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Abstract

Precipitation is the primary driver of hydrological models, and its spatial and temporal

variability have a great impact on water partitioning. However, in data-sparse regions,

uncertainty in precipitation estimates is high and the sensitivity of water partitioning

to this uncertainty is unknown. This is a particular challenge in drylands (semi-arid

and arid regions) where the water balance is highly sensitive to rainfall, yet there is

commonly a lack of in situ rain gauge data. To understand the impact of precipitation

uncertainty on the water balance in drylands, here we have performed simulations

with a process-based hydrological model developed to characterize the water balance

in arid and semi-arid regions (DRYP: DRYland water Partitioning model). We per-

formed a series of numerical analyses in the Upper Ewaso Ng'iro basin, Kenya driven

by three gridded precipitation datasets with different spatio-temporal resolutions

(IMERG, MSWEP, and ERA5), evaluating simulations against streamflow observations

and remotely sensed data products of soil moisture, actual evapotranspiration, and

total water storage. We found that despite the great differences in the spatial distri-

bution of rainfall across a climatic gradient within the basin, DRYP shows good per-

formance for representing streamflow (KGE >0.6), soil moisture, actual

evapotranspiration, and total water storage (r >0.5). However, the choice of precipita-

tion datasets greatly influences surface (infiltration, runoff, and transmission losses)

and subsurface fluxes (groundwater recharge and discharge) across different climatic

zones of the Ewaso Ng'iro basin. Within humid areas, evapotranspiration does not

show sensitivity to the choice of precipitation dataset, however, in dry lowland areas

it becomes more sensitive to precipitation rates as water-limited conditions develop.
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The analysis shows that the highest rates of precipitation produce high rates of dif-

fuse recharge in Ewaso uplands and also propagate into runoff, transmission losses

and, ultimately focused recharge, with the latter acting as the main mechanism of

groundwater recharge in low dry areas. The results from this modelling exercise sug-

gest that care must be taken in selecting forcing precipitation data to drive hydrologi-

cal modelling efforts, especially in basins that span a climatic gradient. These results

also suggest that more effort is required to reduce uncertainty between different pre-

cipitation datasets, which will in turn result in more consistent quantification of the

water balance.
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1 | INTRODUCTION

Precipitation is a key driver of the terrestrial water balance and is the

primary input to hydrological models that seek to quantify the avail-

ability of water resources. Precipitation is generally measured at

points by rain gauges, but the limited spatial distribution of gauges in

most places precludes their use for large-scale hydrological modelling

(Daly et al., 1994; Groisman & Legates, 1994; Ly et al., 2013;

McMillan et al., 2012; Pollock et al., 2018; Thornton et al., 1997). In

dryland regions, this problem is exacerbated by the high spatial and

temporal variability of precipitation (Goodrich et al., 1995; Huang

et al., 2017; Pilgrim et al., 1988; Wheater et al., 2007) and the sparse-

ness of data collection networks (Pilgrim et al., 1988; Wheater

et al., 2007). Reanalysis and remotely sensed gridded precipitation

products have potential to overcome the limited spatial distribution of

point observations of precipitation, and some have high temporal res-

olution required to characterize individual rainstorms. However, such

gridded rainfall products contain inherent uncertainties that are pro-

nounced in dryland environments and in mountainous topography

(Ayugi et al., 2019; Coz & van de Giesen, 2020; Dezfuli et al., 2017;

Dinku et al., 2018; Guilloteau et al., 2016; Henn et al., 2018; Huang

et al., 2017; Lettenmaier et al., 2015; Lundquist et al., 2015; Macharia

et al., 2020; Sylla et al., 2013; Westrick et al., 1999). These uncer-

tainties in precipitation propagate into unknown impacts on water

partitioning and consequently limit the usefulness of gridded rainfall

products to force hydrological models in these regions (Fu

et al., 2011; Huang et al., 2019; Ly et al., 2013; Obled et al., 1994;

Schreiner-McGraw & Ajami, 2020).

The ability to model the partitioning of rainfall into water stores

and fluxes in dryland environments is of key importance for assessing

the availability of water resources in such water-limited ecosystems.

In these regions, precipitation is typically delivered in short-lived but

high intensity events, with most of the water reaching the land sur-

face lost back to the atmosphere via evapotranspiration (Goodrich

et al., 1995; Pilgrim et al., 1988; Wheater et al., 2008). In drylands, the

combination of high rainfall intensities and low infiltration rates parti-

tions precipitation into some combination of overland flow and

infiltration, depending on storm intensity and duration for a given land

surface condition (Aryal et al., 2020; Goodrich et al., 1997; Scoging &

Thornes, 1979; Zhu et al., 2018). Runoff events tend to be short-lived,

yet the flow may coalesce to support the development of ephemeral

streams. The loss of water through the typically porous streambed of

these ephemeral streams, known as transmission losses, potentially

generates focused recharge (Quichimbo et al., 2020), which is consid-

ered to be the main process of groundwater recharge in dryland envi-

ronments (Abdulrazzak, 1995; Goodrich et al., 1995; Goodrich

et al., 2013; Goodrich et al., 2018; Schreiner-McGraw et al., 2019;

Shanafield & Cook, 2014). Since these key dryland hydrological pro-

cesses are controlled by the high variability in rainfall intensity and

duration, it is therefore important to understand how the spatial and

temporal variation of the choice of forcing precipitation dataset

impacts water partitioning. This in turn will enhance the characteriza-

tion and quantification of key hydrological processes that represent

the water balance of these dry environments.

A variety of studies have focused on the accuracy and the spatio-

temporal agreement between gridded rainfall datasets

(e.g., (Alexander et al., 2020; Ayugi et al., 2019; Dezfuli et al., 2017;

Dinku et al., 2018; Macharia et al., 2020; Maggioni et al., 2016;

Massari et al., 2017; Tang et al., 2020)). Studies evaluating the impact

of rainfall variability on hydrological response using process-based

hydrological models are limited (e.g., (Beck et al., 2017; Satgé

et al., 2021; Schreiner-McGraw & Ajami, 2020; Stisen &

Sandholt, 2010)). Approaches instead typically rely on models that do

not consider key dryland hydrological processes, such as transmission

losses and focused recharge (Beck et al., 2017; Bitew et al., 2012;

Dembélé et al., 2020; Li et al., 2012; Su et al., 2008; Tang et al., 2016).

Additionally, most of these studies typically only use streamflow for

model calibration, and do not evaluate the uncertainty of model para-

meterisation on the broader water partitioning (Maggioni et al., 2016).

