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Abstract

Accurate forecasts of ambulance demand are crucial inputs when planning and deploying staff and fleet. Such demand forecasts are
required at national, regional, and sub-regional levels and must take account of the nature of incidents and their priorities. These
forecasts are often generated independently by different teams within the organization. As a result, forecasts at different levels may
be inconsistent, resulting in conflicting decisions and a lack of coherent coordination in the service. To address this issue, we exploit
the hierarchical and grouped structure of the demand time series and apply forecast reconciliation methods to generate both point
and probabilistic forecasts that are coherent and use all the available data at all levels of disaggregation. The methods are applied to
daily incident data from an ambulance service in Great Britain, from October 2015 to July 2019, disaggregated by nature of incident,
priority, managing health board, and control area. We use an ensemble of forecasting models and show that the resulting forecasts

are better than any individual forecasting model. We validate the forecasting approach using time series cross-validation.
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Introduction

A failure to match available resources to demand in Emergency
Medical Services (EMS) results in patient flow problems, with
serious consequences for patients, staff, and the entire care
system (Ekstrom et al. 2015; Rostami-Tabar and Ziel 2022).
Demand forecasting in EMS helps service planners to avoid the
mismatch, potentially providing massive savings in costs and
lives, and leading to better patient outcomes. Accurate daily
demand forecasting enables planners and decision-makers to
manage resources to meet anticipated patients, reconfigure
units, and redeploy staff and vehicles as necessary.

Demand forecasts at EMS are typically required at multiple
levels of an organization to inform various planning and
decision-making processes (Hulshof et al. 2012). There are
some planning processes at the national level (strategic and
long-term) such as workforce resource planning and budgeting;
sub-national, regional, or healthcare level (tactical and medium-
term) such as temporary capacity expansions, resource sharing;
and hospital or station level (operational and short-term) such as
planning rosters for staff and ambulance deployment. Demand
forecasts might also be required at different levels for a specific
area of interest, such as the nature of demand or the priority
level. Moreover, the time series data in EMS has an inherent
hierarchical and grouped structure to support such forecasting
requirements. Demand for emergency medical services at the
national level can be disaggregated in a geographical hierarchy
into sub-national, regions, health boards, and stations/hospitals,

or divided into groups such as the nature of incidents or demand
priority. Forecasts produced at both higher and lower levels of
hierarchies are necessary for effective decision-making in EMS.
For example, control area EMS forecasts can inform strategic
decisions about how to allocate limited resources to lower
levels, such as health boards and stations/hospitals. At the lower
levels, hospitals or ambulance stations could use such forecasts
to plan for staffing and resource allocation, ambulance dis-
patching, staff-to-shift assignment, and staff rescheduling based
on the anticipated volume, and priority and nature of incidents.
Additionally, generating forecasts at lower levels could po-
tentially improve the accuracy of the high-level forecasts by
providing more detailed information on the nature and priority
of incidents. This could help to identify patterns in demand that
may not be apparent at the higher level. Therefore, employing
forecasting techniques that consider the hierarchical and/or
grouped patterns of time series in EMS aligns naturally,
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offering the possibility to enhance forecast accuracy and fa-
cilitate coordination.

To illustrate the problem, let’s consider a very simple ex-
ample where we have an EMS provider with a national level of
governance and two regions (A and B), each with a health board
and a station. There is a total national budget to be split between
the regions in proportion to the forecast number of incidents in
each region. The two regions have very different incident
patterns, and so they must be forecast using different models.
However, the data are noisy at the regional level, so the national
forecasts are best obtained by summing the demand from the
two regions. The resulting national forecasts are not equal to the
sum of the regional forecasts, and so they are not coherent. In
fact, the national forecasts show a decreasing trend in demand,
and so the national governing body decides to cut the budget for
the next year. But neither of the regional forecasts shows a trend,
and so the regions argue that the budget cut is unfair. In addition,
Region A has much more variable demand than Region B, and
so to cope with periods of peak demand, Region A needs to hold
more resources in reserve. Therefore, the budget distribution
needs to be made in a way that ensures the probability of each
region being unable to meet demand is equal. Our solution to
this problem is to use a hierarchical forecasting approach that
ensures the forecasts are probabilistically coherent. Then, any
trends or other forecast characteristics at the national level will
also be reflected in the regional forecasts, and the probabilistic
forecasts allow for the different levels of uncertainty in the two
regions. Budgets can be allocated by controlling the probability
of demand exceeding available resources, rather than being
simply in proportion to the expected demand.

Despite a large number of studies dedicated to forecasting for
EMS (Gul and Celik 2020; Ibrahim et al. 2016; Shi, Rostami-
Tabar, and Gartner 2022; Wargon et al. 2009), the hierarchical
data structure has been largely ignored, and the main focus has
been on producing independent (base) forecasts at a single level.
Generating independent forecasts can result in a lack of con-
sistency and coordination, which leads to less effective planning
and decision-making.

With hierarchical forecasting, plans at any level are based on
coherent forecasts and, therefore, can be aligned. Implementing
and sustaining improvements in EMS require alignments and
coordination between different stakeholders, without which
teams operate in isolation, leading to conflicts, duplication
work, rework, or work that runs counter to the overall goal to
improve the quality of delivery service. A hierarchical fore-
casting framework can be used as a tool to improve coordination
between teams across care services at the national, sub-national,
regional, and local levels. The hierarchical forecasting ap-
proaches not only create consistent forecasts but are usually also
more accurate than the independent (base) forecasts (Hyndman
et al. 2011). To our knowledge, there has been no previous
research involving hierarchical and grouped forecasting in the
entire field of forecasting for healthcare management.

In this paper, we address this gap by investigating the ap-
plication of hierarchical forecasting approaches in the EMS
using a daily time series of attended incidents from 2015 to

2019 in a major ambulance service in Great Britain. The data
has hierarchical and grouped structures, with hierarchies at the
national, control (i.e., sub-national), and health board
(i.e., regional) levels, as well as groups by priority and nature of
incidents. We produce consistent point forecasts and forecast
distributions for all levels over an 84 day horizon, which is
critical for effective planning and associated risk management.
We compare the point and probabilistic forecast accuracy of the
independent forecasts, bottom-up, and optimal reconciliation
approaches. We first generate independent/base forecasts using
Exponential Smoothing State Space (ETS), Poisson regression
using Generalized Linear Model (GLM), and tscount (TSGLM),
a simple empirical distribution and an ensemble method, fol-
lowed by applying bottom-up and optimal reconciliation ap-
proaches. Forecast performance is assessed by the Mean
Absolute Scaled Error (MASE) and Mean Squared Scaled Error
(MSSE) for point forecasts and Continuous Ranked Probability
Scores (CRPS) for probabilistic forecasts. This paper complies
with reproducibility principles (Boylan et al. 2015; Stodden and
Miguez 2013). We provide the R codes for the proposed models
and benchmarks. Therefore, they can be applied to any
healthcare service (e.g., emergency department, primary or
social care), subject to the time series having a hierarchical and/
or grouped structure. While our research focuses on emergency
medical services, it is important to emphasize the suggested
framework’s adaptability, which expands its relevance to a
variety of service sectors such as supply chains, tourism, fi-
nance, and call centers. Our approach can be generalized in
cases with hierarchically structured and/or grouped time series
data, which is common in many service sectors.

