reward 

>= 0  

Epsilon B 

Epsilon C 

Epsilon D 

2 
The impact of 

varying reward 
thresholds 

Reward >= - 0.20 Average rewards per 
episode 

[1-40] 
Epsilon 

A 

Reward >= - 0.15 

Reward >= - 0.10 
Average number of 
sleeping fog nodes 

Reward >= - 0.05 Convergence level per 
episode Reward >= 0 

2 
The impact of 

varying the average 
arrival rates 

[1-20] 
Average rewards per 

episode 

Epsilon 
A 

Reward 
>= 0 

[1-30] Average number of 
sleeping fog nodes [1-40] 

[1-50] 
Convergence level per 

episode 

4 
The impact of EUAs 

approach 

EUAs & Epsilon A 

Average rewards per 
episode 

[1-40] 
Reward 

>= 0 

EUAs & No Epsilon A 

No EUAs & Epsilon A 

No EUAs & No Epsilon A 

5 
Difference between 

Cooperative and 
Single learning 

Epsilon A 
Average rewards per 

episode 

[1-40] 
Reward 

>= 0 
Epsilon B 

Various epsilon 
approaches 

Epsilon C Convergence level 
per episode Epsilon D 
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5.2.3.2 Impact of Epsilon approaches   

We investigate the impact of various Epsilon approaches on how agents are functioning 

and overall system performance. The Epsilon methods incorporated in this experiment 

are shown in Table 5.4. In Epsilon A, the experiment starts with epsilon value of 1, which 

means the agent selects its actions 100% randomly, and then at the end of each episode, 

the epsilon value will be reduced by 0.001. This process happens continuously until the 

epsilon value reaches 0.1, upon which the value remains the same for the rest of the 

training episodes. This is the same for Epsilon B and C, except that epsilon B decreases 

by 0.01 at the end of each episode, and Epsilon C decreases by 0.1.  

In epsilon D, the epsilon value is always 0.1 and remains the same for all the training 

episodes. Table 5.4 and Figure 5.4 shows the starting value of each epsilon approach, 

how it decreases, and the end value. In all these approaches, in any given state, if the 

agent should select a greedy action based on the epsilon value, and this state has not 

been encountered before, the agent will select its action randomly since the agent has 

no knowledge about this state. 

Table 5.4: Epsilon approaches incorporated in the experiment. 

Name Initial value Decreases by Remains at At Episode 

Epsilon A 1 0.001 per Episode 0.1 250 

Epsilon B 1 0.01 per Episode 0.1 100 

Epsilon C 1 0.1 per Episode 0.1 50 

Epsilon D 0.1 - 0.1 - 
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Figure 5.4: Various Epsilon approaches. 

Impact on the average rewards per episode 

We investigate the impact of various epsilon approaches on the average rewards per 

episode in the system. Clearly form Figure 5.5, it is clear that various epsilon approaches 

influence the average rewards per episode on the same manner. Each pattern of these 

epsilon approaches is divided into two main parts, the first part is when the epsilon value 

starts with a value of one and then decreases, and the second part is when the epsilon 

value remains at a value of 0.1.  

In the first part, the average rewards per episode starts low as the agents are acting 

randomly. As the number of episodes increases, the average rewards per episode starts 

to increase until reaching the second part, where epsilon has a value of 0.1, upon which 

the pattern starts to converge with slight variations. This is because the agents begin to 

exploit the knowledge they have gained so far about their environment, acting 90% 

optimally and 10% randomly. The highest average rewards per episode are shown in 

Epsilon A, and the lowest is in Epsilon D. In Epsilon A, as the epsilon value decreases by 

0.001 which is very low compared to Epsilon B and C, we give the agent more time to 

explore its environment, thus giving more chances to explore various actions for a given 

state. In this case, the agent knows exactly which optimal action has a higher Q value 

that helps to achieve higher rewards. As opposed to Epsilon D, the agent only has 10% 

chance of exploring its environment and 90% of taking the optimal action found so far, 

which will lead the agent to stick with its local optimal without exploring better options. 
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Figure 5.5: impact of epsilon approaches on the average rewards per episode. 

5.2.3.3 The impact of varying the minimum allowed received 

reward on the learning process. 

In the learning process, and based on the proposed scheme, one of the reasons that 

make the episode terminate is when an agent receives an unwanted reward based on 

its previous action. Based on the reward function in equation (5.2), the highest reward 

value the agent can receive is 0.8, and this can be achieved if the state of the 

environment is empty and the learning agent puts the maximum allowed number of fog 

nodes into sleep mode, where the value of 𝜔 =  1, and there is no processing of tasks 

or cost caused by offloading tasks from sleeping fog nodes. Additionally, the lowest 

achieved reward is around −0.9, this can occur for example if the state of the 

environment is very congested and the agent puts three or four fog nodes in a cluster in 

a sleep mode and thus increasing the total energy and the cost in the system where the 

value of 𝜔 =  0, and the weight 𝜎 = 0.1. 

In this context, we examined the impact when setting the minimum allowed reward 

to −0.20, −0.15, −0.10, −0.05 and 0, and analysed its effect on the average rewards 

per episode for all learners, average number of sleeping fog node per episode, and the 

convergence level per episode. To test this set of experiments, the average arrival rates 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 r
ew

ar
d

s 
p

er
 E

p
is

o
d

e 

Training Episodes 

Epsilon A

Epsilon B

Epsilon C

Epsilon D



Optimising Computational Offloading and Resource Management in Online and Stochastic Fog Computing 

Systems 

Chapter 5:  Dynamic Resource Management, Computational Offloading and Processing 
Decisions Problems 

  

-148- 

are be set from [1-40], and Epsilon A is applied, and both parameters remain constant 

for all values of the allowed minimum reward that can be obtained. 

Impact on average rewards per episode  

From Figure 5.6, it can be seen that the performance of the average rewards per episode 

for all values is affected by the selected epsilon approach which is epsilon A. With 

regards to varying the minimum allowed reward, it can be noted that the highest 

average reward is scored when the minimum reward threshold is set to 0, and this 

decreases as the allowed reward is decreased, where the lowest average rewards is seen 

when the minimum allowed reward is set to -0.20. This is because when the minimum 

allowed reward is set to 0, learners are forced to not have a reward that is below 0, and 

if this occurs, the episode will end and the action that caused this reward will be 

eliminated from the action space along with higher actions. This is caused by the EUAs 

method. However, when the minimum allowed reward is set to -0.20, when agents are 

exploring their environment, they can still select actions that lead to rewards of -0.20 or 

higher and only eliminate the actions that cause rewards that are lower than -0.20. Also, 

it is noted that there is a slight difference between these values in the last 250 episodes.  

 

Figure 5.6: Impact of varying the minimum allowed received reward on the average rewards 
per episode. 
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Impact on average number of sleeping fog nodes per episode.  

We addressed the impact of various values of the allowed minimum rewards on the 

average number of sleeping fog nodes. In this experiment, the total number of fog nodes 

in the system is 15 fog nodes, each five fog nodes are located in one cluster, and we 

have three clusters in total, and in each cluster, there is a learning agent. From Figure 

5.7, it can be seen that all reward thresholds exhibit almost the same pattern. In more 

detail, in the first 250 episodes, all reward thresholds show a pattern of extreme 

variations, and then in the last 250 episodes, the pattern remains stable with slight 

oscillations. The reason for the significant fluctuation is that the agent is exploring its 

environment most of the time in the first 250 episodes and takes random actions. In a 

given state, when the applied action causes an unwanted reward, the episode will end 

and the action causing the unwanted reward along with higher actions are eliminated 

from the action space, giving the agent a narrow selection of actions when facing this 

state in the future and this is the cause of the convergence in the last 250 episodes. This 

implies the impact of epsilon approach A. 

In addition to that, the least average number of sleeping fog nodes is noted when the 

maximum allowed reward is set to 0, and as we reduce the minimum allowed reward, 

the average number of sleeping fog nodes slightly increases and the highest average 

number of sleeping fog nodes is scored when the allowed reward is set to -0.20. 

 

Figure 5.7: Impact of varying rewards threshold on the average number of sleeping fog nodes 
per episode. 
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Impact on the convergence level per episode   

In Figure 5.8, we analyse the impact of varying the minimum allowed reward on the 

convergence level in each episode. In our approach if the episode has reached 500 time 

slots without being terminated, we can say that the learning process had been 

converged. Convergence means that the learning agent knows its environment by 

applying actions that meets the strict requirements and constraints. In this regard, we 

examined the convergence level for the training process when the minimum received 

reward were set to -0.20, -0.10 and 0.  

We noted that the approach when having the minimum received reward set at -0.20, 

the training process in each episode had more time and did not terminate as fast as 

when having -0.10 as the allowed minimum reward, followed by the approach when it 

is set to 0. The reason for that is because when the agent is allowed to have -0.20 as the 

minimum received reward, the episode is less likely to terminate because of the loose 

constraint, for example, receiving a reward of -0.21 or less. However, when 0 is set as 

the minimum allowed reward, this constraint is very tight causing the episode to end 

sooner, and thus having less time compared to when setting the minimum received 

reward to -0.20. Regarding the convergence, reward threshold -0.20 converged faster 

than when the minimum received reward is set to -0.10 and 0. As the agent educates 

itself faster as a result of having loss constraint, e.g., only terminate when -0.21 or less 

reward is received.  