Here, we use the distributed, integrated, hydrological model

DRYP (Quichimbo, 2021) to quantify the water partitioning at the

Upper Ewaso Ng'iro basin in Kenya because it is a model designed to

represent the hydrological processes that are explicitly relevant in dry-

land environments such as spatio-temporally varying and high
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intensity rainfall, high evaporative losses, transmission losses, focused

recharge, and the development of ephemeral streams. We applied

three widely used gridded precipitation datasets, available at high spa-

tial and temporal resolutions (sub-daily and 0.1�) to force the DRYP

model, and we evaluate model performance using a variety of

remotely sensed data and streamflow observations. Ultimately, we

perform a series of numerical experiments to test how the spatial vari-

ability of precipitation affects the uncertainty in the components of

the water balance.

2 | DATA AND METHODS

2.1 | Study area

The upper Ewaso Ng'iro basin is located northwest of Mount Kenya

(Figure 1a) with an area of �15 200 km2 and elevations ranging from

�800 m in its lower northeastern part (Archer's Post) to �4700 m at

the top of Mt. Kenya in the southern headwaters (Figure 1a). The

basin exhibits distinct hydrological regimes depending on elevation,

latitude, and the location of the Intertropical Convergence Zone over

the year (Figure 1b). Unimodal (one season) rainfall characteristics are

observed in the western part of the basin, whereas two well-defined

rainy seasons characterize the climate of Mount Kenya and the lower

parts of the basin (Ngigi et al., 2008). In the bimodal rainfall locations,

the ‘long rains’ generally occur between March–May and the ‘short
rains’ occur in October–December (Ngigi et al., 2008). Precipitation

exhibits high interannual variability and is also dependent on topogra-

phy with high average annual precipitation (�1700 mm) at high eleva-

tions (>3300 m), lower precipitation (�800 mm) at elevations

between 2000 and 1700 m on the Laikipia plateau, and much low

values of precipitation (�350 mm) in lower elevations around the

catchment outlet (Archer's Post) (Gichuki, 2002; Liniger et al., 2005;

Muriithi, 2016; Mutiga et al., 2010; Notter et al., 2007). Potential

evapotranspiration also has high spatial variation with mean annual

values of �500 mm at high elevations to �1700 mm at lower ones

(Ngigi et al., 2007). The basin is mostly covered by woody vegetation,

shrublands, and grasses (Franz et al., 2010; Franz et al., 2012;

F IGURE 1 (a) Geographical location
of the Upper Ewaso Ng'iro basin, and
(b) Conceptual schematic detailing key
climatological, hydrological, and
hydrogeological factors controlling the
water partitioning of the Upper Ewaso
Ng'iro basin. Arrows indicate main fluxes.

QUICHIMBO ET AL. 3 of 19



Gichuki, 2004; Mati et al., 2006; Muriithi, 2016; Mutiga et al., 2010).

Geologically, the upper part of the basin is underlain by Quaternary

and Tertiary volcanic material, whereas outcrops of metamorphic

rocks from the Basement system dominate the geology of the lower

areas (Figure 1b) (Muriithi, 2016).

We expect the complex topographic, geological and climatological

characteristics to strongly influence the hydrological processes and

water balance of the basin (Figure 1b). For example, the strong gradi-

ents in precipitation and potential evapotranspiration may contribute

to the development of contrasting dominance of certain hydrological

fluxes at higher (e.g., more diffuse recharge and baseflow) versus

lower elevations (e.g., more focused recharge).

2.2 | Forcing datasets

2.2.1 | Precipitation and potential
evapotranspiration

Owing to their high temporal and spatial resolution, the following

global datasets of precipitation were used as forcing data for water

partitioning evaluation, all of which are available at 0.1� grid resolution

(�9 km at the equator) (i) the 3-h Multi-Source Weighted-Ensemble

Precipitation (MSWEP) V2.8 Global, (ii) the 30-min resolution Inte-

grated Multi-satellitE Retrievals for Global Precipitation Measurement

(IMERG) V06A, and (iii) the 1-h ERA5 – reanalysis precipitation data-

set (Table 1). The high temporal and spatial resolution of these precip-

itation datasets is commensurate with the timescales (sub-daily) of

the main hydrological processes within dryland basins (Quichimbo,

2016) where rainfall tends to occur in high intensity, short duration

(sub-daily and even sub-hourly) events. To compare their influence,

each dataset was aggregated to a consistent 3 h for simulations in the

Ewaso Ng'iro basin, corresponding with the MSWEP resolution. All

these datasets have shown good performance in representing the cli-

matological conditions as well as the hydrology when used as forcing

data in dryland environments (Beck et al., 2017), although, convective

precipitation events in dryland regions are challenging to capture

within these gridded datasets (Cecil et al., 2014).

Owing to its sufficiently high spatio-temporal, the global dataset

of hourly Potential EvapoTranspiration (hPET) (Singer et al., 2021) was

used as a forcing variable for driving plant and soil evaporation water

demands from the atmosphere. hPET is a product based on

ERA5-Land reanalysis dataset with a spatial resolution of 0.1� to

match the rainfall datasets and estimates potential evapotranspiration

using the Penman-Monteith approach.

2.3 | Parsimonious dryland water partitioning
hydrological model: DRYP

DRYP is an integrated, parsimonious, process-based, distributed

hydrological model developed to represent key hydrological processes

in dryland regions (Quichimbo et al., 2021). The model includes three T
A
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main components: (i) a surface component to represent the infiltration

and runoff as well as transmission losses along streams, (ii) a subsur-

face component that represents the vadose zone where plant evapo-

transpiration and percolation occurs, and (iii) a groundwater

component to represent the flow under saturated conditions. A sim-

plified version of the water balance equation is shown below, and a

detailed description of the model can be found in Quichimbo

et al. (2021).

P¼OFþ I ð1aÞ

ΔSRO ¼OFþBF�TL�Q ð1bÞ

ΔSUZ=RUZ ¼ IþTL–AET–R ð1cÞ

ΔSSZ ¼R�AETGW�BF�BC ð1dÞ

where: P is precipitation [L T�1], I is infiltration [L T�1], OF is overland

flow [L T�1], TL is transmission losses [L T�1], AET is actual evapo-

transpiration [L T�1], AETGW is capillary flux [L T�1], R is diffuse and

focused recharge of hillslope and riparian zone, respectively, [L T�1],

BF is groundwater discharge [L T�1], Q is channel streamflow [L T�1],

BC is any source of water getting in/out of the saturated zone [L T�1],

Δ represent change, and SUZ/RUZ, SRO, and SSZ, represent the unsatu-

rated/riparian zone, channel and groundwater storage [L],

respectively.

