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Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused
by a dysregulated host response to infection. For some, sepsis presents as a predomi-
nantly suppressive disorder, whilst others experience a pro-inflammatory condition which
can culminate in a ‘cytokine storm’. Frequently, patients experience signs of concurrent
hyper-inflammation and immunosuppression, underpinning the difficulty in directing effec-
tive treatment. Although intensive care unit mortality rates have improved in recent years,
one-third of discharged patients die within the following year. Half of post-sepsis deaths
are due to exacerbation of pre-existing conditions, whilst half are due to complications
arising from a deteriorated immune system. It has been suggested that the intense and
dysregulated response to infection may induce irreversible metabolic reprogramming in
immune cells. As a critical arm of immune protection in vertebrates, alterations to the
adaptive immune system can have devastating repercussions. Indeed, a marked depletion
of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such
sepsis-induced lymphopenia has profound consequences on how T cells respond to in-
fection but equally on the humoral immune response that is both elicited by B cells and
supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive
state is further exacerbated by functional impairments to the remaining lymphocyte popu-
lation, including the presence of cells expressing dysfunctional or exhausted phenotypes.
This review will specifically focus on how sepsis destabilises the adaptive immune system,
with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the
corresponding impact on humoral immunity.

Sepsis
The inflammatory response to infection is a fundamental aspect of immune protection, aiming to rapidly
combat the invading pathogen whilst causing minimal damage to the host [1]. Under homeostasis, this
is a tightly controlled network, and inflammation wanes following resolution of infection. However, the
response is not always proportionate to the threat, and an exaggerated reaction can lead to tissue damage,
organ failure, and death [2].

Indeed, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response
to infection [3]. Sepsis is a heterogeneous condition in which the clinical presentation can vary substan-
tially between patients, in part because it can be triggered by different pathogen types, even though the
majority of cases are bacterial [4]. However, in a large proportion of cases, the infectious organism can-
not be identified, with many clinical manifestations of sepsis deemed ‘culture-negative’ in routine tests
[5–8]. The health and functional state of the immune system plays an important role in dictating sus-
ceptibility to sepsis and the subsequent prognosis. Sepsis in vulnerable populations tends to present as
a predominantly suppressive disorder due to an already dampened immune system [9]. Patients show
reduced capacity to clear the primary infection and indeed any opportunistic pathogens secondary to the
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initial insult. Such protracted immunosuppression renders patients highly susceptible to nosocomial infections, prov-
ing a dominant cause of death. A retrospective trial investigating an association between survival and microbial
burden found a significant correlation between late death and positive blood-culture results, particularly regard-
ing opportunistic pathogens [10]. At the other end of the spectrum, some individuals experience a predominantly
pro-inflammatory condition which culminates in a ‘cytokine storm’. Commonly regarded as the hallmark of sepsis,
such a response triggers a multitude of innate pathways including the complement and coagulation cascades, which
in turn release additional pro-inflammatory mediators [11,12]. The resulting endothelial leakage and intravascular
coagulation contribute to systemic damage which itself can be life-threatening. This type of response is typical of sep-
sis in otherwise young and healthy individuals [13]. If the infection is not brought under control, patients frequently
experience signs of concurrent hyper-inflammation and immunosuppression [2,14]. This paradoxical phenomenon
underpins the difficulty in directing effective immunomodulatory treatment in sepsis.

Sepsis is estimated to be the cause of 1 in 5 deaths worldwide [15], identifying it as a bigger threat to life than can-
cer. Now recognised as a global health priority by the World Health Organization [16], sepsis can affect anyone with
the highest-risk groups including the elderly, the immunocompromised, pregnant women, and also the very young.
Indeed, statistics from 2017 have demonstrated that almost half of global sepsis cases occurred in children [15]. In
addition, socioeconomic class is one of the greatest risk-factors, with 85% of cases and sepsis-related deaths occur-
ring in low- and middle-income countries [15]. Although intensive care unit (ICU) mortality rates have improved in
recent years, 40% of survivors are re-hospitalised within 90 days of discharge, and a striking one-third of discharged
patients die within the following year [17]. Half of post-sepsis deaths are due to exacerbation of pre-existing con-
ditions [18], whilst half are explained by a deterioration of health status as a complication of sepsis, recently coined
‘post-sepsis syndrome’. One-sixth of survivors experience post-sepsis syndrome with at least one cognitive, psycho-
logical, or physical impairment, and indeed are more prone to recurrent infection, renal failure, and cardiovascular
episodes than matched patients hospitalised for other diagnoses [17]. As such, sepsis poses a significant medical and
financial burden on healthcare services worldwide, with the National Health Service in the United Kingdom alone
estimated to face annual costs of >£1 billion [19]. Although late-mortality and long-term symptoms following sepsis
are well-studied, the causes of sequelae are poorly understood [20]. It has been suggested that the intense and dys-
regulated response to infection may induce irreversible metabolic reprogramming, manifesting in multiple organs.
Such alterations may divert metabolism in immune cells, changing how they interact with their microenvironment
and respond to subsequent stimuli [21–23].

Prompt intervention is crucial to increase chances of survival. Aside from initial infection control, modulation of
the immune system is a key aspect of treatment in sepsis [24]. There have been no major therapeutic breakthroughs
in the last 30 years, with current strategies targeting general aspects of the immune system rather than specifically
targeting individual elements [25,26]. Although promise has been shown in multiple pre-clinical trials, treatments
often fail to advance past the stage of large-scale randomised clinical trials. This failure is due in part to the vast range of
disorders with diverse characteristics that are encompassed by the term ‘sepsis’. The resulting inappropriate selection
of patients results in treatments that have shown potential in early studies being disregarded. The overall effect poses a
huge challenge in translating research to clinical practice. As a dysfunctional response to infection by definition, there
is an essential requirement to uncover the mechanisms underpinning the destabilisation of the immune response
to infection in sepsis, to explore new targets for drug development and produce effective ways of modulating the
immune system long-term post-recovery. Surprisingly, clinical trials blocking excessive inflammation have proved
unsuccessful in reducing mortality rates [27]. Instead, recent work has suggested more promise in exploring therapies
aiming to restore the activity of ‘exhausted’ or suppressed immune cells [28].

The adaptive immune system
The immune response to infection by harmful pathogens in vertebrates utilises two main components, the innate and
adaptive immune systems, which cooperate to help eliminate the infection and restore homeostasis. The innate im-
mune system provides a rapid defence strategy that responds to infectious insult in a non-specific manner to quickly
address the threat [29]. Although a vital first line of defence, the use of pattern- and damage-recognition receptors
restricts cells of the innate immune system to recognition of highly conserved microbial structures. Instead, the adap-
tive immune system supports the initial innate response through the incorporation of cellular (T cells) and humoral
(antibodies produced by B cells) components that generate a highly specific response to invading pathogens [29]. In
addition, the adaptive immune system is able to establish immunological memory and distinguish foreign antigens
from self. Autoimmune conditions with devastating effects may arise through impaired ability to separate self from
non-self, demonstrating the power of the adaptive immune system [30,31].
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Adaptive immunity is governed by classes of highly specialised T cells and B cells, which develop via a common
lymphoid progenitor [32,33]. Both T cells and B cells possess a diverse repertoire of antigen-sensing receptors that are
generated through the rearrangement of receptor gene segments during somatic recombination. The process, which
occurs in the bone marrow for B cells and the thymus for T cells, gives rise to näıve cells which enter the circulation
and peripheral lymphoid tissues to patrol for foreign antigens. Two main types of conventional T cells exist: CD8+ T
cells which kill infected cells following antigen recognition, and CD4+ T cells which support CD8+ T cell responses
and antibody-generating B cells, amongst other functions [34–36].

