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Bayesian Optimization - LSTM Modeling and Time Frequency 
Correlation Mapping Based Probabilistic Forecasting of Ultra-short-

term Photovoltaic Power Outputs 
Jie Shi, Yuming Wang, Yue Zhou, Yan Ma, Jie Gao, Shude Wang, Zuan Fu 

 

  
Abstract—Due to the fluctuation and randomness of 

photovoltaic power over time, accurate and reliable ultra-short-

term photovoltaic power forecasting is significant for real-time 

dispatch and frequency regulation of power grids. In this paper, 

the improved BO-LSTM forecasting frame considering 

frequency correlation mapping is proposed. Firstly, the features 

of photovoltaic power are extracted and resolved according to 

power series frequency segments. Then, the established BO-

LSTM forecasting model is adjusted based on the above 

extracted features in separate segment, and the results of 

deterministic forecasting are obtained. Furthermore, in order to 

obtain the reliable performance, the time-correlation  algorithm 

is employed into the above deterministic forecasting model, 

which offers the base for probabilistic power forecasting. Finally, 

the above algorithms and forecasting framework are applied to 

the measurement data from a commercial photovoltaic power 

station in North China. Compared to the benchmark models, the 

Power Interval Normalized Average Width (PINAW) error of the 

proposed ultra-short-term forecasting algorithm has shown 

satisfied improvements. The PINAW has reduced by 8.4% (v.s. 

Adam-LSTM), 48.9% (v.s. Sgd-LSTM), 52.8% (v.s. Adagrad-

LSTM), 9.1% (v.s. Rmsprop-LSTM), 97.2% (v.s. Adadelta-

LSTM), 86.8% (v.s. Adam-mlp), 87.4% (v.s. Sgd-mlp), 90.9% 

(v.s. Adagrad-mlp), 86.5% (v.s. Rmsprop-mlp), and 99.7% (v.s. 

Adadelta-mlp). 

 
Index Terms— time frequency correlation; BO-LSTM; 

photovoltaic power forecasting; feature extraction; deep 

learning.  

I. INTRODUCTION 

arge-scale centralized photovoltaic power is 

developing greatly. However, due to the fluctuation 

and randomness of photovoltaic (PV) power over time, 

it will bring much challenge when integrating more 

photovoltaic to grid. This situation is crucial especially in 

large centralized PV farms, and highly reliable power output 

forecasting is one of the effective solutions[1].  
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Nomenclature 

V(t) 
Auxiliary white noise 

sequences 
D The power data set 

X(t) 
Original photovoltaic 

power sequence  
r0,0 

The daily PV power data 

series in the forecasting 

day   

Hm
+(t) Component elements ri,j 

The daily PV power data 

series in the jth day before 

(negative) or after 

(positive) forecast moment 

of the previous ith year  

f(x)  

The mean absolute error 

between the true PV 

power and the model 

forecasting power 

C(r0,ri) 
The correlation coefficient 

between r0,0 and ri,j 

E(f(x))  
The mathematical 

expectation of f(x) 
T 

The periodicity scale 

coefficient  

k(x,x) 
The covariance function 

of historical power x 
L Similarity scale coefficient  

Ф(Z) 

The probability density 

function of the standard 

normal distribution 

R Reference matrix  

φ(x)  

The distribution function 

of the standard normal 

distribution 

Eref  
Reference PV power data 

value  

 

The power data series of different dates which are in similar 

time slots have a strong respective correlation with each other. 

On the contract, the PV power fluctuation expresses a 

randomness due to nature feature coming from various 

meteorological elements. Hence how to figure out the above 

two issues is crucial to improve the accuracy and reliability of 

forecasting results[1]. 

According to the report from International Research Center 

for Renewable Energy (IRCRE), the time duration of ultra-

short-term forecasting is focusing on a range between a few 

minutes and one hour[2]. For centralized PV power 

forecasting, mess of contributions have been obtained. The 

forecasting methods can be classified into deterministic 

forecasting and probabilistic forecasting. On one hand, in 

deterministic forecasting, studies on the time scale and time-

frequency distribution of photovoltaic power, have been 

attracted much attention. Firstly, to analyze the influence of 

time scale on forecasting, current research mainly focuses on 

improving the forecasting accuracy of photovoltaic power at 

different time scales. To tackle the deficiencies of 

conventional artificial intelligence modeling methods such as 

over fitting problem and insufficient generalization ability to 

complex nonlinear modeling, a day-ahead PV power 

forecasting model assembled by fusing deep learning 

modeling and time correlation principles under a partial daily 

pattern prediction (PDPP) framework is proposed in [3]. A 

hybrid forecasting method based on multi-scale similarity day 

and an improved Archimedes algorithm optimized for ESN-

L 
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KELM dual-core forecasting is proposed[4]. This method 