 
Figure 5.8: Impact of the maximum allowed reward on the number of time slots encountered 

per episode. 
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5.2.3.4 The impact of varying the average arrival rates of tasks on 

the learning process  

During these sets of experiments, the minimum reward is set to 0, and Epsilon A is 

applied to all average arrival rates. In this experiment, we examined the impact when 

the average arrival rates are [1-20], [1-30], [1-40], and [1-40] ms on the average gained 

rewards per episode, the average number of sleeping fog nodes per episode, and the 

convergence level per episode. 

Impact on the average rewards per episode  

Figure 5.9 demonstrates the impact of increasing the average arrival rates on the 

average rewards per episode. It can be seen that when the environment is congested as 

in the average arrival rates of [1-20], the average reward per episode is low compared 

to when the environment is slightly congested as in [1-30]. The higher average rewards 

are gained when the average arrival rate is low, in [1-50].  

 

Figure 5.9: impact of varying the average arrival rates of tasks on average rewards per 

episode. 
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Impact on average number of sleeping fog nodes per episode.  

In Figure 5.10, it can be seen that with the lower congested environment, in [1-50], the 

average number of sleeping fog nodes is higher compared to other systems when the 

average arrival rate of [1-40], [1-30] and [1-20] respectively. In extremely congested 

systems when the average arrival rate is [1-20], the agents manage to put few fog nodes 

into sleep mode to save the energy whilst meeting system requirements.  

 

Figure 5.10: Impact of varying the average arrival rates of tasks on average number of 
sleeping fog nodes per episode. 
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Figure 5.11:Impact of varying the average arrival rates of tasks on the number of time slots 
encountered per episode. 

5.2.3.5 Impact of Eliminating Unwanted Actions (EUAs) method.  
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Figure 5.12: Impact of EUAs and Epsilon A on the average rewards per episode 

 

According to Figure 5.12, the Epsilon approach alone does not help the agent learn its 

environment more effectively in a non-stationary MDP. It is evident when comparing 

the involvement of the EUAs method in EUAs & Epsilon A approaches to its 

disengagement in No EBAs & Epsilon A approaches. Additionally, the system performed 

better in EUAs & Epsilon A compared to in No EUAs & Epsilon A due to having higher 

average rewards per episode. When examining the importance of involving Epsilon, in 
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learners keep the information, they have gained to themselves without sharing it with 

other learners. In cooperative learning, a variety of actions are explored in a given state. 

This will result in an enhanced learning process and the ability to achieve optimal results. 

We examine the impact of cooperative learning and single learning on the average 

rewards per episode and the number of episodes needed to reach convergence, in other 

words, how fast the agents are learning. Considering cooperative and single learning, 

we compare them with Epsilon A, B, C, and D since each of the Epsilon approaches 

impacts the system differently. 

Impact of Cooperative and Single learning on Average rewards per 

episode 

From Figures 5.13, 5.14, 5.15, and 5.16 we can see that the average rewards per episode 

in cooperative learning is higher than the average rewards per episode in single learning 

for all epsilon methods.  

Also, it is noted that before reaching the convergence level, the average rewards per 

episode in single learning, fluctuates extremely as compared to cooperative learning. In 

respect to how various epsilon approaches have an impact on the difference between 

cooperative and single learning, it can be seen that once the learning converges, the 

difference between cooperative and single learning is smaller when Epsilon A is 

involved. This difference starts to increase slightly when Epsilon B is considered and even 

more when Epsilon C and D is involved. The reason for a small difference between 

cooperative and single learning when considering Epsilon A, is because, as Epsilon A 

decreases very slightly in each episode, this gives the learners higher chances to act 

randomly and explore various actions, thus learning better about their environment 

compared to other epsilon approaches. The highest difference between cooperative and 

single learning is noted in Epsilon D. This is because in Epsilon D, the epsilon value 

decreases sharply and then remains constant at early stages of learning which makes 

the learners bound to their local optimal, compared to cooperative learning as leaners 

share their knowledge they can perform better and overcome the local optima of each 

learner.   
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Figure 5.13: Impact of Cooperative and Single learning with Epsilon A on the average 
rewards per episode 

 
Figure 5.14: Impact of Cooperative and Single learning with Epsilon B on the average 

rewards per episode 
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Figure 5.15: Impact of Cooperative and Single learning with Epsilon C on the average rewards 

per episode 

 
Figure 5.16: Impact of Cooperative and Single learning with Epsilon D on the average 

rewards per episode 
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can help to overcome the limitations of the trade-off between exploring and exploiting 

with various epsilon approaches having higher number of episodes.  

 

Figure 5.17: Impact of Cooperative learning with various Epsilon approaches on the average 
rewards per episode 

Impact of Epsilon Approaches on Average rewards per episode for 

Single Learning  
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Figure 5.18: Impact of Single learning with various Epsilon approaches on the average rewards 
per episode 

Impact on the convergence level per episode  
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a) Cooperative & Epsilon A 

 
b) Cooperative & Epsilon B 

 
c) Cooperative & Epsilon C 

 
d) Cooperative & Epsilon D 

Figure 5.19: Convergence level in Cooperative learning with various epsilon approaches. 

 
a) Single & Epsilon A 

 
b) Single & Epsilon B 

 
c) Single & Epsilon C 

 
d) Single & Epsilon D 

Figure 5.20: Convergence level in Single learning with various epsilon approaches
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. 

In summary, it can be said that cooperative learning helps to improve the average 

rewards in the system along with leading to faster convergence. This is attributed to the 

fact that cooperative learning allows for the exploration of different parts of the state-

action space by different agents. This can result in a more efficient exploration process 

compared to single learning, where a single agent might get stuck in a suboptimal policy.  

5.3 Computational offloading and processing 

decisions Problem  

In this chapter the second sub-problem is addressed. The aim of this sub-problem is to 

find the optimal computational offloading and processing decisions. The centralised 

system-wide long-term energy minimisation problem is defined as follow. 

𝐸𝑐(𝑡)̅̅ ̅̅ ̅̅ ̅ =  lim
𝑇 →∞

1

𝑇
 ∑∑𝔼 { 𝐸𝑖

𝐹𝑁

𝑖=1

𝑇−1

𝑡=0

(𝑡)} 

The problem of finding the optimal computational offloading and processing decisions 

can be solved in a centralised and distributed manner. To be more specific, let’s assume 

that each fog node is aware of the status of all its neighbours, and as fog nodes make 

their decisions simultaneously at the beginning of each time slot, there is a high chance 

that a single fog node is selected by multiple fog nodes. This may lead to resource 

contention and overload at the selected neighbouring fog node. This could result in the 

selected neighbouring fog node not being able to process all the tasks assigned to it, 

which could lead to delays or task failure. To avoid this scenario and as local controller 

is aware of the status of all the fog nodes, the process of finding the optimal offloading 

decision will be handled by the local controller.  

With regards to the processing decisions problem, this can be solved in a distributed 

manner in each fog node. Each fog node in the network makes processing decisions 

based on its own local information and resources, leading to a more efficient and 
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effective use of network resources. Therefore, the long-term energy minimisation 

problem in each fog node under the same constraints stated in the problem in equation 

(4.24) C1-C10, is defined as  

𝐸𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅ =  lim
𝑇 →∞

1

𝑇
 ∑𝔼{𝐸𝑖

𝑇−1

𝑡=0

(𝑡)} 

The minimisation of the long-term time-average energy consumption requires prior 

knowledge about the information of the system, such as the status of the queues, 

available computation resources, and neighbours’ details. Having this information in 

advance in a stochastic system is very difficult which makes the stochastic constrained 

optimisation problem harder to be solved. Dealing with such stochastic systems requires 

the utilisation of a powerful optimisation technique that can handle the characteristic 

of such stochastic systems. Lyapunov optimisation is a mathematical approach, that 

helps to solve time-average optimisation problems with constraints in stochastic 

systems without having prior knowledge about the systems’ conditions [97]. Along with 

optimising the constrained optimisation problem it takes into consideration the stability 

of the systems’ queues.  

The reason for selecting Lyapunov optimisation is due to its unique structure which 

provides the following: 

▪ Helping to decompose the time-average optimisation problem into a series of 

subproblems that can be solved efficiently in each time slot. By solving the 

subproblems, the optimal solution to the optimisation problem can be found. 

This can be accomplished without prior knowledge of all system information by 

only considering the current system status [98]. 

▪ Converting some constraints into virtual queues in order to meet their 

requirements [99].  

▪ Addressing the trade-off between the objective function and the stability of the 

systems’ queues [98]. 
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In this context, Lyapunov Optimisation is used to solve the optimisation problem in each 

time slot. Based on Lyapunov Optimization theory, the drift-plus-penalty framework is 

used to optimise the time-average energy consumption and ensure the stability of the 

queues in the system [97]. 

5.3.1 Lyapunov Optimisation Framework  

The optimisation problem of minimising the time-average energy consumption is 

transformed based on the Lyapunov Optimisation technique, so that it can be solved in 

each time slot. Lyapunov Function  

The vector of system states in this work is defined as  

 𝜃𝑖(𝑡) ≜ [𝑄𝑖(𝑡), 𝑋𝑖
𝑄(𝑡), 𝐿𝑄𝑖(𝑡), 𝑋𝑖

𝐿𝑄(𝑡), 𝐻𝑄𝑖(𝑡), 𝑋𝑖
𝐻𝑄(𝑡)] (5.5) 

According to Lyapunov optimisation theory, Lyapunov function is defined to be used for 

the scalar network congestion measurement [97], and it is the sum of the squares of 

queue backlogs in the system. Thus, the Lyapunov function for the system states is 

defined as   

𝐿(𝜃𝑖(𝑡)) ≜
1

2
[𝑄𝑖(𝑡)

2 + 𝑋𝑖
𝑄(𝑡)2 +  𝐿𝑄𝑖(𝑡)

2 + 𝑋𝑖
𝐿𝑄(𝑡)2 + 𝐻𝑄𝑖(𝑡)

2 + 𝑋𝑖
𝐻𝑄(𝑡)2] (5.6) 

lower value of 𝐿(𝜃(𝑡)) indicates lower congestion which implies that the queues in the 

system are more stable. Higher value means that at least one of the queues is large. In 

this case, it is an essential that the Lyapunov function be pushed towards a lower 

congestion state to maintain the stability in the system. 

