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ABSTRACT In bridge maintenance, assessing structural performance requires adherence to rules outlined
in safety and regulatory standards which can be effectively and formally represented in both human and
machine-readable formats using ontologies. However, ontology-based semantic inference alone falls short
when faced with the complicated mathematical operations required for structural analysis. The increasing
digitization of bridge engineering has opened doors to data-driven prediction methods. Machine learning
(ML)-basedmodels, in particular, have the capacity to learn from historical data and forecast future structural
performance with remarkable accuracy. This paper introduces an innovative approach that integrates ML
models with an ontological knowledge base for evaluating bridge corrosion. Web Ontology Language and
Semantic Web Rule Language are combined to develop the knowledge base. Random forest algorithm is
used to train the ML model with a good agreement (coefficient of determination of 0.989 and root mean
square error of 1.200). A Python-based module is designed to seamlessly integrate ML predictions with
ontology-based semantic inference. The proposed approach not only infers the corrosion ratings based on
the rules defined in the Network Rail standard, but also infers the structural safety performance based on
predicted structural response under the action of corrosion. To demonstrate the effectiveness of the developed
method in enabling accurate and rational evaluations, a real bridge in the UK is showcased as a practical
application.

INDEX TERMS Knowledge engineering, knowledge base, machine learning, ontology, corrosion evalua-
tion, bridge maintenance, data-driven, random forest.

I. INTRODUCTION
Bridges are a vital part of the architecture, engineering,
and construction (AEC) industry, and effective mainte-
nance is essential for ensuring good condition of their
structures [1], [2]. Bridgemaintenance tasks carry a profound
responsibility, and they must strictly adhere to a complex
web of safety and regulatory standards. Bridge maintenance
standards are typically represented in a manner recognized by
humans but then converted to a different format for storage
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in computers [3]. Although that format is computer-readable,
computers cannot understand the content of the documents,
which results in inefficiencies when the documents are used.
Therefore, using the Semantic Web (SW) to facilitate the
use of domain-specific knowledge has become the focus of
intensive investigation.

The SW is a group of languages or technologies,
such as Resource Description Framework (RDF) and
Web Ontology Language (OWL), that allow machines
to understand the meaning or semantics information on
the World Wide Web [4]. OWL extends the capabilities
of RDF by adding rich semantic expressions, and it is
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a semantic language for developing and sharing ontolo-
gies. The core ontologies are knowledge representations
of a domain that contain explicit description of con-
cepts, attributes or features of those concepts, and logi-
cal restrictions on them. The objective of an ontology is
to represent knowledge in a specific domain in a both
human and machine-readable format. Distinct from analytics
and algorithms, there are several advantages of ontology,
including: facilitating knowledge sharing and reuse, support-
ing interoperability, enabling automated inference, improv-
ing information retrieval, and enhancing consistency and
accuracy [5], [6].

Existing ontologies related to bridge maintenance tasks
can effectively integrate static information from industry
manuals and norms. For instance, Li et al. [7] presented
a bridge structure and health monitoring knowledge base
that enabled fine-grained modeling and domain-knowledge
discovery. Moreover, Ren et al. [6] grouped semantically
related bridge components and subsequently embedded rules
to evaluate conditions for bridge maintenance operations.
Similarly, Liu and EL-Gohary [8] used the SW and nat-
ural language processing (NLP) to solve problems related
to bridge deterioration and inspections. However, the inad-
equacy of ontology-based semantic inference alone in man-
aging the complex mathematical operations required for
structural analysis. Limited research exists on dynamically
linking semantic inference to information from data-driven
methods.