In sepsis, a marked depletion of T cells and B cells is observed, correlating with increased rates of mortal-
ity [14,37–39]. Such lymphopenia occurs during the onset of sepsis and has been found to persist up to 28 days
post-admission to intensive care [40–42]. The majority of sepsis-related deaths occur when lymphopenia is evident,
which can persist for years, exposing survivors to opportunistic bacterial infections and reactivating herpesviruses
[43,44]. T cells appear to be disproportionately affected by sepsis with CD4+ T cells known to decline to levels seen
in patients with AIDS [40]. Consequently, B cells tend to constitute a greater percentage of remaining lymphocytes,
although this does not necessarily translate to enhanced B cell activity as a combination of sustained inflammation
by high antigen-load and cytokine activity results in functional changes to remaining cells [40]. As such, it has been
shown that B cells from patients with septic shock lose their proliferative capacity and display a CD21lowCD95high

phenotype associated with B cell exhaustion [45].
The main causes of lymphopenia in sepsis are not fully understood, nor why this can recover in some patients

and not in others. Sepsis-associated apoptosis is thought to be a leading cause of T cell and B cell depletion during
sepsis [14,37,46–48]. Indeed, post-mortem analyses of spleens from septic patients showed significantly higher levels
of caspase-3 activity compared to non-septic patients [46]. Other potential mechanisms underpinning the observed
depletion of lymphocytes are relatively understudied but include reduced production of precursor cells. One study
reported a significant depletion of haematopoietic stem cells in a mouse model of group A Streptococcus-induced
sepsis, which was associated with severe immunological stress and early mortality [49]. Additionally, a separate study
in humans showed that persistent lymphopenia following cease of initial pro-apoptotic activity correlated with a
reduction in common lymphoid progenitor cells caused by osteocyte ablation in septic patients [50]. Alternatively,
a reduced pool of peripheral lymphocytes could in part be due to increased recruitment to infected tissues, as has
been observed in acute lung injury and chronic inflammatory disorders [51–53]. Such sepsis-induced lymphopenia
has profound consequences on how T cells respond to infection but equally on the humoral immune response that
is both elicited by B cells and supported by CD4+ T follicular helper (TFH) cells. The immunosuppressive state is
further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of
cells expressing dysfunctional or exhausted phenotypes [14,45,54–56] (Figure 1). The majority of studies examining
the state of immune dysfunction during sepsis in humans involve analysis of peripheral blood samples, with findings
summarised in Table 1. This review will specifically focus on how sepsis destabilises the adaptive immune system,
with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on
humoral immunity.

B cells
The emergence of adaptive immunity dates back 500 million years, with the added protective value of a specific com-
binatorial receptor system increasing survivability in vertebrates [57]. Within this time, B cells have evolved several
strategies for increasing the diversity of their receptors, enabling identification of almost any antigen [58]. In addi-
tion to the initial rearrangement of receptor segments during somatic recombination, B cells increase their receptor
variability through processes such as somatic hypermutation, gene conversion, and class-switch recombination [59].
These processes vastly amplify the immunoglobulin repertoire and contribute to a fine-tuned adaptive response. Dur-
ing development in the bone marrow, Pax5 is known to be the master transcription factor behind B cell lineage com-
mitment, acting alongside E2A, EBF1 and IKZF1 [60,61]. Pax5 is a key regulator of many genes important for B cell
adhesion and migration (CD55, CD157, CD97, Sdc4, CD44), and signalling (PTEN) [62,63]. This has been demon-
strated in Pax5 deficient mice which have a complete absence of mature B cells in the periphery, with a separate study
showing ‘dedifferentiation’ of B cells to a common haemopoietic progenitor under conditional Pax5 deletion [64,65].
Immature, ‘transitional’ B cells exit the bone marrow to reach full maturity at peripheral lymphoid sites, completing
their development [66].

B cells can be divided into sub-types distinguished by their phenotype and individualised functions [67]. Näıve
B cells have traditionally been described either as B-1 B cells, or conventional B-2 B cells, and together they fulfil
a range of critical roles in both the innate and adaptive immune system to assist with antimicrobial defence [68].
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Figure 1. Destabilisation of the adaptive immune system in sepsis

A marked lymphopenia is a common feature of patients with sepsis, predominantly attributed to apoptosis of lymphocytes. Other

suggested causes include reduced production of precursor cells, and increased migration of lymphocytes to infected tissues,

thus reducing the frequency of circulating cells. Remaining cells are reported to exhibit phenotypic and functional alterations,

including skewed cytokine production, reduced HLA-DR expression on B cells and increased expression of co-inhibitory receptors

on CD4+ T cells, which decline in number and provide inadequate help to CD8+ T cells. Equally, CD4+ TREG cells increase in

proportion, but whether this is positively or negatively associated with prognosis has been debated. Furthermore, the benefit of

immunosuppression elicited by BREG cells is not clearly defined. Immunoglobulin levels decline, but this has been reported to

correlate with both improved and worsened outcomes across different studies; HSC, haematopoietic stem cell

While the majority of the literature describing B-1 B cells is based on data from mice, a population of CD20+ CD27+

CD43+ CD70− cells has been identified in humans which fulfil key functions characteristic of murine B-1 B cells [69],
including the secretion of natural immunoglobulin in the absence of antigenic stimulation [70]. These antibodies have
a low affinity for pathogens, but nonetheless confer initial protection in an innate-like response. The role of B-1 B
cells in humans remains to be clearly defined. However, they may play an important role in bacterial clearance since a
subpopulation of CD5− B-1 B cells can generate antibodies against capsular antigens of Streptococcus pneumoniae
[71]. To this end, their reported decline with age may play a part in increased susceptibility to infection [69,72].

Conventional B-2 B cells constitute the majority of mature B cells, and are further categorised dependent on their
localisation and role [73]. A subset described as marginal zone (MZ) B cells are considered to be innate-like cells,
expressing polyreactive B cell receptors (BCRs) capable of binding multiple microbial ‘patterns’ [74]. As such, these
cells are strategically positioned in regions prone to frequent microbial exposure such as mucosa and the skin, al-
though circulating MZ B cells have also been reported [75]. Their name describes their predominant localisation to
a specialised area of the spleen positioned between the circulation and lymphoid compartment. This region, known
as the marginal zone, allows rapid activation of MZ B cells upon interaction with pathogens in the blood [76]. Their
importance in bacterial infections is depicted in individuals following splenectomy, with studies reporting increased
risk of infection by encapsulated bacteria [77,78]. Their function has been linked to regulation of neutrophil recruit-
ment to the spleen in the early stages of infection, with a study demonstrating MZ B cell-deficient mice to be more
susceptible to Staphylococcus aureus (S. aureus) infection than wildtype (WT) mice [79].

