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A B S T R A C T

A grass-based livestock farm will typically be partitioned into a set of fields which may not be contiguous.
The livestock in question will be distributed among these fields plus a set of buildings. This distribution will
change over time as a result of livestock being routed between different locations. This change in distribution
is not a random process. It is instead planned by the farmer to satisfy a set of constraints while minimising
workload. The set of constraints in question are designed to maximise the performance of the farm and, in
many cases, will be large.

In this work, we refer to the above planning problem as the Livestock Routing Problem (LRP). We propose
modelling the LRP as an integer program, which is a specific type of mathematical optimisation problem.
Our model is general in nature whereby many farming activities can be incorporated. These activities include
rotational grazing, silage production and livestock breeding.

In our analysis we consider many different instances of the LRP and attempt to solve these instances
using an off-the-shelf integer program solver. In most cases, an optimal or close to optimal solution is found in
reasonable time. These results demonstrate that the proposed methods could be used within a decision support
system for livestock farmers and, in turn, reduce the workload associated with the routing of livestock.
1. Introduction

The practice of agriculture creates the majority of our world’s food.
In the United Kingdom (UK) agriculture activity accounts for 71% of
total land use and has a total labour force of 472 thousand working
on commercial farms (Department for Environment, Food and Rural
Affairs, 2020). Agricultural activity can be divided into two main types,
arable farming and livestock farming. Arable farming concerns the
production of crops while livestock farming concerns the production of
products such as meat and milk through the breeding of animals. The
proportions of UK agricultural land dedicated to each of these types of
farming is 72% and 27% respectively.

One of the main types of livestock farms in the UK is cattle farms.
Grass is the predominant feed source on such farms and this is at-
tributed to the suitability of the climate for grass growth (Higgins et al.,
2019). The average grass- or pasture-based cattle farm in the UK is
about 50 hectares in size and has a herd size of about 150 (Department
for Environment, Food and Rural Affairs, 2020). In most farms, the
cattle will spend most of their time directly grazing in fields where
the grass grows. However, in the winter time when the conditions are
poor and grass growth is limited, the cattle will typically spend time
indoors eating fodder such as silage. Although the statistics presented
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above relate specifically to the UK, similar statistics are observed in
many European countries.

A grass-based farm will typically be partitioned into a set of smaller
fields. It is not uncommon for the fields in question to be many
kilometres apart. The livestock will be distributed among these fields
plus a set of buildings and this distribution will change over time.
This distribution is not random; instead, it is planned by the farmer
in order to satisfy a set of constraints while minimising workload. The
set of constraints in question is designed to maximise the performance
of the farm and, in many cases, this set will be large. Examples of
possible elements in this set include the following. Ensuring cattle being
fattened for sale are isolated from other cattle so that additional more
expensive feed (e.g. pelleted feeds) can be made available to them
alone. Ensuring sufficient land is set aside during the summer period
to grow and harvest the fodder necessary for the winter period when
growth levels are significantly less.

As evident from the examples above, satisfying many of the con-
straints involves the routing of cattle between different locations. Cattle
are not domestic animals like cats and dogs, which can easily be ma-
nipulated. Therefore routing cattle between locations has a significant
workload and generally requires a team of people. Given this workload,
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a farmer must plan his/her actions to ensure this activity is minimised
while still satisfying the constraints in question. In this work, we refer
to this planning problem as the Livestock Routing Problem (LRP). Note
that this name is derived from the vehicle routing problem, which
concerns the problem of routing vehicles as opposed to cattle. Given the
large number of constraints and variables involved, it may be challeng-
ing for a farmer to manually solve the LRP optimally. To overcome this
challenge, in this work we propose modelling the LRP as an integer pro-
gram. This model is general in nature whereby many farming activities
including rotational grazing, silage production and livestock breeding
can be formulated. We propose to solve such instances using an existing
integer program solver. To the authors’ knowledge, this represents the
first work to model and solve the problem in this way.

The main contributions of this paper are the following:

• We define the Livestock Routing Problem (LRP), which concerns
the routing of livestock between different farm locations.

• We propose an integer program model of the LRP.
• We demonstrate that many farming activities can be formulated

as instances of this model.
• We demonstrate that an off-the-shelf integer program solver can

be used to determine useful solutions to problem instances of
varying sizes in reasonable time.

The remainder of this paper is structured as follows. In Section 2
we review related works on optimising livestock farms and routing.
In Section 3 we describe how the LRP can be modelled as an integer
program. In doing so, we demonstrate how many common livestock
farming activities correspond to instances of this model. In Section 4
we present an evaluation of the proposed approach for solving such
instances. Finally, in Section 5 we conclude this work and discuss
possible directions for future research.

2. Literature review

In this section, we first review related works on the application of
optimisation methods to livestock farms. We then review related works
on routing.

The use of data science and Internet of Things (IoT) technologies
to help optimise the operation of livestock farms is an emerging field
of research (Shalloo et al., 2021). Systems which aim to help perform
this task are commonly referred to as decision support systems in the
literature (Shalloo et al., 2018). In the following, we present a review
of works most relevant to the current research. However, several more
in-depth articles reviewing the entire field exist (Akhigbe et al., 2021;
Benos et al., 2021; Hostiou et al., 2017; Michie et al., 2020; Shalloo
et al., 2021; Wolfert et al., 2017).

The ‘grass wedge’ is a visualisation technique used to represent the
relationship between the amount of grass and the number of livestock
in individual fields (Macdonald et al., 2010). This technique aims to
support decisions regarding the assignment of livestock to fields to
maximise the use of grass. In a related work, Hanrahan et al. (2017)
proposed a system for measuring grass growth in individual fields
and used this information to assign livestock to fields. Higgins et al.
(2019) proposed the use of data-driven approaches to soil nutrient
management to maximise grass growth. French et al. (2015) proposed
combining a system for measuring grass with virtual fencing, which
is a technology that allows livestock movement to be restricted to a
subset of a larger field using a virtual fence. Woodward et al. (1995)
proposed a method for optimising rotational grazing of fields where
fields are given time to recover between periods of being grazed by
cattle. This problem is also referred to in the literature as pasture
allocation. Several works have considered data-driven approaches to
improving livestock breeding decisions (Mottram, 2016; Saint-Dizier &
Chastant-Maillard, 2018). In some situations, individual livestock will
need to be separated from others. This task is known as ‘cow drafting’
2

and several systems have been proposed to automate it (Shalloo et al.,
2021). Bach and Cabrera (2017) proposed a data-driven system for
personalised or precision feeding of livestock whereby each animal is
assigned a different feeding policy based on their characteristics. In
related work, Cabrera et al. (2020) proposed a system for assigning sets
of cattle with the same feeding policy to fields or buildings. The above
review demonstrates that several works have previously considered the
problem of assigning livestock to different locations, such as fields and
buildings, to achieve a given objective. However, none of these works
have considered the problem of routing livestock between different
locations, which must first be solved to achieve a given assignment.
Modelling and optimising this routing problem represents the main
contribution of the current work.