Embracing advanced information and communications
technologies has continually enhanced the intelligence
level of bridge maintenance. The increasing availability of
maintenance data from various sources enables numerous
data-driven prediction methods. Recent research studies [9],
[10], [11] have emphasized the importance of data-driven
bridge performance prediction in supporting bridge mainte-
nance decision-making. Machine learning (ML)-based mod-
els, in particular, have the capacity to learn from historical
data and forecast future structural performance with high
accuracy. For example, Jaafaru and Agbelie [12] introduced
a bridge maintenance planning framework (BMPF) that com-
bines random forest (RF) algorithm, multi-attribute utility
theory, and genetic algorithms to help engineers evaluate and
maintain bridges effectively. The study analyzed 95 bridges,
achieving an 84% accuracy in ML predictions. Liu et al. [13]
developed an artificial neural network (ANN)-based method
for rapid seismic fragility assessment of regular bridges
with root mean absolute error of 0.173 and coefficient of
determination of 0.997. The study indicated that the ML
method is an effective alternative for seismic assessment
of bridges with significantly reduced computation time.
Therefore, this paper introduces an approach that combines
ML techniques with an ontological knowledge base for the
evaluation of corrosion severity and extent in bridges. The
fusion of different technologies, such as this, can signifi-
cantly enhance assessment processes and optimize bridge
maintenance.

II. LITERATURE REVIEW
A. CORROSION EVALUATION STANDARDS
In the context of railway infrastructure, regular inspection
and assessment of bridges are essential to ensure their struc-
tural integrity and overall condition. Corrosion on railway
bridges represents a significant concern, posing a direct
threat to their safety and structural integrity. This corro-
sion primarily arises from the interaction between metal
components, typically steel, and environmental factors such
as moisture, oxygen, pollutants, and temperature fluctua-
tions, initiating oxidation and material degradation. It can
manifest in various forms, including surface corrosion, pit-
ting corrosion, uniform corrosion, galvanic corrosion, and
stress corrosion cracking, all of which can weaken the
metal components and reduce their load-bearing capacity.
If not addressed promptly, corrosion can lead to structural
failures.

To address this issue, railway authorities and mainte-
nance teams in the UK employ various strategies, with
bridge corrosion evaluation being a crucial aspect. This
process involves assessing the extent and severity of corro-
sion that may affect various structural elements of a bridge,
such as beams, columns, and support structures. Figure 1
illustrates the method outlined in the Network Rail stan-
dard (NR/L3/CIV/006/2C). The severity rating is determined
based on the depth of corrosion, while the extent rating is
calculated by considering the percentage of the element’s sur-
face area occupied by corrosion. Severity assessment helps in
understanding the level of structural degradation and poten-
tial safety risks, while extent measurement is essential for
determining the overall impact on the bridge’s structural
integrity. For instance, if a corrosion depth is 0.9mm and
the corrosion occupies 20% of the element’s surface, it will
be categorized as severity B and extent 5 according to this
standard.

It is worth noting that severity ratings of A, F and G
can directly determine the structural condition. Severity A
indicates the absence of visible corrosion defects. Severity F
indicates the presence of severe corrosion defects that have
impacted normal functions. Severity G necessitates immedi-
ate notification to Network Rail. For others, they can provide
a rough quantitative representation of defect ratings, but they
cannot accurately determine whether defects have a substan-
tial impact on structural safety performance. Maintenance
decisions often rely heavily on the subjective judgment of
engineers.

Finite element models enable a detailed analysis of struc-
tural behavior under various conditions [14]. Using the
depth and area of corrosion as inputs, a structural anal-
ysis is conducted through the finite element method to
assess the potential consequences and likelihood of fail-
ure or damage. Data from the finite element analysis is
then used to develop a real-time ML surrogate model for
accurately predicting the structure’s response. This analy-
sis informs decision-making regarding maintenance, repair,
or replacement.
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FIGURE 1. Severity and extent ratings for metallic elements of bridges.

The loading methods to be employed in the analysis pro-
cess alignwith theNetwork Rail standard (NR/GN/CIV/025).
The rail traffic live load is determined based on its route
availability (RA) number. RA numbers generally range from
the lowest capacity RA0 to the highest at RA15 represented
by 25 British Standard Units (BSUs) of Type RA1 load-
ing. The static loading for 20 units of Type RA1 loading
is depicted in Figure 2. In the case of simply supported
spans, type RA1 loading can be expressed as an equivalent
uniformly distributed load (EUDL).