Although B cells possess the ability to modulate multiple aspects of immune protection through cytokine secretion
and their action as antigen presenting cells, they are most commonly associated with their role in antibody production
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Table 1 Numerical or phenotypic changes to B and T cells in human patients with sepsis or septic shock

Cell Timepoint Observations Reference

B cells ICU admission ↓ Combined low serum levels of IgG1, IgM and IgA distinguished patients with highest
odds ratio for death

[27]

↓ Plasma IgG associated with 28-day mortality [95]

↓ Frequency of BREG cells associated with increased susceptibility to septic shock and
death

[123]

+ 28-days post-admission ↓ Circulating B cells
CD40 expression

[41]

↑ Expression of CD80 and the apoptotic marker CD95 in non-survivors

+ 4- and 8-days post-admission ↓ HLA-DR expression
Circulating B cells

[105]

↑ Proportional increase in plasmablasts

↑ Plasma levels of IgG on day 1, which dropped with time

+ 3- and 7-days post-admission ↓ Frequency of BREG cells associated with poor outcome, serving as a powerful
prognostic marker in elderly patients

[124]

Sepsis onset

+ 2- and 7-days post-onset ↑ Plasma IgG and IgA on day 1 associated with reduced 90-day survival

↑ Proportion of exhausted (CD21−/low) B cells [96]

Within 72 h ↓ Plasma IgM levels, which negatively correlated with severity in elderly patients [87]

↓ Capacity for immunoglobulin production when stimulated ex vivo

Within 24 h + 24 h post-onset ↓ Plasma levels of IgA and IgG in non-survivors [156]

Septic shock onset

+ 3- and 7-days post-onset ↓ Serum IgM levels, more pronounced in non-survivors [88]

↓ Capacity for IgM production when stimulated ex vivo

T cells ICU admission ↑ Proportion of Vδ1 T cells, with up-regulation of immunosuppressive co-IRs upon
stimulation [199,200,202]

↓ Proportion of Vδ2 T cells, with reduced capacity for pro-inflammatory cytokine
production
Both observations correlated with increased severity and reduced survival

↓ Antigen-presenting function of γδ T cells [203]

↓ Frequency of MAIT cells [211,213]

↑ Markers of activation on remaining MAIT cells along with a reduced cytokine-secreting
capacity

+ 4-days post-admission ↓ γδ T cells, associated with mortality [200]

+ 6-days post-admission ↓ Percentage of HLA-DR+ MAIT cells predicted poor prognosis in patients [214]

+ 5 timepoints up until discharge ↓ Functional capacity of MAIT cells, which continued to decline with time [212]

+ 3-, 5-, and 7-days
post-admission

↑ Percentage of TREG cells was associated with reduced severity [181]

Sepsis onset

Within 24 h + 24 h post-onset ↓ Circulating TFH cells which correlated with increased mortality and low IgA, IgM, and IgG
levels

[156]

Septic shock onset ↑ Expression of pro-apoptotic markers, annexin-V binding, active caspase-3 on CD4+ and
CD8+ T cells

[187]

↑ Expression of PD-1 on CD4+ and CD8+ T cells, correlated with increased rates of
nosocomial infection and death

+ 1-2- and 3–6-days post-onset ↑ Proportion of TREG cells as a result of a selective depletion of CD25− populations [177]

Post-mortem ↓ Number and area of lymphoid follicles in patients with sepsis [37]

↓ Capacity of splenic and lung T cells to secrete cytokines when stimulated in vitro [14]

↑ Expression of co-inhibitory receptors

[68]. Follicular (FO) B cells constitute another type of conventional B-2 B cell, occupying the greatest percentage of
all B cell lineages. FO B cells differ from MZ B cells through their expression of a highly specific, monoreactive BCR
[80]. The fate of precursor cells into FO or MZ B cell subtypes is dictated, in part, by the strength of BCR signalling
[81], with stronger signalling favouring precursors to follow the FO B cell differentiation pathway. FO B cells are freely
circulating cells that home to secondary lymphoid organs, such as lymph nodes and the spleen, where they may dif-
ferentiate into plasmablasts or short-lived plasma cells upon activation by antigen [82]. Antibodies secreted by these
cells only display moderate affinity for antigen, but nonetheless are important for facilitating early protection [83].
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Alternatively, activation may trigger vigorous B cell proliferation, resulting in the formation of specialised microstruc-
tures within the B cell follicles known as germinal centres (GCs) [84]. GCs provide the primary site for the interaction
of B cells with specialised T cells (i.e. CD4+ TFH cells) that support the generation of high-affinity, long-lasting anti-
bodies and memory cells [82]. This system is critical to establish sustained humoral protection against pathogens and
underpins the mechanism of protection of most successful vaccines [85]. Under typical conditions, B cells form the
foundation of the immune system, modulating the action of other cells through both direct interactions and chemical
signals [86]. In sepsis, these relationships come under threat. As the centre of homeostasis, functional changes to B
cells offset the entire landscape of the immune system.

B cells and sepsis
The observed lymphopenia in sepsis appears to be non-homogeneous amongst B cell subsets. Indeed, one study ob-
served a marked plasmacytosis in patients with septic shock compared with healthy controls, which seemingly con-
tradicts the literature reporting decreased concentrations of circulating immunoglobulin [45]. Specifically, the levels
of IgM in the sera of sepsis patients have been found to negatively correlate with assessments of disease severity, no-
tably Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE)
II scores [87]. Additionally, ex vivo stimulated B cells from the same patients displayed reduced capacity to produce
IgM [87]. In line with these findings, higher plasma concentrations of IgM within the first 24 h of sepsis have been
found to differentiate survivors from non-survivors, highlighting a key protective role of IgM, particularly in fight-
ing Gram-negative infections [39]. Low IgM levels have also been associated with a reduction in the frequency of
resting memory B cells, the effect of which was more pronounced in non-survivors [88]. A meta-analysis of studies
investigating hypogammaglobulinaemia in sepsis found that as many as 70% of cases experienced low levels of circu-
lating IgG on the day of diagnosis, although an association with clinical outcome remains to be clearly defined [89].
A reduction in general immunoglobulin levels early in infection may, in part, be due to a decline in B-1 B cells. As
innate-like producers of natural antibodies, B-1 B cells are suggested to play an important role in compensating for the
delay in an FO B cell-mediated adaptive immune response [90]. Early release of low-affinity immunoglobulin by B-1
B cells may infer critical protection in situations where the infectious pathogen has spread to the bloodstream early in
infection [91]. The frequency of B-1 B cells has been shown to significantly decline in a murine model of sepsis [92].
The same group found that adoptive transfer of B-1 cells restored IgM levels and significantly reduced lung injury
compared with WT mice [93]. In addition to the local and systemic increase in IgM, this result was achieved through
attenuation of pro-inflammatory cytokine release and apoptosis, suggesting additional protective roles of B-1 B cells
in the response to infection [93]. Sepsis-induced changes to B-1 B cells in humans remain to be characterised but
could have therapeutic value if data are consistent with observations in mice.

