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ABSTRACT

The petrogenesis of continental arc magmas provide critical insights into thermal
evolution and geodynamics of the continental lithosphere and crust-mantle interaction
and deep dynamic processes. In this study, we report new zircon U-Pb ages along with
isotopic and elemental whole-rock geochemistry, mineral chemistry and Hf-O isotope
data, for Kalaqigu diorites and monzogranites in the Chinese Wakhan Corridor, South
Pamir. Zircon U-Pb dating indicates that the Kalagigu pluton was emplaced in the
Early Cretaceous (ca. 108—106 Ma). The diorites are geochemically characterized by
low SiO; (51.9-54.5 wt.%) and CaO (7.7-9.4 wt.%) contents, but high MgO (5.3-8.3
wt.%), Al,O3 (12.8-16.8 wt.%) and TiO; (0.6—1.1 wt.%) contents as well as high Mg#
(56-65) values, and so are similar to high-Mg diorites. They are enriched in large ion
lithophile elements (LILEs, e.g., K, Sr and Ba) and light rare earth elements (LREEs),
while depleted in high field strength elements (HFSEs, i.e., Nb, Ta, Zr and Hf).
Combined with negative eng(f) (-6.9 to -14.0), epd?) (-9.9 to -12.2) and high
(*’St/**Sr); (0.7075-0.7086) ratios, these observations indicate they originated from an
enriched lithospheric mantle source. High 8'*0,r, (7.49-9.01%o) values in conjunction
with relatively high **’Pb/*”Pb and ***Pb/*°°Pb ratios suggest that the source was
modified by subducted sediment-derived melts. Variable Cr contents (54—117 ppm)
are likely controlled by minor fractionation of olivine and orthopyroxene. The
monzogranites show high SiO, contents (69.2-72.0 wt.%), low Rb/Sr (0.4-0.6),
(K,0+Na,0)/Ca0 (2.6-4.8) and FeO'/MgO ratios (2.6-3.2). They contain diagnostic
cordierite and show strongly-peraluminous characteristics (A/CNK > 1.1) with high
8'%0,m (7.82-8.85%o) values, compatible with typical S-type granites. Their abundant
inherited zircons, with age populations similar to those of detrital zircons from
regional Early Paleozoic metasedimentary rocks, indicate they were derived from
partial melting of ancient metasedimentary rocks. Phase equilibrium modelling is
consistent with biotite-dehydration melting of metagreywacke, probably at ~750 °C
and ~6.0 kbar indicated by the biotite chemistry. A south-to-north magmatic migration
based on regional geochronology suggests that northward flat-slab subduction of the

Neo-Tethys oceanic slab played an important role in the generation of these
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widespread Early Cretaceous continental arc magmatic rocks. However, the granitoids
were generated earlier than the mantle-derived mafic rocks, which suggests that
crustal melting occurred during the early stage of subduction. The subsequent flat
subduction resulted in continuous metasomatism by subducted sediments.
Contemporaneous regional compression primarily occurred far north of the
subduction zone (i.e., North and Central Pamir), inducing deformation as well as
crustal shortening. With the flare-up of continental arc magmatism in South Pamir,
crustal shortening moved southward. These processes, combined with addition of
voluminous mantle-derived magmas, played an important role in crustal thickening in

the Pamir during the Early Cretaceous.

INTRODUCTION

Andean-type continental arcs, where the oceanic crust subducts beneath an active
continental margin, serve as ideal natural laboratories for studying destructive plate
margin processes and the geodynamic evolution of the Earth’s crust and mantle (e.g.,
Rudnick and Gao, 2003; Davidson and Arculus, 2006; Jagoutz and Schmidt, 2012).
Consequently, the formation and evolution of Andean-type continental arcs is a topic
of considerable interest in earth sciences (e.g., Ducea et al., 2015; Suo et al., 2019;
Qin et al., 2022). As a result of the subduction of oceanic slabs, continental arcs
generally have undergone intense mantle metasomatism and crust-mantle interaction,
resulting in arc-related igneous suites ranging in compositions from mafic to felsic
(e.g., Dhuime et al., 2012; Ducea et al., 2015; Cashman et al., 2017; Tang et al., 2019;
Xiao et al., 2022). A major focus is the spatiotemporal and petrogenetic connections
between the high-Mg basic to intermediate rocks generated from a modified mantle
and the coeval felsic granitoids (Castro, 2019). For instance, I-type granites within
“Cordilleran” batholiths can represent fractionated liquids from intermediate magma
systems of broadly high-Mg andesitic composition (e.g., Castro et al., 2010), while
sanukitoid magmas can act as water donors that trigger extensive melting of the lower
crust to also generate granitoids, for example from “Cimmerian” batholiths of Iberia

(e.g., Pereira et al., 2015). Subduction processes within continental arc systems are
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invariably complicated, and may include flat-slab subduction (e.g., Zhang et al., 2022),
slab rollback (e.g., Ma et al., 2013; Lei et al., 2023) or oceanic ridge subduction (e.g.,
Zhu et al, 2019; Ma et al, 2022). The geochemical characteristics of
contemporaneous subduction-related magmatism (Rudnick and Gao, 2003; Zhu et al.,
2019; Qi et al., 2023) reflect this range of processes (e.g., Gianni and Lujan, 2021; Ma
et al., 2023). Therefore, ancient subduction-related arc magmatism contains key
information for understanding the characteristics of subduction.

The South Pamir experienced northward subduction of the Neo-Tethys Ocean
from the Shyok suture (e.g., Schwab et al., 2004; Faisal et al., 2016; Chapman et al.,
2018a), and is regarded as a preeminent natural laboratory for studying oceanic
subduction geodynamics and Andean-style orogenesis. Subduction-related rocks in
South Pamir are important components (e.g., Faisal et al., 2016; Aminov et al., 2017;
Zhang et al., 2022), and led to the formation of a typical continental arc (e.g., Schwab
et al., 2004). The Wakhan Corridor (located within Karakorum Batholith, South Pamir)
preserves complete continental arc-related magmatic sequence, including mafic
igneous rocks (e.g., basalt, andesite, diorite) with granitoids (e.g., granodiorite and
monzogranite) (Jiang et al., 2014; Li et al., 2016; Liu et al., 2019; Zhang et al., 2022).
Their field relations, age distribution, petrology and geochemistry provided valuable
information for understanding Neo-Tethys subduction. Based on the distance (ca. 200
km) from the Shyok suture to the South Pamir batholith, as well as the Early
Cretaceous active shortening of the Pamir (Robinson, 2015), Cretaceous low-angle
flat subduction of the Neo-Tethys oceanic slab has been proposed (e.g., Chapman et
al., 2018a; Zhang et al., 2022). Although many studies have been devoted to the
magmatic rocks of the Wakhan Corridor, their origin is still controversial. In particular,
the processes of mantle metasomatism derived from Neo-Tethys slab subduction are
still unclear, as is the petrogenesis and evolution of related crust-derived magmas.

In this paper, we present new U-Pb geochronological, geochemical, and
Sr-Nd-Pb-Hf-O isotope data from the Cretaceous diorites and monzogranites of the
Kalaqigu pluton, east of Wakhan Corridor. Our primary focus is to investigate their

petrogenesis and elucidate their tectonic setting. By integrating the new results with
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existing data from the Wakhan Corridor, we aim to further constrain the geodynamic
processes of Neo-Tethys subduction during the Cretaceous and contribute to the

global understanding of continental arc magmatism.

GEOLOGICAL SETTING AND SAMPLING
Geological Setting

The Pamir, which borders the Tianshan, Tarim Basin and Tibetan Plateau, has
undergone prolonged processes of accretion, collision, and suturing during the Early
Paleozoic-Mesozoic (Fig. la; e.g., Tapponnier et al., 1981; Robinson et al., 2012;
Robinson, 2015). The Cenozoic collision between the Indian and Asian continents
resulted in further deformation, structural overprinting, and tectonic uplift of Pamir,
forming its remarkable present-day configuration (e.g., Yin and Harrison, 2000; Liu et
al., 2017; Rutte et al., 2017). Geologically, the Pamir region can be divided into three
tectonic units, from north to south: North Pamir, Central Pamir and South Pamir,
separated by Paleozoic and Mesozoic sutures (Fig. 1b; Burtman and Molnar, 1993;
Angiolini et al., 2013; Robinson, 2015). The North Pamir represents a Paleozoic
accretionary complex (Schwab et al., 2004; Robinson et al., 2012), while the Central
Pamir and South Pamir are believed to have rifted from the northern margin of
Gondwana during the Late Carboniferous to Early Permian (Burtman and Molnar,
1993; Angiolini et al., 2013; Robinson, 2015).

The North Pamir contains abundant Paleozoic and Permo-Triassic magmatic
rocks (Fig. 1b; Chapman et al., 2018a), while Central Pamir hosts mainly Cenozoic
plutons, with a few of Cretaceous age (Fig. 1b; Robinson, 2015; Chapman et al.,
2018a; Ma et al., 2023). The South Pamir can be further divided into southwest Pamir
and Karakoram terrane, separated by a system of Cenozoic extensional detachments
(Fig. 1b; Schwab et al., 2004; Schmidt et al., 2011; Angiolini et al., 2013). The
southwest Pamir, which continues into the Hindu Kush mountain range, consists of
Precambrian basement domes and records a complex history of later magmatism
spanning from the Early Paleozoic to the present day (Schmidt et al., 2011; Faisal et

al., 2016; Soret et al., 2019). In the southeast Pamir, Permian to Cretaceous
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sedimentary sequences dominate, accompanied by highly deformed and
metamorphosed Precambrian basement (Zanchetta et al., 2018; Zhang et al., 2018;
Imrecke et al., 2019). In addition to this, widespread Early Cretaceous magmatic
rocks are observed in the South Pamir. This magmatic suite is dominated by S-type
and I-type granitoids in addition to a small amount of intermediate-silicic volcanic
rocks (e.g., Faisal et al., 2016; Aminov et al., 2017; Ma et al., 2023), with a notable
high-flux magmatic event occurring between 110 and 105 Ma (Fig. 1b; Schwab et al.,
2004; Heuberger et al., 2007; Chapman et al., 2018a). These Cretaceous magmatic
rocks provide important insights into Mesozoic subduction of the Neo-Tethys Ocean
and the crust-mantle interaction (Ravikant et al., 2009; Zhang et al., 2022). To the
south, the Kohistan-Ladakh Arc, situated between the Shyok Suture (SSZ) and the
Indus-Tsangpo Suture Zone (ITSZ), developed during the Mesozoic above a
north-dipping subduction zone within the Neo-Tethys Ocean (Fig. 1b; Schwab et al.,
2004; Ravikant et al., 2009; Jagoutz and Schmidt, 2012; Chapman et al., 2018a).