The remainder of this article is structured as follows: In the
Research Background section, we provide a brief review of the
literature and discuss its limitation to position our work; in the
Experiment Setup section, we present the experimental design
describing the data set, forecasting methods and forecast
evaluation metrics. In the Results and Discussion section, we
discuss the hierarchical time series forecasting approaches to
generate both point and probabilistic forecasts. In the Con-
clusion section, we present and discuss our results; in Section 6,
we summarize our findings and present ideas for future research.

Research Background

Emergency medical services (EMS) are a critical component
in the delivery of urgent medical care to communities. Ef-
fective service delivery requires accurate resource planning
that generally relies on demand forecasts at operational,
tactical, and strategic levels. There are a substantial number
of studies on the application of time series forecasting in
Emergency Medical Services. For example, Ibrahim et al.
(2016) provide an extensive review of the models used in
forecasting call volume arrivals. Another important area is
related to forecasting ambulance demand. Although the
definition of demand might not always be clearly stated, this
typically refers to a situation where a physical resource has
been deployed to respond to an incident. This might be also
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called attended incidents. Another demand-related variable is
verified incidents; these are all incidents that require action:
either by sending a physical vehicle, responding via the
Clinical Support Desk, requesting an external provider to
respond to it, or forwarding it to other channels such as
police, firefighters, or general practitioners. Our study is
aligned with this stream of literature. Another similar area
that has received considerable attention is Emergency De-
partment forecasting (Rostami-Tabar, Browell, and Sve-
tunkov 2023); we refer interested readers to Shi, Rostami-
Tabar, and Gartner (2022), Gul and Celik (2020), and Wargon
etal. (2009) for extensive reviews of the relevant literature. In
this section, we provide a brief review of studies on fore-
casting ambulance demand in EMS.

There are generally two main streams of research related to
forecasting ambulance demand in EMS: (i) the first stream
focuses on the application of time series methods and regression
approaches to forecasting aggregate ambulance demand (Sasaki
etal. 2010; Vile et al. 2012); and (ii) the second stream considers
forecasting EMS demand in finer temporal and geographical
granularities by employing temporal-spatial prediction methods
(Zhou 2016; Zhou and Matteson 2016). The focus of our study
is related to the first stream of research.

Sasaki et al. (2010) develop a multivariable regression model
to estimate future EMS demands. In addition to the historical
demand, the population census for different age groups and
counts of the number of companies employing more than five
people are included in the regression. The census variables
describe groups who are more likely to need an ambulance. A
stepwise ordinary least squares regression analysis is used for
estimating the parameter and generating forecasts. The only
performance measure reported in this study is R?, which is not
an effective measure of forecast accuracy (Armstrong 2001,
457). The research design of this study is not rigorous, and the
study is not reproducible. Vile et al. (2012) explore using a
Singular Spectrum Analysis (SSA) method to generate forecasts
of the EMS demand at the national level for 7-day, 14-day, 21-
day, and 28-day forecast horizons using data provided by an
ambulance service in Great Britain. The performance of this
approach is compared to Auto-Regressive Integrated Moving
Average (ARIMA) and Holt-Winters time series methods using
Root Mean Squared Error (RMSE). They concluded that point
forecasts generated by SSA are more accurate for longer-term
horizons, but that ARIMA and Holt-Winters performance is
superior for shorter-term horizons. Vile et al. (2016) further
develop a decision support system to integrate forecasts gen-
erated by SSA. However, the study does not compare and
contrast the performance of forecasting methods based on utility
measures such as cost, resource utilization and response time.
The tool contains options that allow generating forecasts at
various levels of granularity; however, it ignores the structure of
the hierarchical and grouped relationships, preventing aligned
decision-making and coordination. Al-Azzani, Davari, and
England (2021) utilizes data from the Welsh Ambulance Service
to explore the forecast accuracy of four forecasting approaches:
ARIMA, Holt Winters, Multiple Regression, and Singular

Spectrum Analysis (SSA) in predicting call volume demand.
The aim is to compare these approaches with the current method
across various planning horizons (7, 30, and 90 days) for both
total call volume and category-specific demand. Forecast ac-
curacy performance is evaluated using root mean square error
(RMSE) and mean absolute percentage error (MAPE). The
findings indicate that ARIMA performs the best in predicting
weekly and monthly demand. However, when it comes to long-
term demand, the SSA method proves to be the most effective.
Ibrahim et al. (2016) conducted a case study to assess the ef-
fectiveness of multiple forecasting methods: the multiplicative
univariate forecasting model (MU), univariate mixed-effects
model (ME), and two variations of bivariate mixed-effects
models (BME). Call center data were utilized to forecast for
periods of 1, 7, and 14 days ahead, using only a limited dataset
of 42 days. The performance of these forecasting methods was
evaluated using two metrics: RMSE for point forecasts and
coverage probability for the 95% prediction interval. The
findings indicate that the ME consistently produces the most
accurate point forecasts. On the other hand, BME models
demonstrate superior coverage probabilities when forecasting
for 1 day or 1 week ahead. For a 2-week leading period, MU
shows better coverage probability.

Hermansen and Mengshoel (2021) investigate forecasting
EMS demand at a high spatio-temporal resolution of 1 km?
spatial regions and 1-hr time intervals using total incidents in
Oslo, Norway, from 1 January 2015 to 11 February 2019. They
used multi-layer perceptron (MLP) and long short-term memory
(LSTM) models to forecast the EMS demand and compare the
results to simple aggregation methods and baselines. The point
forecast accuracy is evaluated using Mean Absolute Error
(MAE) and Mean Squared Error (MSE), and the forecast dis-
tribution is measured by Categorical Cross-Entropy. They found
that Neural Network models performed better in producing
point forecasts, while a distribution baseline method based on
the spatial distribution of the incidents across all time steps
provided more accurate forecast distributions. Zhou (2016)
proposed three methods based on Gaussian mixture models,
kernel density estimation, and kernel warping to predict hourly
data 4 weeks ahead for a 1 km? spatial region. Two years of
incidents from Toronto, Canada (years 2007 and 2008 with
391,296 events) and Melbourne, Australia, were used to build
the model and examine the performance on test data using mean
negative log-likelihood. They show that forecasts generated by
the proposed methods were significantly more accurate than the
current industry practice (a simple averaging formula).
Grekousis and Liu (2019) investigated the combination of
spatial analysis methods with data mining techniques based on
an improved Hungarian algorithm and a MLP neural network to
identify the most likely locations of future emergency events.
The proposed approach was tested using data from 2851 events
attended by the EMS in Athens, Greece, over 24 weeks. They
showed that 23% of real emergency events lie within 50 m of the
predicted ones, and nearly 70% of the real emergency events lie
no further than 150 m away, which is rather accurate given the
granularity of the problem at the city level.
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Table I. Summary of Some Studies on Forecasting in Emergency Medical Services.