2.3.1 | Model settings and parameterisation

For the Ewaso Ng'iro basin, the spatial and temporal resolution of the

model was set on a 1 � 1 km grid (201 � 174 cells) and 3-h time step,

respectively. This resolution was chosen in order to adequately repre-

sent the spatial and temporal variability of key hydrological fluxes

such as streamflow and transmission losses along channels

(Quichimbo, 2021) as well as the short-lived rainfall in drylands. The

3-h time step is also considered reasonable for two main reasons: (i) it

is a trade-off between the computational time and process description

representation (Quichimbo, 2021), and (ii) it matches the temporal res-

olution of available precipitation datasets. The forcing datasets, which

are at a spatial resolution of 0.1�, were spatially interpolated to the

model spatial resolution of 1 km, using linear interpolation due to its

low computational demand.

For the unsaturated zone, the Philips infiltration equation, imple-

mented using an explicit numerical approach, was applied since it

showed good performance for modelling water partitioning in the semi-

arid Walnut Gulch Experimental Watershed (Quichimbo, 2021). For the

groundwater component, a variable transmissivity approach was speci-

fied for groundwater flow in the saturated model component, which

allows the representation of the reduction of transmissivity with depth

due to less weathered conditions (Bianchi et al., 2020; Bonsor

et al., 2014; Fan et al., 2013). A detailed description of the approach

and its numerical implementation is described in Quichimbo, 2021.

Table 2 provides a summary of datasets used for the parameteri-

zation of each of the model components. A full description of the

dataset as well as the parameters derived from the dataset are pro-

vided in the supplemental material (Section S2.2).

2.3.2 | Boundary and initial conditions

It is assumed that the groundwater system in the Ewaso Ng'iro basin

is shallow, therefore, topographical conditions greatly influence sur-

face and groundwater processes. Hence, no-flow boundary conditions

for the groundwater domain were specified along the boundaries of

the basin. To avoid the artificial accumulation of water in lower parts

of the basin, a constant head boundary was specified at the lowest

end of the model domain where there is an outcrop of the Basement

aquifer system (Figure S1f). The values were specified to be equiva-

lent to a depth to the water table of 20 m below the stream based on

observations reported nearby (WRAP, 1987).

A dynamic cyclic equilibrium approach was used to assign the ini-

tial conditions of the unsaturated and saturated zone of the model.

Dynamic cyclic conditions were reached after running the model

repeatedly for the period 1 January 2001–31 December 2010. A

more detailed description of the approach is presented in the Supple-

mental Material S2.2.

2.3.3 | Evaluation datasets

In situ measurements of soil moisture, evapotranspiration, or water

table depth at appropriate temporal scales (daily/monthly) are not

available for the study area. Therefore, the following remotely sensed

products were used to evaluate the spatial and temporal variation of

model outputs: actual evapotranspiration from Moderate Resolution

Imaging Spectroradiometer (MODIS – MOD16ET); soil moisture from

the European Space Agency Climate Change Initiative (ESA-CCI), and

total water storage from the Gravity Recovery and Climate Experi-

ment (GRACE) (Table 3).

Remote sensing products have shown good performance in

representing seasonality in evapotranspiration (ET), soil moisture, and

total water storage over different regions around the world

(Blatchford et al., 2020; Cleugh et al., 2007; Mayes et al., 2020;

Mutiga et al., 2010). However, absolute values for these remote sens-

ing products used over similar semi-arid dominated environment have

shown great uncertainty. For example: MOD16 ET has shown good

skill in representing monthly fluctuations although it has shown low

values of ET in dry regions, which is mainly attributed to land cover

heterogeneity (Aguilar et al., 2018; Blatchford et al., 2020; Jahangir &

Arast, 2020; Kiptala et al., 2013; Miralles et al., 2016; Trambauer

et al., 2014; Velpuri et al., 2013; Weerasinghe et al., 2020). For soil

moisture, ESA-CCI is only representative of the soil depth between

2 and 5 cm (Brocca et al., 2017); therefore, it cannot be directly com-

pared to the single depth integrated DRYP soil store. Finally, for total

water storage, the uncertainty of GRACE estimates of total water
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storage changes (TWSC) depends on factors such as the post-

processing approach, region, and basin size. For basins smaller than

200 000 km2, the uncertainty increases considerably due to leakage,

therefore, the only GRACE mascons solutions are typically used

(Landerer & Swenson, 2012; Longuevergne et al., 2010; Scanlon

et al., 2012), an approach we follow here for evaluation of DRYP. Here

we performed a correlation analysis between monthly average values

of DRYP outputs to monthly averages of remotely sensed products,

and we present the results in terms of p-values and correlation, r.

Finally, in addition to remote sensing datasets, streamflow obser-

vations, Q, available at the catchment outlet (Archers' Post station)

(Figure 1a) were used for the model performance evaluation. Stream-

flow measurements were available for the period between 01 January

1960 and 12 October 2012. However, due to data gaps encountered

in the period before 01 January 2000, only the period after that date

was used for model evaluation, which also matches the available

period of the IMERG forcing precipitation dataset. Considering the

high variability of flow in dryland ephemeral streams, it is advisable to

TABLE 3 Datasets used for model evaluation (a detailed description is provided in the Supplemental section S2.2).

Name Dataset Res. Freq. Coverage Period Data source Reference

MOD16

ET

Evapotranspiration 500 m

(�0.0045�)
8-day global 2000-present MODIS (land cover,

albedo, leaf area

index, and Enhanced

Vegetation Index)

Mu et al. (2007);

Running et al. (2017)

ESA-CCI Soil moisture 0.25� 1-day global 2000-present combined solution:

passive (radiometer)

and active

(scatterometer/radar)

sensors

Dorigo et al. (2017); Liu

et al. (2011);

Preimesberger et al.

(2021)

GRACE Total water

storage (TWS)

1� 1-month Global 2003-present Mascons solutions (JPL

and CSR)

(Rowlands et al., 2005;

Save et al., 2016;

Watkins et al., 2015)

Note: MODIS: Moderate Resolution Imaging Spectroradiometer, https://lpdaac.usgs.gov/products/mod16a2v006/ (last accessed: 10/02/2022); ESA:

European Space Agency, https://www.esa-soilmoisture-cci.org/ (last accessed: 15/02/2023); GRACE: Gravity Recovery And Climate Experiment, http://

grace.jpl.nasa.gov (last accessed: 20/02/2023).