FIGURE 2. 20 units of type RA1 loading.

To account for dynamic effects, a factor of (ϕ1 + ϕ11)
is applied to EUDL loading to allow for impact, oscillation
and other dynamic effects, including those caused by track
and wheel irregularities, given that the track is designed for
speeds less than 100 mph. For the end shear, a factor of 2/3
(ϕ1 + ϕ11) is applied. ϕ1 and ϕ11 can be calculated refer
to (1) – (3).

ϕ1 =
k

1 − k + k4
(1)

where

k =
v

4.47Lφn0
(2)

where v is the permissible speed on the bridge. Lφ is
the determinant length of centre to centre of supports in
metres. n0 is the fundamental natural frequency of the
structure.

And for ϕ1

ϕ11 = α

[
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−
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)2
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)
e
−

( Lφ
10

)2]
(3)

where L is the span of the member, centre to centre of
supports in metres. α = 0.0002v.

B. ONTOLOGIES IN THE BRIDGE DOMAIN
Ontology is a new semantic technology being widely adopted
in various domains, including knowledge engineering, nat-
ural language processing, collaborative information sys-
tems, intelligent information integration, internet intelligent
information acquisition, and knowledge management [15],
[16], [17]. Studies related to bridge ontology models
can be categorized into two distinct groups: 1) ontology-
based knowledge management and information retrieval; and
2) logical inference for holistic decision-making.

The first group focuses on developing domain-specific
ontologies to manage and organize knowledge, making it
easier to retrieve relevant information, and share domain-
specific knowledge. For example, Wu et al. [5] developed
an ontological knowledge base called CBRPMO for con-
crete bridge rehabilitation project management, aiming to
enhance information integration and constraint management.
Liu et al. [8], [18] introduced an ontology named Brid-
geOnto to represent information related to bridge inspections.
Li et al. [7] proposed the BSHM (Bridge Structural Health
Monitoring) ontology for bridge health monitoring systems,
with the aim of supporting the integration of heteroge-
neous sensor data and the discovery of domain knowledge.
Zhang and El-Diraby [19] created the AR-Onto, focusing
on the AEC industry, including bridges, to tackle challenges
related to information exchange and knowledge sharing.
Compton et al. [20] presented an OWL2 ontology named
SSN, designed to describe sensors and observations con-
cerning capabilities, measurement processes, observations,
and deployments. Banujan and Vasanthapriyan [21] created a
bridge maintenance ontology aimed at facilitating the sharing
of bridge maintenance knowledge. Ontologies play a central
role in structuring data and facilitating efficient knowledge
management and retrieval in these studies.

Studies in the second group focus on employing
ontology-based knowledge representation and semantics-
to-reasoning techniques to improve efficiency, automation,
and comprehensiveness in decision-making processes for
engineers. For example, an expert system was developed
by Becker and Gebbeken [22] to aid engineers in assessing
the condition and planning maintenance for aging bridges,
utilizing an ontology-based knowledge representation to store
expert knowledge and inference algorithms, with a practical
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demonstration involving a reinforced concrete bridge assess-
ment. Ren et al. [6] presented a holistic approach utilizing
ontology-based knowledge representation to improve bridge
maintenance efficiency during the operation stage, providing
automatic rule checking and enhancing knowledge manage-
ment, communication, and decision-making for engineers.
This approach was validated through semantic validation,
syntactical validation, and case study validation, underscor-
ing its capability to integrate diverse domain knowledge
and enable more comprehensive decision-making in bridge
management. Zhang et al. [23] introduced a holistic design
approach for energy pile bridge deicing systems, addressing
the limitations of traditional single-domain and objective-
oriented methods by incorporating factors like life-cycle cost,
investment payback cycle, and carbon emissions. They pre-
sented ‘‘OntoBDDS’’, a tool based on ontology and Semantic
Web Rule Language (SWRL) rules, which automates the
provision of financial, safety, and heat flux information to
aid designers in evaluating and optimizing deicing system
designs during the early bridge design stage. Chai and
Wang [24] developed an evaluation and decision-making
framework for concrete surface quality that combines com-
puter vision and ontology. By utilizing ontology and a
defect identification quantification model, they used ontol-
ogy reasoning technology to intelligently evaluate and make
decisions regarding concrete surface quality, bridging the
gap between low-level semantics acquired by computer
vision and high-level semantics understood by humans from
images.