Reference  Year Variable Horizon Method Metric Probabilistic Reconciliation Reproducibility
Current 2023 Ambulance 84 days Stationary, Exponential MASE, MSSE, YES YES YES
study demand Smoothing State Space CRPS
(ETS), Poisson regression
using Generalized Linear
Model (GLM) and tscount
(TSGLM), a simple empirical
distribution and an ensemble
method
Al-Azzani 2021 Call volume 7, 30, ARIMA, Holt Winters, Multiple RMSE, MAPE NO NO NO
et al 90 days Regression, and Singular
Spectrum Analysis
Haugsbo 2021 Ambulance | hour MLP, LSTM MAE, MSE, YES NO NO
et al. demand in Cross-
spatio- Entropy
temporal
Grekousis 2019 Locations of | hour MLP and Hungarian algorithm RMSE NO NO NO
et al. incidents
Ibrahim 2016 Call volume 1,7, multiplicative univariate RMSE, Partial NO NO
et al. 14 days forecasting, univariate prediction
mixed-effects, bivariate interval
mixed-effects model, and coverage
bivariate mixed-effects
Vile etal. 2012 Ambulance 7, 14, 21,  Singular Spectrum RMSE NO NO NO
demand 28 days Analysis, ARIMA, Holt-
Winters
Sasaki et al. 2010 Ambulance 5 years OLS regression R2 NO NO NO

demand

Table 1 provides a summary of some studies in the literature
on forecasting in Emergency Medical Services. We note a
number of limitations in the literature on EMS forecasting, that
encourage us to undertake this research. These limitations are
summarized as follows:

1. Current studies ignore the inherent hierarchical and/or
grouped structure of the time series data, and the rela-
tionship between series at different levels of hierarchy.
While the hierarchical forecasting methodology has been
developed and applied in various domains over the past
10 years (Panagiotelis et al. 2023), it has never been
explored in this area.

2. Current research is mainly concerned with generating
point forecasts at a single level of hierarchy. There is a
lack of studies considering the entire forecast distribution
of daily ambulance demand for the whole hierarchy to
better represent the uncertainty of future demand, pro-
viding a risk management tool for planners.

3. Reproducibility is still a major challenge in EMS fore-
casting, as it is unlikely that any reader can reproduce
prior studies without the help of the authors of those
papers.

4. Another limitation is related to the generated forecasts
not being in the sample space of non-negative counts.
Since actual ambulance counts cannot be negative or
non-integer, ambulance demand forecast distributions

should reflect the data. Of course, point forecasts rep-
resent means, so they should be non-negative but may be
non-integer. While this might not be an issue when
producing forecasts at a single level, producing non-
negative count forecasts in a hierarchical or grouped
structure is challenging and requires further investigation
in the future.

This paper concerns the problem of hierarchical forecasting
in EMS and generates and evaluates both point and probabilistic
forecasts across different levels of the hierarchy, hence ad-
dressing some important gaps identified in the literature.

Experiment Setup

Planners in the ambulance service work with a planning horizon
of 6 weeks. That is, planning is generally frozen for the next
42 days, so any forecasts will only affect plans for the time
period beyond the next 42 days. Consequently, the forecast
horizon in this study is 2 x 42 = 84 days ahead, with perfor-
mance evaluation assessed based on the last 42 days and not the
whole forecast period. The forecasts are produced for various
training and test sets using time series cross-validation
(Hyndman and Athanasopoulos 2021). In the following sec-
tion, we discuss the dataset, describe the forecasting methods
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used to generate base forecasts, and present the point and
probabilistic accuracy measures.

Data

The dataset used in this study is from a major ambulance service
in Great Britain. It contains information relating to the daily
number of attended incidents from 1 October 2015 to 31 July
2019, disaggregated by nature of incidents, priority, the health
board managing the service, and the control area (or region).
Figure 1 depicts both the hierarchical and grouped structure of
the data. Figure 1(a) illustrates the nested hierarchical structure
based on the control area and health board, and Figure 1(b)
shows the grouped structure by priority and the nature of the
incident.'”

Table 2 also displays the structure of the data, with the total
number of series at each level. At the top level, we have the total
attended incidents for the country. We can split these total at-
tended incidents by control area, by health board, by priority or
by nature of the incident. There are 3 control areas, which are
broken down by 7 local health boards. Attended incident data is
categorized into three priority classes of red, amber, and green.
There are also 35 different nature of incidents, such as chest
pain, strokes, breathing problems, etc. In total, across all levels
of disaggregation, there are 1530 time series.

Given the total number of time series, direct visual analysis is
infeasible. Therefore, we first compute features of all 1530 time
series (Kang, Hyndman, and Smith-Miles 2017) and display the
strength of trend and weekly seasonality strength in Figure 2.
Each point represents one time series with the strength of trend
on the x-axis and the strength of seasonality on y-axis. Both
measures are on a scale of [0, 1].

In this paper, the strength of trend and seasonality were
calculated using the “STL” (Seasonal and Trend Decomposition
using Loess) decomposition method, as described by Bandara,
Hyndman, and Bergmeir (2024). STL is a widely used and
flexible method for decomposing time series data into trend,
seasonal, and remainder components. The decomposition of a
time series y, is written as y, = Ty + S; + Ry, where T, is the
smoothed trend component, S; is the seasonal component and R¢
is a remainder component. The strength of trend is defined as

Var(R,) )

Fr = max (0,1 — —— o
T max(’ Var(T, + R,)

For strongly trended data, the seasonally adjusted data
should have much more variation than the remainder compo-
nent. Therefore Var(R)/Var(T; + R¢) should be relatively small.
But for data with little or no trend, the two variances should be
approximately the same.

The strength of seasonality is defined similarly:

Var(R,) )

Fs = 0,1 - ———
s max( 7 Var(S,+R)

series with seasonal strength Fg, close to 0 exhibits almost no
seasonality, while a series with strong seasonality will have
Fs close to 1 because Var(R;) will be much smaller than
Var(S; + Ry). It is clear that there are some series showing
strong trends and/or seasonality, corresponding to series at
the higher levels of the hierarchy. The majority of series show
low trends and seasonality. These are time series belonging to
the bottom series, series related to the nature of incidents for a
given control, health board, and priority level. The bottom
series are dominated by noise with little or no systematic
patterns.

In addition to displaying the trend and seasonality strength
(Hyndman and Athanasopoulos 2021), we also visualize a few
time series at various levels of aggregation. Figure 3 reveals
different information, such as trend, seasonality, and noise. For
example, some series depict seasonality and trends, whereas
others report a low volume of attended incidents and entropy,
making them more volatile and difficult to forecast. At the level
of the nature of incidents combined with categories of other
levels, there are many series that contain zeros with low counts.
As such, the data set represents a diverse set of daily time series
patterns.

We consider several forecasting models that account for the
diverse patterns of the time series across the entire hierarchy. In
developing the forecasting models, the time series of holidays is
also used in addition to the attended incidents. We use public
holidays, school holidays, and Christmas Day and New Year’s
Day as predictors of attended incidents. These types of holidays
will affect people’s activities and may increase or decrease the
number of attended incidents.

Forecasting Methods

Given the presence of various patterns in the past attended
incidents, we consider three different forecasting models to
generate the base forecasts. Once the base forecasts are pro-
duced, hierarchical and grouped time series methods are used to
reconcile them across all levels. We briefly discuss forecasting
models in the following sections, and the hierarchical fore-
casting methods are discussed in Section 4.

Stationary. We start with a simple forecasting approach, as-
suming that future days will be similar to past days. We use
the empirical distribution of the past daily attended incidents
to create the forecast distribution of future attended incidents.
We have chosen this “stationary” method as a benchmark due
to its widespread usage and simplicity, making it easily
understandable for users. Forecasts serve as inputs for var-
ious decision-making systems that frequently employ sim-
ulations, wherein it is common to utilize the empirical
distribution of demand as a forecast. Additionally, the sta-
tionary method has shown surprisingly high accuracy. Hence,
any forecasting approach that can offer superior results
compared to the stationary method would validate its
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All country Nature of incident
Chest pain
Priority
Red Stroke
Breathing
Amber
Central & West North South & East * * problem
Green
Abdominal pain
HD SB PO BC cv CT AB
2
(a) Hierarchical structure’ (b) Grouped structure

Figure 1. The hierarchical and grouped structure of attended incidents (ambulance demand).