Despite these findings, the relationship between circulating immunoglobulin levels and mortality in sepsis has
proved controversial. Indeed, initial serum IgG levels have been reported to be both positively and negatively associ-
ated with clinical outcome [94,95]. A multicentre study measuring IgG1, IgM and IgA levels on the first day of severe
sepsis or septic shock found that low concentrations of all three antibody types had the highest odds ratio for death
[27]. Conversely, the ALBIOS trial found that high IgA and IgG levels at sepsis onset were significantly predictive
of both 28- and 90-day mortality [96]. In this trial, low levels of IgG on day 1 were associated with higher risk of
secondary infections. These findings again reflect the heterogeneous nature of sepsis, and such variation is likely at-
tributed to subjects experiencing different degrees of inflammation or immunosuppression at the point of testing.
Low concentrations of circulating antibodies are indicative of a dampened adaptive response, and so may underpin
mortality through a reduced capacity to clear infection. An association between high immunoglobulin levels and
mortality in some patients could be explained by the ability of IgG and IgM to activate innate pathways such as the
complement cascade, exacerbating an existing state of hyperinflammation through complement-dependent cytotox-
icity [97]. Additionally, immune cells such as macrophages, neutrophils and natural killer cells express receptors that
bind the Fc portion of antibodies, and so may facilitate the exaggerated host-response through antibody-dependent
cellular cytotoxicity and antibody-dependent cellular phagocytosis in the presence of high levels of circulating im-
munoglobulin [97]. Clearly, gaps remain in defining the association between circulating immunoglobulin and clinical
outcome in sepsis. It is likely that there is no clear consensus, and perhaps categorising patients based on a range of
clinical observations including plasma immunoglobulin levels amongst other parameters may provide better prog-
nostic value and guidance for treatment.

Beyond antibody production, B cells can also modulate the immune response to infection through their ability to
act as a professional antigen presenting cells (APCs) [73]. As professional APCs, B cells are armed with the necessary
tools to capture and present processed antigen to T cells. As such, B cells prime and expand antigen-specific T cells,
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a crucial step for generation of a specific immune response. B cells express both major histocompatibility complex
(MHC) I and II molecules, thus enabling them to interact with antigen-specific CD4+ and CD8+ T cells [73]. In this
way, B cells can trigger both TH1 and TH2 responses to suit the context. One mode of action is through the direct
presentation of antigenic peptides to T cells following capture and internalisation of pathogens [98]. Direct presenta-
tion is dependent on the antigenic specificity of B cells, defined by their clonotypically expressed BCR. Alternatively,
B cells may cross-present free-floating antigen from the extracellular matrix to CD8+ T cells [99]. This dual ability
is critical for cellular responses against viruses and tumours, where the antigen-presenting B cells are not directly
infected.

Following T cell receptor (TCR)-mediated recognition of MHC-restricted antigens on the B cell surface, an im-
munological synapse is established that promotes T cell activation and drives signals for proliferation, differentiation,
and survival. This synaptic connection is strengthened by interactions between co-stimulatory molecules on both
cell types, notably CD80/CD86 on B cells with CD28 on T cells [100]. These interactions induce expression of ad-
ditional costimulatory molecules including CD40 on B cells, as well as adhesion molecules such as LFA-1 and its
ligand ICAM-1, that support the process of antigen presentation [101]. Finally, the appropriate effector phenotype
is achieved through differential cytokine secretion, polarising the immune response [102]. For example, secretion
of interferon-γ (IFN-γ) and interleukin-12 (IL-12) induce signalling cascades which result in T-bet transcription
and differentiation towards a TH1 phenotype, important for clearance of intracellular pathogens such as viruses and
certain bacteria [103]. Secretion of IL-4 induces transcription of GATA-3 and subsequent commitment to a TH2
phenotype, important in the response to extracellular infections by parasites and helminths [103]. Other cytokines
such as transforming growth factor-β (TGF-β), IL-6, IL-21 and IL-23 support differentiation of alternative helper
subsets including TH17 cells, and lesser-defined phenotypes including TH9 and TH22 cells [104]. During sepsis, the
expression of MHC II molecules, including human leukocyte antigen-DR (HLA-DR) has been shown to decrease
on B cells, altering their ability to present peptides to T cells [105]. This effect has been observed in sepsis patients
at the time of admission to ICU and persists in samples taken at a follow-up time of 8 days [105]. A reduction in
HLA-DR expression acts to impair the ability for B cells to function as professional APCs, lessening their ability to
trigger antigen-specific responses in T cells. In addition, expression of CD40 was significantly reduced on B cells in
septic patients at ICU admission compared to healthy donors [41]. No difference in CD40 expression was observed
between surviving and non-surviving patients; however, the expression of co-stimulatory molecule CD80 was found
to be significantly higher in non-survivors of septic shock at ICU admission [41]. The expression normalised after
3 days, suggesting an enhanced ability to stimulate T cells very early in infection, which perhaps contributes to the
hyper-inflammatory state associated with early mortality.

In addition to antigen presentation for stimulation of T cells, B cells themselves can act as cellular effectors [106].
During infection, B cells mediate changes in the inflammatory response through an acquired ability to secrete effec-
tor cytokines such as IFN-γ, tumour necrosis factor-α (TNF-α) and IL-17 [107]. Transcriptome analyses in murine
models of sepsis show B cells with distinct gene expression profiles, with notable alterations in the expression of genes
for several cytokines [108]. In particular, increased expression of pro-inflammatory cytokines such as IL-3, IFN-γ,
TNF-α and IL-6, and reduced expression of anti-inflammatory cytokines such as IL-10 and TGF-β1 [108]. In addi-
tion to driving systemic inflammation, secretion of cytokines can polarise T cells towards specific helper phenotypes
as detailed above [103]. In a murine caecal ligation and puncture (CLP) model of sepsis, B cell deficient (μMT) mice
showed reduced concentrations of inflammatory cytokines in sera compared with WT mice, which was not replicated
in T cell deficient (TCR αβ−/−) mice [109]. These data indicate a role of B cells in triggering an early inflammatory
response in sepsis, with further experiments showing the importance of such cytokine production on successful bac-
terial clearance. Splenic MZ B cells have been shown to produce large quantities of IL-6 and the chemokine CXCL10
after lipopolysaccharide (LPS) challenge in vivo in mice [110]. The significance of such a pro-inflammatory response
was investigated in mice lacking IL-6-producing MZ B cells (MZ B-IL-6-KO). These mice produced significantly
lower amounts of serum IL-6 and CXCL10 and demonstrated improved survival compared with WT mice [110].
Furthermore, administration of an anti-IL-6 receptor (IL-6R) antibody shortly following intravenous injection of Es-
cherichia coli (E. coli) or the induction of CLP resulted in prolonged survival compared with mice treated with a
control antibody [110]. These results indicate a pathogenic role of IL-6 in exacerbating endotoxic shock in sepsis.
This finding does not contradict earlier findings that IL-6 plays an anti-inflammatory role very early in sepsis [109],
as injection of anti-IL-6R at time-points concurrent with LPS or E. coli injection did not affect the survival of mice. At
the very early stages of sepsis, IL-6 production by B cells may not augment the inflammatory response to toxin, with
delayed onset of its pathogenic role. In addition to IL-6, IL-3 production by B cells in a mouse model of abdominal
sepsis has been reported to potentiate inflammation through enhanced production of monocytes and neutrophils,
with IL-3 deficiency inferring protection [111]. These findings correlated with observations in humans showing an
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association between high plasma IL-3 levels and mortality [111]. Despite the reported pro-inflammatory signatures
of B cells in sepsis, strategies aiming to modulate cytokine levels have failed to prove beneficial [112]. Patterns of
cytokine release change throughout the course of disease, and so timing of administration is likely an important con-
sideration for these types of therapies [109]. Investigations into IL-6 blocking early in infection still show promise
[113].