The diorites and monzogranites investigated in this study are exposed in the
Kalaqigu pluton located in the Chinese Wakhan Corridor, which is part of the South
Pamir (Figs. 1b—1c). The basement of the Wakhan Corridor comprises the Archean (ca.
2.5 Ga) Mazar complex. This was intruded by ca. 840 Ma granites and 500490 Ma
mafic rocks as well as Early Cretaceous mafic-to-acidic intrusions (Ji et al., 2011; Li
et al., 2016; Zhang et al., 2018; Zhang et al., 2022). As a result of Neo-Tethys oceanic
subduction, these Cretaceous magmatic rocks have formed complete volcanic
sequences related to arc activity, creating an east-west trending magmatic belt along
the Wakhan Corridor (Li et al., 2016; Liu et al., 2020; Zhang et al., 2022). Jiang et al.
(2014) first reported the granodiorite and monzogranites of the Kalaqgigu pluton and
suggested that they were generated by partial melting of metasedimentary basement.
They also reported that a mafic basalt-andesite sequence with enriched Nd isotope
compositions (-5.9 to -9.6) (Zhang et al., 2022) and dioritic enclaves with exq(?) of ca.
-4.74 (Liu et al., 2020) erupted at 104-98 Ma in the west of the studied area. These
originated from metasomatized sub-continental lithospheric mantle and underwent

variable assimilation fractional crystallization. I-type granitoids generated by



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207

crust-mantle interaction are also reported from the Wakhan Corridor (Liu et al., 2020).
Additionally, in the northwest of the Wakhan Corridor, the contemporaneous (110-92
Ma) Teshiktash-Beik volcanic basin consists of grey and reddish lavas, tuffaceous
lavas, and dacitic tuff breccias (Fig. 1b; Aminov et al., 2017). To the north, S-type
granites were emplaced in the Taxkorgan pluton, in the northeastern part of the
continental arc (Fig. 1b; Jiang et al., 2014; Ma et al., 2023).

In the field, the Kalaqigu pluton intrudes Paleozoic and Jurassic strata and is
adjacent to the Honggqilapu pluton (Fig. Ic). Granitoids derived from crust-mantle
mixing as well as mantle-derived dioritic dikes have also been identified in the

Honggqilapu pluton (Jiang et al., 2014; Li et al., 2016).

Sampling and Description

Diorite and monzogranite were collected from the Kalaqigu pluton in the
Chinese part of the Wakhan Corridor, Southern Pamir, as indicated in Figure 1c. The
diorite exhibites a medium-fine grained subhedral granular structure and is primarily
composed of plagioclase (60 vol.%), amphibole (25 vol.%), biotite (10 vol.%), and
quartz (1-5 vol.%), with accessory minerals such as apatite and zircon (Figs. 2a-2b).
The biotite shows partial replacement by chlorite (Fig. 2b).The monzogranite exhibits
a fined-grained or porphyritic texture and is composed of K-feldspar (35 vol.%),
plagioclase (30 vol.%), quartz (25 vol.%), biotite (1-5 vol.%), cordierite (1 vol.%)
and sillimanite (< 1 vol.%), with minor amounts of apatite and zircon within the
matrix (Figs. 2c—2d). Partially enclosed K-feldspar gains contain small biotite
inclusions (Figs. 2c—2d). Metasomatic worm-like structures can be observed at the
contacts between plagioclase and K-feldspar and sillimanite appear as small needles
predomnantly embedded in the K-feldspar. Cordierite is pseudomorphed by serpentine
(Fig. 24d).

ANALYTICAL METHODS

Detailed analytical methods are given in Supplementary File 1 and a short
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summary is given here. Zircon U-Pb dating using LA-ICP-MS and in-situ zircon
Lu-Hf isotopes were analyzed at the Institute of Geology and Geophysics, Chinese
Academy of Sciences (IGG CAS). Zircon oxygen isotopes were determined by
secondary ion mass spectrometer (SIMS) at the at State Key Laboratory of Isotope
Geochemistry (SKLaBIG), Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences (GIG CAS). Major elements analyses of amphibole, plagioclase and
biotite were carried out using JEOL JXA-8100 Electron Probe Micro Analyzer
(EPMA) at IGG CAS. Major element contents were determined by X-ray
fluorescence spectrometer (XRF) on fused glass beads at SKLaBIG, GIG CAS. Trace
element analyses were determined using a Perkin-Elmer ELAN-DRC-e inductively
coupled plasma mass spectrometer at the State Key Laboratory of Ore Deposit
Geochemistry (SKLOG). Whole-rock Sr-Nd-Pb isotopes were determined using a
MC-ICP-MS at SKLaBIG, GIG CAS.

RESULTS

Zircons were separated from two samples for LA-ICP-MS zircon U-Pb dating.
Whole-rock major and trace elements and Sr-Nd-Pb isotopes, zircon U-Pb-Hf-O
isotopic compositions as well as analysis of mineral compositions are provided in the

Supplementary Table 1-5.

Zircon U-Pb Ages

All zircon crystals from Kalaqigu diorite and monzogranite are generally
transparent and colorless, with length/width ratios ranging from 4:1 to 1:1 (Fig. 3).
They exhibit well-developed concentric oscillatory zoning in cathodoluminescence
(CL) images (Fig. 3) and high Th/U ratios (typically > 0.2; Supplementary Table 1),
indicating a magmatic origin (Belousova et al., 2002). A few zircon grains from the
monzogranite display a clear core-rim structure in CL images (Fig. 3d). Eighteen
analytical spots from the diorite yielded concordant **°Pb/***U ages ranging from 103
to 109 Ma, with a weighted mean age of 105.9 £ 0.3 Ma (MSWD = 0.93) (Fig. 3a).

Dating of monzogranite was conducted on the zircon rims and cores (Figs. 3b—3d).
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The zircon rims yield ***Pb/**U ages ranging from 106 to 120 Ma, with weighted
mean ages of 108.4 £ 0.4 Ma (n = 7, MSWD = 0.59) (Fig. 3b). These ages indicate
that Kalaqigu pluton was emplaced during the Early Cretaceous (108—105 Ma). Ages
for the inherited zircon cores from the monzogranite exhibit a wide range, from 1032

to 334 Ma (Supplementary Table 1; Figs. 3c—3d).

Mineral Chemistry

Amphibole is the dominant mafic mineral in the Kalaqigu diorites but is absent
from the monzogranite. Based on the classification by Leake et al. (1997), these
belong to the calcic subgroup (Cag = 1.83—1.92 and (Na + K)s = 0.33-0.59) with high
Mg” values (52-62). Amphibole phenocrysts from WK1616 that yield (Na + K) <
0.5 based on amphibole classification diagrams classify as magnesio-hornblende (Fig.
4a, Leake et al., 1997; Hawthorne and Oberti, 2007). The amphibole phenocrysts with
higher content of alkaline elements ((Na + K) > 0.5) classify as magnesio-hastingsite
('Al < Fe*") and pargasite ('Al > Fe") (Fig. 4b). Only one amphibole has a high
content of Si (> 6.5) and classifies as edenite (Fig. 4b). To estimate the temperature
and pressure of amphibole crystallization, we used the formulas from Ridolfi et al.
(2010) and the empirical geobarometer from Krawczynski et al. (2012). Calculated
temperatures and pressures for these amphibole grains range from 771-907 °C and
3.26-7.43 kbar with average of 849 °C and 5.16 kbar, respectively (Supplementary
Table 2). We also calculated the H,Opex contents (5.19—6.86 wt.%) and oxygen
fugacity (AFMQ = 0.45-1.89) using the formulas from Ridolfi et al. (2010).

Biotite from the diorites is mainly Mg-biotite, with relatively high concentrations
of Si0; (37.3-37.4 wt.%), MgO (12.2-12.5 wt.%) and Mg# (55), as well as low Al,O3
(14.1-14.5 wt.%), FeO" (17.8-18.0 wt.%) and TiO, (3.73-3.85 wt.%) (Fig. 4c,
Supplementary Table 2). In the monzogranite, biotite is Fe-biotite with lower SiO,
(34.4-35.4 wt.%), MgO (6.66—7.37 wt.%) and Mg# (36-40), as well as high Al,O;
(18.5-19.2 wt.%), FeO' (20.0-21.2 wt.%) and TiO, (3.65-4.02 wt.%) (Fig. 4c,
Supplementary Table 2) than the biotite in the diorites. Calculated temperature and

pressure values of biotite from diorites show a range of 770-783 °C and 4.56-5.32
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kbar, whereas those of biotite from monzogranites have a range of 746—772 °C and
5.50-6.42 kbar (Li and Zhang, 2022; Supplementary Table 2), representing the
crystallization T and P of biotites.