TABLE 2 Datasets used for model parameterisation, details about the calibration factor k is provided in section 2.4.

Parameter Description Dataset/default values Calibration (k-factor)*

Surface and Overland flow

z Surface elevation SRTM 1 Arc-Second Global dataset Not applicable

zriv River bottom elevation 30th percentile of SRTM 1 Not applicable

Lch Channel length Derived from SRTM 1 Not applicable

kT Recession time for channel streamflow 0.083 h�1* 0.15–0.55

W Channel width 10 m* Not calibrated

Kch Channel saturated hydraulic conductivity (Dai et al., 2019) 0.2–1.0

Unsaturated zone

Ksat Saturated hydraulic conductivity (Dai et al., 2019) 0.1–0.5

ψ Suction head (Dai et al., 2019) Not calibrated

λ Soil pore size distribution (Dai et al., 2019) Not calibrated

θsat Saturated water content (Dai et al., 2019) Not calibrated

θwp Water content at wilting point Derived from (Dai et al., 2019) Not calibrated

θfc Water content at field capacity Derived from (Dai et al., 2019) Not calibrated

D Rooting depth (Leenaars et al., 2018) 0.6–2.0

Saturated Zone

Sy Specific yield GLHYMPS (Gleeson et al., 2014) 0.01–0.2

Kaq Saturated hydraulic conductivity GLHYMPS (Gleeson et al., 2014) 5.0–35.0

fD Effective aquifer depth (Pelletier et al., 2016) Not calibrated

*Range of factor values specified during model calibration (Section 2.4).
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use the longest available dataset for streamflow for model evaluation

(Zoccatelli et al., 2020),

2.4 | Model calibration, sensitivity and uncertainty
analysis

Model calibration was carried out in two stages. First, an initial trial-

and-error calibration of the model was performed to explore the

parameter sensitivities and to reduce the a priori parameter ranges

used in the second step. The calibration was performed by applying

spatially constant multiplicative factors (k), kKsat, kDroot, kKch, kT, kKaq,

and kSy to model parameters Ksat, Droot, Kch, T, Kaq, Sy (Table 1),

respectively, which represent the dominant controls on the storage

and water partitioning of the surface and subsurface components.

The channel width, W, assumed to be constant over the model

domain, was not evaluated because it is combined proportionally

with hydraulic conductivity in the model equations (Quichimbo

et al., 2021), and thus its sensitivity to change is represented by the

parameter kKch. The initial trial-and-error calibration enabled a set of

parameter ranges to be defined for a subsequent stage of model eval-

uation (Table 1). The second stage included a sensitivity analysis of

model parameters through a Monte Carlo type analysis. The number

of simulations used for this analysis was limited to only 500 realiza-

tions due to the long simulation times required for analysis. Each set

of parameters were generated by using a uniform distribution.

To evaluate the performance of each set of parameters in repre-

senting streamflow at the catchment outlet (Archers' Post), we used a

combination of two ‘goodness of fit’ indices: Kling-Gupta Efficiency

(KGE) (Gupta et al., 2009) and per cent bias (PBIAS):

KGE¼1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�1ð Þ2þ α�1ð Þ2þ β�1ð Þ2

q
ð2aÞ

α¼ σS
σO

ð2bÞ

β¼ μS�μO
σO

ð2cÞ

PBIAS %ð Þ¼100 �β ð3Þ

where: O represents the observation, S represent the simulations, r is

the correlation coefficient, β is the bias, μ is the mean and σ is the

standard deviation.

The KGE was used based on its ability to assess the temporal vari-

ability, bias and correlation between observed and simulated data

over a time series, reducing the influence of peak values on the evalu-

ation (Gupta et al., 2009; Krause et al., 2005). This is important to

assess the contribution of low flows (baseflow) from the upstream

areas in the study site. The KGE index already includes the bias term

(β), however, as one of the goals here was to evaluate the water parti-

tioning, the bias between observation and simulation was also explic-

itly evaluated using the PBIAS index.

To evaluate the sensitivity of model outputs to the parameters

set, we specified a threshold for KGE and PBIAS. Thus, models run

with a particular parameter sets which did not meet the threshold

values for either KGE or PBIAS were rejected, whereas the models

with values above that threshold where specified as behavioural.

Threshold values for KGE and PBIAS were specified as 0.5% and

± 20%, respectively, given the high uncertainty of precipitation data-

sets. It is important to note that values of KGE � �0.41 indicate that

simulations are not better than the mean value of the sample (Knoben

et al., 2019).

Finally, in addition to the evaluation of streamflow, the selection

of behavioural models was complemented with a correlation analysis

between the available remote sense datasets (ESA-CCI, MOD16-ET,

and GRACE) and their corresponding simulated values (soil moisture,

actual evapotranspiration, and total water storage). Models were

selected as valid when the correlation was >0.5. Given the uncertainty

of remote sensing data, this threshold is considered to be acceptable,

as it indicates a relationship between two variables.

2.5 | Assessing the sensitivity of water partitioning
to precipitation datasets

To evaluate the sensitivity of water balance components to precipita-

tion forcing, the distributions of mean hydrological fluxes from each

behavioural model for each precipitation dataset were compared. The

impact of precipitation on water partitioning was also evaluated in

each of the climatic zones over the study site, based on the aridity

index (AI: ratio between precipitation and potential evapotranspira-

tion) (Hyper Arid: AI <0.03, Arid: 0.03 < AI <0.2, Semi-Arid:

0.2 < AI <0.5, Dry sub-humid: 0.5 < AI <0.65, and Humid: AI >0.65)

(UNEP, 1992). For this comparison, the ratio between model fluxes

and precipitation was calculated for each behavioural simulation.

Areas for each aridity class were calculated for each precipitation

dataset, thus, each model outputs in a different climatological distribu-

tion depending on the precipitation dataset. Fluxes for each aridity

class were spatially aggregated by averaging all cells within the cli-

matic zone before the normalization.

3 | RESULTS

3.1 | Comparisons between simulated and
observed hydrological variables

The calibration of DRYP resulted in 54, 31, and 95 behavioural

models, as solely based on streamflow at Archer's Post, for MSWEP,

IMERG, and ERA, respectively. At the catchment outlet, the best

models produced values of KGE of �0.65 and PBIAS of �6% for the

MSWEP forcing dataset, KGE of �0.68 and PBIAS of �7%, for

the IMERG dataset, and KGE of �0.66 and PBIAS of �1.7% for ERA-

forced models. Given the complex hydrological conditions of the basin

and the large-scale gridded datasets used to force the hydrological
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model (Bain et al., 2023; Barkhordari et al., 2023; Beck et al., 2020;

Satgé et al., 2021), these evaluation results suggest that calibrated

DRYP models are skilful at simulating streamflow at the catchment

outlet of the Ewaso Ng'iro basin.