Regulatory B (BREG) cells
BREG cells represent a specialised subtype of B cells that can suppress T cells and the action of other pro-inflammatory
cells through the production of IL-10, IL-35 and TGF-β [114]. BREG cells, constituting less than 1% of PBMCs in
humans, show heterogeneity in the expression of surface proteins and indeed may differentiate into distinct sub-
sets dependent on the inflammatory stimuli to which they are exposed [115]. For example, studies have reported
CD19+CD25hi BREG cells that support T regulatory (TREG) cell function in vitro in co-culture experiments, but also
several populations of BREG cells which suppress an anti-tumour response in cancer such as those expressing granzyme
B in solid tumour infiltrates, and CD19+CD24+CD38+ cells in breast cancer [116–118]. It is generally accepted that
their suppressive ability is enhanced under highly inflammatory conditions to limit further damage, for example, in
the case of autoimmune conditions [119–121]. Although sepsis is generally characterised by a protracted lymphope-
nia, the balance of subsets within the total population of B cells is disturbed. In a CLP model of sepsis in mice, an
increase in the frequency of BREG cells was one of the first observable changes, exacerbating an immunosuppressive
state [122]. Conversely, BREG cells can play a protective role, with reduced number and function correlating with the
development of severe septic shock in mice exposed to endotoxin [108]. Human patients with sepsis have decreased
numbers of BREG cells compared with controls, with frequency negatively correlating with likelihood of septic shock
[123]. In fact, the levels of BREG cells over the first week post-admission to ICU appear to have particular prognostic
value in elderly patients with sepsis [124]. The same was observed in neonates, with an increase in BREG cells positively
correlating with survival [125]. Following the onset of septic shock, there is an increase in cells expressing a BREG-like
cell phenotype, and an associated increase in IL-10 production mirroring the observed immunosuppressive state [45].
Together, these findings suggest a protective role of the immunosuppression elicited by BREG cells early in sepsis, per-
haps aiding against deaths caused by overwhelming inflammation and consequent septic shock. In surviving patients,
however, BREG cells may tip towards a pathogenic function through continued promotion of an immunosuppressive
state in the midst of other cells becoming anergic and unable to respond to subsequent stimuli.

The potential of B cells in clinical practice
Given the numerical and functional changes exhibited by B cells during sepsis, and the association of certain alter-
ations with morbidity and mortality, it is unsurprising that B cells have been the focus of several studies investigating
prognostic biomarkers and therapeutic targets. For example, one group suggested that a low percentage of CD23+

B cells at ICU admission enables discrimination between survivors and non-survivors with a sensitivity of 90.9%
[41], whilst another demonstrated poor prognostic survival outcome in patients with low IgM levels within the ini-
tial 24 h of sepsis onset [126]. In terms of treatment, supplementation of specific B cell subsets that are depleted
or dysfunctional during sepsis may restore immune function. For example, adoptively transferring B-1 cells could
replenish natural immunoglobulin and suppress excessive inflammation [92,93]. Although levels of circulating im-
munoglobulin have proved controversial in dictating disease course, considerable attention has been given to the use
of intravenous immunoglobulin (IVIG) as an approach to modulate inflammation in sepsis, particularly in neona-
tal cases [127]. Although IVIG therapy is an approved treatment for multiple conditions of immune dysregulation,
including Kawasaki disease which is often difficult to differentiate from sepsis during the early stage of onset [128],
IVIG has proved unsuccessful in reducing mortality in several large randomised controlled trials of patients with
sepsis [129–132]. Potential limitations to trials include choice of subjects and timing of treatment; with discrepancy
in the literature reporting circulating immunoglobulin levels and prognosis in patients with sepsis, treatment needs
to be more specific and tailored to the individual. A method of first identifying the state of immunosuppression in
patients may enable guided selection for trials, and generate more promising results [133]. The failure of clinical trials
has resulted in guidance against the use of IVIG in sepsis and septic shock. Despite this, several studies have reported
benefits of IgM- and IgA-enriched immunoglobulin administration [134] and indeed, such preparations are widely
used in addition to other treatments in septic shock to enhance immune function [135]. The potential benefit of their
combined administration has been suggested to stem from their dual action in both the bloodstream and mucosal
surfaces. The overarching consensus for best clinical practice remains a personalised approach, with guidelines for
dosage and timing of administration highly dependent on the clinical phenotype.
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CD4+ TFH cells
The process of pathogen-specific antibody production is reliant on help signals provided by specialised CD4+ TFH
cells, which interact with B cells in the GCs of secondary lymphoid organs [136]. GCs provide the primary site for high
affinity antibody production via somatic hypermutation and class switching of B cells [84]. CD4+ TFH cells govern
the movement of B cells throughout the GC, and determine which cells are selected for differentiation into long-lived
plasma cells and memory B cells. Not only are CD4+ TFH cells crucial for supporting B cells, they play a critical role in
GC formation and maintenance [84]. CD4+ TFH cells were first described in the early 2000s, following work observing
a unique CXCR5+ subset of CD4+ T cells in tonsillar tissue [137,138]. These cells were shown to express several
markers important for B cell activation, indicating their involvement in tonsillar immune responses. Co-culture with
näıve B cells demonstrated their capacity to induce class-switched antibody production, which was replicated and
built-upon in subsequent studies [139]. However, at this time, CD4+ TFH cells were not widely accepted as being
distinct from TH1 or TH2 cells as the transcription factor driving their differentiation was unknown. Years later, CD4+

TREG and CD4+ TH17 cell types were characterised, based on the identification of lineage-determining transcription
factors for these populations (FOXP3 for TREG cells and RORγt for TH17 cells). It was not until 2009, when the
discovery of BCL-6 as a transcription factor essential for GC generation and high affinity antibody production allowed
recognition of these cells as an individual CD4+ T cell type, acknowledging their distinct role as follicular B cell helpers
[140–142].