Representative plagioclase grains were analyzed from core to rim (Figs. 4b—4c).
For diorite (WK1616), plagioclase grains typically show a decrease in modal anorthite
(An) from core to rim (Fig. 4d; Supplementary Table 2). These grains generally have a
core of AngossAbis0Orp.; and a rim of Angs.soAbssssOri,. This indicates that
plagioclase crystallized from bytownite, through labradorite to andesine from early to
later stages (Fig. 4d). Plagioclase compositions in monzogranite (WK1617) vary

between Any;—Anss and classify as oligoclase-andesine (Fig. 4d).

Major and Trace Element Geochemistry
Diorites

The diorites are characterized by low SiO; (51.9-54.5 wt.%) (Fig. 5a), high MgO
(5.4-8.3 wt.%), and Fe,03" (8.1-9.5 wt.%) contents with high Mg" (56-65) values.
They have relatively high alkalis (KO + Na,O = 4.31-5.35 wt.%) and K,O/Na,O
(0.9-1.3) ratios, showing high-K calc-alkaline to shoshonite (Fig. 5b) and potassic
features (Fig. 5c¢). In addition, they exhibit high Al,O; (12.8-16.8 wt.%) and CaO
(7.73-9.35 wt.%) contents, plotting in metaluminous field (A/CNK = 0.6-0.8).

On chondrite-normalized rare earth element (REE) diagrams (Fig. 6a), the
diorites show sub-parallel light-REE enriched patterns with relatively flat heavy REEs
((La/Yb)x = 6.4-12.1; (Gd/Yb)xy = 1.7-2.3), with weak negative Eu anomalies

[Ew/Eu* (Euy/3/Smy X Gdy) = 0.77-0.88]. On a primitive mantle normalized

diagram, they are enriched in LILEs (K, Sr and Ba) but depleted in HFSEs and show
negative Nb, Ta, P, Zr, Hf, and Ti anomalies (Fig. 6b). The diorite samples are
characterized by high Sr (365-607 ppm) and Y (20.9-25.8 ppm) contents with low
St/Y (17-27) ratios. In addition, they have high Cr (54.6-117.2 ppm), Co (18.6-33.7

ppm), and Ni (7.84-34.6 ppm) contents.
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Monzogranites

The monzogranites have relatively silicic compositions (SiO,= 69.2-72.0 wt.%)
(Fig. 5a). They are characterized by low Fe,03" (1.8-2.9 wt.%), MgO (0.6-1.0 wt.%;
Mg" = 36-40), CaO (1.6-2.6 wt.%), as well as high ALO; (14.4-16.2 wt.%) and
alkalis (K,O + Na,O = 6.8-7.7 wt.%) contents. They show calc-alkaline to high-K
calc-alkaline (Fig. 5b), potassic (Fig. 5c¢) and peraluminous (A/CNK = 1.15-1.23)
features (Fig. 5d).

The monzogranites show steeply fractionated REE patterns (Fig. 6c), with
marked enrichment in LREEs and steep HREEs ((La/Yb)x = 41.4-60.7; (Gd/Yb)x =
6.0-7.2), plus moderate negative Eu anomalies (Ew/Eu* = 0.67-0.83). On a primitive
mantle normalized diagram, they also show enrichment in LILEs (such as Th, Rb, U,
and K) relative to HFSEs and LREEs, with negative Ba, Nb, Ta, Sr, P, and Ti
anomalies (Fig. 6d). The monzogranite samples have relatively low Sr (205-293 ppm)
and Y contents (9.1-10.2 ppm) with St/Y ratios of 24 to 30. In addition, they exhibit
low Cr (2.17-2.91 ppm), Co (1.68-2.87 ppm), and Ni (0.83—1.47 ppm) contents.

Whole-rock Sr-Nd-Pb Isotopes

Initial Sr-Nd-Pb isotopic values were calculated at the relevant crystallization
age (106 or 108 Ma). The Kalaqgigu diorites have initial *’Sr/*Sr isotopic ratios of
0.7075 to 0.7086 and exq(?) values of -5.97 to -7.18 with old Nd model ages (Tpym = ca.
1491-1592 Ga) (Fig. 7a). The studied monzogranites exhibit enq(¢) values (-12.3 to
-12.5) with two-stage model ages of 1909 to 1921 Ma and initial *’Sr/*Sr isotopic
ratios (0.7154-0.7158), but these differ significantly from those of the diorites (Fig.
7a). The diorites and monzogranites have similar (**°Pb/***Pb); ratios (18.64—18.68 in
diorites and 18.66—18.67 in monzogranites) but different (**’Pb/***Pb); (15.70-15.71
and 15.757-15.758, respectively) and (***Pb/**'Pb); ratios (39.02-39.12 and 39.14—
39.16, respectively) relative to the Northern Hemisphere Reference Line (NHRL)
(Figs. 7b-7c).

Zircon Hf-O Isotopic Compositions
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The zircons from the Kalaqigu diorites (WK1616) have negative eyf(¢) values
ranging from -9.9 to -12.2 (-10.9 on average) and old Tpmz (1.79-1.93 Ga and 1.85
Ga on average) ages (Supplementary Table 4). The Kalaqgigu diorites (WK1616) and
monzogranites (WK1617) have similar 'O values (i.e., 7.49-9.01%0 and 7.82—
8.85%o, respectively; Supplementary Table 5), which are higher than those (5.3 +
0.6%o0, 2SD) of igneous-origin zircons in equilibrium with mantle-derived magmas

(Fig. 8; Valley, 2003).

DISCUSSION
Geochemical Affinities

The Kalaqigu diorites exhibit high MgO, Al,Os; and TiO, contents, but low
FeO'/MgO ratios (1.0—1.4) and CaO contents, thus showing geochemical affinities to
high-Mg andesites (HMAs; Tatsumi, 2001). In addition, they have low Sr (365-607
ppm), Y (20.9-25.8 ppm) and Yb contents (1.9-2.5 ppm) with low Sr/Y (17-27) and
(La/Yb)y ratios (11-15), which are compositionally analogous to those of sanukite
from the Setouchi Volcanic Belt (Figs. 9a-9b; Yogodzinski et al., 1994; Shimoda et al.,
1998; Tatsumi, 2001). Their high Mg" values and Cr contents also suggest that they
are sanukitic HMAs (Kamei et al., 2004; Martin et al., 2005).

Granites are often categorized as S-, I-, or A-types (Chappell and White, 1974;
Loiselle and Wones, 1979; Whalen et al., 1987). The monzogranites from the
Kalaqigu pluton are hornblende-free and characterized by high SiO,, low Rb/Sr,
(K20+Na,0)/Ca0 (2.6-4.8) and FeO'/MgO ratios (2.6-3.2), implying that they are
unfractionated granites (Chappell and White, 1974, 1992). They have low 10000 x
Ga/Al ratios (2.1-2.6) and (Zr + Nb + Ce + Y) contents (199-257) and low zircon
saturation temperatures (761-824°C), which are distinct from those of A-type granites
(Figs. 9¢—9d; Whalen et al., 1987). Their A/CNK values are higher than 1.1 (Fig. 5d),
and they contain diagnostic peraluminous minerals such as cordierite (Fig. 2d;
Barbarin, 1999). The U-Pb ages of inherited zircon cores from the monzogranite show
large variations (Fig. 3c¢), consistent with typical S-type granitoids (Gao et al., 2016).

In addition, they have initial ¥7S1/*%Sr ratios of 0.7154 to 0.7158 and low end(?) values
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of -12.3 to -12.4 (Figs. 7a-7b). These geochemical features strongly indicate that

these monzogranites are unfractionated, high-K, S-type granites.

Petrogenesis and Magma Sources
Diorites

AFC effect

As mentioned above, the Kalaqigu diorites show affinities with HMAs. These
high-Mg diorites have low SiO, contents and high Mg" values (Fig. 10a) with variable
Cr and Ni contents, indicating they are derived from a mantle source. For
mantle-derived melts, wall-rock assimilation and shallow-level fractional
crystallization are inevitable during transport and emplacement (DePaolo, 1981).
Crustal assimilation is likely to cause an increase in (87Sr/868r)i and a decrease in eny(?)
as well as Nb/La and Nb/Th ratios. This is because the continental crust is typically
characterized by low exa(f) values, low Nb/La and Nb/Th ratios, but high (*’Sr/**Sr),
ratios relative to those of the mantle (Rudnick and Fountain, 1995). However, these
high-Mg diorites show virtually identical Sr-Nd isotopic compositions (Fig. 7a) and
limited variations in Nb/La (0.31-0.42) and Nb/Th (0.64-2.51) ratios as well as zircon
enr(?) values (-12.2 ~ -9.9). These observations suggest that they have undergone
limited crustal assimilation.

These high-Mg diorites however, have generally low but variable compatible
element contents, such as V, Cr and Ni, indicating some fractionation of mafic
minerals. The positive correlation between MgO and Fe,O;' and CaO as well as
negative correlation between MgO and Al,O; suggests fractionation of
olivine/pyroxene/spinel in a lower magma chamber (Figs. 10b-10d). The negative
correlation of MgO and TiO, suggests there is no fractionation of Fe-Ti oxides (Fig.
10f). Absence of Eu, Sr and Ba anomalies also suggests that feldspar was probably not
a fractioning phase (Figs. 6a—6b). These fractional crystallization trends are consistent
with models derived from Rhyolite-MELTS using a pressure of 5.16 kbar and water

content of 5.84 wt.% (Supplementary Table 2), as well as a range of oxygen fugacity
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(AQFM +1, +2 and +3) (Figs. 10b—10f). The models support minor fractionation of

olivine + orthopyroxene +/- clinopyroxene/spinel during magma evolution.

Magma Evolution

Several petrogenetic models have been proposed for the formation of HMAs,
including (1) partial melting of a subducted oceanic crust with assimilation of mantle
peridotites (Yogodzinski et al., 1994; Kelemen, 1995); (2) partial melting of
delaminated mafic crust at mantle depths (Chen et al., 2013); (3) direct partial melting
of hydrous mantle (Hirose, 1997; Wood and Turner, 2009; Mitchell and Grove, 2015);
(4) interaction of fluids/melts derived from subducted slabs and/or sediments with the
overlying mantle wedge (Shimoda et al., 1998; Tatsumi, 2001, 2006).