aims to improve short-term forecasting accuracy. A reliable 

PV power forecasting model based on neural network (NN), 

convolutional neural network (CNN) and long short-term 

memory (LSTM) model is proposed[5, 18, 20]. The model 

utilizes CNN-LSTM to extract internal features of 

photovoltaic data trends and seasonal variables to achieve 

more accurate forecasting results. Time-sharing prediction 

(TSP) model combining variation modal decomposition 

(VMD) and Bayesian regularized neural network (BRNN) is 

proposed[6]. Secondly, the characteristics and frequency 

segments of power data series are studied, and current 

research mainly focuses on how the features of photovoltaic 

power are extracted. There is a proposed PV power spatial 

temporal forecasting model[7]. The temporal shift correction 

and a multi-station information fusion strategy are taken 

account. The model applies the forecasting results of multiple 

reference power plants into the data processing module for 

time-shift analysis and spatial correlation information fusion 

correction. That model is able to effectively address data gaps 

in the target power station for forecasting. In addition, an 

accurate PV power forecasting interval method based on 

frequency domain decomposition and hybrid deep learning 

(DL) model is proposed[8]. The study utilizes Ensemble 

Empirical Mode Decomposition to decompose and reconstruct 

the original energy time series data into sub-sequences, 

followed by statistical feature extraction. In [9], considering 

the multi-period error distribution (MPED), EEMD-LSTM-BP 

model is proposed. The study utilizes ensemble empirical 

mode decomposition (EEMD) to investigate the fluctuation 

characteristics within various frequency domains. 

On the other hand, in probabilistic forecasting, the 

reliability is an important concern for evaluating model 

performance, hence diverse evaluation indicators are 

needed[21-24]. In [10], the forecasting accuracy of the model 

is evaluated using three evaluation metrics: normalized root 

mean squared error (nRMSE), mean relative error (MRE), and 

normalized mean absolute error (nMAE). In [11], the 

reliability of the forecasting intervals is evaluated using the 

average bandwidth metric. What’s more, new artificial 

intelligence probabilistic models are needed to improve the 

forecasting reliability. In [12], a new approach called SVR2D 

which directly computes the 2D-interval forecasts from 

previous historical solar power and meteorological data is 

proposed. A novel interval forecasting method based on 

generalized weather conditions is proposed [13]. The 

uncertainty of PV power under different weather conditions is 

firstly analyzed, then a generalized weather classification 

method based on solar irradiance reduction index K is 

performed. Aiming at the uncertainty of power and kernel 

density estimation, a power interval forecasting method based 

on hybrid semi-cloud model and non-parametric kernel 

density estimation is proposed[14]. To address the problem of 

low traditional power interval forecasting accuracy, a new 

interval method is proposed based on PSR-BLS-QR with 

adaptive rolling error correction[15]. The optimal correction 

index is used as the objective function to determine the 

optimal error correction power for different power interval 

segments of the interval upper and lower boundaries. 

However, there are still much room for improvement. 

Firstly, the quantitative impact of distribution characteristics 

in different time periods on the forecasting model framework 

has not yet been figured out. Due to the fluctuation and 

randomness of PV power over time, temporal characteristics 

are essential factor that must be considered in the forecasting 

model framework. Secondly, the numerical mapping 

relationship which is between time-frequency distribution of 

photovoltaic power and the forecasting results is unclear. 

Currently, most research focuses on using historical power 

data or weather data to forecast photovoltaic output. However, 

multiple studies have shown the significance of studying the 

effect of PV power time-frequency distribution features on the 

forecasting results in improving the accuracy of forecasting 

models[25,28]. 