The GC is divided into two compartments described as the light zone and dark zone, so called due to their histolog-
ical appearance [84]. These zones form distinct sites for separation of the steps involved in the GC reaction. Within
the light zone, B cells present antigen-MHC class II complexes to CD4+ TFH cells. In return, select B cells receive
co-stimulation and survival signals from CD4+ TFH cells to encourage migration to the dark zone. Such signals in-
clude IL-21, IL-4, and IL-10 secreted by CD4+ TFH cells [143,144]. IL-21 induces transcription of activation-induced
cytidine deaminase in B cells, an essential factor for somatic hypermutation [145]. This process involves the intro-
duction of BCR point mutations to generate cells with a range of affinities for antigen. The somatically hypermutated
B cells then return to the light zone, where those with highest affinity for antigen are positively selected for prolif-
eration and survival. Further signalling via co-stimulatory molecules, IL-21, and IL-4, initiates their return to the
dark zone for isotype class-switching [84]. Class-switched B cells may then either differentiate into plasma cells to
secrete high-affinity antigen-specific antibodies or instead become long-lived memory B cells. After fulfilling their
role, CD4+ TFH cells leave the GC and may either enter a GC in a neighbouring follicle, or re-enter the same GC.
Alternatively, CD4+ TFH cells may downregulate BCL-6 and enter the blood stream as memory CD4+ TFH cells.

Expression of inducible co-stimulator (ICOS) on CD4+ TFH cells is important for all stages of differentiation and
maintenance. Initially, ICOS on pre-CD4+ TFH cells binds to ICOS ligand (ICOSL) on dendritic cells to initiate prim-
ing and migration towards the B cell zone of the GC. Later, ICOS/ICOSL signalling between CD4+ GC-TFH cells and
B cells ensures maintenance of CD4+ TFH cells for supporting antibody production. Other markers essential for CD4+

TFH cell function include OX40 and CD40 ligand (CD40L). Expression of both proteins is up-regulated following ac-
tivation of CD4+ TFH cells, promoting their accumulation at the T-B border where they bind their ligands on cognate
B cells [146,147]. Bidirectional signalling results in IL-21 secretion to assist with B cell activation and proliferation,
and GC maintenance [148].

Tight regulation of the GC reaction is necessary to prevent generation of autoantibodies [149,150]. A fine balance is
required to enable effective humoral immunity, whilst maintaining self-tolerance. One arm of control is achieved by a
specialised subset of CD4+ TREG cells known as T follicular regulatory (TFR) cells [151]. CD4+ TFR cells are similar to
CD4+ TFH cells in that they express BCL-6 and CXCR5 but are distinguished by their expression of FOXP3. CD4+ TFR
cells suppress both CD4+ TFH and B cells to regulate the GC reaction [128,152]. The mechanisms underpinning sup-
pression remain to be completely elucidated, but one known method involves expression of the co-inhibitory receptor
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), which functions to dampen co-stimulatory interactions be-
tween cognate CD4+ TFH cells and B cells [153]. In addition, CD4+ TFR cells suppress IL-21 and IL-4 transcripts in
CD4+ TFH cells, two cytokines vital for the selection of high-affinity antibodies in the GC [154].

CD4+ TFH cells and sepsis
Although multiple studies have reported defects in humoral immunity in cases of severe infection and sepsis, these
have largely focussed on B cells and alterations in immunoglobulin release [37,41,155]. For patients showing reduced
levels of circulating immunoglobulin, proposed mechanisms include an impaired activation-capacity of plasmacytes,
with increased expression of markers indicative of an exhausted phenotype [82]. Secondary lymphoid organs from
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septic patients have been demonstrated to have a lower cellular density than those from healthy controls, encom-
passing the total follicular B cell population, but also follicular dendritic cells and CD4+ TFH cells [37,156]. These
findings are consistent with a decline in circulating CD4+ TFH cells, and correlate with reduced B cell numbers and
increased mortality [156]. Despite these findings, a mechanism whereby impaired B cell maturation could be at-
tributed to changes in the CD4+ TFH cell population has yet to be determined. Considering the close relationship
between B cells and CD4+ TFH cells in the GC, and the dependency of follicular B cells on signals from CD4+ TFH
cells for proliferation and survival, it seems plausible that a lacking humoral response could stem from insufficient
support. Data from a murine model of sepsis showed blunted differentiation and class-switching of B cells in septic
mice compared to controls, with reduced expansion and differentiation of CD4+ TFH cells following immunisation
[157]. Additionally, the importance of CD4+ TFH cells in supporting an antigen-specific B cell response has been
demonstrated in ‘immune educated’ mice which, compared to standard laboratory mice, present a diverse repertoire
of memory T cells [158]. Following induction of CLP-induced sepsis, increased IL-21 production was indicative of
increased functionality in CD4+ TFH cells, which in turn were able to reverse the sepsis-induced decline in splenic B
cells seen in controls. Such an effect was accompanied by enhanced follicular B cell and GC development [158]. These
results demonstrate the critical role of CD4+ TFH cells in supporting antigen-specific B cell responses in conditions
of inflammation. The commonly observed alterations in B cell development and functionality reported in humans
suggest a potential defect in this relationship in sepsis. A lack of functional CD4+ TFH cells could induce apoptosis of
B cells, through a loss of BCR signalling.