In general, HMAs generated by models one and two are similar to adakitic and
bajaitic HMAs because their trace element characteristics, such as high Sr/Y ratios,
absence of Eu anomalies and depletion in HREEs (Kelemen, 1995; Kelemen et al.,
2004; Chen et al., 2013), reflect the melting residue of oceanic slab or lower crust.
However, the Kalaqigu high-Mg diorites have low Sr/Y ratios (Fig. 9b) with only
slight negative Eu anomalies (Fig. 6a) and they are enriched in LREEs with limited
depletion in HREEs (Fig. 6b). Coupled with their high Al,O3 (12.8-16.8 wt.%), Sc
contents (24.5-30.0 ppm) and low Y (20.9-25.8 ppm) and Yb (1.9-2.5 ppm), this
geochemical signature suggests a garnet-free source region (Defant and Drummond,
1990; Hoskin and Schaltegger, 2003; Macpherson et al., 2006). Further, it is thought
that the crust of South Pamir did not significantly delaminate during the Early
Cretaceous (Soret et al., 2019), therefore this also rules out the second model.
Accordingly, and given the following observations, we consider that these high-Mg
diorites to represent the products of interaction between subducted sedimentary melts
and hydrous mantle:

(1) The Kalaqgigu high-Mg diorites have low eyq(¢) values (-12.2 to -9.91) that are
lower than those of HMA formed by direct melting of hydrous mantle (Wood and
Turner, 2009). Their enriched Sr-Nd-Pb isotopic compositions are also inconsistent

with simple partial melting of a mantle source (Fig. 7).
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(2) They have significant depletions in Nb (Nb/La = 0.3-0.4), Ta, Ti, Zr and Hf
(Fig. 6b), the quintessential signature of subduction-related rocks (e.g., Defant and
Drummond, 1990; Hawkesworth et al. 1997a). Associated high LILEs (e.g., Rb, Sr
and Ba; Supplementary Table 3), and high LREEs (Fig. 6a) require enrichment of the
mantle source before partial melting. Both these elemental characteristics are likely to
be related to subduction of Neo-Tethys oceanic lithosphere (e.g., Ravikant et al., 2009;
Liu et al., 2020; Zhang et al., 2022).

(3) The moderate Rb/Ba and Rb/Sr ratios of these high-Mg diorites plot along
the mixing trend between basalt and a calculated pelite-derived melt (Fig. 11a),
indicating that their magma source was most likely a mixture between basalt and
sedimentary rocks. The samples also display a positive correlation between Th/La and
Th/Sm (Fig. 11b), consistent with simple binary mixing (i.e., between DMM and
GLOSS).

(4) Subduction fluids generally carry LILEs (e.g., Rb, Sr and Ba) and other
fluid-mobile trace elements (e.g., U and Pb) into the mantle wedge (Hawkesworth et
al., 1997a, b). However, the Kalaqigu high-Mg diorites show low Ba/La (17-32),
Ba/Th (51-167), St/Th (39-120) and U/Th (0.2-0.4) ratios, indicating that their
source was not significantly metasomatized solely by a fluid component (Figs. 11c—
11d; Hawkesworth et al., 1997a; Turner et al., 1997). In contrast, addition of sediment
is likely to increase La/Sm and Th/Yb (Hanyu et al., 2006; Tatsumi, 2006; Labanieh et
al., 2012). All samples yield (La/Sm)y ratios of 2.4-3.4 and Th/Yb ratios of 1.6-6.5,
consistent with the addition of subducted sediments (Figs. 11c—11d), but their partial
melting is indicated by higher Th/La and Th/Sm ratios than those in the GLOSS (Fig.
11b). The indicative model curve suggests that the degree of partial melting of
GLOSS is ~4%, and the proportion of GLOSS melt in the high-Mg diorites is ~10%
(Fig. 11b).

(5) The Sr-Nd-Pb isotopic compositions of the diorites plot within or close to the
GLOSS field, also consistent with a subduction-related enrichment (Fig. 7). The
diorites also have zircon 8'®0 values which are markedly higher than that of the

depleted mantle (Fig. 8a), likely inherited from their sedimentary source components
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(Valley, 2003; Workman et al., 2005).
To summarize, we infer that the Kalaqigu high-Mg diorites were generated by

partial melting of enriched mantle modified by subducted sediment-derived melts.

Mantle Source and Magma Evolution

As mentioned above, the Kalaqigu high-Mg diorites originated from a
metasomatized mantle modified by subducted sediments. When high-pressure silicate
liquids from the subducted crust are out of equilibrium with the overlying mantle
rocks, they will interact with the mantle, resulting in hybrid silicate-carbonate melt
compositions (Sekine and Wyllie, 1982; Wyllie and Sekine, 1982; Ionov et al., 1997).
These hybrid melts may be consumed by reaction with the overlying mantle rocks,
creating metasomatized domains (e.g., Sekine and Wyllie, 1982; Wyllie and Sekine,
1982). The reactions of carbonate-rich melts with overlying peridotite would produce
lherzolites and harzburgites (e.g., Lambart et al., 2012). In general, these lherzolites
and harzburgites would be in equilibrium with an aluminous mineral which changes
from plagioclase to spinel to garnet with increasing pressure (Wyllie, 1979; Miintener
and Ulmer, 2018).

These diorites are characterized by only small negative Eu anomalies (Fig. 6a)
and moderate fractionation of HREE (Fig. 6b), supporting the absence of plagioclase
and garnet as residual phases. Instead, the patterns are consistent with the presence of
spinel in the mantle source (Guo et al., 2006). As shown in Figure 12a, Dy/Yb and
La/Yb systematics also indicate that the diorites need an enriched mantle source for
spinel-harzburgite mantle partial melting. In addition, their high K,O contents (2.1—
3.0 wt.%; Fig. 5b) imply that K-rich phases including phlogopite and/or K-rich
amphibole as residual phases occur in the mantle source. However, these diorites have
low Rb/Sr (0.1-0.3) and Ba/Rb (4.4—11.0) ratios that suggests the presence of residual
phlogopite (Fig. 12b; Furman and Graham, 1999). Phlogopite is a common
metasomatic volatile-bearing K-rich phase (e.g., Sekine and Wyllie, 1982; Wyllie and
Sekine, 1982) and its consumption usually results in high K,O contents. Therefore,

we propose that the Kalaqigu high-Mg diorites were generated from a
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phlogopite-bearing spinel-harzburgite mantle and have undergone fractionation of
olivine, orthopyroxene and spinel within a lower magma chamber, which is similar to
the petrogenesis of sanukitic HMAs (Tatsumi, 2001; Wang et al., 2008).

Petrography demonstrates that amphibole occurs as inclusions in feldspar (Fig.
2a), indicating amphibole was an early crystallizing phase. Biotite and quartz occur as
late interstitial crystallizing phases. Thus, the inferred sequence of crystallization is
amphibole — plagioclase — biotite + quartz. A previous experimental study has
shown that high H,O contents (> 3%) would suppress plagioclase and lead to earlier
crystallization of amphibole (Miintener et al., 2001). Plagioclase crystallization later
than amphibole indicates that the primitive parental melts may have had high water
contents. This is also supported by the frequent presence of hydrous minerals
(amphibole and biotite), high H,Onerr and oxygen fugacity values calculated by
amphibole compositions (Supplementary Table 2). Mantle hybridization by influx of
sediments and/or partial melts derived from them can directly form pargasitic
amphibole (Mandler and Grove 2016). Such amphibole can be stable over a wide
range of mantle pressures up to 4 GPa and temperatures of about 1000-1100 °C
(Mandler and Grove 2016). In subduction zones, the downgoing slab commonly
undergoes multistage dehydration and melting, which continuously releases fluids and
melts to metasomatize the mantle wedge (Sekine and Wyllie, 1982; Wyllie and Sekine,
1982). The initial fluids generated by dehydration progressively evolve and are
accommodated in the fugitive aqueous phases during heating and solidification of the
magma (Wyllie and Sekine, 1982). Thus, the mantle source region may have been
metasomatized by fluids prior to the generation of these diorites. This is consistent
with the proposal that sanukitic magmas may contain important amounts of dissolved
water (Castro, 2020).

As mentioned above, Early Cretaceous magmatic rocks are widely distributed in
Chinese Wakhan Corridor (Jiang et al., 2014; Li et al., 2016; Zhang et al., 2022).
Among them, mantle-derived magmatic rocks, including basalt-andesite (ca. 100-98
Ma; Zhang et al., 2022) and diorite (ca. 104—100 Ma; Li et al., 2016; Liu et al., 2020),

crystallized marginally later than high-Mg diorites in this paper (ca. 106 Ma). Despite
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this, they exhibit similar Sr-Nd isotopic compositions (Fig. 7a) and are also thought to
have been generated from an enriched hydrous mantle source (Liu et al., 2020; Zhang
et al., 2022). However, as shown on Fig. 11, the mantle source region of these
younger rocks requires more sediment input (i.e., subducted sediments and/or
sediments from overlying crust; Li et al., 2016; Liu et al., 2020). Given the similar
mantle sources (i.e., phlogopite-bearing spinel-harzburgite mantle; Figs. 12a—12b)
over ca. 10 Ma, the metasomatism most likely occurred at a stable depth (<100 km;
Wyllie, 1979; Klemme and O’Neill, 2000). During this period (ca. 106-98 Ma), the
interaction between partial melts of subducted sediments as well as crustal materials
and mantle wedge persisted below the Chinese Wakhan Corridor and led to a

relatively uniform, stable enriched mantle source.