The calibrated DRYP models well capture the temporal variation

of streamflow at the basin outlet (Archer's post, Figure 1a) for all three

forcing datasets (Figure 2d), for example, during the large flow events

in March 2003, December 2007 and December 2012, although they

fail to well capture other flow events (e.g., December 2004, March

2010). Overall, there are high correlations between modelled and

measured streamflow for all rainfall forcing datasets (QMSWEP:

r = 0.70, p < 0.001; QERA: r = 0.78, p < 0.001, and QIMERG: r = 0.74,

p < 0.001). However, for smaller flow peaks, model runs forced by

both MSWEP and IMERG tend to underestimate monthly streamflow

values, whereas the ERA runs overestimate medium and low values.

The MSWEP dataset shows the best performance when only the KGE

statistic is considered, yet the ERA dataset performs best when con-

sidering both PBIAS and KGE. Overall, the results thus demonstrate

that the DRYP model can simulate the production of catchment run-

off and its delivery to streams despite its inherent parsimony and sim-

plicity, irrespective of the choice of forcing precipitation and PET

datasets.

Regardless of forcing precipitation data, the behavioural models

also capture well the monthly fluctuations in AET, soil moisture,

streamflow, and changes in TWS over the whole basin (Figure 2),

based on evaluation against MOD16 ET, ESA-CCI soil moisture,

observed streamflow, and GRACE-TWS, respectively. For example,

there is high correlation between monthly average values of modelled

F IGURE 2 Monthly temporal variation over the whole basin: (a) precipitation, (b) actual evapotranspiration (MOD16 ET), (c) soil moisture
(ESA-CCI, (d) observed discharge at the catchment outlet (Archer's Post, see Figure 1), and (e) change in total water storage change, TWSC
(GRACE). Shaded area represents the 95% uncertainty interval estimated from all behavioural models.
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AET and MOD16 ET (Figure S3a, AETMSWEP/MOD16ET: r = 0.81,

p < 0.001; AETERA/MOD16ET: r = 0.85, p < 0.001; and AETIMERG/

MOD16ET: r = 0.82, p < 0.001). Similarly, temporal fluctuations in mod-

elled soil moisture for all precipitation forcing datasets compare well

with ESA-CCI (Figure 2c, SMMSWEP/ESA-CCI: r = 0.69, p < 0.001;

SMERA/ESA-CCI: r = 0.80, p < 0.001, and SMIMERG/ESA-CCI: r = 0.77,

p < 0.001). The contributions of modelled diffuse and focused

recharge and soil water content result in a good representation of

modelled total water storage changes compared with GRACE TWSC

(Figure 2e), despite the small basin size of the Ewaso Ng'iro

(�15 700 km2) compared to the GRACE mascon size. We found sig-

nificant correlation for all precipitation forcing datasets (TWSCMSWEP/

GRACE: r = 0.52, p < 0.001, TWSCERA/GRACE: r = 0.565, p < 0.001, and

TWSCIMERG/GRACE: r = 0.59, p < 0.001). However, it should be noted

that the model simulations consistently show larger fluctuations than

the GRACE TWSC dataset, which can be attributed to the high spatial

resolution of the model domain compared to the GRACE dataset.

Spatially, mean annual outputs from all behavioural models for

each precipitation forcing dataset showed larger areas with good spa-

tial correlation in modelled AET and soil moisture when compared to

MOD16 ET (Figure S3a), and ESA-CCI (Figure S3c) datasets, respec-

tively. For AET, mean annual values for all three models show moder-

ate to strong positive correlation (r >0.6) in semi-arid areas

(Figure S3a) but low and negative correlation in humid areas, particu-

larly around Mount Kenya. Similarly, a positive (>0.5) for most of the

model domain was also obtained for mean modelled soil moisture in

relation to the ESA-CCI dataset (Figure S3b). The results also show a

decrease in performance in humid areas of the southern (Mt. Kenya)

and the northeast parts of the basin (Figure S3b).

3.2 | Spatial variability between gridded
precipitation datasets

A summary of the variability of yearly precipitation across the area is

shown in Table 4 and in the supplemental material. These data have

also been disaggregated according to different aridity classes

(Figure 3b) (Table 3). This analysis shows that the ERA data has a

much larger total precipitation than IMERG and MSWEP (highest

values of mean annual precipitation in ERA are �2020 mm y�1), and

this feature is accentuated in the humid parts of the basin.

Additionally, ERA is the only dataset that shows arid conditions

(AI <0.2) anywhere in the basin (Figure S5), while mean annual precipi-

tation is the highest in semi-arid and sub-humid areas for the IMERG

dataset.

3.3 | Long term variability of water balance
components to precipitation datasets

A summary of the estimated long-term average water balance fluxes

for the basin from all behavioural models is shown in Table 5. Overall,

the analysis shows that AET from the soil is the main mechanism of

water losses from the basin (>720 mm y�1). For all models, AET has

very similar values despite the difference between the precipitation

datasets (Tables 4 and 5). However, AET output from ERA-forced

models shows more uncertainty indicated by much higher variability

in long term average annual values between behavioural models (std

�24 mm y�1) than the other two datasets (std. �10.0 mm y�1 for

both MSWEP and IMERG). AET from riparian areas has nearly identi-

cal values for all datasets, also with low uncertainty (std.

<1.1 mm y�1).

However, large differences arise between ERA and the other two

datasets MSWEP and IMERG for the rest of the water balance com-

ponents. For instance, for overland flow, ERA-calibrated models

showed the highest value (�94 mm y�1), followed by IMERG

(�50 mm y�1), and then by MSWEP (�39 mm y�1), despite the latter

two having very similar annual precipitation. Models forced by

MSWEP and IMERG have similar values of transmission losses

(MSWEP: �21 mm y�1; IMERG: 24 mm y�1), and focused recharge.

However, these values differ considerably from those generated by

ERA-forced models for transmission losses and focused recharge. A

similar pattern of divergence is also seen for diffuse recharge and

groundwater boundary flow (BC), with much larger estimations of

both components for ERA than both MSWEP and IMERG. IMERG

models show higher values of BC than MSWEP models despite both

having similar annual precipitation rates. However, the low values of

BC for MSWEP models are compensated with high values of AETGW

(�15 mm y�1). The highest values of BC and AETGW for ERA models

compensate the highest annual precipitation rates of this dataset.