Although, we argue, modelling and optimising the routing of live-
stock is a novel problem, many related routing problems have been
studied in other domains. In fact, routing is a ubiquitous activity per-
formed in many contexts including, by packets in computer networks,
people driving vehicles in street networks and autonomous drones on
different planets. In the following we present a review of those works
most relevant to the current research. A more in-depth review of works
in this area can be found in Toth and Vigo (2002). The assignment
problem is a classic optimisation problem which involves finding a
matching in a weighted bipartite graph such that the sum of weights of
the matching edges is minimum. A matching in a graph is a set of edges
without common vertices. Many routing problems can be formulated
as an assignment problem. For example, Fisher and Jaikumar (1981)
formulated the problem of using a fleet of drivers to deliver products
stored at a central depot to customers as an assignment problem. The
Travelling Salesman Problem (TSP) is the most famous routing and
combinatorial optimisation problem. Given a set of locations, the TSP
is concerned with the problem of determining the shortest route that
visits each location and then returns to the first location (Applegate
et al., 2011). The Vehicle Routing Problem (VRP) is another routing
problem. Given a set of locations and a set of vehicles, the VRP concerns
determining the shortest set of vehicle routes such that each location is
visited by one vehicle and all vehicles return to a start location when
complete (Toth & Vigo, 2002). When there is only one vehicle, the
VRP reduces to the TSP. There are also many generalisations of the
VRP that involve adding additional constraints to the problem. These
include adding capacity constraints so that vehicles have a maximum
carrying capacity, and adding constraints so that each location can only
be visited within a specific time window.

Another related routing problem is the orienteering problem. This
problem concerns achieving the maximum total score obtained from
visiting locations subject to a constraint on the total distance which
can be travelled (Gunawan et al., 2016). Similar to the VRP, there
are many generalisations of the orienteering problem. These include
the team orienteering problem, which involves a team instead of a
single agent, attempting to achieve a maximum total score. Parker et al.
(2020) considered the problem of routing patients between different
hospitals to maximise care. This problem is distinct from the LRP
proposed in this work but contains some similarities. For example,
in the former, individual hospitals have patient capacity constraints
and therefore patients are routed between different hospitals to satisfy
these constraints. In the latter, individual fields have livestock capacity
constraints and therefore livestock are routed between different fields
to satisfy these constraints.

3. Problem statement

As described in the introduction, the LRP concerns the problem of
optimising livestock routing on farms. In this section, we describe how
the LRP can be modelled as an integer program. Broadly speaking, this
model aims to minimise the work required to successfully perform the
routing in question. Minimising this work has many potential benefits
such as reducing operational costs and improving the sustainability

of farming. The remainder of this section is structured as follows. In
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Table 1
Summary of model parameters and variables.
Parameter Description

𝑛 Number of livestock.
𝑚 Number of locations (fields or buildings).
𝑡 Number to time steps.
𝑤𝑘𝑘′ Number of units of works required to route a set of livestock from location 𝑘 to location 𝑘′.
𝐶𝐸 Set of equality constraints.
𝐶𝐼 Set of inequality constraints.

Variable Description

𝑎𝑖𝑗𝑘 Equals 1 if and only if at timestep 𝑖, animal 𝑗 is assigned to location 𝑘. Otherwise, this variable equals 0.
𝑧𝑖𝑘𝑘′ Equals 1 if and only if one or more livestock are routed from location 𝑘 to location 𝑘′ between timesteps 𝑖 and 𝑖 + 1.
a
l
𝑖

o

Section 3.1 we formally define the model. In Section 3.2 we then
demonstrate how common livestock farming activities can be formu-
lated as instances of this model. Finally, in Section 3.3 we present a
formal computational complexity analysis of the proposed model.

3.1. Model of livestock routing

In this section we present a formulation of the LRP as an integer
program. A summary of the corresponding parameters and variables is
provided in Table 1. For a given farm, let there be 𝑛 cattle, 𝑚 fields
r buildings, and 𝑡 timesteps over which modelling is performed. A
imestep can be any duration such as a day or week and depends on
he resolution one wishes to perform modelling. In the remainder of
his article, we refer to fields and buildings as locations. We model
he assignment of livestock to locations at each timestep as an integer
alued tensor 𝐴 = (𝑎𝑖𝑗𝑘) ∈ {0, 1}𝑡×𝑛×𝑚 subject to the constraint that
𝑚
𝑘=1 𝑎𝑖𝑗𝑘 = 1 for all values of 𝑖 and 𝑗. The variable 𝑎𝑖𝑗𝑘 equals 1 if and

nly if at timestep 𝑖, animal 𝑗 is assigned to location 𝑘. Otherwise, this
variable equals 0. The constraint ∑𝑚

𝑘=1 𝑎𝑖𝑗𝑘 = 1 for all values of 𝑖 and 𝑗
ensures that, at each timestep 𝑖, each animal 𝑗 is assigned to a single
location.

Now, let 𝑊 = (𝑤𝑖𝑗 ) ∈ R𝑚×𝑚 be the matrix where the value 𝑤𝑘𝑘′

equals the number of units of work required to route a set of animals
from location 𝑘 to location 𝑘′. A unit of work may correspond to
a person-hour and depends on how the modeller wishes to perform
this quantification. We assume the diagonal elements of 𝑊 equal zero
because it requires zero work to route livestock between two locations
which are the same location. Note that, the values 𝑤𝑘𝑘′ may not be
uniform and may instead vary as a function of the relationship between
the locations in question. For example, the amount of work required to
route an animal between two adjacent fields sharing an entrance will
typically be less than that required to route an animal between two
fields many miles apart. Furthermore, 𝑊 may not be symmetric; that
is, 𝑤𝑘𝑘′ may not equal 𝑤𝑘′𝑘. This would occur if the work required to
round up and sort cattle varies between locations. Finally, we assume
that each of the variables 𝑤𝑘𝑘′ is a constant and does not vary as a
function of the number of cattle being routed between 𝑘 and 𝑘′. We
believe this to be a reasonable approximation of reality. For example,
it requires appropriately the same amount of work to route two animals
between a pair of fields as it does to route a single animal between the
same pair of fields.