Monzogranites

Origin of the inherited zircons

The Kalaqigu S-type monzogranites contain inherited zircon cores with ages of
334-1032 Ma (Figs. 3c—3d). Several alternative mechanisms can explain how these
inherited zircons became incorporated into the Early Cretaceous monzogranites. They
could potentially be captured from the crustal country rocks during emplacement of
granitic magmas. However, there is no obvious evidence of crustal assimilation
because no xenoliths of the country rocks have been observed in the studied S-type
monzogranites. In addition, whole-rock Sr-Nd isotopes of these monzogranites show
relatively limited variations (Fig. 7) and do not change with increasing SiO, contents.
It is thus unlikely that these inherited zircons were captured from the local continental
crust, rather were inherited from crustal sources.

The monzogranites have high 8'%0 values of 7.82 to 8.85%o (Fig. 8b), which are
significantly higher than those of igneous zircons from lower crust-derived magmas
(5%0—7.5%0; Valley et al., 2005), but close to those of sedimentary rocks (80 > 8 %o;
Valley et al., 2005). In addition, their inherited zircon cores show variable U-Pb ages
that are consistent with the ages of detrital zircons in southeastern Pamir (Fig. 3c;

Imrecke et al., 2019). Therefore, the geochemical characteristics indicate that the
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studied S-type monzogranites were most likely generated by melting of Early

Paleozoic sedimentary rocks (Imrecke et al., 2019).

Melting mechanism and characteristics of the magma source

As mentioned above, the Kalaqigu monzogranites have unfractionated S-type
granites affinities, with high SiO, contents, low Mg" values (Fig. 10a), as well as
negative eng(f) (-12.3 to -12.5). Combined with their peraluminous geochemical
signature (Fig. 5d), these characteristics are consistent with a metasedimentary source.
In general, the geochemical characteristics of S-type granites are controlled not only
by the properties of metasedimentary rocks in the source area, but also by both the
extent and mechanism of melting (Patifio Douce and Harris, 1998; Patifio Douce,
1999; Hopkinson et al., 2017). On the one hand, the crustal metasedimentary source
can be divided into clay-rich metapelite, and clay-poor metagraywacke (e.g.,
Sylvester, 1998). The Kalaqigu S-type samples exhibit higher CaO/Na,O ratios (0.49—
0.63) relative to melts derived from metapelite (CaO/Na,O ratios < 0.5; Jung and
Pfander, 2007). In addition, they have low Rb/Sr and Rb/Ba ratios, suggesting they
were derived mainly from clay-poor metagreywacke-derived melts rather than
metapelite-derived melts (Fig. 11a; Whalen et al., 1987; Sylvester, 1998). Their
geochemical features are also more similar to experimental melts of metagraywacke
than that of metapelite (Figs. 13a—13e). In addition to the Chinese Wakhan Corridor,
coeval (ca. 119-108 Ma) S-type granites of the Taxkorgan pluton were intruded north
of the studied area (Fig. 1b; Jiang et al., 2014; Li et al., 2019; Ma et al., 2023).
However, these are characterized by variable CaO/Na,O (0.21-0.53), Rb/Sr (0.93—
3.55) and Rb/Ba (0.32-2.47) ratios (Supplementary Table 3), indicating different
source characteristics (i.e., metagreywacke or metapelite-derived melts; Fig. 11a and
Figs. 13a—13e). The zircon eud(?) values of the Taxkorgan samples show a variation of
~4.5 epsilon units (-10 in Jiang et al., 2014 and -14.5 in Li et al., 2019), also
indicating that their supracrustal sources were heterogeneous. In summary, we
interpret the Kalagigu S-type monzogranites to be the products of partial melting of

metagreywacke, while the Taxkorgan S-type rocks were formed by either
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metagreywacke or metapelite-derived melts, due to the differences between crustal
composition of the Central Pamir and South Pamir (Imrecke et al., 2019).

In addition, water distribution during the melting process also plays an important
role in the generation of S-type granites (e.g., Sylvester, 1998; Clemens and Stevens,
2012). Partial melting of metagreywackes can generally be divided into H,O-fluxed
melting and dehydration reactions of hydrous minerals such as muscovite or biotite
(Conrad et al., 1988; Montel and Vielzeuf, 1997; Patifio Douce and Harris, 1998).
Several observations suggest that the Kalaqigu S-type monzogranites were generated
by biotite dehydration melting under water-absent conditions. Firstly, plagioclase
dissolves easily in the melt under water-present conditions, which leads to higher Ca
and Na contents as well as positive Eu anomalies (Patifio Douce and Harris, 1998;
Garcia-Arias et al., 2015). However, these monzogranites have relatively low CaO
contents (1.6-2.6 wt.%) and high K,O/Na,O ratios (0.6-1.3), distinct from
H,O-fluxed melting of metagreywackes (CaO = 1.4-3.9 wt.%, K,O/Na,O = 0.3-1.0,
Conrad et al., 1988). Furthermore, they exhibit negative Eu anomalies (Eu/Eu* =
0.67-0.83; Fig. 6c¢), indicating the existence of residual plagioclase. Secondly,
negative correlation between Rb/Sr ratios and Sr but positive correlation with Ba
contents are consistent with fluid-absent biotite dehydration melting (Figs. 13e—13f;
Inger and Harris, 1993). Similarly, low CaO contents (0.8—1.7 wt.%), high K,O/Na,O
ratios (1.0-1.5), as well as negative Eu anomalies of Taxkorgan S-type granites
(Euw/Eu* = 0.4-0.6; Supplementary Table 3) also suggest they were generated by
dehydration melting.

Accordingly, we used a metagreywacke sample from Vielzeuf and Montel (1994)
for phase equilibrium modeling to determine the pressure-temperature (P-T)
conditions during anatexis (Fig. 14a). Phase equilibrium modeling used the GeoPS

software tool (http://www.geology.ren/; Xiang and Connolly, 2022). The contents of

biotite and H,Op; (H,O in biotite) decrease with the rising temperature, indicating that
anatexis was most likely a result of biotite-dehydration melting reaction (Fig. 14b).
This is consistent with peritectic cordierite and K-feldspar with biotite inclusions

(Figs. 2c¢—-2d), as cordierite and K-feldspar modes increase at the expense of biotite
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during prograde melting (Fig. 14c). Therefore, the Kalaqigu S-type monzogranites
were probably generated by biotite-dehydration melting from metagreywacke.

Estimating P-T conditions is essential to constrain not only the melting
mechanism, but also the nature of magma source and process of magma
crystallization. According to our phase equilibrium modeling (Figs. 14b—14c), the
reaction biotite + plagioclase + quartz = orthopyroxene + garnet (under high
pressure)/cordierite (under low pressure) + K-feldspar + melt occurs during the
fluid-absent partial melting of metagreywacke, consistent with previous studies
(Thompson, 1982; Clemens, 1984; Vielzeuf and Montel, 1994). The formation of
garnet and its existence as a residual phase in the source area are also accordance with
the geochemical features of these monzogranites (particularly REE fractionation; Fig.
6¢).

As the biotite occurs as late interstitial crystallizing phase, the pressures (5.5-6.4
kbar, with an average of 6.0 kbar) and temperatures (746772 °C, with an average of
757 °C) of the biotites represent minimum estimates (Fig. 14a), corresponding to the
magma pressure and temperature during late-stage crystallization. The disappearance
of biotite represents the completion of biotite-dehydration melting (Vielzeuf and
Montel, 1994), which suggests that crystallization began at ~850 °C and >6 kbar. The
calculated and estimated pressure-temperature results are also in agreement with the
inferred range of pressure conditions based on experimental phase relations (Fig. 14a).
Under these P-T conditions, the inferred sequence of crystallization is likely to be
K-feldspar — plagioclase — cordierite — biotite + quartz. This interpretation is
supported by the petrological observation that K-feldspar occurs as phenocrysts and
biotite occurs as inclusions in the K-feldspar and cordierite (Fig. 2¢). In brief, we
consider that the magma of Kalaqigu S-type monzogranites formed at pressures > 6

kbar, corresponding to lower crustal conditions.

Tectonic Implications
Onset of Andean-type Continental Arc

It has been proposed that there are two arcs in South Pamir, namely the
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Kohistan-Ladakh intra-oceanic arc and the continental arc subducted northward along
the SSZ in the South Pamir-Karakorum (Zanchi et al., 2000; Zanchi and Gaetani,
2011; Chapman et al., 2018a). The Early Cretaceous high-Mg diorites, and the
mantle-derived volcanic rocks in the Wakhan Corridor, show enrichment in LILEs
and depletion in Nb, Ta and HFSEs, suggesting an arc affinity (Figs. 6 and Fig. 15a; Ji
et al., 2016; Liu et al., 2020; Zhang et al., 2022). These units have geochemical
signature of continental arc magmatic rocks, as determined on Nb/Yb versus Th/Yb
and Ti/V versus Th/Nb diagrams (Figs. 15b—15c; Shervais, 2022). Previous studies
suggested that the Neo-Tethys oceanic lithosphere subducted northward along the
SSZ beneath the Karakoram terrane (Fraser et al., 2001; Bouilhol et al., 2013; Kumar
et al., 2017; Chapman et al., 2018a). This resulted in a combination of continental arc
magmatism in the South Pamir and the development of the thrust belt in the North
Pamir and Central Pamir (Robinson et al., 2004; Imrecke et al., 2019; Li et al., 2022;
Villarreal et al., 2023), forming an Andean style orogenic belt, similar to the western
North American Cordillera (Dickinson et al., 1978; Gutscher et al., 2000; Axen et al.,
2018). Thus, it is reasonable to deduce that the Early Cretaceous intrusive rocks have
similar Andean-type continental arc-related fingerprints and have developed along the
Neo-Tethys oceanic subduction zone.