The analysis shows that the higher precipitation rates within the

ERA dataset are propagated through all fluxes of the Ewaso water

TABLE 4 Spatial variability of precipitation and area within AI classes covered by each precipitation dataset (additional information provided
in Figure S3).

Dataset

Total Arid (AI <0.2) Semi-arid (0.5 < AI <0.5) Sub-humid (0.5 < AI <0.65) Humid (AI >0.65)

Precip.* Precip.* Area Precip.* Area Precip.* Area Precip.* Area

mm y�1 mm y�1 % mm y�1 % mm y�1 % mm y�1 %

IMERG 794 (182) 0 (0) 0 732 (134) 79 1021 (64) 19 1249 (107) 2

MSWEP 800 (225) 0 (0) 0 602 (82) 79 855 (71) 10 1234 (196) 11

ERA 950 (718) 347 (47) 17 658 (149) 48 1088 (108) 9 2020 (620) 26

*Values in brackets are the standard deviation.
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balance, although it has less influence on AET. The amount of AET in

humid areas of the basin depends on the PET and the capacity of the

unsaturated zone to store water. Therefore, since the PET is kept

equal for all model experiments and since annual rates of precipitation

vary most significantly in humid areas for all three datasets (Table 4),

this is to be expected. In riparian areas of the basin, transmission

losses provide additional water to the streambed in comparison to

non-riparian areas, so there is more available water to be returned

to the atmosphere and water can be evaporated at the full potential

rate for much longer periods of time (Table 4).

ERA-forced modelled fluxes also have larger uncertainty, repre-

sented by the high standard deviation between behavioural simula-

tions, in relation to the other datasets. The absolute magnitude of

these uncertainties values seems to be associated to the magnitude

of mean values, with large mean fluxes showing large uncertainties

(e.g., TLERA: coefficient of variation �0.30, whereas TLIMERG and

TLMSWEP have coefficients of variation of �0.34 and � 0.33,

respectively).

3.4 | Spatial variability of water balance
components to forcing precipitation datasets

Figure 3 shows mean annual values of selected components of the

water balance estimated for each precipitation dataset, characterizing

the hydrological response to precipitation forcing. The uncertainty of

these fluxes and state variables are shown in Figure S6. For all the

water balance components presented in Figure 3, there is a marked

difference between models for the different precipitation forcing

datasets.

For AET, all datasets follow the spatial distribution of precipita-

tion, with the highest rates of AET concentrated in humid areas

F IGURE 3 Mean values of yearly
fluxes from all behavioural simulations for
each of the precipitation forcing datasets,
ERA, IMERG, and MSWEP:
(a) Precipitation, (b) Actual
evapotranspiration, (c) soil moisture,
(d) overland flow, (e) focused recharge, (f)
diffuse recharge, and (g) flow exchange
(baseflow – transmission losses).
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(Figure 3b, Figure S7), although these areas are also characterized by

high uncertainty in AET (Figure S7). AET at humid and high-altitude

areas is expected to be limited only by energy demands from the

atmosphere (no water limitation). Therefore, in these areas the maxi-

mum amount of AET equals the rate of PET. In the case of soil mois-

ture, there is low variability between the three datasets, yet their

spatial distribution is mostly consistent with the spatial distribution of

precipitation (Figure 3b). The uncertainty in soil moisture from all

behavioural models is also high in areas where precipitation is high

(Figure S6b). For overland flow, there are marked differences between

all three datasets (Figure 3c). For ERA-forced output, high rates of

streamflow extend from humid and high elevation areas of the basin,

whereas for IMERG and MSWEP, high streamflow occurs farther

away from the humid areas. This indicates that the partitioning of the

higher rates of precipitation into runoff and infiltration for ERA-forced

models is in part propagated into overland flow. Focused recharge fol-

lows the same pattern as runoff (Figure 3e), with ERA-forced output

also widely distributed over the basin and higher rates occurring at

higher elevations in comparison to IMERG and MSWEP. Overland

flow and focused recharge are shown to increase in lowland areas,

which is consistent with the expected cumulative effect of the flow

routing mechanism. Diffuse recharge, on the other hand, behaves in

the opposite manner to focused recharge. Diffuse recharge is mostly

concentrated in humid areas where annual precipitation is also high

and, therefore, it follows a similar spatial distribution to precipitation

(Figure 3e). Finally, Figure 3f shows the spatial distribution of

groundwater-surface water exchange resulting from the difference

between groundwater discharge and recharge, with positive values

indicating water discharging from the aquifer, while negative

values represent aquifer recharge. The distribution of groundwater

discharge for all models generally follows the precipitation distribution

with high discharge rates occurring in humid areas. However, ground-

water is also discharged at mountain flanks of low, more arid areas.

Figure 4 illustrates the variability of selected components of the

water balance across different elevations. In general, models forced

with IMERG and MSWEP show similar values across the elevation

gradient for the selected fluxes. However, this pattern significantly

differs for ERA-forced models, where the high precipitation gradient

results in considerably higher values of infiltration (Figure 4b) and dif-

fuse recharge (Figure 4f) at higher elevations. Additionally, the

increased precipitation at higher elevations (>3000 m) translates into

transmission losses (Figure 4d) and focused recharge (Figure 4e) in

lowland areas. AET values for the three datasets remain consistent

across elevations, although higher rates are observed at mid eleva-

tions (2000–2800 m) for the ERA dataset. These elevational differ-

ences in AET are reasonable since water-limited conditions are not

met in the uplands where more water is available for evaporation

based on the ERA dataset at mid-elevations due to its higher

precipitation.

3.5 | Variability of water balance partitioning
across climatic zones

Figure 4 shows AET, diffuse and focused recharge for each forcing

dataset and for the aridity index classes. The differences between the

normalized fluxes of each dataset represent the influence of the vari-

ability in the magnitude of the precipitation on each AI class.

In general, Figure 5 highlights the increased influence of water

losses through AET as aridity increases. The switch from energy to

water limited conditions, already explained in previous sections, are

the main mechanisms that control this process. In contrast, diffuse

TABLE 5 Yearly mean and standard deviation (parentheses) long-term average components of the water balance for the Upper Ewaso Ng'iro
basin; all values were estimated using all behavioural simulations for the three forcing datasets: MSWEP, ERA, and IMERG.