Let 𝐶𝐸 and 𝐶𝐼 be sets of equality and inequality constraints respec-
tively. These are defined with respect to the tensor 𝐴. For example,
a possible constraint in the set 𝐶𝐸 is the following. Consider the case
where the farmer in question requires field 𝑘 to be set aside during
timestep 𝑖 to grow silage. This requirement can be modelled using the
equality constraint ∑𝑚

𝑗=1 𝑎𝑖𝑗𝑘 = 0. Note that, different instances of the
LRP will be parameterised by different values of the above variables.
For example, different farms may have a different number of livestock
𝑛, a different number of locations 𝑚, and different sets of constraints
𝐶𝐸 and 𝐶𝐼 .

The LRP concerns the problem of assigning livestock to locations
3

such that all constraints are met and the cost of routing livestock
between different locations is minimised. We formulate this problem
as the following integer program (IP) where 𝐴 is the single decision
variable and all other variables are auxiliary or constant parameters.

min
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ (1a)

s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (1b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (1c)

𝑐 = 0, ∀ 𝑐 ∈ 𝐶𝐸 (1d)

𝑐 ≤ 0, ∀ 𝑐 ∈ 𝐶𝐼 (1e)

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (1f)

Here, the tensor 𝑍 = (𝑧𝑖𝑘𝑘′ ) = {0, 1}𝑡−1×𝑚×𝑚 defined in Eq. (1c) is an
uxiliary variable. The variable 𝑧𝑖𝑘𝑘′ equals 1 if and only if one or more
ivestock are routed from location 𝑘 to location 𝑘′ between timesteps
and 𝑖 + 1. Otherwise, this variable equals 0. The objective function

in Eq. (1a) can be interpreted as follows. The indices 𝑖, 𝑘 and 𝑘′ iterate
ver timesteps, locations and locations respectively. The variable 𝑧𝑖𝑘𝑘′

is multiplied by the variable 𝑤𝑘𝑘′ , which equals the amount of work
required to route a set of livestock between the locations in question.
Therefore, the summation in Eq. (1a) is a sum of the work required to
route livestock between locations. As discussed above, the constraint
∑𝑚

𝑘=1 𝑎𝑖𝑗𝑘 = 1 for all values of 𝑖 and 𝑗 ensures that, at each timestep 𝑖,
each animal 𝑗 is assigned to a single location. The constraint sets 𝐶𝐸

and 𝐶𝐼 will vary between problem instances. An example constraint in
the set 𝐶𝐸 is described above. The integer valued constraint 𝑎𝑖𝑗𝑘 ∈ {0, 1}
for all values of 𝑖, 𝑗 and 𝑘 in Eq. (1f) ensures that, at any given time,
an animal is either assigned or not assigned to a given location. That
is, they cannot be half assigned to one location and half assigned to
another location at the same time.

The above model of the LRP attempts to minimise the total sum of
units of work. Consider the case where a unit of work corresponds to
one person-hour. If we assume a single person works a given number of
hours per day/week, the model may be used to determine the number
of full-time jobs necessary to perform all the routing tasks in question.
This information could, in turn, be used by managers and stakeholders
to make higher-level strategic decisions.

3.2. Problem instances

The LRP model presented in the previous section is deliberately
very general. Consequently, many common livestock farming activities
can be formulated as instances of this model. In this section, we
demonstrate this by considering five such activities and present the

corresponding formulations.
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3.2.1. Continuous and rotational grazing
In a grass-based system, there are two main livestock grazing poli-

cies implemented by farmers. In a rotational grazing policy, fields are
left unoccupied between periods of grazing by livestock. The motiva-
tion for this is to permit the recovery and growth of fields after grazing.
In a continuous grazing policy, livestock graze fields continuously
and fields are not left unoccupied between periods of grazing. We
now describe how continuous and rotational grazing policies can be
formulated as instances of the proposed model.

To implement a continuous grazing policy, the number of livestock
grazing in each field must be less than or equal to a corresponding
feeding capacity at each timestep. This can be achieved by adding
a corresponding inequality constraint for each field to the set 𝐶𝐼 .
pecifically, for a field with index 𝑘 and continuous feeding capacity
f 𝑥𝑘, the inequality constraint in question is defined as:
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 ≤ 𝑥𝑘, ∀ 𝑖 = 1,… , 𝑡. (2)

Integrating this constraint into the original optimisation problem
efined in Eq. (1) gives the following optimisation problem:

in
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ (3a)

s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (3b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (3c)

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 − 𝑥𝑘 ≤ 0, ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (3d)

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (3e)

There are several ways that one could define a rotational grazing
policy. In this work, we define such a policy as follows. Let 𝑝, 𝑞 ∈ Z,
where 𝑝 ≥ 𝑞, be two user-defined model parameters. A rotational
grazing policy ensures that, for each field, each contiguous sequence
of 𝑝 + 1 timesteps contains at most 𝑞 timesteps where livestock are
assigned to the field in question. To implement this policy we introduce
an auxiliary variable 𝐺 = (𝑔𝑖𝑘) ∈ {0, 1}𝑡×𝑚, defined as follows:

𝑔𝑖𝑘 = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘). (4)

An individual value 𝑔𝑖𝑘 indicates whether or not at timestep 𝑖, one
or more animals are assigned to field 𝑘. Given this, a rotational grazing
policy is implemented by adding the following inequality constraint to
the set 𝐶𝐼 :
𝑖+𝑝
∑

𝑖′=𝑖
𝑔𝑖′𝑘 ≤ 𝑞, ∀ 𝑖 = 1,… , 𝑡 − 𝑝, 𝑘 = 1,… , 𝑚. (5)

Integrating this constraint into the original optimisation problem
defined in Eq. (1) gives the following optimisation problem:

min
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ (6a)

s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (6b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (6c)

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 − 𝑥𝑘 ≤ 0, ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (6d)

𝑖+𝑝
∑

𝑔𝑖′𝑘 − 𝑞 ≤ 0, ∀ 𝑖 = 1,… , 𝑡 − 𝑝, 𝑘 = 1,… , 𝑚 (6e)
4

𝑖′=𝑖
𝑔𝑖𝑘 = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘), ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (6f)

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (6g)

The above formulation also includes gazing capacity constraints
in Eq. (6d). A farmer will set the gazing capacity values 𝑥𝑘 in conjunc-
tion with the value 𝑞. For example, if higher gazing capacity values are
set, then fields will need a greater time to recover and, in turn, a higher
value of 𝑞 will be required.