Our new zircon U-Pb data combined with previously published data show that
there were two episodes of Early Cretaceous continental arc magmatism in the
Wakhan Corridor (Fig. 15d). In the first stage (ca. 115-102 Ma with ca. 105 Ma as a
high-flux event), extensive crustal remelting and crust-mantle interaction formed
continental arc-related magmatic rocks (Fig. 15d). Following this episode (ca. 107-98
Ma), a relatively small volume of mantle-derived rocks formed in the South
Pamir-Karakorum (Figs. 15d and 16a). In the Early Cretaceous, the Neo-Tethys
oceanic lithosphere may have undergone low-angle to flat subduction beneath the
South Pamir-Karakoram (e.g., Fraser et al., 2001; Bouilhol et al., 2013; Kumar et al.,
2017; Chapman et al., 2018a). This is further supported by the magmatic migration
from the Wakhan Corridor to the northwest Teshiktash-Beik (Fig.15d; Aminov et al.,

2017; Ma et al., 2023). During this period, the subduction of the oceanic slab
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produced fluids at sub-arc depths, which induced melting of mantle wedge,
interaction with overlying Pamir crust as well as the remelting of the ancient lower
crust (Fig. 16a). In this scenario, a series of granitoids at ca. 105 Ma as a high-flux
event formed arc-related magmatic rocks (Figs. 15d and 16a). Following this period,
mantle-derived basalt-andesite as well as the studied high-Mg diorites in the Wakhan
Corridor resulted from interaction between slab melts (i.e., sedimentary melts) and the
mantle (Figs. 15d and 16b). We propose that subducted sediments played an important
role in the formation of the mantle-derived magmatic rocks in the Wakhan Corridor

during the Early Cretaceous (Figs. 7, 8 and 11).

Implications for the Correlation of Early Cretaceous S-type Granites

As mentioned above, contemporaneous S-type granites are also exposed in the
Taxkorgan pluton, albeit slightly earlier (ca. 118-108 Ma; Jiang et al., 2014; Li et al.,
2019; Ma et al., 2023) than that in the Wakhan Corridor (Figs. 15c¢ and 16a). They
also exhibit typical subduction-related continental arc geochemistry (Figs. 15b-15c;
Jiang et al., 2014; Li et al., 2019) and have the geochemical characteristics of
syn-collisional granite (Fig. 15a; Pearce et al., 1984). Based on the temporal-spatial
evolution of Cretaceous arc magmatism in the Pamir, it is likely that the Taxkorgan
S-type granites were generated in a collisional setting caused by the northward
subduction of the Neo-Tethys oceanic lithosphere (Fig. 16a). The north-south
difference in crystallization age indicates that the collisional compression caused by
subduction occurred slightly earlier than the flare-up of the South Pamir-Karakoram
magmas.

Furthermore, the crustal source of the Taxkorgan S-type granites is
heterogeneous (i.e., metagreywacke and metapelite; Figs. 11a, 13a-d and 16a). Based
on the structural relationships and distribution of rock units Imrecke et al. (2019)
suggested that southeast Pamir consists of two distinct structural/lithologic domains:
the northern schist and gneiss region and the southern metamorphic sedimentary rocks.
Previous studies have shown that low-angle or flat-slab subduction is closely related

to upper plate shortening and back-arc deformation (Egawa, 2013; Gianni et al., 2018;
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Schellart, 2020). The Cretaceous Neo-Tethys oceanic slab migrated progressively
landward from South Pamir-Karakorum to the north beneath the Pamir crust. This
resulted in a maximum arc-trench distance of ca. 400 km in the Early Cretaceous (Ma
et al., 2023), and caused obvious retroarc shortening (Robinson et al., 2007, 2012), as
well as imbrication in the Taxkorgan due to the development of a regionally extensive
thrust nappe in the North Pamir (Imrecke et al., 2019). Thus, we interpret that such
imbrication along SW-vergent thrust is the main reason for the heterogeneous crustal
source of the S-type granites.

Landward arc migration caused by flat-subduction is often accompanied by
shortening and thickening events (e.g., Gianni et al., 2018). Research on
low-temperature thermochronology, sedimentary petrology and metamorphic
petrology show that Early Cretaceous (ca. 140-110 Ma) crustal shortening and
thickening appears to be focused along the North Pamir (Robinson et al., 2012;
Robinson, 2015; Villarreal et al., 2023). This is manifested in the amphibolite-facies
metamorphism at ca. 130-110 Ma (Robinson et al., 2004), broadly coeval exhumation
in the hanging wall of thrusts (Robinson et al., 2007; Imrecke et al., 2019; Villarreal et
al., 2023), as well as the widespread occurrence of thrust fault movement in the North
Pamir (Chapman et al.,, 2018b; Li et al., 2022; Villarreal et al., 2023). These
observations, combined with Taxkorgan syn-collisional granites, suggest the
subduction of the Neo-Tethys oceanic slab resulted in compressive deformation
primarily occurring far north of the subduction zone during the Early Cretaceous,
which also caused a general lack of magmatism in this area (Ma et al., 2023). This
compression-dominated environment also resulted in significant crustal thickening in
the Pamir during the Early Cretaceous (Li et al., 2022; Ma et al., 2023; Villarreal et al.,
2023). Following this period, prograde metamorphism indicates southward migration
of crustal shortening and thickening into the Central Pamir and South Pamir have
occurred during ca. 110-75 Ma (Chapman et al., 2018b), broadly coeval with the main
phase of magmatism in the South Pamir-Karakorum (Fig. 15d).

To summarize, we interpret Early Cretaceous crustal shortening to have resulted

from the low-angle and flat-subduction of Neo-Tethys oceanic lithosphere (Fig. 16).
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Crustal thickening could have been caused by regional compression (Fig. 16a) as well
as addition of mantle-derived magma (Fig. 16b) (Ma et al., 2023). In the Late
Cretaceous (<90 Ma), the Neo-Tethys Oceanic slab may have undergone slab
roll-back, which resulted in extension-related magmatism in the Pamir (Fig. 16b;

Chapman et al., 2018a).

CONCLUSIONS

(1) Zircon LA-ICP-MS U-Pb dating reveals that Kalagigu high-Mg diorites and
S-type monzogranites in the Wakhan Corridor were emplaced in the Early Cretaceous
(ca. 108.4-105.9 Ma).

(2) The high-Mg diorites formed from an enriched phlogopite-bearing
spinel-lherzolite hydrous mantle source modified by subducted sediment-derived
melts, and underwent low-degree fractionation of olivine and orthopyroxene.

(3) The S-type monzogranites were generated by biotite-dehydration melting from
metagreywacke under lower crustal conditions.

(4) In the subduction zone beneath the South Pamir, the subducted slab first
underwent dehydration and the resultant fluids generated a hydrous mantle source and
induced crust-mantle interaction as well as remelting of the lower crust to generate
granitoids. The partial melts of subducted sediments then continued to metasomatize
the mantle wedge, which generated extensive mantle-derived magmatic rocks.

(5) The northward low-angle flat-subduction of Neo-Tethys oceanic lithosphere had
subducted and migrated inland underneath the Pamir continent, leading to significant
Early Cretaceous continental-arc magmatism, inducing crust-mantle interaction
beneath the South Pamir and resulting in crustal shortening and thickening in the

Pamir.
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Figure captions

Figure 1. (a) Regional tectonic map, showing the geographic location of the Pamir
(after Burtman and Molnar, 1993; Yin and Harrison, 2000); (b) Simplified tectonic
map of the Pamir, showing distribution of tectonic terranes and plutons (Modified
from Robinson, 2015; Aminov et al., 2017; Zanchetta et al., 2018); (c) Simplified
geological map of Kalaqigu pluton at the Chinese Wakhan Corridor, Southern Pamir.
1YSZ~-Indus-Tsangpo Suture Zone; KKF—Karakorum Fault; MPT-Main Pamir Thrust;
RPSZ-Rushan-Pshart Suture Zone; SSZ—Shyok Suture Zone; TSZ-Tanymas Suture
Zone; WTBZ—Wakhan-Tirich Boundary Zone.

Figure 2. Representative thin section photomicrographs of Kalaqigu diorite (a-b) and
monzogranite (c-d). Figures (a) and (c) are under cross-polarized light and Figures (b)
and (d) are under the plane-polarized light. Amp—amphibole; Bi—biotite;
Chl—chlorite; Crd—cordierite; Kfs—K-feldspar; Pl—plagioclase; Q-—quartz;

Sil—sillimanite.
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Figure 3. Concordia diagrams with representative zircon CL images for LA-ICP-MS
zircon analyses of Kalaqigu diorite (a) and monzogranite (b). (c¢) Histogram of U-Pb
ages for inherited zircon cores from the studied monzogranite; (d) Representative
cathodoluminescence (CL) images of zircon cores from the studied monzogranite.
The data sources for detrital zircons of southeastern Pamir are from Imrecke et al.

(2019).

Figure 4. (a-b) Classification diagrams for amphiboles (Leake et al., 1997,
Hawthorne and Oberti, 2007). (c) Mg vs. (Al"'+Fe**+Ti) vs. (Fe*'+Mn) ternary
diagram for biotite (Foster, 1960). (d) Or—Ab—An classification diagram for
plagioclase (modified after Deer et al. 1992). An = anorthite, And = andesine, Ab =

albite, By = bytownite, La = labradorite, Ol = oligoclase, Or = orthoclase.

Figure 5. Geochemical classification and major element geochemical features for the
Kalaqigu diorites and monzogranites. (a) TAS classification diagram (Middlemost,
1994); (b) K,O versus Na,O diagram (Rollinson, 1993); (¢) K,O versus Na,O
diagram (Le Maitre, 1989); (d) A/NK versus A/CNK diagram (Maniar and Piccoli,
1989).