5.3.1.1 Lyapunov Drift  

The change of the Lyapunov function from one time slot to the next is denoted as 

Lyapunov drift, which helps to maintain the system. Minimising the drift is aimed to push 

the queues towards a lower congested state, which means maintaining network 

stability. The one-step Lyapunov drift is expressed as: 
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 △ (𝜃𝑖(𝑡)) = 𝔼  [ 𝐿(𝜃𝑖(𝑡 + 1)) − 𝐿(𝜃𝑖(𝑡))|𝜃𝑖(𝑡)] (5.7) 

Minimising the drift △ (𝜽(𝒕)) for every time slot, will only ensure meeting the desired 

time average constraints, while the objective function (minimising the energy 

consumption) is not yet involved. In this manner, the drift-plus-penalty is considered. 

5.3.1.2 Lyapunov Drift and Penalty Function 

Achieving queue stability while minimizing the energy consumption drift-plus-penalty is 

considered and expressed as: 

 △ (𝜃𝑖(𝑡)) + 𝑉 . 𝔼 {𝐸𝑖((𝑡)|𝜃𝑖(𝑡))} (5.8) 

V is a non-negative control parameter that emphasise the importance of minimising the 

energy and controls the trade-off between the energy consumption and the queues. In 

other words, it is the penalty weight of the objective function to the drift. When V=0 this 

means that we only consider minimising the drift. Higher value of V gives a priority in 

minimising the energy consumption over the queues. 𝑬(𝑡) is the energy consumed by 

all fog nodes at time slot (t) when making the offloading decisions.  

Based on Lyapunov optimisation theory, and to achieve the objective of minimising the 

drift plus penalty, an upper bound should be determined upon which the drift-plus-

penalty should not be exceeded. 

5.3.1.3 Upper-bound of the Drift-Plus-Penalty Function 

First, considering the Lyapunov drift, and substituting equation (5.6) into (5.7) we have 

△ (𝜃𝑖(𝑡)) =  
1

2
 [

[𝑄𝑖 (𝑡 + 1)
2 − 𝑄𝑖 (𝑡)

2] + [𝑋𝑖
𝑄 (𝑡 + 1)2 − 𝑋𝑖

𝑄 (𝑡)2] +

[𝐿𝑄𝑖 (𝑡 + 1)
2 −  𝐿𝑄𝑖 (𝑡)

2] + [𝑋𝑖
𝐿𝑄  (𝑡 + 1)2 − 𝑋𝑖

𝐿𝑄 (𝑡)2]

[𝐻𝑄𝑖 (𝑡 + 1)
2 −  𝐻𝑄𝑖 (𝑡)

2] + [𝑋𝑖
𝐻𝑄  (𝑡 + 1)2 − 𝑋𝑖

𝐻𝑄 (𝑡)2]

+]  (5.9) 

For simplicity, the process of finding the output of the first part [𝑄𝑖 (𝑡 + 1)
2 − 𝑄𝑖 (𝑡)

2] 

in (5.9) will be shown based on Lyapunov Optimisation, and then the final output of the 
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equation (5.9) is demonstrated, as all the parts follow the same pattern.  The value of 

𝑄𝑖 (𝑡 + 1) in (5.9) is defined in (4.4) and when replacing its value in the section 

[𝑄𝑖 (𝑡 + 1)
2 − 𝑄𝑖 (𝑡)

2] in (5.9) we derive.  

[max [𝑄𝑖(𝑡) − 𝑙𝑖(𝑡) − ∑ ℎ𝑖𝑗
𝑗∈𝐴𝑁,𝑖≠𝑗

(𝑡), 0] +  A𝑖(t)]

2

− 𝑄𝑖
2 (𝑡) 

Based on Lyapunov optimisation, the following lemma is considered [97]. 

Lemma 1: 

Having a set of positive real numbers, e.g., A ≥ 0, B ≥ 0, C ≥ 0, and D ≥ 0 that satisfied  

𝐴 = max  [𝐵 − 𝐶, 0] + 𝐷 

Then we can obtain the following  

 𝐴2 ≤ 𝐵2 + 𝐷2 + 𝐶2 + 2𝐵 (𝐷 − 𝐶) (5.10) 

Applying lemma 1 to 𝑄𝑖 (𝑡 + 1)
2 we have  

 
𝑄𝑖 (𝑡 + 1)

2  ≤  𝑄𝑖
2(𝑡) + 𝐴𝑖

2(𝑡) + 𝑙𝑖
2(𝑡) + ∑ ℎ𝑖𝑗

2 (𝑡)

𝑗∈𝐴𝑁,𝑖≠𝑗

 

+2𝑄𝑖(𝑡)

(

 
 
A𝑖(t) − (𝑙𝑖(𝑡) + ∑ ℎ𝑖𝑗

𝑗∈𝐴𝑁,𝑖≠𝑗

(𝑡))

)

 
 

 

(5.11) 

Substituting the value of 𝑄𝑖 (𝑡 + 1)
2 in part of equation (5.9) we have 

△ (𝜃𝑖(𝑡)) ≤  
1

2
 (𝑄𝑖

2(𝑡) + 𝐴𝑖
2(𝑡) + 𝑙𝑖

2(𝑡) + ∑ ℎ𝑖𝑗
2 (𝑡)𝑗∈𝐴𝑁,𝑖≠𝑗 + 2𝑄𝑖(𝑡) (A𝑖(t) −

(𝑙𝑖(𝑡) + ∑ ℎ𝑖𝑗𝑗∈𝐴𝑁,𝑖≠𝑗 (𝑡)))− 𝑄𝑖
2 (𝑡))  

(5.12) 
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By applying mathematical operations, and in the case that 𝐴𝑖(𝑡), 𝑙𝑖(𝑡), ∑ ℎ𝑖𝑗𝑗∈𝐴𝑁 (𝑡) are 

upper bound by 𝐴𝑖
𝑚𝑎𝑥, 𝑙𝑖

𝑚𝑎𝑥and ℎ𝑖𝑗𝑖
𝑚𝑎𝑥  we have.  

 △ (𝜃𝑖(𝑡)) ≤ 𝐵 +  𝑄𝑖(𝑡) 𝔼{𝐴𝑖(𝑡) − (𝑙𝑖(𝑡) + ∑ ℎ𝑖𝑗
𝑗∈𝐴𝑁

(𝑡)) | 𝜃𝑖(𝑡)}  (5.13) 

Where 𝐵 =
1

2
[(𝐴𝑖

𝑚𝑎𝑥)2+(𝑙𝑖
𝑚𝑎𝑥)2 + (ℎ𝑖𝑗𝑖

𝑚𝑎𝑥)
2
], and defined as a constant [100]. Applying 

the same steps to all parts in equation (7.6), and adding the penalty expression to both 

sides, we have the following.  

△ (𝜃𝑖(𝑡)) + 𝑉 . 𝔼 {𝐸𝑖(𝑡)|𝜃(𝑡)}

≤  𝐵1 +  𝑄𝑖(𝑡) 𝔼{𝐴𝑖(𝑡) − (𝑙𝑖(𝑡) + ∑ ℎ𝑖𝑗
𝑗∈𝐴𝑁

(𝑡)) | 𝜃𝑖(𝑡)}

+ 𝑋𝑖
𝑄(𝑡) 𝔼 {𝜖𝑖1 − (𝑙𝑖(𝑡) + ∑ ℎ𝑖𝑗

𝑗∈𝐴𝑁

(𝑡)) | 𝜃𝑖(𝑡)}

+ 𝐵2 + 𝐿𝑄𝑖(𝑡) 𝔼{𝑙𝑖(𝑡) − 𝑝𝑙𝑖| 𝜃𝑖(𝑡)} + 𝑋𝑖
𝐿𝑄(𝑡) 𝔼{𝜖𝑖2 − 𝑝𝑙𝑖| 𝜃𝑖(𝑡)}

+ 𝐵3 + 𝐻𝑄𝑖(𝑡) 𝔼 {∑ ℎ𝑗𝑖
𝑗∈𝐹𝑁

(𝑡) − 𝑝ℎ𝑖(𝑡)| 𝜃𝑖(𝑡)}

+ 𝑋𝑖
𝐻𝑄(𝑡) 𝔼{𝜖𝑖3 − 𝑝ℎ𝑖(𝑡)| 𝜃𝑖(𝑡)} +

∗ 𝑉 {(1 − 𝛿𝑖(𝑡 − 1))(𝐸𝑠𝑜) + 𝐸𝑝𝑙𝑖
𝑝𝑟𝑜𝑐 + ( ∑ 𝐸ℎ𝑖𝑗

𝑡𝑟

𝑗 ∈𝐴𝑁 𝑖≠𝑗

)

+ ( ∑ 𝐸ℎ𝑖𝑗−𝑏+𝑎
𝑟𝑒

𝑗 ∈𝐴𝑁 𝑖≠𝑗

) + ( ∑ 𝐸ℎ𝑗𝑖
𝑟𝑒

𝑗 ∈𝐹𝑁 𝑖≠𝑗

) + 𝐸𝑝ℎ𝑗𝑖
𝑝𝑟𝑜𝑐

+( ∑ 𝐸𝑝ℎ𝑗𝑖
𝑡𝑟

𝑗 ∈𝐹𝑁 𝑖≠𝑗

) + (𝐸𝑖𝑑𝑙𝑒
𝑖 ∗  𝑇 𝑖𝑑𝑙𝑒

𝑖 ) } 

(5.14) 

 In the right-hand side of the drift plus penalty, the first and second lines of the drift plus 

penalty are related to the arrival queue and its virtual queue. The third line corresponds 

to the local queue and its virtual queue, and the fourth and fifth lines are related to the 
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help queue and its virtual queue. The final line is the penalty represented as the total 

energy consumption during time slot (t). 