Flux

Forcing dataset

IMERG MSWEP ERA

Mean (Std.) [mm y�1] Mean (Std.) [mm y�1] Mean (Std.) [mm y�1]

Precipitation (P) 794 800 950

Infiltration (I) 749 (8) 755 (7) 858 (17)

Actual Evapotranspiration (AET) 728 (10) 723 (10) 738 (24)

Riparian evapotranspiration (AETRP) 5 (1) 5 (1) 5 (1)

Overland flow (OF) 50 (8) 39 (7) 94 (17)

Transmission losses (TL) 24 (8) 21 (7) 105 (32)

Diffuse recharge (Rdif) 21 (2) 32 (3) 120 (7)

Focused recharge (Rfoc) 19 (7) 16 (6) 100 (31)

Streamflow (Q) 35 (4) 35 (4) 42 (7)

Baseflow (BF) 9 (4) 18 (4) 54 (22)

Groundwater flow at boundary (BC) 30 (11) 15 (8) 147 (41)

Capillary rise (AETGW) 1 (1) 15 (3) 19 (3)
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recharge decreases as aridity increases, with less diffuse recharge

occurring in arid and semi-arid areas for all datasets (Figure 5d–f).

ERA-forced models which have the highest values of precipitation in

humid areas also show the highest values (�15.8%) of normalized dif-

fused recharge in comparison to both IMERG (�2.5%) and MSWEP

(�5.5%). Thus, the highest rates of precipitation are propagated into

the diffuse recharge of humid areas. It can also be seen that despite

both IMERG and MSWEP datasets having similar mean annual values

of precipitation in humid areas, normalized values of diffuse recharge

differ for both models. This can be attributed to the spatial variability

of precipitation over the humid area, with higher precipitation rates

and larger humid areas for the MSWEP dataset in comparison to

IMERG (see Figure S2, Table 4).

The opposite happens with normalized focused recharge, where

higher values are observed in semi-arid and sub-humid areas

(Figure 5g,h) in comparison to humid areas (Figure 5i). Models capture

the increasing influence of focused recharge in increasingly arid areas

of the basin. Results also reflect that for higher precipitation rates

(e.g., in ERA), DRYP propagates those high rates into focused

recharge, which in turn becomes the main source of aquifer recharge

in arid and semi-arid areas. Similar results are shown for both MSWEP

and IMERG where the normalized values also increase in drier areas.

Figure 6 shows how recharge components (diffuse (a) and

focused (b)) and total recharge (c) vary with mean annual precipitation

(MAP) rates. As expected, diffuse recharge increases as MAP

increases, and this trend across different precipitation ranges follows

a similar pattern of long-term annual groundwater recharge values

(LTAR) compared to precipitation totals documented for the entire

African continent by (MacDonald et al., 2021). Diffuse recharge

decreases under dry conditions for all datasets (Figure 6). It can also

be seen that our model generally produces lower values in comparison

to LTAR although the range of variation in LTAR (error bars represent

1-standard deviation) is also high and increases with MAP. Both,

IMERG and MSWEP systematically underestimate diffuse recharge

for precipitation rates above 400 mm y�1 when compared to values

reported in the literature (LTAR, MacDonald et al. (2021)). The ERA

dataset seems to produce similar values of diffuse recharge (DRYPERA:

�400 mm y�1, LTAR: �400 mm y�1) for precipitation rates above

1400 mm y�1. However, below 1400 mm y�1, ERA shows similar

values of diffuse recharge to both IMERG and MSWEP. The opposite

pattern occurs with modelled focused recharge, which decreases with

rising MAP. The range of variation for simulated focused recharge is

also high but it decreases considerably with MAP. It can also be seen

that the highest values of focused recharge are considerable higher

than the corresponding values of MAP. These high values of recharge

mainly occur in lowland areas (Figure 3), indicating that the main

source of focused recharge is runoff coming from upland areas.

Figure 6c clearly illustrates the increasing contribution of focused

recharge to the total groundwater recharge as the precipitation

declines in arid parts of the basin. In the case of focused recharge,

ERA and MSWEP shows more consistent results between these two

datasets for all ranges of precipitation rates, but they differ with the

F IGURE 4 Variation of mean annual values of hydrological fluxes against elevation for: (a) precipitation, (b) infiltration, (c) actual
evapotranspiration, (d) transmission losses, (e) focused recharge, and (f) diffuse recharge. Mean annual values of each flux across the entire model
domain were grouped into elevation ranges of 400 m. Error bars represent the standard deviation, but the size of error bars has been reduced
10-fold to improve the visualization.
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IMERG dataset at precipitation rates of 600 mm y�1, range at which

IMERG has the highest values (IMERG: �150 mm y�1, MSWEP:

�92 mm y�1, and ERA: �90 mm y�1). It can also be seen that ERA

shows considerably high values of focused recharge (�405 mm y�1)

at the lowest precipitation rates (�200 mm y�1) appearing only in this

dataset.

F IGURE 5 Uncertainty of water fluxes normalized by precipitation using all behavioural models for each climatological zone: actual
evapotranspiration from all sources (AETUZ, AETRUZ, and AETGW) for arid and semi-arid (a), dry sub-humid (b), and humid zones (c); focused
recharge for arid and semi-arid (d), dry sub-humid (e), humid zones (f); and diffuse recharge for arid and semi-arid (g), dry sub-humid (h), and
humid zones (i). Estimates correspond to mean yearly values.

F IGURE 6 Variation of groundwater recharge components in relation to mean annual precipitation (MAP): (a) Diffuse recharge, (b) Focused
recharge, and (c) Total recharge (Diffuse + Focused). Values of recharge corresponds to average of mean yearly values of all behavioural
simulations. Values of precipitation are binned in 200 mm y�1 bins. Error bars correspond to the standard deviation of all cells falling in each bin.
Light colours in bar plot correspond to focused recharge, whereas dark colours diffuse recharge.
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4 | DISCUSSION

The analysis shows that the choice of input precipitation dataset has

important implications for the spatial distribution and temporal vari-

ability of water balance components (Figure 3). In general, the ERA

dataset shows significantly higher precipitation values in humid areas,

whereas IMERG and MSWEP have more consistent values across the

model domain. It is important to highlight that the ERA re-analysis

gridded datasets have been found to under-perform at high eleva-

tions, with a positive bias increasing with elevation (Jiao et al., 2021).

Despite spatial and temporal differences between the three datasets,

they produce behavioural simulations that effectively capture the

temporal variation of specific water balance components, such as

streamflow, soil moisture, actual evapotranspiration, and total water

storage change. This performance was evaluated against streamflow

observations and the corresponding remote sensing data (Figure 2).