To solve the above problems, an ultra-short short-term PV 

power probability forecasting model considering time-

frequency analysis is proposed in this paper. Initially, the 

features of photovoltaic power are extracted and resolved 

according to power series frequency segments, and it is 

applied in the established deterministic forecasting framework 

BO-LSTM to obtain respective model in every time-frequency 

segment. Then, the improved BO-LSTM model is employed 

to individually forecast each component to improve the 

accuracy and stability of PV forecasting. Thus, the Time 

Correlation  model (TC) is applied to correct the deterministic 

forecasting result. Finally, photovoltaic power interval 

probabilistic forecasting is conducted under 80%, 90%, and 

95% confidence conditions, respectively. 

The contributions of this paper can be summarized below: 

(1) Considering the numerical mapping relationship 

between the time-frequency distribution of photovoltaic power 

and the forecasting results, a novel pre-processing method for 

PV power data is proposed. The features of photovoltaic 

power are extracted and resolved according to power series 

frequency segments during the data pre-processing stage, 

thereby improving the accuracy of subsequent forecast. 

(2) Considering the quantitative impact of distribution 

features in different time periods within the same photovoltaic 

power station on the model framework, a statistical model for 

correcting the forecasting results of artificial intelligence is 

proposed. The BO-LSTM model-based forecasting results are 

corrected using a time correlation model, thus improving the 

reliability of the model.  

The organizational structure of the method in this paper is 

as follows: Section 2 introduces algorithms and principles 

which are used in this paper for model construction. Section 3 

is the modeling process, focusing on building up the hybrid 

model for ultra-short-term PV power forecasting. Section 4 is 

case studies along with results discussion, followed by 

conclusions. 
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II. PRINCIPLES 

A. Photovoltaic power feature extraction 

Since PV power is significantly affected by environment 

and time, it is inevitable to encounter some abnormal values in 

the power output data. These values can interfere with the 

normal operation of forecasting models and impact the model 

accuracy. Currently, EEMD method has been widely used to 

handle nonlinear and non-stationary signals, such as the  

photovoltaic power data sequence. According to [4], the 

number of components is positively related to forecasting 

accuracy and workload. It can be observed that when the 

number of components is set to 6, both of the forecasting 

accuracy and workload are acceptable. Therefore, in this 

paper, the raw power data is decomposed into six Intrinsic 

Mode Function (IMF) components. 

Adding M sets of auxiliary white noise sequences V(t) with 

different amplitudes and phase differences of π to the original 
photovoltaic power sequence X(t), H(t) containing the 

photovoltaic power information are obtained. 
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Next, the local extreme points of H(t) are found, and the 

envelopes are drawn using interpolation. Then, the M sets of 

signals H(t) are decomposed using Empirical Mode 
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 Finally, the overall average of the decomposition results is 

calculated to obtain the IMF components and margins of the 

original power sequence. 
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EEMD is one of the unique methods of reducing mode 

mixing by adding white noise. Because of solid adaptability 

and the capability to effectively analyze non-linear data, 

EEMD stands out from other forms. By integrating multiple 

noise perturbations, it ensures the robustness of results. 

Moreover, its ability to offer a time-frequency representation 

allows for simultaneous observations of signal changes in both 

time and frequency, which is suitable for pre-processing 

power data. 

B. BO-LSTM power forecasting frame 

   The Bayesian optimizer estimates the posterior 

distribution of the objective function based on Bayes 

theorem[11]. Then, based on the evaluation results, the 

following combination of hyper-parameters that minimizes the 

value of the objective function is found by building up 

alternative functions[16]. In this paper, it makes full use of the 

information from the PV power in previous time, and its 

optimization works by learning the shape of the objective 

function of power forecasting and finding the parameters that 

provide the maximum improvement to the forecasting results. 

The core of the Bayesian optimizer consists of a probabilistic 

agent model and a sampling function[1]. 

( )( ) )),(,(f x GP x k x x
                     

(4) 

Where, f(x) denotes the mean absolute error between the 

true PV power and the model forecasting power, µ(x)=E(f(x)), 

E(f(x)) is the mathematical expectation of f(x), k(x,x) denotes 

the covariance function of historical power x. 