𝐵1, 𝐵2, and 𝐵3 are constants and based on Lyapunov optimisation they are defined as  

𝐵1 = 
1

2
 [𝐴𝑚𝑎𝑥

2 + 𝑙𝑚𝑎𝑥
2 + ℎ𝑖𝑗𝑚𝑎𝑥

2 + 𝜖1
2] 

𝐵2 = 
1

2
 [𝑙𝑚𝑎𝑥
2 + 𝑝𝑙𝑚𝑎𝑥

2 + 𝜖2
2] 

 𝐵3 = 
1

2
 [ℎ𝑗𝑖𝑚𝑎𝑥

2 + 𝑝ℎ𝑚𝑎𝑥
2 + 𝜖3

2]   

Since receiving the processed tasks from the neighbours that belongs to fog node i is not 

affected by the action taken in time slot (t), and the size of processed tasks is small 

compared to unprocessed tasks, we remove the parameter  ∑ 𝐸ℎ𝑖𝑗−𝑏+𝑎
𝑟𝑒

𝑗 ∈𝐴𝑁 𝑖≠𝑗  from the 

penalty definition. 

By applying multiplications and combining the variables that are affected by the same 

type of workload (e.g., the amount of workload that leaves the arrival queue and its 

virtual queue and enters the local queue is considered as the same type of workload), 

and combining the penalty correlated to each specific type of workload, the right-hand 

side of the drift plus penalty in equation (5.14) will be reformulated as the following: 

𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 
𝑙𝑖(𝑡), ℎ𝑖𝑗(𝑡), 𝑝𝑙𝑖𝑗(𝑡), 𝑝ℎ𝑖𝑗(𝑡)

 𝐵1 + 𝐵2 + 𝐵3 + 𝑄𝑖(𝑡) 𝐴𝑖(𝑡) + 𝑋𝑖
𝑄(𝑡)𝜖𝑖1    

+ 𝑋𝑖
𝐿𝑄(𝑡)𝜖𝑖2 + 𝑋𝑖

𝐻𝑄(𝑡)𝜖𝑖3 + Λ1(𝑡)

+ Λ2(𝑡) + Λ3(𝑡) 
(5.15) 

Where Λ1(𝑡), Λ2(𝑡) and Λ3(𝑡) are defined as: 

Λ1(𝑡) = [ −𝑄𝑖(𝑡) − 𝑋𝑖
𝑄(𝑡) +  𝐿𝑄𝑖(𝑡)] 𝑙𝑖(𝑡) 

Λ2(𝑡) = [ −𝑄𝑖(𝑡) − 𝑋𝑖
𝑄(𝑡) +  𝐻𝑄𝑗(𝑡) + 𝑉 (𝐸ℎ𝑖𝑗

𝑡𝑟 (𝑡))] ℎ𝑖𝑗(𝑡) 
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Λ3(𝑡) = [ −𝐿𝑄𝑖(𝑡) − 𝑋𝑖
𝐿𝑄(𝑡) + 𝑉 (𝐸𝑝𝑙𝑖

𝑝𝑟𝑜𝑐(𝑡))] 𝑝𝑙𝑖𝑗(𝑡)

+ [ −𝐻𝑄𝑖(𝑡) − 𝑋𝑖
𝐻𝑄(𝑡) + 𝑉 (𝐸𝑝ℎ𝑖

𝑝𝑟𝑜𝑐(𝑡) + 𝐸𝑝ℎ𝑗𝑖
𝑡𝑟 (𝑡))] 𝑝ℎ𝑖𝑗(𝑡) 

Minimising the right-hand side of the drift plus penalty in the system is hard, as it is a 

complex non-linear problem with four decision variables that is difficult to solve directly. 

Decomposing a complex non-linear problem into smaller, simpler sub-problems and 

addressing each one individually can result in more efficient solutions. By focusing on 

each sub-problem separately, specialized methods that are best suited for that specific 

sub-problem can be applied, leading to faster computation times and more precise 

results. Since 𝐵1, 𝐵2, and 𝐵3 are finite constants, and the parameters 𝐴𝑖(𝑡), 𝜖𝑖1, 𝜖𝑖2, and 

𝜖𝑖3 are not impacted by the offloading/processing decisions, they are removed from the 

equation (5.15) [101]. Therefore, we focus on minimising Λ1(𝑡), Λ2(𝑡), and Λ3(𝑡) in each 

time step.  

5.3.2 Problem transformation and Solution  

The problem of minimising the upper-bound of the drift plus penalty is decomposed into 

several problems and solved accordingly following the steps in [102]. In our work we 

partitioned the problem into three subproblems based on the four decision variables. 

1- Subproblem 1: called “Local queue offloading decisions”. 

2- Subproblem 2: named “Offloading to neighbours’ decisions”. 

3- Subproblem 3: referred to as “Workload processing decisions”.  

By solving each one of these problems independently, we can manage to minimise the 

upper bound of the drift plus penalty.   

5.3.2.1 Local Queue Offloading Decisions: 

In this subproblem we aim to find the optimal amount of workload that moved from the 

arrival queue to the local queue in each fog node. The process is done locally in each fog 

node as it only requires knowing the information of the arrival queue and the local 
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queue of the fog node itself. This can be solved by minimising the equation in Λ1(𝑡) as 

follows. 

 𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆
𝑙𝑖(𝑡)

    [ −𝑄𝑖(𝑡) − 𝑋𝑖
𝑄(𝑡) +  𝐿𝑄𝑖(𝑡)] 𝑙𝑖(𝑡) (5.16) 

As the problem in this case is a linear problem with one variable, it can be solved 

according to a threshold policy. In this manner, as we are willing to find the optimal 

amount of workload that can be transmitted from the arrival queue to the local queue, 

the threshold is set considering both the arrival and local queue as follows: 

 𝑙𝑖(𝑡) {
𝑙𝑖
𝑚𝑎𝑥 , 𝑖𝑓 𝑄𝑖(𝑡) + 𝑋𝑖

𝑄(𝑡) >  𝐿𝑄𝑖(𝑡) 𝑎𝑛𝑑  𝐿𝑄𝑖(𝑡) < 𝐿𝑄𝑖
𝑚𝑎𝑥 

  
0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

 
(5.17) 

The above equation means that each fog node will compare its arrival queue 𝑄𝑖(𝑡) plus 

its virtual queue 𝑋𝑖
𝑄(𝑡) to it local queue 𝐿𝑄𝑖(𝑡), and if there is an enormous amount of 

workload in its arrival queue compared to its local queue, it will offload as much 

workload as possible 𝑙𝑖
𝑚𝑎𝑥  until the stopping condition is terminated which is 𝑄𝑖(𝑡) +

𝑋𝑖
𝑄(𝑡) ≤  𝐿𝑄𝑖(𝑡) or 𝐿𝑄𝑖(𝑡) has reached its maximum length.  

5.3.2.2 Offloading to Neighbours’ Decisions: 

This subproblem is solved by the local controller after receiving information vectors 

from all fog nodes under its controller. The information vectors contain the status of all 

actual and virtual queues. The aim of this sub-problem is to minimise the term Λ2(𝑡) on 

the right-hand side of the drift plus penalty, by making the optimal decision regarding 

how much data ℎ𝑖𝑗(𝑡) is transmitted from one fog node to another based on their 

current information status. If the local controller makes the offloading decision for an 

active FN, the sub-problem here is related to the difference between the arrival queue 

of the active FN and the help queue of its neighbour. If the offloading decision is related 

to asleep FN, the sub-problem is transmitted to take into consideration the local queue 

of the sleeping FN and the help queue of the neighbour. The reason we include the local 

queue status when making the offloading decision for the sleeping FN rather than the 
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arrival queue status, is because as the decision is already made by the FN itself to 

transfer tasks from its arrival queue to its local queue, there might be no available tasks 

in the arrival queue to be transmitted to neighbours. Additionally, since the sleeping FN 

will not do any processing, tasks in its local queue will suffer from delay that might lead 

to the violation of the tasks’ deadline. The sub-problem regarding active and sleeping 

FN is in equations (5.18) and (5.19) respectively.  