3.2.2. Silage production and winter housing
In many countries, it is not possible to perform rotational or con-

tinuous grazing all year due to seasonal variations in grass growth
levels and weather conditions. For example, during the winter season
in the UK and Ireland, grass growth is too small and weather conditions
are too inclement for livestock to graze outdoors. To overcome this
challenge farmers in such countries typically use a policy whereby they
set aside fields during the summer to grow a feed known silage, which
is then stored. Subsequently, during the winter season, farmers house
livestock in buildings and feed them this silage. The policy can be
implemented by adding two constraints to the original LRP.

The first constraint concerns ensuring that the fields to be set
aside during the summer season are assigned zero livestock during this
period. Let 𝐹 be the set of fields to be set aside and let 𝐺 be the set
of timesteps during which they are to be set aside. The constraint in
question can be achieved by adding the following equality constraints
to the set 𝐶𝐸 :
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 = 0, ∀ 𝑖 ∈ 𝐺, 𝑘 ∈ 𝐹 . (7)

The second constraint concerns ensuring that, during the winter
season, all livestock are assigned to buildings. Let 𝐻 be the set of
timesteps corresponding to the winter season and let 𝐵 be the set of
buildings to which livestock should be assigned during this period.
Recalling that 𝑛 is the number of livestock, the constraint in question
can now be achieved by adding the following two equality constraints
to the set 𝐶𝐸 :
∑

𝑘∈𝐵
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 ∈ 𝐻, 𝑗 = 1,… , 𝑛 (8)

∑

𝑘∈𝐵
𝑎𝑖𝑗𝑘 = 0, ∀ 𝑖 ∉ 𝐻, 𝑗 = 1,… , 𝑛. (9)

The first constraint ensures that, for all timesteps in 𝐻 , all livestock
are assigned to buildings in 𝐵. Meanwhile, the second constraint en-
sures that, for all timesteps not in 𝐻 , zero livestock are assigned to
buildings in 𝐵.

3.2.3. Livestock breeding
The breeding of new livestock is also an important activity on many

farms. For example, on cattle farms a subset of cows will produce
a new calf each year and the successful management of this process
requires the farmer to implement several policies. We now describe
three such policies and see how they can be formulated as instances
of the proposed model.

A farmer will typically wish to implement a policy whereby one
year old cows, known as heffors, are not assigned to the same location
as a mature unneutered bull. The purpose of this is to ensure the
heifers do not become pregnant which would negatively impact their
growth and development. Let 𝑆 and 𝑆′ be the sets of bulls and heifers
respectively and let 𝐺 be the set of timesteps where these two sets must
be separated. The policy in question can be implemented by adding the
following equality constraint to the set 𝐶𝐸 :

𝑎 𝑎 = 0, ∀ 𝑖 ∈ 𝐺, 𝑗 ∈ 𝑆, 𝑗′ ∈ 𝑆′, 𝑘 = 1,… , 𝑚. (10)
𝑖𝑗𝑘 𝑖𝑗′𝑘
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Note that a policy for weaning calves from cows, where calves are
separated from corresponding parent cows, can also be implemented
using a similar approach.

A farmer will, in most cases, be able to predict the calving period of
each cow. Given this information, they will typically wish to implement
a policy whereby, during this period, the cow in question will be
assigned to a location suitable for calving. The purpose of this is to
ensure that the farmer can easily monitor and care for the cow and
calf. Let 𝐵 be the set of suitable buildings and fields. Also, let 𝐻 be a
set of timesteps and cow pairs where (𝑖, 𝑗) ∈ 𝐻 indicates that, at time
𝑖, cow 𝑗 should be assigned to an element of 𝐵. The policy in question
can be implemented by adding the following equality constraint to the
set 𝐶𝐸 :
∑

𝑘∈𝐵
𝑎𝑖𝑗𝑘 = 1, ∀ (𝑖, 𝑗) ∈ 𝐻. (11)

After a cow has calved, a farmer will typically want to implement
a policy whereby the cow and calf are assigned to the same location.
The purpose of this is to ensure that the cow can care for the calf. Let
𝑃 be the set of cow and calf pairs where (𝑝, 𝑝′) ∈ 𝑃 indicates that the
cow 𝑝 is the mother of the calf 𝑝′. The policy in question can now be
implemented by adding the following equality constraint to the set 𝐶𝐸 :

𝑎𝑖𝑝𝑘 = 𝑎𝑖𝑝′𝑘, ∀ 𝑖 = 1,… , 𝑡, (𝑝, 𝑝′) ∈ 𝑃 . (12)

3.2.4. Zero routing timesteps
A farmer may wish to implement a policy where no livestock routing

is performed on a subset of timesteps. For example, on some days the
farmer may wish to rest or not have sufficient assistance to perform
the activity. Let 𝐺 be the subset of timesteps on which the farmer does
not wish to perform livestock routing. The policy in question can be
implemented by adding the following equality constraint to the set 𝐶𝐸 :

𝑎𝑖𝑗𝑘 = 𝑎𝑖+1𝑗𝑘, ∀ 𝑖 ∈ 𝐺, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (13)

For each timestep 𝑖 in 𝐺, this constraint ensures that the assignments
of livestock to locations at timesteps 𝑖 and 𝑖 + 1 are equal.

3.2.5. Livestock care
The objective function in Eq. (1a) of the original LRP formulation

only models the work required to route livestock. Apart from this, a
farmer may also wish to model the work required to care for livestock
assigned to different locations. The work in question may not be
uniform across locations and in such cases it is useful, if possible, to
assign livestock to those locations where the corresponding workload
is lower. For example, caring for livestock assigned to a field without
a natural water source will require more work than a field with one.
We now describe how the work required for caring can be modelled
and how minimising this work can be formulated as an instance of the
proposed model.