The underlying mechanisms driving changes in CD4+ TFH cells that could explain defects in immunoglobulin se-
cretion are poorly characterised. Conditions of persistent stimulation during severe bacterial and viral infections have
been well-reported to drive ‘immunoparalysis’ in remaining T cells, describing an inability to mount or support an ef-
fective immune response [157]. In a study of the response to SARS-CoV-2 infection and vaccination, the neutralising
antibody response robustly correlated with the frequency and phenotypic polarisation of circulating CD4+ TFH cells
[159]. Specific subsets of circulating CD4+ TFH cells have been described, distinguished by their differential expres-
sion of the chemokine receptors CXCR3 and CCR6. Such subsets exhibit the behaviour of TH1, TH2 or TH17 cells,
coined TFH1 (CXCR3+CCR6−), TFH2 (CXCR3−CCR6−), and TFH17 (CXCR3−CCR6+) cells respectively [160]. High
titres of SARS-CoV-2 spike-specific or neutralising antibodies have consistently been associated with the frequency
of TFH1 cells, with variability in reported relationships between antibody responses and TFH2 or TFH17 cells across
studies [161–163]. The phenotype of circulating CD4+ TFH cells has been reported for several other viral infections
or vaccinations, with no clear consensus on an overarching subgroup best equipped for supporting antibody produc-
tion. For example, TFH1 and TFH17 cells were found to predominate in non-responders to influenza virus vaccina-
tion, with a skewed IL-2/IL-21 axis incapable of supporting B cells [164]. In contrast, an increase in the frequency of
TFH17 cells was demonstrated to correlate with enhanced antigen-specific antibody production following vaccination
against Ebola virus [165]. Data in patients with human immunodeficiency virus (HIV) show a positive correlation
between the frequency of TFH2 cells and the development of broadly neutralising antibodies, whilst TFH2 cells have
been reported to impede an antiviral humoral response in chronic hepatitis B virus infection [166,167]. These varied
findings potentially suggest a pathogen-specific aspect to the usefulness of different CD4+ TFH cell subgroups in sup-
porting B cells. Although many groups have reported skewing of CD4+ TFH subsets in a virus-specific context, there
are substantial gaps in the literature in the case of bacterial infections and sepsis. Based on the data, it seems clear
that measurement of CD4+ TFH cell frequencies in sepsis alone may be insufficient to explain a dampened ’helper’
response, and that phenotypic differences in CD4+ TFH cells could alter their overall functional capacity. A separate
study demonstrated impaired function of CD4+ TFH cells in HIV-infected individuals, displaying downregulation of
genes from immune- and GC-resident CD4+ TFH cell-associated pathways including c-MAF and its upstream media-
tors [168]. These changes were associated with the resulting inefficient antigen-specific antibody response and death
of memory B cells. Expression of c-MAF has been demonstrated as important in supporting BCL-6 expression in
CD4+ TFH cells following immunisation [169]. c-MAF and BCL-6 are crucial for upregulation of CD40L and ICOS
expression on CD4+ TFH cells as well as IL-21 signalling. Therefore, these transcriptional changes in HIV-infected
individuals likely render CD4+ TFH cells incapable of positioning themselves correctly within the GC to interact with
and support their cognate B cells [169]. As HIV is a condition of chronic stimulation, it is plausible that sustained ac-
tivation by high antigen load in sepsis could drive similar transcriptional changes in CD4+ TFH cells, rendering them
incapable of supporting B cell development. The inadequate help provided by CD4+ TFH cells in HIV-infected individ-
uals has sparked interest into the role of CD4+ TFR cells in this context. In a study using an ex vivo model of tonsillar
HIV infection and in vivo model of simian immunodeficiency virus infection in rhesus macaques, virus infection
was associated with an expansion of suppressive CD4+ TFR cells, expressing increased levels of co-inhibitory recep-
tors CTLA-4 and lymphocyte-activation gene 3 (LAG-3), and increased production of anti-inflammatory cytokines
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Figure 2. Suggested mechanisms of impaired CD4+ TFH cell activity during sepsis

During a normal response to infection (left panel), CD4+ T cells are initially primed by dendritic cells, inducing transcription of

BCL-6 and subsequent expression of CXCR5 and other proteins important for migration to the B cell follicle, and generation of the

germinal centre (GC). Within the GC, CD4+ TFH cells provide signals (IL-21, IL-4, IL-10) to B cells for somatic hypermutation (SHM)

and class-switch recombination (CSR), selecting those with highest affinity for antigen to differentiate into plasma cells or long-lived

memory B cells. This process is regulated by CD4+ TFR cells. GC-CD4+ TFH cells may then down-regulate BCL-6 and enter the

periphery as circulating memory cells, displaying different phenotypes through differential expression of CXCR3 and CCR6. During

sepsis (right), multiple aspects of this process may be altered to result in inadequate B cell support. Suggested mechanisms include

impaired transcription of c-MAF and BCL-6, resulting in reduced migration to the follicle to interact with cognate B cells. This could

result in downstream effects of reduced numbers of GC-CD4+ TFH cells with the correct protein expression profile needed to

provide support. Alternatively, proliferation of CD4+ TFR cells may result in enhanced suppression of GC-CD4+ TFH cells. Both of

these effects could result in a reduction in plasma cell differentiation and thus reduced antibody secretion. Alternatively, skewed

expression of CXCR3 and CCR6 on circulating CD4+ TFH cells could alter their cytokine signatures and subsequent ‘helper’ ability

in the periphery. DZ: dark zone; LZ: light zone.

IL-10 and TGF-β [170]. These cells were subsequently shown to impair CD4+ TFH function through inhibition of
cell proliferation and production of IL-4 and IL-21. The literature describing the role of CD4+ TFR cells in sepsis is
sparse, however, could provide important insight into functional changes to CD4+ TFH cells if severe bacterial infec-
tions drive a similar expansion of CD4+ TFR cells as seen in HIV infection. Further studies are required to determine
if this is the case for sepsis, but also to expand our knowledge of CD4+ TFH cell-mediated humoral immunity in the
context of bacterial infections and sepsis (Figure 2).

Alterations in other conventional and unconventional T cell
types during sepsis
Sepsis-induced changes to T cells have been widely studied and implicated as important factors in determining the
overall response and likelihood of survival. The sepsis-driven lymphopenia disproportionately targets the pool of
antigen-inexperienced T cells in both mouse models and human studies [171,172]. This has been attributed to both
a thymic defect affecting the output of newly generated T cells, and the acquisition of memory-like characteristics in
otherwise näıve cells [173]. Such changes to the composition of the overall T cell repertoire contributes to increased
susceptibility to secondary infections and may impair memory T cell generation [171,172]. In elderly patients, whose
naive T cell pool is substantially reduced, destruction of this pool could cause long-term defects in mounting an effec-
tive immune response to new antigens [106,174]. Although naı̈ve cells are particularly susceptible to sepsis-induced
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apoptosis and phenotypic changes, a numerical loss of existing memory CD4+ and CD8+ T cells has also been demon-
strated [175,176]. Within the pool of memory CD4+ T cells, a preferential loss of ‘helper’ subpopulations including
TH1, TH2 and TH17 cells shifts the balance towards a greater proportion of FOXP3+ TREG cells [176–178]. TREG cells
represent a subset of CD4+ T cells implicated in negative immunomodulation, and the effects of their representative
increase has been debated. Mouse models have demonstrated that the relative increase in TREG cells is accompanied
by an increased suppressive capacity. Indeed, TREG cells were shown to suppress T cell proliferation to a greater degree
in septic mice than those in sham-injured mice, with particular suppression of TH1-type cytokine production [179].
Additionally, TREG cells induced apoptosis of monocytes and neutrophils in a CLP mouse model of sepsis through
either Fas/FasL signalling or IL-10 secretion [180]. This enhanced suppression by TREG cells has been correlated with
worsened severity, however, other studies have correlated increased TREG cell representation with an improved out-
come and pathogen control [181,182]. Discrepancies may be due to timing of sample collection and infection course,
with TREG cells perhaps proving beneficial in patients experiencing overwhelming inflammation, whilst damaging in
cases of immune exhaustion. TREG cells have been suggested as a potential target for therapeutic intervention, however
further analysis is necessary to determine approach [181,183].