Figure 6. Chondrite-normalized REE patterns (a and c¢) and primitive
mantle-normalized multi-element patterns (b and d) for the Kalaqgigu diorites and
monzogranites. Chondrite and primitive mantle values are from Sun and Mcdonough

(1989).

Figure 7. (a) exa(?) versus (*'St/*°Sr);; ((O7Pb/”**Pb); (b) and (***Pb/***Pb); (c) versus
(**Pb/***Pb); diagrams for the Kalaqigu diorites and monzogranites. The depleted
MORB-source mantle (DMM) shown is from Workman and Hart (2005). The

Archean basement is from Ji et al., (2011). Cretaceous basalt-andesite, diorites and
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granitoids from the Chinese Wakhan Corridor are shown for comparison (Jiang et al.,
2014; Li et al., 2016; Liu et al., 2020; Zhang et al., 2022). The Northern Hemisphere
Reference Line (NHRL) is from Hart, (1984). EMI, EMII and GLOSS are from Hart
(1988), Zindler and Hart (1986) and Plank and Langmuir (1998), respectively.

Figure 8. Oxygen isotope data for zircon from the Kalaqigu diorite and
monzogranites. The mantle values of zircon oxygen isotope (5.3 = 0.6 %o, 2SD) are

from Valley (2003).

Figure 9. (a) MgO/(MgO + FeO") versus TiOs, and (b) Y versus Sr/Y discrimination
diagrams (after Kamei et al., 2004). (¢) 10,000 Ga/Al versus Nb, and (d) (Zr + Nb +
Ce +Y) versus FeO'/MgO (Whalen et al., 1987). FG—fractionated M-, I-, and S-type

granite; OGT—unfractionated M-, I-, and S-type granite.

Figure 10. (a) Mg# versus SiO, (after Rapp et al., 1999; Martin et al., 2005); (b-f)
Fenner diagrams showing selected major elements variations for the Kalaqigu diorites.
The green and blue lines represent crystallization trends defined by major element
modelling using Rhyolite-MELTS, divided into olivine + orthopyroxene and
clinopyroxene + spinel steps. Diorites samples WK1616-2 with lowest contents of
Si0, and WKI1616-4 with highest MgO have been taken as primary melts
(Supplementary Table 3). The model was run at 5.16 kbar with HyOperr = 5.84 wt.%,

calculated from amphibole compositions (Supplementary Table 2).

Figure 11. (a) Rb/Ba versus Rb/Sr, showing geochemical compositions of magma
source for the Kalaqigu diorites and monzogranites. The mixing curve between the
basalt- and pelite-derived melts is from Sylvester (1998); (b) Th/La versus Th/Sm.
N-MORB (normal mid-oceanic-ridge basalt) and OIB (oceanic-island basalt) values
are from Sun and McDonough (1989), and the values for average GLOSS are after
Plank and Langmuir (1998). The curve shows different mixing ratios between partial

melt (4%) of the GLOSS average and N-MORB. The D, and Dy, are 0.16 and 1.2,
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respectively (Plank, 2005). We use the same D as La for Sm (Dsy = 1.2). (c) Ba/Th
versus (La/Sm)y and (d) Th/Yb versus Ba/La discrimination diagrams for
metasomatic agents added to the mantle wedge. Taxkorgan S-type granites in (a) are
from Jiang et al. (2014) and Li et al. (2019). Cretaceous mantle-derived magmatic
rocks (i.e., basalt-andesite and diorite) with MgO > 3% from Chinese Wakhan
Corridor are shown for comparison (Li et al., 2016; Liu et al., 2020; Zhang et al.,
2022). Data of sanukitic HMAs in Figures (c) and (d) are from Hanyu et al. (2006)
and Tatsumi (2000).

Figure 12. Dy/Yb versus La/Yb (a) and Rb/Sr versus Ba/Rb (b) diagrams. All the
mantle models in (a) are from Xu et al. (2001). Amphibole and phlogopite arrows in
(b) refer to these as residual phases in the source region (Furman and Graham, 1999).

Cretaceous mantle-derived magmatic rocks are those shown in Fig. 11.

Figure 13. Plots of ALO; + MgO + FeO' + TiO, versus Al,O3/(MgO+ FeO' + TiO,)
(a); Na,O + K,O + F eOl + MgO + TiO; versus (Na,O + K,0)/(F eO! + MgO + TiO,)
(b); Na,O/K,0 versus FeO' (c) and CaO + FeO' + MgO + TiO, versus CaO/(FeO" +
MgO + TiO») (d) (a—d are after Patifio Douce, 1999). (e—f) Plots of Rb/Sr ratios versus
Sr (ppm) and Ba (ppm), respectively (after Inger and Harris, 1993). Taxkorgan S-type

granites in (a—d) are shown in Fig. 13.

Figure 14. (a) Pressure-temperature (P-T) pseudosection calculated for
metagreywacke from Vielzeuf and Montel. (1994). Yellow circle represents P-T
conditions calculated from biotite compositions (Li and Zhang, 2022; Supplementary
Table 2). Bi—biotite; Crd—cordierite; Gt—garnet; [lIm—ilmenite; Kfs—K-feldspar;
Ms—muscovite; Opx—orthopyroxene; Pl—plagioclase; g—quartz; ru—rutile;
sill—sillimanite. (b—c) Isomodes of biotite, plagioclase, H,Ogy, garnet, cordierite and
K-feldspar in different intervals, indicating growth of garnet, cordierite and

K-feldspar at the expense of biotite and plagioclase during melting as P-T increases.
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Figure 15. (a) Rb versus (Y + Nb) diagrams (after Pearce et al., 1984); (b) Th/Yb
versus Nb/Yb and (c) Th/Nb versus Ti/V diagrams (after Shervais, 2022); (d)
Histogram  of  zircon  U-Pb  ages. @ VAG—volcanic  arc  granites;
syn-COLG—syn-collisional granites; WPG—within-plate granites;
ORG—ocean-ridge granites. Cretaceous mantle-derived magmatic rocks and
granitoids are shown in Figs. 11. Cretaceous granitoids from the Chinese Wakhan
Corridor in (b-c) are also shown for comparison (Jiang et al., 2014; Li et al., 2016; Liu
et al., 2020). Taxkorgan S-type granites are from Jiang et al. (2014), Li et al. (2019)
and Ma et al. (2023). Teshiktash-Beik volcanic rocks, northwest of Chinese Wakhan

Corridor, are from Aminov et al. (2017).

Figure 16. Schematic diagram showing the Cretaceous multi-stage and multi-source
processes for the architecture of the continental arc of the South Pamir. (a) Northward
low-angle and flat-slab subduction of the Neo-Tethys oceanic lithosphere resulted in
the generation of Cretaceous granitoids. (b) Continuous flat-slab subduction of the
Neo-Tethys oceanic lithosphere prompted sedimentary melts to metasomatize the
mantle, produced mantle-derived magmatic rocks. The figures also show Early
Cretaceous crustal shortening and thickening events in the Central Pamir and South
Pamir. The Neo-Tethys oceanic slab may undergo slab roll-back in the Late

Cretaceous (<90 Ma) (Chapman et al., 2018a).
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Supplementary File 1 Analytical methods
Zircon U-Pb geochronology

Zircon grains for U-Pb and Lu-Hf analysis were separated using conventional
magnetic and heavy-liquid techniques, followed by hand-picking under a binocular
microscope at the MC-ICPMS laboratory of the Institute of Geology and Geophysics,
Chinese Academy of Sciences (IGG CAS). Photographs were taken in transmitted and
reflected light, followed by cathodoluminescence (CL) imaging to reveal the internal
texture of the grains and to select suitable positions for U-Pb dating and Hf isotope
analysis.

Zircon U-Pb dating of two samples (WK1616 and WK1617) were carried out
using LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry).
An Agilent 7500a ICP-MS and a Neptune multi-collector (MC-ICPMS with an
attached 193 nm excimer ArF laser-ablation system (GeoLas Plus)) were used for
simultaneous determination of zircon U-Pb ages. Instrumental settings and detailed
analytical procedures for laser ablation system, ICP-MS instrument and data reduction
have been described in Xie et al. (2008). Analyses were acquired at a beam diameter
of 32 pm, an 8 Hz repetition rate, and an energy of 10-20 J/cm®. Helium carrier gas
transported the ablated sample materials from the laser-ablation cell via a mixing
chamber to the ICPMS. Every spot analysis consisted of ~30 s background acquisition
and 40 s sample data acquisition. The zircons 91500 and GJ-1 were used as an
external standard and internal standard, respectively. The glass NIST 610 was used as

an external standard for trace element compositions calibration. Off-line raw data



selection, integration of background and analytical signals, time-drift correct, and
quantitative calibration of U-Pb isotopes were performed using ICPMSDataCal
software (Liu et al., 2009). Concordia diagrams and weighted mean calculations were

made using ISOPLOT 3.00 program (Ludwig, 2003).

Zircon Lu-Hf isotope analysis

Zircons showing concordant U-Pb ages were selected for in-situ zircon Lu-Hf
isotopes in the same dated domains. They were subsequently analyzed using Laser
Ablation (LA)-ICPMS at the MC-ICPMS laboratory of IGG CAS, using a beam size
of 60 um (8 Hz laser pulse frequency). Details of instrumental conditions and data
acquisition have been given in Wu et al. (2006). During the analytical period, a
weighted 206pp/ 28y age and a weighted YHf/'"THf ratio of the sample GJ-1 were
determined at 609.7 + 6.3 Ma (26, MSWD = 0.97, n = 12) and 0.282015 + 0.000003
(20, MSWD = 1.12, n = 94), which are in good agreement with the recommended
U-Pb age and Hf isotopic ratios (Black et al., 2003; Wu et al., 2006). The ot/ THE
ratios of the standard zircon (MUD) were measured to be 0.282504 £+ 0.000003 (2o,

MSWD = 0.71, n = 82), and it was used for data acquisition of Hf isotopes.