Let 𝑅 = (𝑟𝑖) ∈ R𝑚 where an assignment 𝑟𝑖 = 𝑥 indicates that it
requires 𝑥 units of work to care for an animal assigned to location 𝑖 for
a single timestep. A unit of work may be a person-hour and depends on
how the modeller wishes to quantify work. Note that the values of 𝑟𝑖
will not be uniform and will, instead, vary as a function of the location
in question. To jointly minimise the work required to route and care
for livestock, we replace the objective function in Eq. (1a) with the
following, which contains an additional term for measuring the cost of
caring:

min
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ +

𝑡
∑

𝑖=1

𝑛
∑

𝑗=1

𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 𝑟𝑘. (14)

Note that, in the above, we described how several different farming
activities can be independently formulated as instances of the proposed
model. However, we can jointly formulate more than one of these
activities as a single instance of the model. For example, we could
jointly formulate the problems of continuous grazing and livestock care
described above by defining an instance of the model which contains
both the constraints defined in Eqs. (2) and (14) respectively.
5

3.3. Complexity analysis

As discussed in the previous section, the LRP formulation presented
in Section 3.1 is very general in that many common livestock farming
activities can be formulated as instances of this model. In this section
we prove that the computational complexity of these instances can vary
from polynomial to NP-hard.

First consider the problem instance that combines the activities of
continuous grazing and livestock care described in Sections 3.2.1 and
3.2.5 respectively. Combining these activities gives the following inte-
ger program formulation, where the variables in question are defined in
previous sections. Note that an optimal solution to the problem contains
no routing of livestock between different locations.

min
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ +

𝑡
∑

𝑖=1

𝑛
∑

𝑗=1

𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 𝑟𝑘 (15a)

s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (15b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (15c)

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 − 𝑥𝑘 ≤ 0, ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (15d)

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (15e)

Theorem 1. The integer program defined in Eq. (15) can be solved in
𝑂(𝑛3) time where 𝑛 equals the number of livestock.

Proof. Let 𝑈 be the set of 𝑛 livestock and let 𝑉 be a set that contains 𝑥𝑘
copies of each location 𝑘 where 𝑥𝑘 is the livestock feeding capacity of
location 𝑘. The set 𝑉 therefore contains a total of ∑ 𝑥𝑘 elements. Let 𝑇
be a |𝑈 |×|𝑉 | matrix where 𝑇𝑢𝑣 equals the units of work required to care
for an animal assigned to location 𝑢 for a single timestep. The integer
program in Eq. (15) corresponds to an instance of the assignment
problem which involves matching elements of 𝑈 to elements of 𝑉 and
can be solved in 𝑂(𝑛3) time using the Hungarian algorithm (Edmonds
& Karp, 1972). □

We now consider the problem instance which involves the activity
of rotational grazing described in Section 3.2.1. The corresponding
integer program formulation is defined in Eq. (6) where the variables
in question are defined in the above section.

Theorem 2. The integer program defined in Eq. (6) is NP-hard.

Proof. Consider the case where the number of timesteps 𝑡 equals the
number of fields 𝑚, the feeding capacity 𝑥𝑘 of each field equals 1, the
number of livestock 𝑛 equals 1 and the rotational grazing parameters
𝑝 and 𝑞 equal 𝑡 and 𝑡 − 1 respectively. That is, there are an equal
number of fields and timesteps, and each field can only be grazed for a
single timestep. This case corresponds to an instance of the Travelling
Salesman Problem (TSP) which is NP-hard (Applegate et al., 2011). □

Finally, consider the problem instance that combines the activi-
ties of continuous grazing and livestock breeding described in Sec-
tions 3.2.1 and 3.2.3 respectively. For livestock breeding, we specifi-
cally consider the problem instance where a set 𝐻 of livestock pairs
must be assigned to different locations. Combining these activities
gives the following integer program formulation, where the variables
in question are defined in the above sections. Note that, the constraint
in Eq. (16d) ensures that each pair (𝑗, 𝑗′) ∈ 𝐻 of livestock is not
assigned to the same location at any timestep.

min
𝐴

𝑡−1
∑

𝑚
∑

𝑚
∑

𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ (16a)

𝑖=1 𝑘=1 𝑘′=1
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s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (16b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (16c)

𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 𝑎𝑖𝑗′𝑘 = 0, ∀ 𝑖 = 1,… , 𝑡, ∀(𝑗, 𝑗′) ∈ 𝐻 (16d)

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 − 𝑥𝑘 ≤ 0, ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (16e)

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (16f)

Theorem 3. The integer program defined in Eq. (16) is NP-hard.

roof. Consider the case where the number of timesteps 𝑡 equals
and the feeding capacity 𝑥𝑘 of each field equals the number of

ivestock 𝑛. We construct a graph where each livestock corresponds to
vertex and an edge exists between two vertices if and only if the

orresponding pair of livestock is an element of 𝐻 . That is, an edge
xists between two vertices if and only if the corresponding pair of
ivestock must be assigned to different locations. Finding a solution
o this case corresponds to finding an 𝑚-colouring of the above graph
here 𝑚 is the number of locations. This problem is NP-hard (Lewis,
021). □

. Results and analysis

In this section we present an evaluation of the proposed integer
rogramming model for solving the LRP. As demonstrated in Sec-
ion 3.2, the proposed model is general in nature whereby many
ommon farming activities can be formulated as instances of the model.
n this section we consider three specific problem instances where each
ombines two or more of the activities presented in Section 3.2. All
nteger program formulations were implemented in Python using the
urobi Optimiser version 9.1.2, which is a commercial integer program

olver. This optimiser uses a branch and cut algorithm for solving
ndividual problem instances (Mitchell, 2002). All experiments were
un on a PC with 16 GB of RAM and an Intel CPU containing eight
ores each running at 2.80 GHz. The time limit of the optimiser was set
o 600 s per run. If an optimal solution is not found before this limit
s reached, the optimiser returns the current best solution found. The
ptimiser always returns the relative optimality gap which equals the
elative difference between the best observed solution and current best
ound on the optimal solution. This value is expressed as a percentage,
here a globally optimal solution has a 0% relative optimality gap.