Through the Gaussian process, the mean absolute error 

between the real PV power and the model forecasting power 

can be obtained[17]. The optimal local solution will be found 

by the sample calculation. The commonly used sampling 

function is the EI sampling function. The design idea of the EI 

sampling function lies in finding the next power point xt+1 of 

the maximum improvement expectation and the function is: 

( ) 0( ( ) ( )) ( ) ( ) ( )
( )

( )=00

xx f x Z x Z
EI x

x

  


+  −  +
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   (5) 

Where, Ф(Z) is the probability density function of the 

standard normal distribution and φ(x) is the distribution 

function of the standard normal distribution, where Z can be 

expressed as: 

( ) ( )

( )

x f x
Z

x




+−
=

                               
 (6) 

During the training of the model, the working process of the 

Bayesian optimizer is classified into four steps: 

Step 1: The initialized sample points of PV power are 

generated randomly according to the range of hyper-

parameters of the LSTM network. The initialized sample 

points are fed into the Gaussian process and the LSTM model 

is trained. The Gaussian model is corrected using the loss 

values output by the objective function, thus making the 

Gaussian model closer to the actual distribution of the power. 

Step 2: Use the sampling function to select the next set of 

power points x to be evaluated in the modified Gaussian 

model. New sample points are applied into the LSTM model 

as input. The new output value y of the PV power is obtained, 

which is used to update the power data set

1 1 2 2={(x , ),( , ), , ( , )}
t t

D y x y x y  and the Gaussian model. 

Step 3: The newly selected sample point is compared with 

the true value. The error between the sample point and the true 

value is the loss value. The comparison index used in this 

paper is the standard score. Sort the standard scores of all the 

sample points and output the smallest one. The algorithm is 

terminated and exits, outputting the best combination of 

parameters currently selected and the corresponding loss value 

(x, y) of the objective function.  

Step 4: If the loss value of the objective function does not 

meet the requirement of the modelling, (x, y) is updated to the 

power data set. Skip to step 2 and continue to correct the 

Gaussian model until the requirement is met. 
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C. Time Correlation Algorithm 

The PV power output is closely related to the surface solar 

irradiance, and the surface irradiance exhibits an annual 

periodicity, so the PV power output is close to the data value 

within adjacent historical time. Therefore, the reference value 

of PV power generation for the forecast moment can be 

calculated via the generation data from the corresponding 

historical period.  

Suppose the daily PV power data series in the forecasting 

day is r0,0, and the daily PV power data series in the jth day 

before (negative) or after (positive) forecast moment of the 

previous ith year is ri,j. The correlation coefficient between r0,0 

and ri,j, can be calculated according to the following 

formula[15].  

                  ( ) ( )
( ) ( )

0

0

0

cov ,
,

i

i

i

r r
C r r

Var r Var r
=                           (7) 

To determine the reference value of PV power output at a 

specific time, the periodicity scale coefficient T and similarity 

scale coefficient L are defined to describe the needed data 

scope [31]. The periodicity scale coefficient T determines the 

yearly value of historical data The similarity scale coefficient 

L determines the days of historical data at the forecast time. T 

and L are both positive integers. Then according to the 

determined values of scale coefficients, a reference matrix R 

of PV power at a definitive forecast moment can be created 

using historical data. According to the reference matrix R, the 

reference PV power data value Eref can be calculated as the 

average of all the elements in matrix R[19,26]. It is important 

to note that the value of Eref can characterize the primary trend 

of irradiance, which can either be used as an individual PV 

power forecast result or modify the forecast results of other 

machine learning method. 

III. BAYESIAN OPTIMIZATION - LSTM AND TIME FREQUENCY 

CORRELATION MAPPING BASED PROBABILISTIC FORECASTING 

A. Overall Framework 

Aiming at improving accuracy and reliability of forecasting 

performance, the PV power output features in time scale are 

fully considered in this paper. The overall framework which 

includes three stages is shown in Fig. 1. 

Stage 1: Photovoltaic power feature extraction in time and 

frequency domain: to deal with the volatility and randomness 

of power output, the data series is decomposed into various 

frequency bands. 

Stage 2: Deterministic forecasting model adjustment: in 

each frequency band, the deterministic forecasting model is 

optimized based on the extracted power features obtained 

from Stage 1. The data series is classified into a training set 

(90% of the data samples) and a testing set (10% of the data 

samples). In the deep learning algorithms, the larger the 

number of small batch samples, the higher the computational 

cost. Choosing an appropriate number of small batch samples 

can balance computational efficiency and result quality. 

Therefore, the number of small batch samples is selected as 10. 

In order to improve the generalization ability of the model 

while maintaining its stability, the discard rate is set to 0.5.  