Table 2. Number of Time Series in Each Level for the Hierarchical and Grouped Structure of Attended Incidents.

Level Number of Series
All country I
Control 3
Health board 7
Priority 3
Priority * Control 9
Priority * Health board 21
Nature of incident 35
Nature of incident * Control 105
Nature of incident * Health board 245
Priority * Nature of incident 104
Control * Priority * Nature of incident 306
Control * Health board * Priority * Nature of incident (Bottom level) 691
Total 1530

Note. Due to certain combinations of the nature of incident with other variables, there is a lack of representation in the dataset. As a result, for example, instead of the

calculation 3 * 35 = 105, it would be modified to 3 * 35-1 = 104.
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practical use; otherwise, there is no necessity for employing
more complex methods.

Exponential Smoothing State Space model (ETS). ETS models
(Hyndman and Athanasopoulos 2021) can combine trend,
seasonality, and error components in a time series through
various forms that can be additive, multiplicative, or mixed. The
trend component can be none (“N”’), Additive (“A”), or damped
(“Ad”); the seasonality can be none (“N”), Additive (“A”), or

multiplicative (“M”); and the error term can be additive (“A”) or
multiplicative (“M”). To forecast the attended incidents at each
level, we use the ets() function in the forecast package
(Hyndman et al. 2022; Hyndman and Khandakar 2008) in R. To
identify the best model for a given time series, the ets function
uses the corrected Akaike’s Information Criterion (AICc). In our
study, we use an automated algorithm to determine the suitable
configuration for the trend, seasonality, and error terms in each
time series. Specifically, we utilize the ets() function in the
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forecast package of R, which employs Akaike’s Information
Criterion (AIC) to identify the optimal model for each time
series. Given the large number of time series we work with
(1530), it is impractical to manually select the appropriate
form for each component in every time series. Consequently,
the automated algorithm selects the best model based on the
unique characteristics of each individual time series. As a
result, a combination of additive or multiplicative forms for
the components is employed, depending on the specific at-
tributes of each time series. Despite the popularity and the
relevance of automatic ETS in this study, it may produce
forecast distributions that are non-integer and include neg-
ative values, although the number of attended incidents is
always integer and non-negative. When using ETS, a time
series transformation approach could be used to generate
strictly positive forecasts, although forecast distributions will
still be non-integer. An alternative is to use forecasting
models that produce integer, non-negative forecasts. In the
following section, we present Generalized Linear Models
(GLMs) and poisson time series regression to produce count-
base forecasts.

Generalized Linear Model (GLM). GLMs are a family of models
developed to extend the concept of linear regression models to
non-Gaussian distributions (Faraway 2016). They model the
response variable as a particular member of the exponential
family, with the mean being a transformation of a linear function
of the predictors. One of the models that is frequently used in
practice to generate count forecasts is Poisson regression.
Suppose the time series is denoted by y;, . . ., yp, then the
Poisson GLM can be written as

¥, ~ Poisson(4,)

log(4,) = x/p

and x, is a vector of covariates, f3 is a vector of coefficients, and
A is the mean of the Poisson distribution. In our model, these
include cubic splines for the time trend, day-of-week dummy
variables (from Monday to Sunday), Fourier terms to capture
the yearly seasonality, dummy variables indicating public
holidays (1 when is a public holiday, 0 otherwise), school
holidays (1 when is a school holiday, 0 otherwise), and
Christmas Day (1 when is Christmas Day, 0 otherwise), and
New Year’s Day (1 when is New Year’s Day, 0 otherwise). The
Fourier terms are as defined in Hyndman and Athanasopoulos
(2021, Section 7.4). This model takes account of weekly sea-
sonality and annual seasonality. Monthly seasonality in time
series data is extremely rare, and it does not exist in the am-
bulance demand used in this study. There is no reason for
occurrences to occur more frequently at certain times of the
month than others.

We fit a Poisson regression model using the function glm()
from the stats package in R, with the argument family = Poisson
to specify that we wish to fit a Poisson regression model with a
log link function.

where

Poisson Regression Using tscount (TSGLM). We also consider
another Poisson regression model that takes into account serial
dependence. This model captures the short-range serial de-
pendence by including auto-regressive terms in addition to the
same covariates that were used in the GLM model. To dis-
tinguish this from the previous GLM model, we will refer to this
model as TSGLM. The Poisson TSGLM is similar to the GLM,
with an additional auto-regressive component accounting for
serial dependence. The term serial dependence refers to in-
stances in which the number of incidents on a current day
correlates with the number of incidents on previous days.

y: ~Poisson(/;)
where log(A,) = (V,_;.x)P,

and y;_y is a vector of k lagged values. The TSGLM model
explicitly accounts for serial dependence by including lagged
values (i.e., past values) of the ambulance demand in the model.
This is important in EMS forecasting because it allows the
model to capture patterns in the data that are dependent on the
past values of the time series, which might not be captured via
the predictor variables.

We use the tsglm() function in the tscount package in R
(Liboschik, Fokianos and, and Fried 2017) to model the at-
tended incidents. Again, the logarithmic link function is used to
ensure that the mean of the Poisson distribution is always
positive.

Provided accidents occur independently, they will inherently
follow a Poisson distribution (Feller 1991, 156—158). Hence, it
is reasonable to assume a Poisson distribution in this context. To
account for changes over time, we incorporate trend and sea-
sonality covariates, as well as public holiday effects, allowing
the mean of the Poisson distribution to vary. However, it is
important to note that if there are additional factors influencing
the mean of the Poisson distribution that are not accounted for in
our model, we might observe over- or under-dispersion in
the data.

Ensemble Method. Finally, one effective strategy for improving
forecast accuracy includes the simultaneous application of
multiple forecasting methods on a given time series, followed
by combining the forecasts rather than relying on separate
forecasts generated by each individual method (Clemen 1989).
In this paper, we use an ensemble method that combines the
forecasts generated from the Stationary, ETS, GLM, and
TSGLM models using a simple average to form a mixture
distribution (Wang et al. in press).

To generate forecast probability distributions using the above
methods, we use a form of bootstrapping described in
Panagiotelis et al. (2023). This involves simulating 1000 future
sample paths from each of the models by bootstrapping the
model residuals, taking into account the cross-sectional cor-
relations between the different aggregated and disaggregated
series. In this way, we can generate an empirical distribution of
forecasts for each model. The ensemble forecast distribution is a
simple mixture of these empirical distributions.
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It is important to emphasize that the aim of this study is not to
provide an exhaustive compilation of forecasting models or to
promote a particular model class. Instead, we have developed a
flexible framework that can accommodate any forecasting model.
Our primary objective is to demonstrate its practicality and ef-
fectiveness in integrating base forecasts from any model and
generating coherent forecasts within a hierarchical structure.

Performance Evaluation

To evaluate the performance of the various forecasting ap-
proaches, we split the data into a series of ten training and test
sets. We use a time series cross-validation approach (Hyndman
and Athanasopoulos 2021), with a forecast horizon of 84 days
and each training set expanding in 42-day steps. The first
training set uses all data up to 2018-04-25, and the first test set
uses the 84 days beginning 2018-04-26. The second training set
uses all data up to 2018-06-06, with the second test set using the
following 84 days. The largest training set ends on 2019-05-09,
with the test set ending on 2019-07-31. Model development and
hyper-parameter tuning is performed using the training data,
and the errors are assessed using the corresponding test set.
While we compute forecast errors for the entire 12 weeks, we
are most interested in the last 42 days of each test set because
that corresponds to how forecasts are generated for planning in
practice. Forecasting performance is evaluated using both point
and probabilistic error measures.