Both groups search for information by using the SPARQL
Protocol and RDF Query Language (SPARQL) designed and
endorsed by the World Wide Web Consortium (W3C), which
is an international community that develops open standards
to ensure the long-term growth of the web. SWRL and
Semantic Query-Enhanced Web Rule Language (SQWRL)
were created as supplements to OWL to represent the rea-
soning rules in some research. SQWRL further embeds
SPARQL queries in rules, thereby achieving reasoning and
querying simultaneously. However, research on the imple-
mentation of semantic reasoning processes dynamically
linking to information is inadequate, such that informa-
tion from third-party applications cannot be invoked during
inference.

III. DEVELOPMENT BRIDGE CORROSION EVALUATION
ONTOLOGY (BCEO)
The research framework of ontology development includes
ontology specification, knowledge acquisition, conceptual-
ization, implementation, and evaluation [25]. The method-
ology used is a combination of two approaches: the
‘‘methontology’’ approach [26] and the ‘‘Uschold and
Gruninger’’ ontology building approach [27]. The ‘‘Uschold
and Gruninger’’ approach provides a thorough explanation
of how to define the purpose and scope, formalize, evaluate,
and document ontologies. The methontology approach is
more detailed and focused on how to acquire, conceptualize,

and implement knowledge. Together, these two approaches
create a comprehensive methodology for building ontolo-
gies. Figure 3 outlines the different activities, keys and tasks
involved in the process.

As illustrated in Figure 3, it is priority to initially define
the ontology’s scope and purpose. As emphasized by Uschold
and Gruninger [27], the development of ontologies is often
motivated by practical use cases. In this research, the motivat-
ing scenario revolves around the River Neath Swing Bridge,
a railway bridge presently undergoing extensive maintenance
due to severe corrosion affecting its structural elements.
A survey has revealed that the majority of metallic railway
bridges in the UK – approximately 10,000 in total – were
constructed a century ago, facing similar challenges to the
case bridge [28]. So, the application domain of the BCEO is
bridge corrosion evaluation. The BCEO is designed to con-
nect ML-based forecast results to provide accurate judgments
of bridge safety.

Subsequently, knowledge capture and taxonomy of rele-
vant terms were conducted. To avoid ambiguity and facilitate
the later expansion of the BCEO, an analysis was con-
ducted on standards NR/L3/CIV/006 and NR/GN/CIV/025
mentioned in the literature review. This analysis involved
collecting unified terminology, encompassing the major and
minor elements, and quantitative condition ratings to ele-
ments. Following this phase, the BCEO was formally coded
using OWL in a semantic, computational logic-based format
through Protégé. The coded BCEO then underwent logi-
cal validation and was subsequently implemented in a case
study.