Stage 3: Probabilistic forecasting model considering time 

correlation analysis: the time correlation model is applied to 

correct the model forecasting results to calculate the 

photovoltaic power probability forecasting intervals, which are 

at 80%, 90%, and 95% confidence levels, respectively.   

To evaluate the forecasting effect, the evaluation index, 

which is Power Interval Normalized Average Bandwidth 

(PINAW) is selected. The performance of the proposed 

algorithm is compared with that of multiple benchmark 

models by case studies. 
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Fig.1. Overall Framework.

 

B. Data Segment in Frequency Domain 

Before performing the decomposition, a suitable 

decomposition segment quantity should be figured out. If the 

value is too small, it may result in larger deviation from 

original data series, indicating that the power sequence 

decomposition is insufficient causing model mixing. That 

deviation decreases along with increasing segment quantity. 

However, if the value is too large, it can lead to excessive 

decomposition, which is also affecting the performance. 

According to the conclusion of reference [27], the optimal 

decomposition segment quantity is selected as 6 in the PV 

power forecasting model, which is like the one in this paper.  

Through the above analysis, the original data is 

decomposed according to time and frequency. The specific 

decomposition diagram is shown in fig.1. EEMD decomposes 

the power into multiple modal components with different 

frequency characteristics, which facilitates to analyze hidden 

information of the power data and enables the model to have 

better forecasting accuracy. 

To verify whether the decomposition of modal components 

is consistent with the original power data, the IMF 

components are reconstructed to obtain a series data. In Fig. 2 

the chart in black is the original power data and the line in red 

with dashed line shows the reconstruction result. From the 

figure, it can be concluded that the reconstructed power data 

basically accords with the original power data, retaining most 

of the original data information. If the deviation between 

original power and reconstructed power is defined as the 

absolute deviation, meanwhile the standardized absolute 

deviation is defined as the coincidence rate, then the average 

coincidence rate between the reconstructed power and the 

original power is 98.3%, retaining most of the original data 

information. Therefore, the original power data is decomposed 

by using the decomposition method, which is beneficial to 

extract different features in the power data, and then it can 

forecast the PV power based on the feature information more 

accurately. 
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Fig. 2. Comparison of power time series with the reconstructed 

results after EEMD decomposition. 

 

C. Probabilistic Forecasting  

The parameter settings of the LSTM can lead to poor 

network fitting, to solve that problem, a Bayesian optimizer is 

introduced to optimize the learning rate, the number of hidden 

layer nodes and the regularization factor of the network in the 

paper. The randomness of the network brought by relying on 

empirical determination of network parameters is avoided, and 

the forecasting accuracy of the network is relatively improved. 

Furthermore, the Time Correlation model (TC) is applied to 

correct the deterministic forecasting results of the hybrid 

forecasting model based on deep learning. Finally, based on 

the forecasting results, photovoltaic power interval probability 

forecasting is conducted under the 80%, 90%, and 95% 

confidence levels, respectively. 

IV. CASE STUDY 

A. Data  

The data samples used in this paper are obtained from the 

measured data taken in a photovoltaic power plant which is in 

northern China (time duration: from 0:00 01/01/2017 to 23:59 

31/12/2017). Because PV power output has an annual 

periodicity feature based on the solar radiation and motivation, 

a one-year data set is selected in this paper. Referring to the 

Reference [2], normally a one-year data set can cover all 

similar scenarios of the model. The time step of data is 15 

minutes, and the installation capacity of power plant is 20MW, 

including total radiation, direct radiation, diffuse radiation, 

temperature, ambient temperature, air pressure, ambient 

humidity, and measured power data, which the details are 

shown below.  

There are some relationships between PV power 

performance and some meteorological values which includes 

solar irradiance, ambient temperature, relative humidity, wind 

speed, wind direction, and air pressure. The correlation 

coefficient between meteorological factors and PV power is 

shown in Fig. 3. As the above meteorological factors are 

extremely random, the specific effect of each factor on PV 

power cannot be determined appropriately. To obtain a more 

definite quantitative relationship between meteorological 

factors and PV power, data pre- processing is required. 

 

Fig. 3.  Scatter plots between PV power and various meteorological 

factors. (a. global radiation; b. direct radiation; c. panel temperature; 

d. environment temperature; e. atmospheric pressure; f. environment 

humidity.) 

 

As can be seen from the figure, the power generation curve 

has the same trend with total radiation, direct radiation, panel 

temperature, and environment temperature, so there is a 

positive correlation between power generation and the above 

factors.  