.1. Continuous grazing, silage production & winter housing

The first model we consider combines the activities of continuous
razing with silage production and winter housing. These are described
n Sections 3.2.1 and 3.2.2 respectively. Combining these activities
ives the following integer program formulation.

in
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ (17a)

s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (17b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (17c)

𝑛
∑

𝑎𝑖𝑗𝑘 − 𝑥𝑘 ≤ 0, ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (17d)
6

𝑗=1
Table 2
An example matrix 𝑊 = (𝑤𝑖𝑗 ) ∈ R𝑚×𝑚 is displayed where 𝑚 = 4. An assignment 𝑤𝑖𝑗 = 𝑥
ndicates that it requires 𝑥 units of work to route a single cow from location 𝑖 to
ocation 𝑗.

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 = 0, ∀ 𝑖 ∈ 𝐺, 𝑘 ∈ 𝐹 (17e)

∑

𝑘∈𝐵
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 ∈ 𝐻, 𝑗 = 1,… , 𝑛 (17f)

∑

𝑘∈𝐵
𝑎𝑖𝑗𝑘 = 0, ∀ 𝑖 ∉ 𝐻, 𝑗 = 1,… , 𝑛 (17g)

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (17h)

Note that, the constraint in Eq. (17d) relates to the continuous
razing aspect of the problem. The constraints in Eqs. (17e), (17f) and
17g) relate to the silage production and winter housing aspects of the
roblem.

We first illustrate the above problem using a small toy problem
nstance. Let the number of timesteps 𝑡 be 4, the number of livestock 𝑛

be 6 and the number of locations 𝑚 be 4. Let the feeding capacities 𝑥1,
𝑥2, 𝑥3 and 𝑥4 be 3, 3, 3 and 6 respectively and let the matrix 𝑊 ∈ R𝑚×𝑚

of routing work values equal that displayed in Table 2. Let the set 𝐹 of
fields set aside for silage be {1} and let the set 𝐺 of timesteps that these
fields are to be set aside equal {2}. Finally, let the set 𝐵 of buildings
used for housing cattle during the winter season equal {4} and let the
et 𝐻 of timesteps corresponding to this season equal {4}.

The solution obtained to this problem is illustrated in Fig. 1. Specif-
cally, Figs. 1(a), 1(b), 1(c) and 1(d) display slices of the solution tensor
= (𝑎𝑖𝑗𝑘) for 𝑖 equal to 1, 2, 3 and 4 respectively (the assignment of

livestock to locations at each timestep). For example, at timestep 1,
livestock 1, 2 and 3 are assigned to field 2, while livestock 4, 5 and 6
are assigned to field 3. We can see that this solution satisfies all problem
constraints. For example, the continuous feeding capacity of each field
is not exceeded, field 1 is set aside for silage at timestep 2, and all cattle
are assigned to building 4 at timestep 4.

To evaluate the scalability of the proposed method for solving the
above problem we considered problem instances of increasing size.
For a given number of locations 𝑚 and livestock 𝑛 we defined a
corresponding random problem instance using the following approach.
We defined the number of timesteps 𝑡 to equal 𝑚. We defined each of
the feeding capacities 𝑥𝑘 to be 10 except for a single random building,
which was defined to have a feeding capacity equal to 𝑛. All livestock
were assigned to this building during the winter season, which was
defined to be the final timestep 𝑡. A randomly selected field was set
aside for silage during the summer season, which was defined to be the
first timestep 1. Finally, the matrix 𝑊 ∈ R𝑚×𝑚 of routing work values
was defined to be a random zero-diagonal matrix where each non-zero
element is a random integer in the range 3 to 10 inclusive.

For each pair of 𝑚 and 𝑛 values, we generated and solved ten
corresponding random problem instances using the above approach.
Table 3 displays the number of instances solved optimally, the mean
running time of those instances solved optimally measured in seconds,
and the mean relative optimality gap of those instances not solved
optimally. Recall that if an optimal solution is not found before a
running time of 600 s is reached, the optimiser will return the current
best solution plus the corresponding relative optimality gap. As an
example, for the set of problem instances with 𝑚 and 𝑛 equal to 10 and
70 respectively, 9 of the 10 instances were solved optimally, the mean
running time of those instances solved optimally was 296 s and the
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Table 3
For each value of 𝑚 and 𝑛, this table displays the number of instances solved optimally, the mean running time of those instances solved
optimally measured in seconds and the mean relative optimality gap of those instances not solved optimally. A dash (‘–’) represents that the
problem instances are infeasible. The problem instances in question correspond to the problem in Eq. (17).
𝑚, 𝑛 10 20 30 40 50 60 70 80 90 100

3 10,1,0 – – – – – – – – –
4 10,1,0 10,1,0 – – – – – – – –
5 10,1,0 10,1,0 10,1,0 – – – – – – –
6 10,1,0 10,1,0 10,1,0 10,6,0 – – – – – –
7 10,1,0 10,1,0 10,2,0 10,8,0 10,7,0 – – – – –
8 10,1,0 10,2,0 10,4,0 10,7,0 10,10,0 10,17,0 – – – –
9 10,1,0 10,5,0 10,13,0 10,23,0 10,42,0 10,54,0 9,123,2 – – –
10 10,1,0 10,6,0 10,9,0 10,51,0 10,44,0 10,211,0 9,296,3 9,140,3 – –
t
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Fig. 1. Slices of the solution tensor 𝐴 = (𝑎𝑖𝑗𝑘) for 𝑖 equal to 1, 2, 3 and 4 are displayed
in (a), (b), (c) and (d) respectively. Each slice represents the assignment of livestock
to locations at the timestep in question.

mean relative optimality gap of those instances not solved optimally
was 3%. A dash (‘–’) in Table 3 represents the fact that the problem
instances in question are infeasible; that is, no corresponding feasible
solution exists. We can see from the statistics in the above table that
the optimiser generally finds a solution with a small relative optimality
gap within the 600 s time limit.

Infeasible problem instances may potentially be made feasible by
adjusting some of the corresponding variables or relaxing some of the
corresponding constraints. For example, a problem instance may be
infeasible because the farm in question has too many livestock and is
overstocked. In this case, the problem instance may be made feasible
by reducing the number of livestock. Note that, some problem instances
correspond to the case where the farm in question is understocked. In
such cases, the number of livestock might also be increased while still
maintaining feasibility.