The error metrics provided below consider a forecasting
horizon denoted by j, representing the number of time periods
ahead we are predicting. In our study, this forecasting horizon
ranges from 1 to 84 days, j=1,2, ..., 84.

Point forecast accuracy is measured via the Mean Squared
Scaled Error (MSSE) and the Mean Absolute Scaled Error
(MASE). The Mean Absolute Scaled Error (MASE) (Hyndman
and Athanasopoulos 2021; Hyndman and Koehler 2006) is
calculated as

MASE = mean(|qj ), (1)
where
€
q_] = | T s
T-m Z |Yt - yt—ml
t=m+1

and g; is the point forecast error for forecast horizon j, m =7 (as we
have daily seasonal series), y; is the observation for period t, and T
is the sample size (the number of observations used for training the
forecasting model). The denominator is the mean absolute error of
the seasonal naive method in the fitting sample of T observations
and is used to scale the error. Smaller MASE values suggest more
accurate forecasts. Note that the measure is scale-independent, thus
allowing us to average the results across series. A related measure
is MSSE (Hyndman and Athanasopoulos 2021; Makridakis,
Spiliotis, and Assimakopoulos 2022), which uses squared errors
rather than absolute errors:

MSSE = mean (qf), 2

where

2
2 G

q. = T oD
J ﬁ Zt:m+1 (Yt - Yt—m)

Again, this is scale-independent, and smaller MSSE values
suggest more accurate forecasts.

Using scale-independent measures, such as MASE and
MSSE, enables more appropriate comparisons between time
series at different levels and scales, as these measures are not
influenced by the magnitude of the data. This is of particular
importance in our study, as we work with time series at various
levels of hierarchy with varying scales, resulting in different
magnitudes of error. By employing scale-independent mea-
sures, we can meaningfully assess the forecast accuracy across
the entire hierarchy, ensuring a more robust comparison.

To measure the forecast distribution accuracy, we calculate
the Continuous Rank Probability Score (Gneiting and Katzfuss
2014; Hyndman and Athanasopoulos 2021). It rewards
sharpness and penalizes miscalibration, so it measures the
overall performance of the forecast distribution.

CRPS = mean(p;), 3)

where

b= [ (60— F)ex

where Gj(x) is the forecasted probability distribution function
for forecast horizon j, and Fj(x) is the true probability distri-
bution function for the same period.

Calibration refers to the statistical consistency between the
distributional forecasts and the observations. It measures how
well the predicted probabilities match the observations. On the
other hand, sharpness refers to the concentration of the forecast
distributions—a sharp forecast distribution results in narrow
prediction intervals, indicating high confidence in the forecast.
A model is well-calibrated if the predicted probabilities match
the distribution of the observations, and it is sharp if it is
confident in its predictions. The CRPS rewards sharpness and
calibration by assigning lower scores to forecasts with sharper
distributions and to forecasts that are well calibrated. Thus, it is
a metric that combines both sharpness and miscalibration into a
single score, making it a useful tool for evaluating the per-
formance of probabilistic forecasts.

CRPS can be considered an average of all possible Winkler
scores (Winkler 1972; Hyndman and Athanasopoulos 2021
Section 5.9) or percentile scores (Hyndman and
Athanasopoulos 2021, Section 5.9), and thus provides an evalu-
ation of all possible prediction intervals or quantiles. A specific
prediction interval could be evaluated using a Winkler score.
Certain situations may also require assessing accuracy for a par-
ticular quantile, such as lower (e.g., 5%) or higher (e.g., 95%)
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quantiles. In such cases, a percentile score becomes useful in
meeting this specific requirement.

Hierarchical and Grouped Time Series
Forecasting Techniques

There are many applications in healthcare, and in particular in
EMS, where a collection of time series is available. These series
are generally hierarchically organized based on multiple levels,
such as area/region, health board, and/or are aggregated at
different levels in groups based on nature of demand, priority of
demand, or some other attribute. While series could be strictly
hierarchical or only grouped based on some attributes, in many
situations, more complex structures arise when attributes of
interest are both nested and crossed, having a hierarchical and
grouped structure. This is also the case for our application, as
discussed in Section 3.1.

Independent (Base Forecast)

A common practice in healthcare (and EMS) to predict hier-
archical and grouped series relies on producing independent
forecasts, also referred to as base forecasts, typically by different
teams as the need for such forecasts arises. We observe n time
series at time ¢, across the entire hierarchical and grouped
structure, written as y,. The base forecasts of yr., given data
Y1, - .., yrare denoted by y, for 4 steps-ahead for all n series (n =
1530 in this study). Forecasts generated in this way are not
coherent.

Reconciliation Methods

Traditionally, approaches producing coherent forecasts for hi-
erarchical and grouped time series involve using bottom-up and
top-down methods by generating forecasts at a single level and
then aggregating or disaggregating. Top-down methods require
having a unique hierarchical structure to disaggregate forecasts
generated at the top level by proportions. However, given that
we have multiple grouped attributes combined with the hier-
archical structure, there is no unique way to disaggregate top
forecasts. Hence, the top-down approach cannot be used in our
application. The recommended approach is to use forecast
reconciliation (Hyndman et al. 2011). In the following sections,
we first discuss some notation and then present bottom-up and
forecast reconciliation approaches used in this study to generate
coherent forecasts.

Notations

Let b, be a vector of n;, bottom-level time series at time ¢, and let
a, be a corresponding vector of n, = n — n; aggregated time
series, where

a, = Ab,,

and A is the n, x n, “aggregation” matrix specifying how the
bottom-level series b, are to be aggregated to form a,. The
aggregation matrix A is determined by the structure of the
hierarchy. It maps the bottom-level time series to the corre-
sponding higher-level time series. For example, if there are two
bottom-level series and one aggregated series (equal to the sum
of the two bottom-level series), then A = [1, 1]. The full vector
of the time series is given by

a
Y = l:bz‘:|

This leads to the n x n;, “summing” or “structural” matrix
given by

such that y, = Sb,.

The term “bottom-level series” refers to the most dis-
aggregated series within the hierarchical and grouped time
series structure. For instance, in Table 2, each distinct combi-
nation of values in the control area (e.g., south and east), health
board (e.g., CV), priority (e.g., green), and nature of incident
(e.g., chest pain), corresponds to one individual time series. In
the dataset at hand, there are 691 unique combinations, resulting
in 691 bottom-level time series. The “aggregate time series”
describes how these bottom-level series are combined to create
higher-level series. For instance, to obtain the incidents at the
national level (i.e., all country level), the time series are ag-
gregated across all control areas, health boards, priorities, and
natures of incidents. Any desired aggregation level can be
achieved based on the data structure, utilizing the bottom-level
series available.

Bottom-Up (BU) and Linear Reconciliation Methods

Bottom-Up is a simple approach to generate coherent forecasts.
It involves first creating the base forecasts for the bottom-level
series (i.e., the most disaggregated series). These forecasts are
then aggregated to the upper levels, which naturally results in
coherent forecasts. The BU approach can capture the dynamics
of the series at the bottom level, but these series may be noisy
and difficult to forecast. The approach uses only the data at the
most disaggregated level and so does not utilize all the infor-
mation available across the hierarchical and grouped structure.