A UML (Unified Modelling Language) diagram in
Figure 4 depicts the highest-level terms within the BCEO,
comprising 14 core classes, 19 object properties, and 23 key
data properties. Classes serve to systematically organize
and categorize knowledge and can be further divided into
subclasses, enabling a hierarchical knowledge structure.
For instance, following the ‘‘whole to part’’ principle, the
‘‘Element’’ class is subdivided into ‘‘major element’’ and
‘‘minor element’’ classes. Properties, on the other hand,
refer to attributes or relationships that define how classes
or individuals are interconnected or characterized. They are
a fundamental building block for creating well-structured
and expressive ontologies that can support various applica-
tions, including data integration, reasoning, and knowledge
discovery. For example, the object properties ‘‘buildBy’’
and ‘‘managedBy’’ connect individuals belonging to the
class ‘‘Bridge’’ to individuals belonging to the class ‘‘Orga-
nization’’, resulting in the corresponding RDF triples:
‘‘Bridge, buildBy, Organization’’ and ‘‘Bridge, managedBy,
Organization’’. Depending on the specific requirements of
this research, properties with characteristic setting, quanti-
fier restrictions, cardinality restriction, domain and range
restriction are created to describe characteristics of vari-
ous individuals in both a quantitative and qualitative way.
For example:

• characteristic settings: cooperateWith is Symmetric
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FIGURE 3. Research framework for ontology development.

• existential restrictions: hasElement some Element
• universal restrictions: hasElement only (Element orMis-
cellaneousItem)

• qualified cardinality restrictions: spanNumder exactly
1 xsd:int

• domain restrictions: purpose domain Standard
• range restrictions: address range xsd:string

The information described above is formally represented
using the OWL formal language, and a URL (Uniform
Resource Locator) in the form of https://w3id.org/BCEO
has been incorporated. With this setup, the BCEO can
employ built-in reasoners like Pallet to initiate logical
inference and validation. In Figure 5, an example of seman-
tic inference is illustrated. Initially, various individuals
and their relationships are established (shown in blue).
For instance, there is an individual named ‘‘RiverNeath-
SwingBridge’’ associated with a major element called
‘‘Deck1’’. Additionally, a main girder named ‘‘Longitudi-
nalMainGirder(exposed)1’’ is assigned to ‘‘Deck1’’. Further
properties such as ‘‘spanNumber’’, ‘‘hasStakeholders’’ and
‘‘cooperateWith’’ are also added. In line with the seman-
tics defined earlier, when the reasoner is synchronized,
implicit knowledge becomes explicitly inferred. For instance,
utilizing the transitive characteristic of the ‘‘hasElement’’
property, the BCEO can infer that ‘‘RiverNeathSwing-
Bridge’’ possesses an element known as ‘‘LongitudinalMain-
Girder(exposed)1’’. And any inconsistencies are promptly
identified and highlighted in red, while consistent results are
marked in yellow. Consistent information can be continu-
ously added to the BCEO, further enhancing its depth and
breadth.

In addition to making implicit information explicit,
advanced deductive reasoning capabilities are essential for
assessing corrosion severity and extent. SWRL provides a
mechanism for expressing complex relationships and logical
constraints that enhance ontology capabilities within the SW.
It also involves mathematical operations and constraints,
enabling more comprehensive and expressive knowledge rep-
resentation based on mathematical relationships. As listed

in Table 1, 12 SWRL rules were created to express the
corrosion evaluation method defined in standards as illus-
trated in Figure 1.

An SWRL rule is composed of two primary parts: the
antecedent (body), which is located on the left side, and
the consequent (head), located on the right side. These two
parts are connected by the symbol ‘‘→’’. SWRL offers
several types of atoms, including class atoms, individual
property atoms, data valued property atoms, and built-in
atoms. By connecting atoms with ‘‘∧’’’ and utilizing vari-
ables denoted by ‘‘?’’, the satisfaction of atoms in the
antecedent leads to the truth of atoms in the consequent.
Table 2 provides a list of several atoms used in this research.
These atoms in SWRL rules can take forms such as C(x),
P(x,y), sameAs(x,y), or differentFrom(x,y), where C is an
OWL description, P is an OWL property, and x and y are
either variables, OWL individuals or data values. Indeed,
the ontology becomes undecidable when extended in this
manner, as rules can be employed to emulate role value
maps.