4.2. Rotational grazing & livestock care

The second problem instance we consider combines the activities
of rotational grazing and livestock care described in Sections 3.2.1
7

and 3.2.5 respectively. Combining these activities gives the following H
integer program formulation.

min
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ +

𝑡
∑

𝑖=1

𝑛
∑

𝑗=1

𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 𝑟𝑘 (18a)

s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (18b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (18c)

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 − 𝑥𝑘 ≤ 0, ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (18d)

𝑖+𝑝
∑

𝑖′=𝑖
𝑔𝑖′𝑘 − 𝑞 ≤ 0, ∀ 𝑖 = 1,… , 𝑡 − 𝑝, 𝑘 = 1,… , 𝑚 (18e)

𝑔𝑖𝑘 = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘), ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (18f)

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (18g)

Note that, the constraints in Eqs. (18d), (18e) and (18f) relate to
he rotational grazing aspect of the problem. The second term in the
bjective in Eq. (18a) relates to the livestock care aspect of the problem.

We first illustrate the solution to a small toy instance of this prob-
em. Let the number of timesteps 𝑡 be 4, the number of livestock 𝑛 be 5
nd the number of fields 𝑚 be 4. Let the grazing capacity 𝑥𝑘 of each
ield be 3 and the matrix 𝑊 ∈ R𝑚×𝑚 of routing work values equal
hat displayed in Table 2. Let the livestock caring work values 𝑟1, 𝑟2, 𝑟3
nd 𝑟4 be 1, 1, 1 and 2 respectively. Finally, let the rotational grazing
arameters 𝑝 and 𝑞 both be 2. That is, for each field, each contiguous
equence of 3 timesteps contains at most 2 timesteps where livestock
re assigned to the field in question. The solution obtained to this
roblem is illustrated in Fig. 2. We can see that this solution satisfies
ll problem constraints. For example, field 1 has livestock assigned at
imesteps 2 and 3 but not at timesteps 1 and 4 thus satisfying the
otational grazing constraint. Furthermore, given the high livestock
aring work corresponding to field 4, no livestock are assigned to this
ield at any timestep.

In our experiments, for a given number of locations 𝑚 and livestock
, we defined a corresponding random problem instance using the
ollowing approach. We defined the number of timesteps 𝑡 to equal
. We defined each of the feeding capacities 𝑥𝑘 to be 10. The matrix
∈ R𝑚×𝑚 of routing work values was defined to be a random zero-

iagonal matrix where each non-zero element was a random integer in
he range 3 to 10 inclusive. Each livestock caring work value 𝑟𝑘 was
efined to be a random real number in the interval [1, 2]. Finally, the
otational grazing parameters 𝑝 and 𝑞 were both defined to be 2.

For each pair of 𝑚 and 𝑛 values, we generated and solved ten corre-
ponding random problem instances using the above approach. Table 4
isplays the results of applying the optimiser to these instances. We can
ee from the statistics in this table that the optimiser generally finds a
olution with a small relative optimality gap within the 600 s time limit.

owever, for larger problem instances, the mean relative optimality
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Fig. 2. Slices of the solution tensor 𝐴 = (𝑎𝑖𝑗𝑘) for 𝑖 equal to 1, 2, 3 and 4 are displayed
in (a), (b), (c) and (d) respectively. Each slice represents the assignment of livestock
to locations at the timestep in question.

Table 4
For each value of 𝑚 and 𝑛, this table displays the number of instances solved optimally,
he mean running time of those instances solved optimally measured in seconds and
he mean relative optimality gap of those instances not solved optimally. A dash (‘–’)
epresents that the problem instances are infeasible. The problem instances in question
orrespond to the problem in Eq. (18).
𝑚, 𝑛 10 20 30 40 50 60 70 80 90 100

3 10,1,0 10,1,0 – – – – – – – –
4 10,1,0 10,1,0 – – – – – – – –
5 10,1,0 10,3,0 10,63,0 – – – – – – –
6 10,1,0 10,47,0 0,0,2 0,0,2 – – – – – –
7 10,2,0 10,96,0 0,0,1 0,0,1 – – – – – –
8 10,1,0 10,215,0 0,0,1 0,0,2 0,0,4 – – – – –
9 10,4,0 0,0,1 0,0,3 0,0,7 0,0,7 0,0,8 – – – –
10 9,0 0,0,1 0,0,4 0,0,7 0,0,8 0,0,8 – – – –

gap increases significantly to 8%. This can be partially attributed to
the fact that, as discussed in Section 3.3, optimising rotational grazing
is NP-hard.

4.3. Continuous grazing & livestock breeding

The final problem instance we consider combines the activities of
continuous grazing and livestock breeding described in Sections 3.2.1
and 3.2.3 respectively. Combining these activities gives the follow-
ing integer program formulation where the variables in question are
defined in the above sections.

min
𝐴

𝑡−1
∑

𝑖=1

𝑚
∑

𝑘=1

𝑚
∑

𝑘′=1
𝑧𝑖𝑘𝑘′ 𝑤𝑘𝑘′ (19a)

s.t.
𝑚
∑

𝑘=1
𝑎𝑖𝑗𝑘 = 1, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛 (19b)

𝑧𝑖𝑘𝑘′ = min (1,
𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 𝑎𝑖+1𝑗𝑘′ ), ∀ 𝑖 = 1,… , 𝑡 − 1, 𝑘, 𝑘′ = 1,… , 𝑚 (19c)

𝑛
∑

𝑗=1
𝑎𝑖𝑗𝑘 − 𝑥𝑘 ≤ 0, ∀ 𝑖 = 1,… , 𝑡, 𝑘 = 1,… , 𝑚 (19d)

∑

𝑎𝑖𝑗𝑘 = 1, ∀ (𝑖, 𝑗) ∈ 𝐻 (19e)
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𝑘∈𝐵
t

Fig. 3. Slices of the solution tensor 𝐴 = (𝑎𝑖𝑗𝑘) for 𝑖 equal to 1, 2, 3 and 4 are displayed
n (a), (b), (c) and (d) respectively. Each slice represents the assignment of livestock
o locations at the timestep in question.