B. Initial selection of the correlated deep learning model  

Deep learning is widely used for both deterministic and 

probabilistic photovoltaic power forecasting [17]. In this 

paper, an improved BO-LSTM deep learning forecasting 

algorithm based on output power data time-frequency analysis 

and feature extraction algorithms is proposed. Other deep 

learning algorithms are applied for performance comparison 

with respect to the proposed forecasting model. 

To save time and computational resources, it is necessary to 

select some algorithms with better performance from many 

commonly used algorithms. Therefore, the power forecasting 

results generated by models are compared with actual 

operational data in this section based on the case PV power 
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station. In this paper, the correlations between actual power 

and the forecasting models (BO-LSTM, Adam-LSTM, Sgd-

LSTM, Adagrad-LSTM, Rmsprop-LSTM, Adadelta-LSTM, 

Adam-mlp, Sgd-mlp, Adagrad-mlp, Rmsprop-mlp, Adadelta-

mlp) are compared, which is shown in the heat map. 

Fig. 4.  Performance comparison of different forecasting models 

according to four seasons. 

 

Performance comparison of different forecasting models is 

shown in Fig. 4. The solid line in red in the figure represents 

the forecasting results of the decomposed BO-LSTM model. 

As can be seen from the figure, the accuracy is significantly 

higher than that of other benchmark models in the ultra-short-

term forecasting of PV power. Particularly, when there are 

fluctuations in photovoltaic power, the decomposed BO-

LSTM can respond more quickly and make timely 

adjustments, thereby enhancing the accuracy of photovoltaic 

power forecasting. From the table, the forecasting accuracy is 

significantly improved by time-frequency decomposition on 

the original power data. This is because time-frequency 

decomposition can eliminate the outliers in the photovoltaic 

power data sequence. 

 
TABLE І Mean Absolute Error based on the decomposed forecasting 

method and benchmark methods according to different weather types 

(unit: MW) 

Forecasting Models 
Sunny 

days 

Cloudy 

days 

Rainy 

days 

Frequency-Time-BO-

LSTM 
0.59 0.88 0.76 

Frequency-Time-MLP 1.41 0.96 1.01 

BO-LSTM 1.96 1.27 2.46 

MLP 2.26 1.43 1.98 

 

C. The Performance of the Frequency-Time Feature Mapping 

Method 

The variation features of solar radiation differ according to 

four seasons over a year. For example, summer has large solar 

radiation and long daytime while it is opposite in winter. To 

evaluate the model performance across the whole year, 4 

months are selected for representation of different seasons. 

Fig. 5.  Graph of deterministic forecasting results. 

 

Fig. 5 illustrates the correlation coefficients of the real 

values and the forecasting results of different algorithms. The 

color represents the values of the correlation coefficients, with 

cooler colors indicating smaller values and warmer colors 

representing larger values. To save time and computational 

resources, forecasting algorithms with a correlation coefficient 

of over 0.9 are selected for the case analysis in this paper. 

Therefore, Bo-LSTM，RMSPROP-LSTM，ADAM-LSTM 

are selected for the following power forecasting. 

D. The Performance of the Proposed BO-LSTM-TC Neural 

Network Model 

To obtain the optimal weight coefficients, Multiple Linear 

Regression is employed to calculate the weights between Time 

Correlation Model and improved BO-LSTM model. Thus the 

hybrid BO-LSTM-TC model is constructed, and the 

forecasting results are illustrated in Fig. 6 and Table II. 

(a) Spring 

(b) Summer 

(c) Autumn 

(d) Winter 
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It can be observed that in every deputy month, the results of 

the time-correlated model are all closer to the actual data trend, 

while the BO-LSTM model tracks the fluctuations closely in 

photovoltaic power output. The integrated model which is 

shown in red combines the advantages of both models and 

obtains higher accuracy compared to the individual models. 

Fig. 6.  Forecasting results after incorporating time-correlation 

models. 