IV. DEVELOPMENT OF ML MODEL
The River Neath Swing Bridge, designated as a Grade II
listed six-deck underbridge, carries two lines of the SDI1
railway over the River Neath. Among its six decks, five
are simply supported, while the former swing span deck
(mechanism no longer operational) was initially designed
to pivot open on the central support. The swing span
comprises a riveted steel bowstring through truss, cross gird-
ers, and a steel deck, with overhead lateral restraints at
midspan. The substructure consists of wrought iron cylin-
drical braced piers with concrete infill, masonry abutments,
and wingwalls. Each of the five simply supported spans
comprises two longitudinal steel plate girders, cross girders,
rail bearers, and a steel deck, supported on pairs of braced
cylindrical piers or masonry abutments. The bridge spans
vary in length, with 16.81 m (Span 1), 17.38 m (Span 2),
17.01 m (Span 3), 49.91 m (Span 4), 16.90 m (Span 5),
and 13.08 m (Span 6).
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FIGURE 4. The high-level overview of the BCEO.

FIGURE 5. An example of semantic inference.

As depicted in Figure 6, the finite element model and the
corresponding ML surrogate model are developed based on
one of the longitudinal steel plate girders, a critical structural
component of Span 2. The finite element model is built using
a combination of 2D triangles and rectangular shell element
(S3R and S4R) with five integration points with average edge
size of 150 mm. Structural loading adheres to the guidelines
specified in standard NR/GN/CIV/025. The RA number of
the River Neath Swing Bridge is the specified rating of
RA8 (at 20 mph) and heavy axle rating RA10 (at 20 mph).

For RA10, the static loading for EUDL and end shear
amounts to 162.0 kN and 94.7 kN for each track, respec-
tively. The fundamental natural frequency of the structure
is measured at 16.8 Hz using a vibration camera. In accor-
dance with equations 1-3, the values of k , ϕ1, and ϕ11 are
0.01532, 0.01556, and 0.03677, respectively. Thus, the total
load applied to the tested member is calculated as 170.5 kN
for EUDL and 98.0 kN for end shear.

Two parameters are designated as variables for the struc-
ture analysis: the corrosion depth and area. These selections
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TABLE 1. SWRL rules for corrosion severity and extent evaluation.

align with the standard NR/L3/CIV/006 for consistency.
Specifically, the depth range for severity rating spans from
0 mm to 10 mm, encompassing ratings from B to E.
Additionally, the extent rating, which is based on the per-
centage of surface occupied by corrosion, spans from 0%
to 100%, covering ratings from 3 to 6. Given that the stan-
dard NR/L3/CIV/006 does not specify corrosion locations,

TABLE 2. Examples of atoms used in this research.

all corrosions are concentrated in the center of the bridge
component, as this is presumed to induce the most significant
deformation and stress. The output of the model includes
the maximum deflection and the maximum Von Mises stress
in the girder considering structural deflection criterion and
strength criterion, respectively. In this research, 1120 sets of
simulation data are generated and utilized for training a ML
surrogate model.

The ML model is trained using the RF method which
is widely appreciated for its high accuracy, robustness, and
ease of use in bridge engineering [29]. The RF model
operates through an ensemble learning strategy, wherein it
constructs multiple decision trees (DT) and combines their
predictions to enhance accuracy [30]. Each DT utilizes a tree-
like structure, with internal nodes representing attributes and
branches indicating potential attribute values [31]. Decision
rules are derived from these attributes to make predictions.
The core steps in executing the RF model are illustrated
in Figure. 7.
The process is as follows:
1) Assume that the original data set consists of N sets of

data with M-dimensional features in each. Using the
bootstrap samplingmethod, K different sample datasets
are randomly selected from the original dataset as the
sub-training set for each decision tree.

2) From the sampled subsets, m (where 0 < m < M)
features are chosen randomly to form the split feature
set for each decision tree node. The optimal features
within this subset are identified based on minimizing
the Gini index, ensuring precise node splitting and
branching.

3) Decision trees grow recursively from the root to leaf
nodes until reaching a minimum leaf node size, with
this process replicated across all trees in the RF
ensemble.