𝑎𝑖𝑗𝑘 ∈ {0, 1}, ∀ 𝑖 = 1,… , 𝑡, 𝑗 = 1,… , 𝑛, 𝑘 = 1,… , 𝑚. (19f)

Note that, the constraints in Eqs. (19d) and (19e) relate to the
ontinuous grazing and livestock breeding aspects of the problem re-
pectively.

We first illustrate the solution to a small toy instance of this prob-
em. Let the number of timesteps 𝑡 be 4, the number of livestock 𝑛 be 6
nd the number of locations 𝑚 be 4. Let the feeding capacities 𝑥1, 𝑥2,
3 and 𝑥4 be 2, 2, 2 and 1 respectively and let the matrix 𝑊 ∈ R𝑚×𝑚

f routing work values equal that displayed in Table 2. Finally, let 𝐵
nd 𝐻 be the sets {4} and {(2, 2), (3, 4)} respectively. That is, the set of
ocations suitable for cows calving is {4} where this single location has
feeding capacity of 1. Furthermore, cow 2 is predicted to calf during

imestep 2 and cow 4 is predicted to calf during timestep 3. During their
espective calving timestep, the cow in question should be assigned to
ocation 4.

The solution obtained to this problem is illustrated in Fig. 3. We can
ee that this solution satisfies all problem constraints. For example, at
imestep 2 cow 2 is assigned to location 4. Similarly, at timestep 3 cow
is assigned to location 4.

For a given number of locations 𝑚 and livestock 𝑛 we define a
orresponding random problem instance using the following approach.
e defined the number of timesteps 𝑡 to equal 𝑚. We defined each of

he feeding capacities 𝑥𝑘 to be 10 except for 𝑥𝑚 which was defined
o have a feeding capacity equal to 1. The matrix 𝑊 ∈ R𝑚×𝑚 of
outing work values was defined to be a random zero-diagonal matrix
here each non-zero element was a random integer in the range 3 to
0 inclusive. Finally, we defined the sets 𝐵 and 𝐻 to equal {𝑚} and
(𝑖, 𝑖) ∶ 𝑖 = 1,… , 𝑡} respectively.

For each pair of 𝑚 and 𝑛 values, we generated and solved ten
orresponding random problem instances using the above approach.
able 5 displays the results of applying the optimiser to these instances.
e can see from the statistics in this table that the optimiser generally

inds a solution with a small relative optimality gap within the 600 s

ime limit.
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Table 5
For each value of 𝑚 and 𝑛, this table displays the number of instances solved optimally, the mean running time of those instances solved
optimally measured in seconds and the mean relative optimality gap of those instances not solved optimally. A dash (‘–’) represents that the
problem instances are infeasible. The problem instances in question correspond to the problem in Eq. (18).
𝑚, 𝑛 10 20 30 40 50 60 70 80 90 100

3 10,1,0 10,1,0 – – – – – – – –
4 10,1,0 10,1,0 10,1,0 – – – – – – –
5 10,1,0 10,1,0 10,1,0 10,1,0 – – – – – –
6 10,1,0 10,1,0 10,1,0 10,2,0 10,4,0 – – – – –
7 10,1,0 10,1,0 10,1,0 10,5,0 10,18,0 10,21,0 – – – –
8 10,1,0 10,2,0 10,4,0 10,7,0 10,22,0 10,36,0 10,98,0 – – –
9 10,1,0 10,3,0 10,6,0 10,10,0 10,31,0 10,49,0 10,115,0 8,553,1 – –
10 10,1,0 10,4,0 10,6,0 10,14,0 10,38,0 10,56,0 10,130,0 0,0,3 0,0,5 –
C

D

E

F

F

G

H

H

H

L
M

M

5. Conclusions

This work has identified a planning problem in the livestock farming
domain, which we refer to as the Livestock Routing Problem (LRP).
To the authors’ knowledge, this problem has not previously been
considered by the research community. In our analysis we demonstrate
that many common farming activities can be modelled as instances of
LRP and in turn can be optimised with respect to the amount of work
required for successful completion.

The proposed LRP model has many potential uses and applications.
This model could potentially act as a decision support system for
livestock farmers and, in turn, reduce the workload associated with
the routing of livestock. Given the fact that the average age of a
UK farmer is 60 and increasing, the proposed research could help
to ensure the sustainability of the sector (Department for Environ-
ment, Food and Rural Affairs, 2020). Such a decision support system
could also be used to evaluate the effects of prospective managerial
decisions. For example, the system could be used to evaluate if in-
creasing the number of livestock on a given farm by a given amount
significantly increases workload. This type of analysis could, in turn,
be used to identify potential opportunities for economies of scale. In
many countries, farming activities will be constrained by correspond-
ing government rules and policies. To give a concrete example of
this, consider the Sustainable Farming Scheme proposed by the Welsh
Government (Welsh Government, 2022). Farmers participating in this
scheme will receive additional payments if they perform their farming
activities more sustainably. This includes, for example, reducing the
risk of livestock catching and spreading disease by ensuring all new
livestock in a given farm are isolated for at least six days before
mixing with existing livestock. Ensuring that such rules and policies
are satisfied could be achieved by modelling them as an instance of the
LRP. Apart from the obvious benefit to farmers by ensuring that they
satisfy the necessary rules and policies, this modelling could also be
of benefit to policymakers. For example, a policymaker could evaluate
the potential consequences of a new scheme with respect to the farmer’s
workload.

A famous expression in the field of statistics states that all models
are wrong, but some are useful. As a first work to consider and model
the LRP, we do not claim the proposed model to be all-encompassing.
However, for the reasons discussed above, we do believe it is useful.
There exist many possible directions of future research to improve the
accuracy and in turn usefulness of the model. We now describe some
of these directions.

As seen, we have modelled the LRP as an integer program that
assumes all model parameters are known. However, in reality, many
of these parameters may have some associated uncertainty. For ex-
ample, when modelling continuous and rotational grazing we assume
the grazing or feeding capacity of each field is known and constant.
In reality, this will not be the case and, instead, this capacity will
vary over time as a function of weather conditions. This limitation
could potentially be overcome by explicitly modelling the uncertainty
in the model parameters using a stochastic integer program. Another
potentially useful future research direction would be to combine the
9

proposed model with advances in Internet of Things (IoT) technologies
for agriculture such as virtual fencing or partitioning and automated
grass measurement devices (Murphy et al., 2021).
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