 

 

 

 

 

 

TABLE ІІ  Mean Absolute Error (unit: MW) based on the integrated 

method and other selected benchmark methods 

Forecasting Models Sunny Cloudy Rainy 

BO-LSTM-TC 0.76 0.52 0.57 

BO-LSTM 1.22 0.70 0.59 

TC 0.83 0.88 0.91 

 

E. The Performance of the Proposed BO-LSTM-TC 

Probabilistic Forecasting 

Confidence intervals show the probability that the actual 

value falls around the measurement result. Based on the 

forecasting results of the above comprehensive forecasting 

model framework, photovoltaic power probabilistic 

forecasting is conducted Confidence Conditions (CC) under 

80%, 90%, and 95%, respectively. As seen from the figure, the 

forecasting accuracy of the LSTM network is higher than that 

of the multi-layer perceptron for the same optimizer. The 

reason why the accuracy of the LSTM network is higher is 

that PV power is more regular on the time scale than on the 

spatial scale. 

From the figure, the proposed model has higher forecasting 

accuracy based on the same case data. The Bayesian optimizer 

can fully use historical information when selecting the optimal 

combination of parameters, thus obtaining the optimal 

combination of hyper-parameters. 

F. Probabilistic Forecasting Error Analysis 

The performance of the proposed approach is evaluated by a 

metric, named as Power interval normalized average width 

(PINAW). 

1

1
( )

tN

i i

it

PINAW U L
N R =

= −                             (8) 

Where, Nt denotes the sample size, R denotes the range of 

target value variation, Ui denotes the interval's upper limit and 

Li denotes the lower limit of the interval. The proposed model 

is compared with the other common models mentioned in 

terms of PINAW. The comparison results are shown in Fig. 8. 

(a) Spring 

(b) Summer 

(c) Autumn 

(d) Winter 
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Fig. 7.  Comparison of probabilistic forecasting results based on 

different algorithms. 

 

The BO-LSTM-TC is the model proposed in this paper.  From 

Fig. 8 and Table III, the standard deviation of the proposed BO-

LSTM-TC model is significantly smaller than that of other 

models. The BO-LSTM-TC shows the model's superiority by its 

high probabilistic forecasting accuracy. Table І expresses the 
forecasting errors of the proposed model and two benchmark 

models with confidence conditions of 80%, 90% and 95%. 

Based on the correlation analysis which is shown in Fig.7, the 

model performances of Rmsprop-LSTM and Adam-LSTM are 

much more related with actual measurement power output. 

Hence, they are selected as the benchmark models. According to 

all the three confidence intervals, the proposed model gains 

better performance with lower errors which are 0.08, 0.10, and 

0.13, respectively. 

 
Fig. 8. Performance Comparison of LSTM and multi-layer 

perceptron. 

 

TABLE ІІІ Forecasting Power deviation based on the proposed 

method and other selected benchmark methods of power forecasting 

method 

 
Forecasting 

Model 
Confidence Conditions 

80% 90% 95% 

Rmsprop-LSTM 0.16 0.19 0.23 

Adam-LSTM 0.15 0.18 0.24 

BO-LSTM-TC 0.08 0.10 0.13 

 

V. CONCLUSIONS 

Time correlation and time-frequency analysis of power data 

are crucial for improving the reliability of centralized 

photovoltaic power forecasting. In this paper, an improved 

BO-LSTM model incorporating time correlation (TC) weight 

analysis is proposed to achieve ultra-short-term probabilistic 

forecasting of centralized photovoltaic power. Firstly, the 

features of photovoltaic power are extracted and resolved 

according to power series frequency segments, thus obtaining 

the power components. Then, the constructed BO-LSTM 

model is improved according to each component to forecast 

each component power, respectively. Furthermore, the BO-

LSTM-TC model is developed to correct the deterministic 

forecasting results. Finally, based on the results from the 

integrated forecasting model framework mentioned above, 

probabilistic photovoltaic power forecasting is performed. The 

specific conclusions are as follows. 

(1) A novel BO-LSTM model with time and frequency 

mapping is proposed. Parameters for modeling are optimized 

through analyzing different power segment characteristics, 

thereby enhancing the accuracy of deterministic photovoltaic 

power forecasting. Case study illustrates an average accuracy 

improvement throughout the year of 39.5%. 

(2) The hybrid model (BO-LSTM-TC) fully consider the 

effect of time-continuous characteristics on the forecasting 

model framework, thereby enhancing the forecasting 

reliability. Compared to benchmark models, the forecasting 

(a) BO-LSTM 

(b) Rmsprop-LSTM 

(c) Adam-LSTM 
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power deviation of the proposed probabilistic forecasting is 

reduced by 37%. 
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