4) Test data are input into the RF model, which generates
separate predictions using K decision trees. The final
prediction result is computed as the average of these
individual tree predictions.

For the development of the model, the python scikit-learn
package which offers a variety of ML functions is employed.
90% of the data randomly selected from 1120 sets of
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FIGURE 6. The structural analysis model for span 2 of the River Neath Swing Bridge in ABAQUS.

FIGURE 7. Core steps of the RF model execution.

simulation data is used as the training set of the RF, and
the remaining 10% is used as the test set of the model. Key
hyperparameters for training are determined based on trial-
and-error procedure. When the number of trees in the forest
is set to 50 and the maximum tree depth is configured as 14,
the model yields satisfactory results.

The model is assessed using two evaluation metrics: R2

(coefficient of determination) and RMSE (root mean square
error). R2 is a statistical measure used to assess the goodness
of fit of a regression model. It quantifies the proportion of
the variance in the dependent variable that can be explained
by the independent variables in the model. The R2 value
typically ranges from 0 to 1, where R2

= 0 means that the
model fails to explain any variance in the dependent variable,
while R2

= 1 indicates a perfect fit, with the model account-
ing for all the variances. For R2 values between 0 and 1,
the model explains some, but not all, of the variance in the
data, and higher R2 values denote a superior fit. On the

other hand, RMSE is a metric utilized to measure the aver-
age magnitude of errors between predicted values and the
actual or observed values in a dataset. RMSE yields a single
numerical value, shedding light on how closely the model’s
predictions align with the observed data. Smaller RMSE
values indicate that the model’s predictions closely match
the observed values, implying a stronger fit of the model
to the data. Conversely, larger RMSE values indicate that
the model’s predictions exhibit more significant errors and
are less accurate. The detailed results of this evaluation are
visually presented in Figure 8.

FIGURE 8. Results of R2 and RMSE for RF.

RF achieves an R2 of 98.9%, signifying a close corre-
spondence between its predictions and the solutions obtained
from finite element analysis. Additionally, it exhibits a low
RMSE of 1.200, indicating its exceptional precision. This
suggests that RF can offer highly accurate predictions, even
when dealing with data that displays significant variability.
Consequently, the model proves to be a reliable choice for
making predictions in this scenario.
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FIGURE 9. Running mechanism of the python-based module.

FIGURE 10. Reasoning results of corrosion evolution.

V. INTEGRATION ML MODEL WITH LOGICAL INFERENCE
A Python-based module is designed to seamlessly integrate
ML predictions with ontology-based semantic inference,
thereby facilitating the automatic evaluation of corrosion
severity and extent. This module encompasses the trainedML
model, which has the capability to provide real-time predic-
tions of structural responses under the influence of actual cor-
rosion. Furthermore, this module adopts an ontology-oriented
programming approach, enabling the loading of OWLontolo-
gies as Python objects. It also allows for modifications to
these ontologies and supports automatic reasoning based on
the ML prediction results.

Figure 9 provides a visual representation of the mod-
ule’s operational mechanism. Initially, it takes structural
attribute data and corrosion data as input, and these data
are then mapped to the relevant classes and attributes within
the BCEO. This mapping process entails identifying the

ontology classes and attributes that correspond to the input
data and establishing associations with RDF triples. For
example, the code ‘‘instance1 = onto.Element(name)’’ is
used to associate a specific name with a class within an
ontology. In this code:

• ‘‘onto’’ refers to an object representing a predefined
BCEO.

• ‘‘Element’’ refers to a class defined within the BCEO.
• ‘‘name’’ refers to a variable employed to indicate the
name for the instance that is being generated.

This code generates an instance ‘‘LongitudinalMain-
Girder(exposed)1’’ of that class ‘‘Element’’ and assigns it to
the variable ‘‘instance1’’.