The bottom-up (BU) approach is constrained by its reliance
solely on base forecasts from a single level of aggregation at the
bottom level. While it does result in consistent forecasts, the BU
approach lacks forecast reconciliation since no reconciliation is
performed.

Forecast reconciliation approaches bridge this gap by com-
bining and reconciling all base forecasts to generate coherent
forecasts. This technique utilizes all the base forecasts produced
within a hierarchical structure to create consistent forecasts at
every level of the hierarchy. As a result, it goes beyond relying
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solely on base forecasts from a single level of aggregation and
instead leverages all available information at each level to
generate forecasts that minimize the total forecast variance of the
set of coherent forecasts. Linear reconciliation involves projec-
ting the base forecasts onto the coherent space. It is derived by
minimizing the sum of the variances of the reconciled forecasts,
subject to the resulting forecasts being coherent and unbiased
(Wickramasuriya, Athanasopoulos, and Hyndman 2019). Linear
forecast reconciliation methods can be written (Wickramasuriya,
Athanasopoulos, and Hyndman 2019) as

= S(SW's) Wy,

where W is an n x n positive definite matrix, and ¥, contains the
h-step forecasts of y;,, given data to time 7. When W, is the
covariance matrix of'y,, the resulting forecasts are optimal in the
sense that the sum of the variances of the reconciled forecasts is
minimized, provided the base forecasts y, are unbiased.
However, W,, is difficult to estimate, and so there have been
various suggested approximations to W, leading to different
types of reconciliation such as Ordinary Least Squares (OLS),
Weighted Least Squares (WLS) and Minimum Trace (MinT).

Ordinary Least Squares (OLS) is the simplest and most
commonly used method. In this approach, the estimation of W is
based on the assumption that all the errors are uncorrelated and
have equal variance and that multi-step forecast variances are
proportional to one-step forecast variances. Then, W is simply
the identity matrix multiplied by a constant factor. The main
weakness of this approach is that it does not take account of the
different scales of the base time series; the aggregated series will
usually have higher variance than the disaggregated series
simply because the values are larger, but OLS treats all series the
same. A strength of the approach is that it is simple and does not
involve estimating a covariance matrix.

Weighted Least Squares (WLS) is an extension of OLS
where the variance of the errors is assumed to be hetero-
scedastic, that is, different for each series. But it assumes that the
errors of each series are uncorrelated with each other and that
multi-step forecast variances are proportional to one-step
forecast variances. In this approach, W is defined as a diago-
nal matrix with the variance of the errors on the diagonal. The
intuition behind WLS is that it assigns a higher weight to series
with a smaller error variance and thereby takes into account the
different scales of the base time series. The main weakness of
this approach is that it ignores the relationships between series.
A strength of WLS is that it is relatively easy to compute W as it
is based only on error variances, which are readily estimated.

Minimum Trace (MinT) is a further generalization where W is
defined as the covariance matrix of the one-step base forecast
errors. Therefore, it takes account of both the scale of each series
and the relationships between the series. But it still assumes that
multi-step forecast variances are proportional to one-step forecast
variances. The main weakness of this approach is that it is
difficult to estimate the full covariance matrix, even with the one-
step errors. In practice, we usually need to use a shrinkage es-
timate where the off-diagonal elements are shrunk towards zero.

We use the implementation of these methods in the hts
package in R in the experiment.

Certainly, other approaches can be applied to hierarchical
forecasting problems. Pennings and Van Dalen (2017) and
Villegas and Pedregal (2018) proposed the idea of using a state
space model to ensure consistent forecasts. However, when
dealing with larger hierarchies, these models encounter diffi-
culties in estimating covariance matrices. In contrast, our ap-
proach provides a clear advantage by allowing the incorporation
of different forecasting methods for the base forecasts and even
accommodating distinct methods for individual series. The
decoupling of time series models from the reconciliation step
adds significant flexibility in exploring a wide range of models.

Results and Discussion

In this section, we compare the forecasting performance of the
Stationary, ETS, GLM, and TSGLM models along with the
ensemble using base forecast and Minimum Trace (MinT)
reconciliation methods. We have also computed the forecast
accuracy for Ordinary Least Square (OLS) and Weighted Least
Square (WLS) approaches, along with bottom-up forecasting.
However, they are not reported here because their accuracy is
outperformed by MinT. We should also note that forecasts, and
consequently their corresponding errors, are generated for the
entire hierarchy, and they could be reported at any level if
required. But to save space, we have reported only the top level
(Total), the bottom level, and the levels corresponding to control
areas and health boards. The latter are chosen because this is
where decision-making takes place, so these forecasts are the
most important.

The overall forecasting performance is reported in Table 3, in
which the average forecast accuracy over horizons of 43—
84 days (corresponding to the planning horizon) is presented per
model, method, and hierarchical level. Reported forecast ac-
curacy is averaged across all forecast horizons, rolling origins,
and series at each level. Table 3 presents both point and
probabilistic forecast accuracy at total, control area, health
board, and bottom-level series. Point forecast performance is
reported using MASE and MSSE, while probabilistic forecast
accuracy is reported using CRPS. The bold entries in each table
identify a combination of method and model that performs best
for the corresponding level (i.e., each column), based on the
smallest values of accuracy measures.

Table 3 shows that forecast reconciliation (i.e., MinT) im-
proves point forecast accuracy at the higher levels of the hi-
erarchy, including total, control area, and health board.
However, it does not result in accuracy improvement at the
bottom-level series, for which base forecasts are more accurate.
This might be due to the noisy structure of time series at the
bottom level and possibly to very different patterns in the
aggregated series. It is also clear from Table 3 that the ensemble
method improves forecast accuracy at the total, control area, and
health board. However, this does not remain valid for bottom
series where different individual methods perform best, de-
pending on the accuracy measure. While the forecast
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Table 3. Average Forecast Performance Calculated on the Test Sets at Forecast Horizons h = 43, . . ., 84 Days, With Time Series Cross-

Validation Applied to Attended Incident Data.®

Reconciliation Model Total Control Areas Health Boards Bottom
MSSE
Base Stationary 1.139 1.059 1.047 1.019
Base ETS 0.963 0.930 0.899 1.038
Base GLM 0910 0.940 0.923 1.002
Base TSGLM 0911 0.939 0.924 1.005
Base Ensemble 0.782 0.856 0.876 1.008
MinT Stationary 1.138 1.059 1.047 2.651
MinT ETS 0.877 0916 0915 1.289
MinT GLM 0.848 0.901 0.902 2493
MinT TSGLM 0.852 0.903 0.903 2513
MinT Ensemble 0.753 0.844 0.872 2.260
MASE
Base Stationary 1.169 1.056 1.062 1.031
Base ETS 0.979 0.875 0.816 0.975
Base GLM 0813 0.897 0.875 1.009
Base TSGLM 0.822 0.901 0.875 1.050
Base Ensemble 0.599 0.729 0.774 0.993
MinT Stationary 1.168 1.057 1.062 2.095
MinT ETS 0.785 0.852 0.845 0.994
MinT GLM 0.720 0.827 0.837 1.803
MinT TSGLM 0.722 0.833 0.839 1.851
MinT Ensemble 0.560 0.706 0.765 1.557
CRPS
Base Stationary 30.387 10.882 5.500 0.302
Base ETS 14.309 6.074 3.476 0.244
Base GLM 15.396 6.253 3.576 0.244
Base TSGLM 15316 6.227 3.575 0.245
Base Ensemble 12.978 5.727 3.430 0.243
MinT Stationary 30.368 10.902 5.498 0313
MinT ETS 13515 5.967 3.547 0.243
MinT GLM 13.839 5917 3.453 0.246
MinT TSGLM 14.000 5.947 3.455 0.248
MinT Ensemble 12.585 5.728 3.426 0.247