The overall numerical reduction of CD4+ T cells is accompanied by functional defects, evidenced by increased rates
of latent viral reactivation in septic patients [43,44,184,185]. A global, post-sepsis state of anergy has been proposed
in CD4+ T cells, through evidence of little or no pro- or anti-inflammatory cytokine production evident following
anti-CD3/CD28 stimulation in post-mortem spleen and lung samples [14]. Additionally, studies have shown a reduc-
tion in proliferative capacity and lineage-specific transcription factor expression, affecting the regulation of CD4+ T
cell subset differentiation [172,186]. These observations are in line with increased co-inhibitory receptor expression
such as PD-1 CTLA-4, LAG-3 and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), alter-
ing how CD4+ T cells communicate with and modulate the responses of other immune cells [55,187]. In a normal
immune response, TH1, TH2 and TH17 cells provide help to näıve CD8+ T cells to ensure a highly controlled and
functionally specific response [36]. In addition, such signals promote clonal expansion upon re-encounter with anti-
gen [188,189]. ‘Helpless’ T cells are instead destined for apoptosis. Decline of helper T cell populations during sepsis
creates an environment in which CD8+ T cells could proceed to respond to antigen without CD4+ T cell help. This
effect has been suggested to impair the early T cell effector response and contribute to a suppressive environment,
through apoptosis of CD8+ T cells [188,189]. In addition, lack of CD4+ T cell help during primary infection results in
memory CD8+ T cells which lack the capacity to respond during re-infection [36]. Memory CD8+ T cells from sur-
vivors are prone to exhaustion during chronic infection, with reduced capacity to secrete pro-inflammatory cytokines
and increased expression of co-inhibitory receptors [171,190].

Research exploring sepsis-induced changes to T cells is largely focussed on conventional αβ T cells, with sub-
stantial gaps in the literature describing changes in unconventional T cell populations with antimicrobial functions,
such as γδ T cells and mucosal-associated invariant T (MAIT) cells. As the first T cell population formed during
embryonic development, γδ T cells constitute 0.5–5% of circulating CD3+ T cells in adult humans [191,192]. γδ T
cells rapidly produce effector cytokines in response to bacterial infections and mediate protective immune responses
against pathogenic microorganisms such as Mycobacterium tuberculosis (reviewed in [191]). Additionally, certain
γδ T cells appear to possess potent antigen-presenting abilities during infections [193,194]. These unconventional T
cells exist as two main populations in humans based on their encoded TCR δ-chain: Vδ1+ or Vδ2+ T cells. Vδ2+ T
cells constitute the majority of peripheral blood γδ T cells whilst Vδ1+ T cells are less frequent in the blood and are
more abundant in epithelial and mucosal tissues such as the skin, intestine and uterus [191,195–198]. In humans, the
number of circulating γδ T cells decline in patients with sepsis compared to healthy controls, with an imbalance of
pro- or anti-inflammatory functional changes depending on the subtype [199–201]. One study found an association
between the degree ofγδT cell reduction and severity, whilst a separate study showed that impaired IFN-γ expression
following in vitro antigen stimulation correlated with mortality [200,202]. Furthermore, the ability for γδ T cells to
act as APCs is impaired during sepsis [203]. These sepsis-induced effects on γδ T cells appear to be specific to Vδ2+

T cells as it has been reported that peripheral Vδ1+ T cells increase in frequency during sepsis and correlate with
increasing SOFA score and mortality [199]. Additionally, the expression of the co-inhibitory receptors CTLA-4 and
TIM-3 were increased on these peripheral Vδ1+ T cells which are thought to possess an immunosuppressive function
[199].

MAIT cells are ‘innate-like’ αβ T cell populations that make up 1-10% of all T cells in blood and mediate
rapid, protective immune responses against bacterial species with intact riboflavin biosynthesis pathways, includ-
ing E. coli and S. aureus [192,204–206]. MAIT cells use semi-invariant αβ TCRs to recognise ribityllumazine-
and pyrimidine-based metabolite antigens from the riboflavin biosynthesis pathway, such as 5-OP-RU, that are pre-
sented by the non-classical MHC-like molecule, MR1 [207,208]. Such TCRs typically contain conserved usage of TCR
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α-chain variable gene 1-2 (TRAV1-2) paired with a biased pattern of TCR β-chain variable (TRBV) genes, such as
TRBV20-1, TRBV6-4 or TRBV6-2/6-3 [204,209,210]. MAIT cell-deficient (Mr1−/−) mice demonstrate an enhanced
susceptibility to bacterial infection [204] and increased mortality upon experimentally-induced sepsis [211]. Further-
more, this and other studies found reduced frequencies of MAIT cells in human patients with sepsis [211–214]. Whilst
MAIT cells from these patients expressed more activation makers (e.g. CD69, CD38 and HLA-DR), they also exhib-
ited higher levels of co-inhibitory receptors (e.g. LAG-3 and TIM-3) and were functionally deficient [211,212,214].
Indeed, in one study, such functional impairment of MAIT cells worsened over time during patient recovery from
sepsis [212]. Furthermore, the phenotypic status of MAIT cells in sepsis patients may serve as a possible prognostic
marker as the percentage of HLA-DR+ MAIT cells has been shown to be effective in predicting mortality and patient
APACHE II scores [214]. Despite this knowledge, the impact of sepsis on MAIT cells and γδ T cells is poorly un-
derstood and also particularly understudied compared to more conventional αβ T cell populations. Data in mouse
models of sepsis further illustrate the importance of MAIT cells and γδ T cells in modulating the host response to
sepsis and their positive influence on survival [211,215]. Thus, further studies are required to expand our knowl-
edge of sepsis-induced alterations in MAIT and γδ T cell immunity and to determine their utility as a prognostic
biomarker or as a target for therapeutic intervention.

Conclusions
Dysregulation of the adaptive immune system is a defining feature of sepsis, but the exact manifestation is widely
variable between individuals. For this reason, developing novel therapeutics for sepsis has proved to be a challenge for
over 30 years and, indeed, progress has been failing to meet the increasing demand as the burden of sepsis on hospitals
worsens across the globe. A marked lymphopenia is a common feature across the literature; however, the phenotype
of remaining cells is less well-defined. It is vital to develop a better understanding of the mechanisms underpinning
the observed immune dysregulation to be able to suggest new targets for treatment or diagnostic biomarkers. Based
on the diverse findings of several groups, it seems that considering sepsis as multiple separate conditions by grouping
individuals displaying similar characteristics could show more promise for translating results to clinical practice.
Patients frequently experience immunosuppression in some form during the course of sepsis, which can result in high
susceptibility to secondary infections whilst hospitalised, and a decline in the long-term function of their immune
system post-recovery. This may present as an impaired ability to produce high-affinity antibodies against pathogens,
and as such may also have a negative impact on how individuals respond to vaccination post-sepsis. The relationship
between CD4+ TFH cells and B cells in sepsis remains to be thoroughly addressed, and also how the regulation of CD4+

TFH cells by CD4+ TFR cells is affected in this setting. Further work in this area could provide important insight into
the decline in antibody production observed in many cases, and uncover new targets for treatment or modulation of
the adaptive immune system long-term post-discharge from ICU.
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