 
𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆
ℎ𝑖𝑗(𝑡)

    [ −𝑄𝑖(𝑡) − 𝑋𝑖
𝑄(𝑡) +  𝐻𝑄𝑗(𝑡) + 𝑉 (𝐸ℎ𝑖𝑗

𝑡𝑟 (𝑡))] ℎ𝑖𝑗(𝑡) (5.18) 

 
𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆
ℎ𝑖𝑗(𝑡)

    [ −𝐿𝑄𝑖(𝑡) − 𝑋𝑖
𝐿𝑄(𝑡) +  𝐻𝑄𝑗(𝑡) + 𝑉 (𝐸ℎ𝑖𝑗

𝑡𝑟 (𝑡))] ℎ𝑖𝑗(𝑡) (5.19) 

This can be solved using a threshold policy which determines a threshold value upon 

which the data is transmitted. For active FNs, the threshold policy is defined as  

ℎ𝑖𝑗(𝑡) {
ℎ𝑖𝑗
𝑚𝑎𝑥 , 𝑖𝑓 𝑄𝑖(𝑡) + 𝑋𝑖

𝑄(𝑡) − 𝐻𝑄𝑗(𝑡) > 𝑉 (𝐸ℎ𝑖𝑗
𝑡𝑟 (𝑡))& 𝐻𝑄𝑗(𝑡) < 𝐻𝑄𝑗

𝑚𝑎𝑥         
  

  0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                          

 (5.20) 

For sleeping FNs, the threshold policy is defined as 

ℎ𝑖𝑗(𝑡) {
ℎ𝑖𝑗
𝑚𝑎𝑥 , 𝑖𝑓 𝐿𝑄𝑖(𝑡) + 𝑋𝑖

𝐿𝑄(𝑡) − 𝐻𝑄𝑗(𝑡) > 𝑉 (𝐸ℎ𝑖𝑗
𝑡𝑟 (𝑡))& [𝐻𝑄𝑗(𝑡) < 𝐻𝑄𝑗

𝑚𝑎𝑥𝑂𝑅 𝑐𝑜𝑠𝑡𝑖 < 𝑐𝑜𝑠𝑡𝑚𝑎𝑥]
  

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                 

 (5.21) 

The terms 𝑄𝑖(𝑡) + 𝑋𝑖
𝑄(𝑡) − 𝐻𝑄𝑗(𝑡) represents the difference of the congestion level 

between the arrival queue of fog node i and the help queue of fog node j. Additionally, 

the threshold balances the trade-off between the total energy of transmitting workloads 

and the amount of workload transmitted, by taking into account the value of V. This is 

shown in the term 𝑉 (𝐸ℎ𝑖𝑗
𝑡𝑟 (𝑡)), where higher value of V will force the system to prioritise 

minimizing the total energy of transmitting workloads over transmitting a large number 

of workloads. On the other hand, if V is low, this means that the system will prioritise 
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transmitting large amounts of workloads over minimising the energy of transmitting 

these workloads.  

To solve this subproblem, the local controller first ranks sleeping fog nodes based on 

their congestion level represented by their actual local queues 𝐿𝑄𝑖(𝑡) plus virtual local 

queues 𝑋𝑖
𝐿𝑄(𝑡) descending from the highest to the lowest. Then the local controller will 

rank the active neighbours ascending based on their help queues status and select the 

active fog node with the least amounts of workloads in its help queue 𝐻𝑄𝑗(𝑡) to handle 

the workload from the most congested sleeping FN. Accordingly, the expected help 

queue information 𝔼 {𝐻𝑄𝑗(𝑡)} is updated in the local controller with the expected 

received workload. The conditions 𝐻𝑄𝑗(𝑡) < 𝐻𝑄𝑗
𝑚𝑎𝑥 and 𝑐𝑜𝑠𝑡𝑖 < 𝑐𝑜𝑠𝑡𝑚𝑎𝑥  mean that 

the offloading of tasks will stop if the help queue of the neighbour has reached its 

maximum threshold or the total cost spent by the sleeping FN to offload its tasks has 

reached its maximum value. The cost is described in more details in chapter six. The 

process is repeated until making the offloading decision for all sleeping FNs. Following 

that the local controller will make the offloading decision for all active FN following the 

same previous steps.  

5.3.2.3 Workload Processing Decisions 

The aim of this subproblem is to minimise the term Λ3(𝑡) in the drift plus penalty 

equation, and it is applied by active FN. This can be accomplished by finding the optimal 

amounts of workloads that will be processed in the current time slot (t) from the local 

queue and the help queue respectively. This is accomplished by taking into account the 

available computational capacity of the fog node in the current time slot (t) and the 

proposed policy. So, the problem is formulated as follows: 

𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆
𝑝𝑙𝑖𝑗(𝑡), 𝑝ℎ𝑖𝑗(𝑡) 

[ −𝐿𝑄𝑖(𝑡) − 𝑋𝑖
𝐿𝑄(𝑡) + 𝑉 (𝐸𝑝𝑙𝑖

𝑝𝑟𝑜𝑐(𝑡))] 𝑝𝑙𝑖𝑗(𝑡)

+ [ −𝐻𝑄𝑖(𝑡) − 𝑋𝑖
𝐻𝑄(𝑡) + 𝑉 (𝐸𝑝ℎ𝑖

𝑝𝑟𝑜𝑐(𝑡) + 𝐸𝑝ℎ𝑗𝑖
𝑡𝑟 (𝑡))] 𝑝ℎ𝑖𝑗(𝑡) 

(5.22) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑝𝑙𝑖𝑗(𝑡) + 𝑝ℎ𝑖𝑗(𝑡)  ≤ 𝑏𝑖,𝑚𝑎𝑥
𝑒 (𝑡) 

0 ≤ 𝑝𝑙𝑖𝑗(𝑡) ≤  𝐿𝑄𝑖(𝑡) 

0 ≤  𝑝ℎ𝑖𝑗(𝑡)  ≤  𝐻𝑄𝑖(𝑡)  

 0 ≤  𝔼 {𝐸𝑝𝑙𝑖
𝑝𝑟𝑜𝑐(𝑡)} +  𝔼 {𝐸𝑝ℎ𝑖

𝑝𝑟𝑜𝑐(𝑡)}  +  𝔼 {𝐸𝑝ℎ𝑗𝑖
𝑡𝑟 (𝑡)} ≤  𝐸𝑖

𝑚𝑎𝑥(𝑡)   

Where 𝑏𝑖,𝑚𝑎𝑥
𝑒 (𝑡) is the maximum amount of workload that can be processed by fog node 

i in time slot (t) based on the computational resources of fog node i. 𝐸𝑖
𝑚𝑎𝑥(𝑡) is the 

maximum energy consumption for fog node i in time slot (t). The problem can be 

represented as a linear optimization problem with two decision variables 𝑝𝑙𝑖𝑗(𝑡) and 

𝑝ℎ𝑖𝑗(𝑡) which can be solved using linear programming techniques. The Simplex method 

is one of the commonly used approaches for solving linear programming problems [103], 

in this context, we apply the Simplex algorithm to solve the above problem. The Simplex 

algorithm is an iterative method that starts with a feasible solution and then improves 

it by moving along the edges of the feasible region until the optimal solution is achieved. 

The reasons for selecting this method are attributed to its characteristics [103]. It is a 

widely used optimization algorithm that is relatively simple to understand and 

implement. Moreover, it is robust and reliable, and guarantees convergence to an 

optimal solution if one exists.  

The Simplex algorithm helps to find the optimal value of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) which helps 

to minimise the linear optimisation problem. Since the cost of energy for processing the 

amount of 𝑝𝑙𝑖𝑗(𝑡) tasks depends of the value of 𝑝𝑙𝑖𝑗(𝑡), and the cost for processing the 

amount of 𝑝ℎ𝑖𝑗(𝑡) tasks depends on the amount of 𝑝ℎ𝑖𝑗(𝑡), before we start the Simplex 

algorithm, we should assign initial values for 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) so we can calculate the 

cost for processing these tasks. Initially, based on the structure of the Simplex algorithm 

[103], the decision variables 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) will have a value of zero. Then we apply 

Simplex to find the optimal values of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡).  After finding the optimal 
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values of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) using the Simplex algorithm, the new values of 𝑝𝑙𝑖𝑗(𝑡) and 

𝑝ℎ𝑖𝑗(𝑡) are substituted into the optimisation problem again to calculate the cost for 

processing these tasks, and then the Simplex algorithm is re-applied to find the optimal 

values of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡). This process is repeated for a fixed number of iterations 

or until the values of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) have converged. The reason for repeatedly 

changing the values of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) and then applying the Simplex algorithm is to 

ensure that the solution is not trapped at a local optimum. Regarding the convergence 

of the solution, it can be said that the solution had converged if the new optimal values 

of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) are similar to the previous optimal values of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡). 

The process of finding the optimal values of the decision variables of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) 

using the Simplex algorithm is described in algorithm 5.4. 
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Algorithm 5.4: Workload Processing Decisions Algorithm 

 Workload Processing Decisions Algorithm based on Simplex Algorithm 

 Input   𝐿𝑄𝑖(𝑡), 𝑋𝑖
𝐿𝑄(𝑡), 𝐻𝑄𝑖(𝑡), 𝑋𝑖

𝐻𝑄(𝑡), V, 𝑏𝑖,𝑚𝑎𝑥
𝑒 (𝑡), 𝑃𝑥 = 𝑛𝑢𝑙𝑙, 𝑃𝑦 =

𝑛𝑢𝑙𝑙 

 Output 𝑝𝑙𝑖𝑗(𝑡), 𝑝ℎ𝑖𝑗(𝑡) 

1 Determine slack variables 

2 If (iteration == 1) 

3  Create initial values 𝑝𝑙𝑖𝑗(𝑡) =  𝑝ℎ𝑖𝑗(𝑡) =  0 

4 Else  

5  If ( 𝑃𝑥 =  𝑝𝑙𝑖𝑗(𝑡) &  𝑃𝑦 =  𝑝ℎ𝑖𝑗(𝑡))  

6   Convergence exists, Break 

7  Else  

8   If (iteration > max) 

9    Break  

10   Else  

11    Go to step (16) 

12   End If  

13  End If  

14 End If  

15 𝑃𝑥 =  𝑝𝑙𝑖𝑗(𝑡)    𝑃𝑦 =  𝑝ℎ𝑖𝑗(𝑡) 

16 Calculate 𝐸𝑝𝑙𝑖
𝑝𝑟𝑜𝑐(𝑡), 𝐸𝑝ℎ𝑖

𝑝𝑟𝑜𝑐(𝑡), 𝐸𝑝ℎ𝑗𝑖
𝑡𝑟 (𝑡) based on equations   

17 Apply Simplex algorithm 

18  Create the tableau with objective function and constraints. 

19  If (Optimal solution exists)  

20   𝑝𝑙𝑖𝑗(𝑡) = 𝑝𝑙𝑖𝑗(𝑡)
′′ , 𝑝ℎ𝑖𝑗(𝑡) =   𝑝ℎ𝑖𝑗(𝑡)

′′. 