Bold values show the lowest score for the given accuracy measure and the level of hierarchy.

reconciliation approach aims to enhance forecast accuracy, its
effectiveness is not guaranteed, especially if the bottom-level
series exhibit excessive noise and lack systematic patterns.
Despite this, reconciling forecasts at the bottom level can offer
advantages by generating coherent forecasts that facilitate
alignment in planning across various teams within an organi-
zation, promote better coordination, and prevent conflicting
decisions. Moreover, even when dealing with noisy and ir-
regular bottom-level series, reconciliation can still improve
forecast accuracy at higher levels of the hierarchy by leveraging
the information available across the hierarchy. Therefore, al-
though the bottom-level forecasts may not be highly accurate on
their own, reconciling them with higher-level forecasts can still
provide a more consistent view of future demand and potentially
yield more accurate forecasts at other levels.

Table 3 presents the accuracy of the forecast distribution
measures by CRPS, which considers both forecasting reliability
and interval sharpness. The smaller the value of CRPS, the

better the comprehensive performance. We observe that forecast
reconciliation results in forecast improvement at the total and
health board levels. CRPS is almost identical at the control area
and bottom levels. Base forecasts are slightly better at the
control area level, while reconciliation is marginally more ac-
curate than base at the bottom level. The ensemble method is
also more accurate for higher levels, but ETS performs well at
the bottom level. Table 3 also indicates that reconciliation using
Mint generates accurate distributional forecasts. The marginal
improvement in the average probabilistic forecast accuracy at
the bottom level might be due to the reconciliation method
giving improved forecast accuracy in the tails of the forecast
distribution, which are critical for managing risks.

Overall, our results indicate that forecast reconciliation using
the MinT method provides reliable forecasts and improves upon
the base (unreconciled) forecasts at all levels except the bottom-
level series. But even there, forecast reconciliation using MinT
improves accuracy in the tails of the distribution.
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Figure 4. Average accuracy by week for 12 weeks using MinT reconciliation.’

In addition to the overall forecast accuracy presented in

Table 3, we also report the point and probabilistic forecast
accuracy measures for each forecast horizon in Figure 4. The
figure focuses on the hierarchical levels important for decision-
making, including total, control area, and health board; how-
ever, the accuracy could be calculated for any level. We only
illustrate the results of the MinT method, given its strong
performance described in Table 3. For illustration purposes, we
report the average weekly forecast accuracy instead of the daily
forecast horizon, as this reduces the visual noise in the figure.
Thus, the x-axis shows horizons from week 1 (h=1,...,7)to
week 12 (h=78, ..., 84). The forecast horizon from week 7 to
week 12 corresponds to the upcoming planning horizon, which
is used by planners and decision-makers. For both the point
forecast and distributional accuracy, we can see that the en-
semble approach performs best across almost all horizons, with
the biggest differences at the highest levels of aggregation. It is
important to highlight that all forecasting models outperform the
stationary empirical distribution that is used as a benchmark for
both point and probabilistic forecasts.

Despite using Poisson regression models to create count
distributions of attended incidents for the base forecasts, it is
important to note that the reconciled forecast distributions do
not maintain a count format. In practical scenarios, there might
be a need to use integer forecasts. Count forecast reconciliation
is an active area of research, and it would be interesting to
explore how our approach could be adapted to generate count-
reconciled probabilistic forecasts in future studies. Rounding
the forecasts is one possible solution to this problem. However,
the impact of rounding on forecast accuracy varies depending

on the level of hierarchy and the scale of the data. In situations
with high volume demand, the effects of rounding may be
negligible, and forecast accuracy calculations can overlook
integer effects. On the other hand, in low-volume demand
settings, such as forecasts at the bottom level of the hierarchy,
integer (rounding) effects may have a more noticeable influence
on forecast accuracy.

An lllustration of Probabilistic Forecast for EMS Demand

In this section, we provide an illustrative example of a prob-
abilistic forecast for future demand, based on the total attended
incidents at the SB health board. Due to the complexity of
including such plots for the entire hierarchy and and the 84 days
ahead in the manuscript, only one example is presented here.
However, it is feasible to generate these plots for the entire
hierarchy and for any forecast horizon, if necessary.

In practice, point forecasts are commonly used, but they
have limitations as they ignore the uncertainty associated
with the forecast. The future is inherently characterized by an
irreducible level of uncertainty. Being prepared entails
considering alternate courses of action. Probabilistic fore-
casts offer an alternative approach to anticipate future de-
mand. Rather than providing a single value, they assign
likelihoods to all possible demand outcomes, acknowledging
that different numbers of attended incidents are possible, but
with varying likelihoods.

The purpose of probabilistic forecasting, as demonstrated in
Figures 5 and 6, is to quantify uncertainty. Figure 5 depicts the
forecast distribution of total incidents in one health board over a
7-day period. It also gives the point forecast as well as the 80%
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and 90% prediction intervals. Figure 6 zooms in on the first day
to show the histogram more clearly, illustrating the range of
possible outcomes and their likelihood.

Decisions based on these forecasts could focus on the tails of
the distribution: unexpectedly high demand leading to crowding
and inefficiency, or unexpectedly low demand resulting in
wasted resources. Such forecasts are valuable tools for decision-
makers and planners, especially when dealing with low-
probability, high-cost situations. Different EMS managements
may have varying risk attitudes depending on resource avail-
ability, making it crucial to consider the entire distribution when
making decisions. For instance, these forecasts enable man-
agement to calculate the probability of demand exceeding a

certain threshold of available resources (e.g., 90%), which can
serve as an informative early warning measure for
overcrowding.

It is important to note that while point forecasts and
prediction intervals can be obtained from probabilistic
forecasts, the reverse is not possible. A single number cannot
be used to directly derive a probabilistic forecast. Prediction
intervals, although helpful in indicating possible ranges, do
not provide information on the probabilities of low or high
demand.

In EMS planning, future demand is just one aspect to
consider. Other inputs, such as capacity, should also be
treated as probability distributions to adopt a probabilistic
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approach to planning. To extract valuable insights and make
informed decisions from probabilistic forecasts, specialized
numerical tools are required, as the forecasts themselves are
typically represented as explicit probability density functions
or Monte Carlo generators.

Conclusion

Forecasting problems at Emergency Medical Services often
have inherent hierarchical and grouped structures. For ex-
ample, looking at time series of arrival calls in a clinical desk
service, Emergency Department admissions, verified inci-
dents, or attended incidents in a country, they could be
disaggregated by various attributes of interest. Total demand
in the country could be disaggregated by region, then within
each region by health board, within each health board, by
station/hospital, and so on down to the postcode area. Al-
ternative structures may arise when attributes of interest are
crossed rather than nested. For example, the total demand
could be disaggregated by priority (e.g., red, amber, and
green) or by the nature of incidents. It is also natural to have a
mixed structure; for example, the total demand could be
disaggregated by priority and by health board.