The ERA dataset shows significantly higher magnitudes of transmis-

sion losses and focused recharge estimates than the other two

datasets.

Differences in components such as transmission losses, ground-

water recharge, and outflow through basin boundary (see Table 4)

may suggest that precipitation variability has a greater impact on

water partitioning than model calibration. To close the water balance

of the basin, the calibration makes mainly a tread-off of unconstrained

components by increasing or decreasing their magnitude. For exam-

ple, for the ERA dataset, fluxes, such as transmission losses and base-

flow become more relevant in comparison to outflow as streamflow

at the catchment outlet, whereas the opposite occurs for IMERG and

MSWEP datasets (see Table 4). These differences have important

implications when assessing the availability of water resources since

the choice of precipitation dataset may show great spatial and tempo-

ral differences on water fluxes within the study area.

The hydrological fluxes estimated in the Ewaso Ng'iro basin show

greater consistency with the IMERG and MSWEP datasets compared

to the ERA dataset. For instance, AET accounts for over 90% of total

precipitation in both the MSWEP and IMERG datasets, whereas in the

ERA dataset, this percentage drops to around 78%. These percentages

vary significantly based on climatic conditions (Figure 5a–c). In humid

areas, where AET operates under energy-limited conditions, the vari-

ability in precipitation has less impact on estimated AET rates because

evaporation occurs at potential evapotranspiration rates

(Budyko, 1961; Gudmundsson et al., 2016; Padr�on et al., 2017). Con-

versely, in arid regions, where AET is primarily water-limited, it

becomes more sensitive to precipitation variability. In this context,

having more consistent precipitation datasets for arid and semiarid

areas would greatly improve water partitioning quantification in these

regions. In the case of humid areas, it is essential to assess how the

variability in PET may influence AET estimations.

Groundwater recharge also exhibits significant differences

between the datasets. On one hand, for precipitation rates

>1200 mm y�1 (corresponding to humid areas), the ERA dataset

shows more consistent values for diffuse recharge compared to the

LTAR dataset (Figure 6). This suggests that diffuse recharge

estimations are sensitive to higher precipitation rates, but it also raises

the possibility that IMERG and MSWEP precipitation datasets might

underestimate precipitation within humid areas. On the other hand,

focused recharge also shows differences, particularly in the more arid

areas where precipitation rates are lower (Figure 6). Despite the varia-

tions between datasets, the model results align broadly with the

expected mechanisms governing diffuse and focused recharge, as sup-

ported by previous field observations in predominantly dry climatic

conditions (Cuthbert et al., 2019; MacDonald et al., 2021).

Finally, the variability between precipitation datasets character-

ized by differences in precipitation gradients (see Figure 3 and

Table 4) also impacts the uncertainty of model estimates for water

balance components. As shown in Table 4, the ERA dataset, which

exhibits the highest rates of precipitation results in wider ranges of

fluxes, compared to other datasets (see Figure 5). This, in addition to

the substantial differences between the water balance components

indicates that a careful consideration of estimated flux magnitudes is

essential due to the high uncertainty (Figure 5 and S2). Reducing this

uncertainty will require more accurate information as well as the

incorporation of more evaluation datasets such as water table depth

or streamflow at different locations within the model. This will help to

constrain water balance components that are not possible to be

directly evaluated.

5 | CONCLUSION

The present study analysed the influence of the spatial and temporal

variability of precipitation forcing datasets on water partitioning of

the Upper Ewaso Ng'iro basin using a dryland hydrological model

(DRYP). Three precipitation datasets with high spatial and temporal

resolution, IMERG, ERA and MSWEP, were used for the analysis. The

model was evaluated against flux and storage observations from

remote sensing datasets (ESA, MOD16 ET, and GRACE) and stream-

flow observations available at the catchment outlet. Overall, results

show good performance of the model in representing soil moisture,

actual evapotranspiration, total water storage and streamflow. Based

on the analysis, the following conclusions can be drawn.

Spatial and temporal variability within each precipitation dataset

results in high variability in water balance components for the Upper

Ewaso Ng'iro basin. For each dataset, the spatial distribution of fluxes

and hydrological states are consistent with the spatial distribution of

the precipitation dataset. Precipitation datasets exhibiting higher pre-

cipitation gradients with elevation, such as the ERA dataset, produce

larger ranges of variation of transmission losses, as well as diffuse and

focused recharge. Actual evapotranspiration is consistent for all forc-

ing datasets with water limited and energy limited conditions control-

ling the rates of actual evapotranspiration in arid and semi-arid, and

humid areas, respectively.

The spatial and temporal variability within precipitation datasets

also affect the uncertainty of hydrological fluxes. The forcing dataset

with the highest spatial precipitation gradient results in wider ranges

of infiltration, actual evapotranspiration, transmission losses, and
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focused recharge. More accurate representation of the spatial

and temporal variability of precipitation of gridded datasets is required

to reduce the uncertainty of water balance components. In turn, this

will result in more consistent estimates of the spatial variability of

water balance components over the basin.

In the Upper Ewaso Ng'iro basin, the three precipitation datasets

showed relatively similar performance across the evaluated metrics of

soil moisture, actual evapotranspiration, total water storage anoma-

lies, and streamflow. Among these datasets, the ERA precipitation

dataset showed the best performance for representing actual evapo-

transpiration (r = 0.78) and soil moisture (r = 0.85). MSWEP showed

the best performance for representing streamflow (KGE = 0.68),

whereas IMERG showed the best performance in representing TWSA

(r = 0.59). These variations in performance across specific variables

suggest that each dataset contains relevant information related to the

evaluated variables.

Finally, considering the variability of forcing datasets, exploring a

broader range of spatial and temporal variability in precipitation and

potential evapotranspiration for quantifying water partitioning will

also aid in reducing uncertainty. Utilizing tools to explore the stochas-

tic behaviour of forcing datasets (e.g., stoPET v1.0 Asfaw et al. (2023),

STORM (Rios Gaona et al., 2023; Singer et al., 2018) will help under-

stand how the variability in forcing datasets impacts different compo-

nents of the water balance, thereby improving model estimations.

This, in turn, will enhance our understanding of the influence of cli-

mate change variability on surface and subsurface water balance com-

ponents, particularly groundwater. Addressing the high uncertainty of

current estimations regarding the effects of climate change on

groundwater (IPCC6, 2021), is crucial, especially in water-scarce dry-

land regions.
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