21   Go to point (5) 

22  Else  

23   Identify pivot element and perform the pivot operation. 

24   Update tableau by pivoting  

25   Go to point (19) 

26  End If  

 

In Algorithm 5.4, line 1 indicates that the inequality constraints in the linear problem is 

transformed into equality constraints by adding slack and surplus variables [104]. In line 

2, if this is the first iteration, the initial values of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) are created as initial 

feasible solutions to the linear problem. If this is not the first iteration, the convergence 

of the optimal solution is checked in line 5. This is done by comparing the previous 
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optimal solution of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) created by the Simplex algorithm with the new 

optimal solution. If they are the same, the optimal solution has been reached and the 

iteration will stop. Otherwise, if the number of iterations has reached its maximum 

threshold, the algorithm will stop, and the last optimal solution is performed. If this is 

not the case, the last optimal solution is saved for future comparison and the potential 

cost represented as the total energy consumption for processing and transmitting a total 

amount of 𝑝𝑙𝑖𝑗(𝑡) and 𝑝ℎ𝑖𝑗(𝑡) based on the initial solution is calculated, in line 16. From 

lines 17 to 26, the steps of simplex algorithm are performed. 

First, the initial tableau with the objective function and constraints is created. Then the 

optimality of the solution is evaluated. The optimality of the solution is determined 

based on the values of the tableau that belongs to the objective row, if all are non-

negative, then the optimality has been reached. Otherwise, pivot operations are 

processed as follows. The highest negative value in the bottom row that belongs to the 

objective function is selected in the pivot column. Following this process, the elements 

in the rightmost column (except for the objective row) in the tableau are divided by the 

corresponding positive elements in the pivotal column. Then, the row with the lowest 

value is selected as the pivot row. The pivot element is the number located at the 

intersection between the pivot column and row. According to the following procedure, 

the pivot operation is carried out: 

• In the pivot column, apply mathematical operations to make the pivot element 

equal to one, and apply the same operation to all the elements in the pivot row. 

• In the pivot column, make the elements that are located in different rows around 

the pivot element equal to zero by doing mathematical operations, and apply 

the same operation to the same row that each element belongs to. 

Following this, in line 25, the algorithm checks again if the solution is optimal. If the 

solution is optimal, the algorithm will check if the convergence exists, and so on. In the 

case that the solution is not optimal, pivot operations will be applied again. Since this 

subproblem is a simple linear problem with limited constraints, it can be solved using an 

IP solver such as CPLEX. 
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5.3.3 Numerical Results 

In this section we evaluate the performance of the proposed algorithms compared to 

other baselines.  

5.3.3.1 Simulation setup 

In this study we used iFogSim simulator to simulate the environment. System 

parameters are summarised in Table 5.5, and tasks characteristics are presented in Table 

5.6. 

Table 5.5: Simulation settings. 

Parameter Value 

Length of time slot (∆ 𝑡) 5 ms 

Number of clusters 3 

Cooperative or single learning  Cooperative learning  

Epsilon approach  Epsilon A 

Minimum threshold reward  0 

Number of FNs in each cluster  5 fog nodes  

Number of IoT devices in each IoT region 10 devices  

Average arrival rates of tasks  [1-20], [1-30], [1-40], [1-50] ms 

Latency from fog nodes to cloud layer  50 ms 

Memory capacity of the fog nodes  4000 MB 

CPU capacity of fog node (𝑓𝑖) 8000 MIPS 

Bandwidth  10000 Kbps 

Maximum arrival queue length (𝑄𝑖) 100 tasks  

Maximum local queue length (𝐿𝑄𝑖) 100 tasks  

Maximum help queue length (𝐻𝑄𝑖) 100 tasks  

Idle power 0.01 W [90] 

Sleeping power  0.001 W 

Processing power   0.9 W [90] 

Transmitting and receiving power  1.3 W and 1.1 W [90] 

Power overhead for activating a sleeping FN 0.002 W 

Delay overhead for activating a sleeping FN 1 ms 

Size if tasks in bytes  1000 
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Table 5.6: Tasks Characteristics. 

Task Type   CPU length (MI) Deadline (ms) Priority  

Public 1 800 200 - 

Public 2 2000 100 - 

Semi-private 1 800 70 - 

Semi-private 2 2000 30 - 

Private 1 800 70 - 

Private 2 2000 30  

5.3.3.2 Baseline Approaches  

In this work, we consider a set of baselines to compare our work with, a brief description 

of these baselines is provided in Table 5.7.  

Table 5.7: Baselines Overview. 

Baseline Method 

DEBTS [105] Lyapunov Optimisation applied by local controller   

CESC [55] Lyapunov Optimisation and sleeping cycle. 

EETO [24] Lyapunov Optimisation applied at the gateway devices 
simulatiosly. 

Local Execution (LE) Each PFN process all its workload 

Random Offloading (RO) Each PFN decides randomly whether to process its 
tasks locally or offload it to a random neighbour. 

 

A more detailed description about the baselines and drawbacks of each baseline is listed 

below. In EETO [24], the authors used Lyapunov optimisation technique to minimise the 

time-average energy consumption of end devices and fog nodes considering system 

constrains and the deadline of tasks. Their proposed approach has the following 

drawbacks.  

1- Gateways make the offloading decisions simultaneously at the beginning of each time 

slot, which results in inaccurate current system information. This leads to selecting 

the same fog node as the most suitable candidate from several gateways. This leads 

to higher delays, consuming more energy and tasks drooping by violating their 

deadlines. 
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2- Having a limited number of gateways that receive a large number of IoT tasks in each 

time slot and then distribute them appropriately to fog devices may cause some tasks 

to wait in the gateway queue. This will result in having a long queueing delay on the 

gateways sides. 

DEBTS approach [105]. The authors applied Lyapunov Optimisation with the aim of 

minimising time-average energy consumption within the fog system while ensuring 

system stability. The proposed approach is applied by the local controller at the 

beginning of each time slot.  

CESC approach [55]. In this approach the authors aimed at minimising the average 

energy consumption of edge servers under a delay constraint. The proposed solution is 

based on using the Lyapunov optimisation technique along with applying a sleeping 

cycle approach. In their sleeping approach, energy is further saved by allowing any edge 

server to enter sleeping mode if its workload is below a certain threshold. The main 

drawback of their proposed scheme is when determining whether an edge server is in 

sleep mode or not, the status of other edge servers is not taken into consideration. This 

will impact delay, throughput, and energy consumption, especially if their proposed 

scheme encounters the following three scenarios. 

1- Having a very congested environment where all edge servers are overloaded, 

and one edge server is below sleeping threshold. This will cause the edge server 

with lower workload to enter sleeping mode instead of helping other overloaded 

servers. This will have a negative impact on the system by causing long delay as 

well as drooping tasks by violating their deadline. 

2- All edge servers are below sleeping threshold. In this case, all edge servers will 

be in a sleep mode. In this case, delay and throughputs are affected. 

3- All edge servers are slightly higher than the sleeping threshold. In this manner, 

all edge servers are active. This will lead to a waste of energy, and it might be 

avoided if some of the edge servers had been put to sleep instead. 

Local Execution (LE). In this approach each fog node will process all its tasks locally 

without cooperation. This will result in having long queueing delays and dropping of 
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tasks due to violating QoS requirements (e.g., deadline), and exceeding computational 

resources. Moreover, a waste of energy will occur due to activating fog nodes in all time.   

Random Offloading (RO). Each primary fog node decides whether to process the task 

locally or to offload it to one of its neighbours or to the cloud randomly. The decision of 

offloading tasks does not consider the availability of the computational and energy 

resources and system constraints.  

5.3.3.3 Performance Metrics 

To provide a comprehensive evaluation of our proposed approach compared to the 

stated baselines, the following metrics are considered.  

1- Average delay, it is defined in chapter five in (5.18) equation. 

2- Average energy consumption 

The average energy consumption in the fog system in one cluster in one time 

slot is calculated as  

E𝑐𝑙𝑢𝑠𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (t) =  
 ∑ 𝐸𝑖 𝑖∈𝐹𝑁

𝐹𝑁 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑜𝑛𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  
 

And the average energy consumption in one cluster for all time slot is defined 

as  

Average energy consumption =  
∑ E𝑐𝑙𝑢𝑠𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (t)𝑇
𝑡=1

𝑇
 

3- Percentage of throughput. 