Additionally, the corrosion data serves as input for the
ML model, enabling predictions of structural responses in
the occurrence of corrosion, which encompasses estimating
the maximum deflection and the maximum Von Mises stress.
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Following these predictions, the resulting ML outcomes are
mapped into the BCEO using the same method mentioned
earlier, as demonstrated by the following code:

• instance1.maxDeflection.append(m_Deflection)
• instance1.maxVonMisesStress.append(m_Stress)

After the mapping process, additional SWRL rules are estab-
lished to determine that the structural response levels adhere
to acceptable limits based on relevant standards. As listed
in Table 3, these rules assess two critical aspects: deflection
and strength. Regarding deflection, the rule specifies that the
maximum deflection should be less than 1/400 of the span.
This criterion is based on information defined in the standard
GB 50017-2017. Regarding strength, the rule specifies that
the maximum Von Mises stress should be less than or equal
to the yield strength of the structural material.

TABLE 3. SWRL rules for reasoning the safety condition of the structure.

Finally, deductive reasoning is performed based on all
SWRL rules by running the inference engine. Pellet is used
as the reasoner for this research. Given the structural attribute
data and corrosion data as input (Figure 9), corrosion severity
and extent ratings, and the safety condition, are inferred
automatically and shown in Fig. 10. The corrosion severity
rating for ‘‘LongitudinalMainGirder(exposed)1’’ is C, and
the extent rating is 4.0. When assessing the impact of this
corrosion, it is displayed that its maximum deflection aligns
with the deflection criterion, and its maximum Von Mises
Stress satisfies the strength criterion.

Overall, this integrated approach leverages Python libraries
such as Owlready2 and Scikit-Learn to enhance the mod-
ule’s functionality and capabilities. Each of these libraries
plays a distinct role in the overall process, with Owlready2
facilitating ontology operations, Scikit-Learn supporting ML
tasks. This integration, on one hand, significantly enriches
the existing static knowledge base by dynamically linking to
real-time ML information, with a primary focus on ensur-
ing bridge structural safety as the paramount consideration,
thereby enabling more precise and accurate decision-making.
On the other hand, ontology technology lends its support to
data-driven predictions by furnishing domain-specific knowl-
edge, ultimately facilitating the prediction of outcomes that
meet stringent safety and regulatory requirements.

VI. CONCLUSION
This study has presented an innovative approach that
effectively combines ML techniques with ontology-based
knowledge representation to enhance assessing structural
performance in the field of bridge maintenance, with a
specific focus on corrosion severity and extent evaluation.
The first contribution of this paper is the development of
a bridge corrosion evaluation ontology (BCEO), providing
a systematic knowledge base for managing various fac-
tors and attributes related to bridge corrosion defects. The
second contribution facilitates improving the accuracy and
precision of decision-making related to bridge structural
safety, by dynamically linking real-timeML information with
a static knowledge base. The use of ontology technology
has provided domain-specific knowledge that supports data-
driven predictions, ensuring compliance with stringent safety
and regulatory requirements.

The practical application on a real bridge in the UK show-
cased the practicality and effectiveness of the developed
method. The results indicate that this approach has the capac-
ity to offer more precise and rational decision support in
bridge maintenance. However, like any research, this study
had some limitations. For instance, while ontologies offer
powerful knowledge representation, their development and
maintenance can be complex and resource intensive. Stream-
lining ontology creation processes and exploring automated
techniques couldmitigate this challenge.Moreover,MLmod-
els, though accurate (R2 of 0.989 and RMSE of 1.200), might
face challenges when applied to different bridge structures
or under varying environmental conditions. It is essential to
assess model generalization across diverse scenarios.

Moving forward, this research opens avenues for fur-
ther exploration and implementation of ML and ontological
techniques in the broader field of civil engineering and
infrastructure management. The fusion of data-driven predic-
tive models with semantic knowledge representation holds
great promise for addressing complex structural challenges
and optimizing decision-making processes across various
domains. As technology continues to advance, we anticipate
that these methods will play an increasingly integral role in
ensuring the longevity and safety of critical infrastructure.
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