Despite the inherent hierarchical structure of the forecasting
problem in EMS, the common practice is to produce point
forecasts for each time series independently. This practice may
lead to a lack of coordination and possibly undesirable and
conflicting outcomes. Furthermore, due to the asymmetric
impact of resource allocation in this area, quantifying forecast
uncertainty through probabilistic forecasts is also of value as it
enables planners to manage associated risks. In this paper, we
investigate the application of hierarchical forecasting methods
for producing probabilistic forecasts of daily incidents at-
tended up to 84 days ahead, using different forecasting
methods.

Our results indicate that forecast reconciliation in EMS can
not only contribute to a more coordinated approach to planning
and decision-making through the production of coherent
forecasts, but it can result in forecast accuracy improvements.
Our proposed forecasting models, combined with reconciliation
approaches, outperform the empirical distribution benchmark.
We show that a substantial forecast improvement can be
achieved at higher levels of aggregation by applying forecast
reconciliation methods. When a point forecast is of interest at
the bottom level of the series, we observe that reconciliation
may not improve the forecast accuracy if the bottom series are
noisy and lack systematic patterns. However, forecast recon-
ciliation may result in more accurate forecast results for bottom
series if we are interested in the tails of the forecast distribution
rather than just center measures like mean (i.e., point forecast).
Coherent forecasts are also crucial for informing planning ac-
tivities, and we demonstrate that the proposed models produce
coherent forecasts across all forecast horizons. Therefore, we
recommend that forecast reconciliation approaches be adopted
for routine use in EMS, whenever hierarchical and/or grouped
time series data need to be forecasted. Moreover, we found that

using an ensemble forecasting model, combining all the models
developed in this paper instead of using each individually,
works remarkably well for our mixed hierarchical and grouped
structure.

Our research establishes a strong basis for future investi-
gations and practical implementation in EMS. Leveraging the
hierarchical and grouped structure of demand time series, EMS
can use this advanced forecasting framework to generate
coherent point and probabilistic forecasts, making the most of
all available data at every level of the hierarchy. We ac-
knowledge that a forecast serves a greater purpose beyond its
mere existence, ideally enabling the best utility in terms of
efficient allocation of medical services, response time, and
cost, all informed by the forecast. While we fully appreciate
the importance of evaluating forecast quality based on its
impact on decision-making processes, it is essential to address
the data requirements and methodology involved in measuring
this impact. For a comprehensive assessment of the forecasts’
implications, access to additional data beyond ambulance
demand, covering various decision types, capacity informa-
tion, constraints in the decision system, and more, becomes
necessary. This additional data would offer valuable insights
into the specific decisions based on the forecasts, resulting in a
more accurate evaluation of their impact on medical services.
Furthermore, measuring the actual impact of forecasts would
necessitate an approach that goes beyond forecasting itself.
This would involve developing and implementing simulation
models capable of replicating decision-making processes
based on the forecast inputs. These simulation models would
then evaluate the quality of the final decisions, taking into
consideration the utilities that are particularly significant in the
context of EMS.

Future research can build upon this study in several ways.
In future investigations, we aim to explore this avenue by
incorporating operational information, simulating decision
processes, and assessing the decision impact of this frame-
work on utilities that are significant to the EMS. Linking
forecasts with their utilities (e.g., response time, allocation of
medical services, resource utilization, cost, etc.) can offer an
opportunity to maximize benefits through a more holistic
planning approach. Additionally, in our study, we employed
Poisson regression models to generate count distributions of
attended incidents for the base forecasts. However, it is es-
sential to note that the reconciled forecast distributions are
not integer. This observation presents an interesting avenue
for future research. Also, since the dataset used in this study
only includes information on attended incidents, it would be
valuable for future research to investigate the impact of failed
responses on EMS forecasting if data on these incidents
became available. It is also important to note that our
methodology for hierarchical time series forecasting can be
applied to any time series data in EMS, including those that
may include failed responses.

Although our study primarily focuses on Emergency
Medical Services, it is essential to emphasize that the
framework we propose has broad applicability across various
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service industries (Ostrom et al. 2010). Our approach is
particularly valuable in situations where time series data is
structured hierarchically and/or grouped, a common char-
acteristic found in many sectors. This occurs when data can
be naturally organized into different levels of hierarchies or
when dependencies and relationships exist among entities
within the system. For instance, in supply chains (Shugan and
Xie 2000), demand forecasting at different levels of the
distribution network, such as regional warehouses or retail
stores, is vital for efficient inventory management and
minimizing stockouts. Our framework allows the reconcili-
ation of forecasts, ensuring consistency, and alignment
throughout the supply chain, leading to improved decision-
making and operational efficiency. In the financial industry
(Kimes and Chase 1998), where investments span multiple
asset classes, geographical regions, or customer segments,
our framework can be applied to forecast portfolio perfor-
mance, asset allocation, or customer demand. Similarly, in
transportation, the framework supports forecasting trans-
portation demand at various levels, optimizing route planning
and resource allocation. Likewise, in the hospitality and
tourism industry (Dekimpe, Peers, and van Heerde 2016), it
facilitates forecasting demand rates at state, regional, and
departmental levels, enabling strategic pricing, capacity
planning, and revenue management for hotels and other
travel-related businesses. Additionally, in call centers, ac-
curate call volume forecasting at different levels of the call
center hierarchy or grouped structure is crucial for workforce
management and resource allocation. Implementing our
framework, call centers can generate accurate forecasts for
different skill groups, shifts, and locations, ensuring efficient
staffing and optimal service levels to meet customer
demands.

Reproducibility

To enhance transparency and reproducibility, we not only
provide data and the code, but also the entire paper that is
written in R using Quarto. All materials to reproduce this paper
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emergency-medicine.

The repository contains the raw data, all R scripts used in
experiments, the results used in the paper, as well as the quarto
files for producing this paper. Full instructions are provided in
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Notes

1. Attended incidents in the whole country are disaggregated into
3 control areas and then into 7 different health boards, anonymized
using two letters (e.g., AB).

2. Incidents could be grouped into priority (i.e., Red, Amber, and
Green) and the nature of attended incident (i.e., there are 35 different
nature of incidents including chest pain, breathing problems, heart
attack, stroke, and so on). The symbol * refers to the crossed at-
tributes between hierarchical and grouped levels.

3. The scatter plot shows a total of 1530 data points, with each point
corresponding to a specific time series.

4. X-axis shows the date of incidents, consisting of 1400 data points
(days) and y-axis shows the number of attended incidents. The
panels show data from the whole country (top panel), by control
area, by health board, by priority level, and by nature of incident.
Only four of the 35 nature of incident categories are shown to avoid
too much overplotting.

5. The total number of days used to calculate the accuracy in the test set
is 462. Forecasts are generated every 42 days; therefore, we use
11 samples to calculate the average accuracy. CRPS is relative to a
stationary Empirical Cumulative Distribution Function (ECDF).
MASE and MSSE are relative to the corresponding values for the
training set.

6. For each day, we display the point forecast (black point), the
histogram, and 80% (thick line) and 90% (thin line) prediction
intervals. It also shows a portion of a historical time series as well as
its fitted values.
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7. This corresponds to the first forecast distribution in Figure 5. The
horizontal axis shows all possible outcomes that may occur, with
their likelihood shown on the vertical axis. The point in the middle
shows the point forecast. Two lines at the bottom of the distri-
bution highlights 80% (thick line) and 90% (thin line) prediction
intervals.

8. The test set consists of 462 days. The best approach is highlighted in
bold. Point forecast accuracy is measured using MASE and MSSE,
while probabilistic forecast accuracy is measured using CRPS.
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