We cannot calculate the percentage of throughput in each time slot. This is 

because tasks that are generated in time slot (t) cannot always be processed 

within the same time slot, instead, sometimes they wait several time slots in the 

queues. In this manner, the percentage of throughputs is calculated as follows. 

Percentage of throughput =  
total drooped tasks 

total tasks generated in all time slots
∗ 100 
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4- Average number of sleeping fog nodes  

The average number of sleeping fog nodes is calculated as  

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑁𝑇
𝑡=1

𝑇
 

5.3.4 Experiment results structure  

The structure of the results section is shown in Figure 5.21. 

 

Figure 5.21: Structure of the results section. 

 

5.3.4.1 Comparison with baselines  

In this section, we compared our proposed scheme JQLLO with all the stated baselines. 

In our approach, we allow each FN at the beginning of each time slot to drop 5% of its 

total tasks in its arrival queue and the approach in this case is called JQLLO-5%. The 

reason for this was to examine how the system would perform if 5% of its total workload 
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was allowed to be dropped and how this will affect the efficiency of the proposed 

scheme that is based on combining Q-learning and Lyapunov Optimisation. The 

approach JQLLO-0% refers to when no dropping of tasks is allowed. As heterogeneous 

tasks and privacy requirements have not been investigated in these baselines, we apply 

our concept of sorting tasks based on their deadline and type and where each task 

should be processed for all these baselines.  

The impact on the average delay  

We examined the impact of various approaches on the average delay of each task based 

on its characteristics. The results are shown in Figure 5.22. it can be seen that public1 

and public2 are processed in the cloud because of having loose deadlines. This is why 

the average delay is high compared to other type of tasks and this is due to the long 

transmission latency. In public1 and public2 type of tasks, all approaches exhibit the 

same patter. However, in LE public1 has higher average delay compared to public2 while 

both tasks are processed locally at the primary fog node. The reason for this is that 

public1 has loss deadline compared to public2, and due to the long queueing delay, the 

primary fog node will drop most of public2 tasks as the deadline cannot be met.  For the 

remaining approaches, EETO has higher average delay compared to the rest approaches. 

The reason for that is attributed to the long queueing delay in the gateway side. As the 

type of task is waiting in the gateway queue in order to make the decision to offload it 

to the cloud for processing. 

In terms of semi1 and semi2 tasks, each approach exhibits the same pattern in the two 

types of tasks except for the LE. In more details, in LE, the average delay of semi2 tasks 

is lower than semi1 tasks, and this is due to the loss of deadline in semi1 tasks similar to 

the scenarios of public1 and public2 tasks. For the rest of other approaches, Random 

has the highest average delay followed by EETO approach and then CESC. This is because 

Random approach offloads tasks without considering the best candidate to process 

them. As for EETO and CESC, the reason for higher average delays is attributed to the 

drawbacks mentioned in section 7.5.2 baseline approaches.  
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Additionally, for semi1 and semi2 tasks, the lowest average delay is seen in DEBTS 

approach followed by JQLLO-0%, and finally JQLLO-5% approaches. The reason that the 

lowest average delay is scored in BEBTS is because all the neighbouring fog devices in 

this approach are willing to help and are switched on in all time slots, in JQLLO-0% 

although there is no allowed dropping of tasks, we still managed to put a few fog nodes 

in the cluster in a sleep mode while still meeting the QoS requirements in the system. 

This resulted in having fewer available computational resources in the time slot. This 

caused some tasks to wait a bit longer in the queue of fog nodes compared to DEBTS.  

Comparing CESC, EETO, Random and LE to our approach JQLLO-5% helps to reduce the 

delay by 7.18%, 26.77%, 58.64%, and 84.79% in semi1 tasks respectively. This is further 

reduced in JQLLO-0% approach compared to the same baselines by 14.96%, 32.91%, 

62.11%, and 86.07% respectively. For semi2 tasks, JQLLO-5% manages to save around 

6.46%, 27.64%, 60.50%, and 80.05% compared to CESC, EETO, Random and LE 

approaches. This is further reduced by JQLLO-0% approach, compared to the same set 

of baselines, JQLLO-0% saves up to 12.77%, 32.52%, 63.16%, and 81.39%. With regards 

to the difference between semi1 and semi2 type of tasks, overall, semi2 type of tasks 

have lower average delay compared to semi1 tasks with a difference of around 3.5%. 

This is attributed to the tight deadline of semi2 tasks, as the tasks are sorted based on 

their deadline in the arrival queue.  

Regarding private tasks, for private1, JQLLO-5% reduces the average delay by 49.30%, 

84.57%, 25.70%, and 11.96% compared to Random, LE, EETO and CESC approaches 

respectively. Further delay is accomplished with JQLLO-0% approach, as the average 

delay is decreased by 53.54%, 85.86%, 31.91%, and 19.31% for the same set of baselines. 

In terms of private2 tasks, JQLLO-5% saves around 56.87%, 81.72%, 36.82%, and 12.38% 

compared to Random, LE, EETO, and CESC approaches respectively. Additionally, further 

reduction is accomplished with JQLLO-0% approach by 60.21%, 83.14%, 41.72%, and 

19.18% for the same stated baselines. Comparing private1 and private2 tasks, it seems 

that the lowest average delay is achieved in private2. This is due to having tight deadline 

compared to private1 tasks. However, the difference between the private1 and private2 
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tasks is around 11% which is higher than the difference between semi1 and semi2 tasks. 

This is attributed to the priority assigned to this type of tasks, as the system processes 

all private2 tasks before considering the process of any private1 tasks. Overall, our 

proposed schemes help to minimise the average delay compared to other benchmarks. 

 

Figure 5.22: Impact of our approach and other baselines on the average delay  

Impact on average energy consumption  

Regarding saving energy consumption within the fog infrastructure, JQLLO approach 

saves more energy compared to all the stated baselines. This is shown in Figure 5.23. 

Since all the clusters exhibit the same features, we discuss the results with respect to 

cluster A. In more detail, when no tasks are allowed to be dropped, the JQLLO-0% 

approach helps to minimise the average energy consumption by 86.60%, 85.31%, 

82.21%, 35.27%, and 26.17% in comparison to Random, LE, EETO, DEBTS, and CESC 

approaches respectively. This is further reduced when 5% of tasks are allowed to be 

dropped for the sake of conserving energy, where JQLLO-5% reduces the average energy 

by 87.91%, 86.98%, 84.81%, 38.20%, and 29.52% compared to Random, LE, EETO, 

DEBTS, and CESC approaches respectively. 
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Figure 5.23: Impact of our approach and other baselines on the average energy consumption  

Impact on the percentage of throughput  

In terms of the percentage of throughput, results are shown in Figure 5.24. It can be 

seen that DEBTS and JQLLO-0% approaches achieved the highest throughput at 100%. 

This is followed by the JQLLO-5% and CESC approaches. Approach JQLLO-5% helps to 

accomplish around 95.2%, 95.71%, and 95.56% for cluster A, B, and C, respectively, and 

CESC approach manages to process around 94.3%, 95.01%, and 94.62% of the total tasks 

for clusters A, B and C. EETO approach managed to achieve around 93%, followed by LE 

and Random approaches with around 63% and 54.50% respectively. 

 

Figure 5.24: Impact of our approach and other baselines on the average percentage of 
throughputs   
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As a result of comparing our approach with baselines, we are able to significantly reduce 

the amount of energy consumed within the QoS requirements. The process can be 

achieved with only a small amount of time sacrificed. 

5.3.4.2 The Impact of various allowed percentage of dropping 

tasks on the performance of JQLLO approach  

In this set of experiments, we analysed the system performance when 5%, 10%, 15%, 

20%, 25%, and 30% of total tasks are allowed to be dropped by each FN from its arrival 

queue at the beginning of each time slot, before creating and sending the information 

vector to the local controller. The dropping of tasks is equally distributed between 

different types of tasks. We investigate the effect of the various percentage of dropping 

of tasks on the average number of sleeping fog nodes, the average energy consumption, 

and finally on the average delay. These results are generated when the arrival rate of 

tasks is between 1 ms and 25 ms in each IoT device in which the system is extremely 

congested. 

Average number of sleeping fog nodes and average percentage of 

energy consumption  

It can be seen from Figures 5.25 and 5.26 that as we increase the allowed percentage of 

dropped tasks, the average number of sleeping fog nodes in each cluster grew. By 

increasing the number of sleeping fog nodes, more energy is saved. 
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Figure 5.25: Impact of various allowed percentage of dropping tasks on the average number 
of sleeping fog nodes. 

 

 

Figure 5.26: Impact of various allowed percentage of dropping tasks on the average energy 
consumption. 
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sent to the cloud for processing before putting fog nodes in sleep mode if their deadline 

is not violated. Putting PFNs in a sleep mode will impact the average delay on private 

type of tasks compared to other types. The reason for that is because once the PFN 

enters into the asleep cycle, the private tasks will wait in the queues until the PFN is 

activated, compared to semi-private tasks that can be processed by any fog node in the 

system. Private1 tasks are significantly affected by this, since private2 tasks are given 

priority, which barely has an effect as there are more sleeping fog nodes.  

There was a slight increase in average delay for semi-private tasks as the number of 

sleeping fog nodes increased. The increase in the average delay in semi1 tasks is higher 

than the average delay in semi2 tasks. The reason for that is attributed to the tight 

deadline of semi2 tasks. This is because the system processes this type of tasks to meet 

its deadline while postponing the execution of semi1 tasks. The percentage of the 

increase in the average delay when 30% of drooping of tasks is allowed compared to 

when no drooping is allowed is shown in Table 5.8. 

Table 5.8: The percentage of the impact of drooping 30% of tasks on the average delay 

Semi1 Semi2 Private1 Private2 

11.40% 7.29% 20.48% 7.29% 
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Figure 5.27: Impact of various allowed percentage of dropping tasks on the average delay. 
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nodes is about 43.08%, 45.60%, and 44.95% for cluster A, B, and C, respectively. In a 

slightly congested environment, e.g., [1-45], more fog nodes enter sleep mode 

compared to high congested system. With 0% allowance of dropping tasks, for example, 

in cluster B, where the average number of fog nodes that are in sleep mode in [1-25] is 

about 0.34, and in [1-45] the average number is 1.94. This is further increased when five 

percent of the total generated tasks is allowed to be dropped, as in cluster B, in [1-25], 

the average number of asleep fog nodes is about 0.62, and with [1-45], the average 

number is about 2.58 for the same cluster. It is also observed that as the percentage of 

tasks dropped increases in [1-45], more fog nodes are going into sleep mode while 

meeting the QoS requirements. For example, in cluster B, the average number of fog 

nodes that are in sleep mode with 0% allowance of dropping tasks is about 1.94, and 

this number is increased to 2.58 with 5% allowance of dropping tasks. 

 

Figure 5.28: The impact of various arrival rates on the average number of sleeping fog nodes. 

The impact on the average delay 
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This is compared to when 5% of the generated tasks are allowed to be dropped and the 

number of active computing devices is reduced. The reason that the highest reduction 

in the average delay is noted in private1 tasks is because this type of task is the most 

affected when the number of sleeping fog nodes increases, especially as it should only 

be processed in the primary fog node and there is no alternative computing device. 

Additionally, private2 tasks are given priority when it comes to execution. So, the 

primary fog nodes process all private1 tasks, and once they are complete, private1 tasks 

are considered for processing. 

The concept of having less average delay when 0% of tasks are allowed to be dropped 

more than when five percent is allowed, is also applied to [1-45]. The average delay with 

0% of tasks allowed to be dropped outperforms the average delay when 5% of tasks are 

allowed to be dropped. This is by 8.62%, 8.20%, 12.50%, and 8.43% for semi1, semi2, 

private1, and private2 tasks respectively. Additionally, it appears that public tasks are 

not affected by the allowed percentage of dropping tasks since they are sent to the 

cloud. In a slightly congested environment, e.g., [1-45], average public task delays are 

reduced by around 13.16 percent compared to a congested environment, e.g., [1-25]. 

This is due to having a longer queueing delay on the cloud servers when a significant 

number of tasks are transmitted to the cloud compared to having fewer tasks to be 

transmitted. Among all the types of tasks, private2 tasks have the lowest average delay 

due to their priority. 
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Figure 5.29: The impact of various arrival rates on the average delay. 
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consumption is reduced further by 4.53%, 3.91%, and 4.83% for the same set of clusters, 

compared to JQLLO-0%.  

 

Figure 5.30: The impact of various arrival rates on the average energy consumption. 
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5.4 Conclusion  

In this chapter, we have analysed the dynamic resource management problem and the 

problem of computational offloading and processing decisions in stochastic fog 

computing systems. The first subproblem is formulated first as a stochastic optimisation 

problem, and then transformed into a non-stationary MDP problem. the proposed 

solution CQL-EUAs effectively helps the learning agents to maximise their average 

rewards. Additionally, it helps the learning process to converge faster compared to other 

baselines such as single learning. The impact of CQL-EUAs approach was analysed and 

evaluated through extensive experiments.  

The second subproblem has been solved using Lyapunov optimisation and drift-plus-

penalty theory which helps to reformulate the optimisation problem of minimising time-

average energy consumption into server sub-problems. Moreover, solving these sub-

problems will lead to an optimal solution to the optimisation problem. A set of 

experiments is conducted to prove the efficiency of the proposed scheme which is based 

on Joint Q-learning Lyapunov optimisation (JQLLO). The results of the proposed scheme 

were compared to a set of baselines. We observed from the set of experiments that our 

proposed scheme minimises energy consumption while meeting system constraints and 

QoS requirements. 
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6 Conclusion and Future Works  

6.1 Final Conclusion  

This study is focused on addressing the problem of computational offloading and 

resource management in regard to server power management with the aim to optimise 

average delay and energy consumption at fog devices while meeting QoS requirements 

in the system, in online and stochastic fog computing system.  

To show the contribution of this dissertation, the work has been designed into two main 

sections to purpose solutions regarding computation offloading and resource 

management from different angles. 

In the first part, computational offloading and resource management problems have 

been analysed in online dynamic fog systems. This is with the aim of minimising the 

average delay and conserving energy. In this model, a joint algorithm is proposed to 

achieve the stated objectives. The problem is addressed with various fixed offloading 

thresholds. Simulation results demonstrate the efficiency of the proposed scheme in 

optimising delay, throughput, and energy consumption. In the simulation, the effect of 

varying offloading thresholds and increasing the number of available neighbours is 

analysed. The results indicated that selecting the value of the offloading threshold plays 

a significant role in the performance of the system. Having a very low or very high 

offloading threshold impacts the system negatively, which emphasizes the importance 

of having the optimal offloading threshold value. Further, increasing the number of 

available neighbours improves delay and throughput at the expense of energy 

consumption. It will however have a negative impact on delay and energy if the number 

of available neighbours is increased beyond the limit. This is demonstrated in chapter 3. 

This answers research question 1. 
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Further, since the optimal value of offloading threshold in an online dynamic system 

cannot be predicted in advance, we propose a dynamic offloading threshold approach. 

Experimental evaluation showed the efficiency of the proposed scheme compared to 

the fixed threshold and other benchmarks in terms of minimising average delay and 

enhancing throughput. However, this comes at the expense of energy consumption. A 

further analysis is performed to examine how the dynamic offloading threshold would 

perform as workload and available neighbour numbers increase. The results show stable 

behaviour in regard to the average delay as the delay rises slightly as the number of 

workloads increases. Compared to the fixed offloading threshold and other baselines 

where the average delay increases very rapidly as workload increases. In terms of the 

increase in neighbours, the results show a similar impact to that of the fixed offloading 

threshold. Chapter 3 addresses this and answers research question 1. 

In the second part, computational offloading and resource management in a stochastic 

fog system is investigated with the aim to minimise the average energy consumption. 

This is while meeting QoS requirements and system constraints. The problem is 

formulated as a constraint stochastic optimisation problem and decomposed into two 

subproblems to be solved efficiently. This is addressed in chapter 4 and answers 

question 2. 

Chapter 5 consists of two parts. The first part considers the first sub-problem as a 

dynamic resource management problem for minimizing average energy consumption. 

The problem is solved using a joint algorithm of a cooperative approach to a machine 

learning algorithm and an algorithm named Eliminating Unacceptable Actions. The 

proposed approach helps learning agents learn faster and more efficiently than a single 

learning approach. A further analysis is performed to examine how different epsilon 

approaches and the minimum allowed reward that causes the episode to terminate 

would impact the performance of the agents. Results showed that lower epsilon values 

allow the agent to explore a range of options and learn better. Moreover, defining the 

minimum allowed reward does impact the learning outcome. This answers research 

questions 2 and 3. 
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The second part of chapter 5 addresses the second sub-problem. The problem is 

addressed as computational offloading and decision processing problems and solved 

using Lyapunov optimisation theory. According to Lyapunov theory, the problem is 

divided into three subproblems and solved accordingly. Additionally, the results 

combining the two sub-problems demonstrate the efficiency of the proposed scheme 

when compared to a set of benchmarks. 

6.2 Future works 

On the basis of the study given in this thesis, the following elements have been identified 

as prospective future research directions: 

Studying optimisation problems that increase energy efficiency and delay while ensuring 

important factors like security and enhancing reliability in online dynamic fog systems. 

Furthermore, taking into account some characteristics that relate to real-world 

scenarios such as heterogeneous fog/edge devices in terms of processing capacity, 

various tasks requirements, and mobility of end users. 

Further research is required to verify the stochastic fog system methodologies provided 

in this thesis for optimising several objectives simultaneously. Fog computing 

environment is known to be dynamic, complex with heterogeneity resources that may 

need simultaneous optimization of several objectives. Assessing the effect of having a 

larger number of objectives is a challenging endeavour that requires more study. 

For the stochastic optimisation problem, we integrate the use of Q-learning and 

Lyapunov optimisation to solve it. However, there are other optimisation techniques 

that are worth exploring. One example of these techniques can be Stochastic Gradient 

Descent which is utilised to train models to generate classification or predictions 

according to input data. It is known to be more rapid and effective for massive datasets, 

since it takes only a limited number of training instances to estimate the gradient. 

However, there are various obstacles to consider while implementing it. One of these 

obstacles is being caught in local optima and choosing the optimal learning rate to get 
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excellent outcomes. Moreover, Evolutionary Optimisation Algorithms such as Genetic 

Algorithms and Particle Swarm Optimization can be used in stochastic optimisation 

problems. However, these algorithms should be designed to handle large amounts of 

complex data. Also, the fitness function should be implemented in a way that reflects 

the dynamic environment.  

Although the experiments in this thesis aimed to model the behaviour of distributed 

systems in terms of having dynamic and stochastic attributes, it would be extremely 

beneficial to execute the work described in this thesis in a real distributed environment. 

This is to improve real-world systems for future computing paradigms such as Fog and 

Edge systems. Applying this is likely to be difficult and costly, but the effort is 

worthwhile. 
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