Zircon O isotope analysis
Zircon oxygen isotopes were measured using the Cameca IMS-1280 HR
secondary ion mass spectrometer (SIMS) at the at State Key Laboratory of Isotope

Geochemistry (SKLaBIG), Guangzhou Institute of Geochemistry, Chinese Academy



of Sciences (GIG CAS). Detailed analytical procedures are described in Li et al.
(2010a) and Yang et al. (2018). The measured oxygen isotopic values were corrected
for instrumental mass fractionation factor (IMF) using the standard Penglai zircon
with 8"*Oysmow = 5.3 + 0.10 %o (26) and Qinghu standards with 5.4 £ 0.2 %o (20) (Li
et al., 2010b). The internal precision of single analysis was better than 0.1%o (1c) for
8'®0 values. Uncertainties of analytical 5'*0 values are quoted at 2c level. The
external precision (0.50%o; 2SD, n = 68), measured by spot-to-spot reproducibility of

repeated analyses of the Penglai standard, was adopted for data evaluation.

Mineral geochemistry analysis

Major elements analyses of amphibole, plagioclase and biotite were carried out
using JEOL JXA-8100 Electron Probe Micro Analyzer (EPMA) at IGG CAS. A beam
current of 20 nA at 15 kV accelerating voltage, a beam size of 5 pm and a counting
time of 30 s were used to analyze minerals. The analytical precision for all elements is

better than 1.5%.

Whole-rock geochemistry analysis

Representative samples selected on the basis of optical microscopy were cleaned,
crushed and homogenization, and then powdered to ~200-mesh size using an agate
mill. The resulting powder was used for analyses of major and trace elements, and
Sr-Nd-Pb isotopes. Determination of loss on ignition (LOI) was performed at 1000 °C.

Major-element oxides were analyzed using a Rigaku RIX 2000 X-ray fluorescence



spectrometer (XRF) on fused glass beads at SKLaBIG, GIG CAS. Details of
procedures are described by Yuan et al. (2010). Analytical uncertainty for major
elements is generally < 5%

Trace element concentrations, including rare earth element (REE) concentrations,
were determined using a Perkin-Elmer ELAN-DRC-e inductively coupled plasma
mass spectrometer at the State Key Laboratory of Ore Deposit Geochemistry
(SKLOG), with analytical uncertainty better than 10%. The analytical precision is
generally better than 5% for most trace elements. The analytical procedures for the

trace elements were described in detail in Liang et al. (2000).

Whole-rock Sr-Nd-Pb isotope analysis

Sr-Nd-Pb isotopic compositions of selected samples were determined using a
MC-ICP-MS at SKLaBIG, GIG CAS. Sr and Nd were separated using cation columns,
and Nd fractions were further separated by HDEHP-coated Kef columns. Analytical
procedures are similar to those described in Wei et al. (2002) and Li et al. (2004). The
¥'St/*Sr ratio of the NBS987 standard and '**Nd/'**Nd ratio of the Shin Etsu Jndi-1
standard measured are 0.710285 + 15 (20) and 0.512085 + 10 (20), respectively.
Measured *’Sr/**Sr and '*Nd/"**Nd ratios were corrected for fractionation using ratios
of ¥Sr/**Sr = 0.1194 and '"*Nd/"**Nd = 0.7219, respectively. A total of 50 mg powder
was weighed into a Teflon beaker and dissolved in concentrated HF at 180 °C for 3
days to determinate Pb isotope. Lead was separated and purified by conventional

cation-exchange techniques with diluted HBr as an eluant. Analytical procedures for



Pb isotopic compositions were described in Zhu et al. (2001). Pb isotope
fractionations were corrected using correction factors based on replicate analyses of
international standard NBS981. The results measured for NBS981 are 0.059135 +
0.021% (20) for ***Pb/*”Pb, 0.914174 + 0.010% (20) for **’Pb/**°Pb, and 2.161430 +

0.016% (20) for ***Pb/**Pb.
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Supplementary Table 1 LA-ICP-MS zircon U-Pb isotopic dating data for the Kalaqigu diorite and monzogranite at the Chinese Wakhan Corridor, Southern Pamir

Pb Th U Th/U 27pb/**Ph 207pp/ph 27pb/ U 27pb/ U 20pp/ Ry 200pp Y 27pp/Ph 27pb/%Ph 27pp/ By 27pb/ U 200pp/ Ay 20pp/ By

ppm ppm ppm Ratio Ratio Isigma Ratio 1sigma Ratio Isigma Age (Ma) 1sigma Age (Ma) 1sigma Age (Ma) Isigma
Diorite (WK1616)
WK1616-02 45 180 788 0.23 0.04434 0.00447 0.10446 0.01042 0.01712 0.0003 -53 174 101 10 109 2
WK1616-03 53 305 626 0.49 0.04264 0.00574 0.09489 0.01268 0.01617 0.0003 -142 198 92 12 103 2
WK1616-05 77 504 763 0.66 0.05439 0.0047 0.12164 0.01037 0.01625 0.00027 387 163 117 9 104 2
WK1616-06 72 463 753 0.62 0.0416 0.00624 0.09367 0.01392 0.01636 0.00037 -199 207 91 13 105 2
WK1616-07 64 419 748 0.56 0.04897 0.00494 0.10885 0.01086 0.01615 0.00028 146 191 105 10 103 2
WK1616-08 19 114 260 0.44 0.04597 0.01294 0.10719 0.02999 0.01694 0.00056 -4 409 103 28 108 4
WK1616-09 44 340 380 0.89 0.05606 0.00903 0.12551 0.01999 0.01626 0.00042 455 307 120 18 104 3
WK1616-10 82 578 883 0.66 0.04646 0.0043 0.10506 0.00961 0.01642 0.00027 22 171 101 9 105 2
WK1616-11 65 408 822 0.50 0.0468 0.00442 0.10639 0.00994 0.01651 0.00027 39 176 103 9 106 2
WK1616-12 95 674 1021 0.66 0.04363 0.00379 0.10242 0.0088 0.01705 0.00026 -90 153 99 8 109 2
WK1616-14 50 314 601 0.52 0.04152 0.00581 0.09644 0.0134 0.01687 0.00032 -204 200 93 12 108 2
WK1616-15 71 404 954 0.42 0.0507 0.00371 0.11825 0.00854 0.01694 0.00025 227 137 113 8 108 2
WK1616-16 68 478 762 0.63 0.04633 0.00458 0.10418 0.0102 0.01633 0.00027 15 183 101 9 104 2
WK1616-18 69 466 669 0.70 0.04651 0.00525 0.10857 0.01215 0.01695 0.00031 24 207 105 11 108 2
WK1616-21 65 434 801 0.54 0.03941 0.00442 0.09018 0.01003 0.01662 0.00028 -324 193 88 9 106 2
WK1616-22 71 507 714 0.71 0.05342 0.00501 0.12039 0.01116 0.01636 0.00029 347 177 115 10 105 2
WK1616-24 53 342 667 0.51 0.05019 0.0055 0.11453 0.01241 0.01657 0.00031 204 210 110 11 106 2
WK1616-25 37 226 501 0.45 0.03683 0.00785 0.08266 0.01752 0.01629 0.00041 -1 295 81 16 104 3

Monzogranite WK1617

WK1617-02 77 341 1396 0.24 0.04662 0.00332 0.10803 0.00755 0.01682 0.00026 30 123 104 7 108 2
WK1617-04 63 480 362 1.33 0.05401 0.00901 0.13039 0.02152 0.01753 0.00045 371 319 124 19 112 3
WK1617-05 499 605 604 1.00 0.05999 0.00148 0.83847 0.02002 0.10147 0.00111 603 33 618 11 623 6
WK1617-06 156 109 157 0.69 0.07098 0.00296 1.53662 0.06251 0.15719 0.00231 957 59 945 25 941 13
WK1617-08 300 231 338 0.68 0.07041 0.00212 1.23401 0.03609 0.12725 0.00158 940 40 816 16 772 9
WK1617-09 105 67 118 0.57 0.07361 0.00398 1.6198 0.0857 0.15978 0.00264 1031 80 978 33 956 15
WK1617-10 96 93 143 0.65 0.06346 0.00624 0.96032 0.09252 0.10988 0.00269 724 164 683 48 672 16
WK1617-11 173 189 163 1.16 0.0615 0.00546 0.79957 0.06937 0.09441 0.00222 657 147 597 39 582 13

WK1617-13 36 218 428 0.51 0.04039 0.01007 0.09209 0.02282 0.01656 0.00049 -267 328 89 21 106 3
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862

448

110




Supplementary Table 2-1 Representative electron probe analyses of amphibole from the Kalaqigu high-Mg diorite

Sample Locality Lithology Spot no. Comment SiO, TiO, AlLO; Cr,0; TFeO MnO MgO Ca0O Na,O K,0 Ni Total Mg*
WK1616 Kalagigu High-Mg diorite 1 45.58 1.44 9.30 0.03 14.63 0.28 12.04 11.64 1.16 0.97 0.00 97.06 59
WK1616 Kalagigu High-Mg diorite 2 e 43.97 1.65 10.05 0.06 16.08 0.31 11.33 11.83 1.28 1.32 0.01 97.87 56
WK1616 Kalagigu High-Mg diorite 3 ¢ 43.19 2.08 11.43 0.09 15.35 0.29 10.78 11.48 1.53 1.22 0.05 97.44 56
WK1616 Kalagigu High-Mg diorite 4 o 45.93 1.08 8.45 0.08 15.50 0.29 12.46 11.88 1.07 1.03 0.01 97.76 59
WK1616 Kalagigu High-Mg diorite 5 48.69 0.87 6.34 0.00 14.29 0.34 13.16 12.15 0.74 0.71 0.00 97.29 62
WK1616 Kalagigu High-Mg diorite 6 e 43.28 1.74 10.51 0.06 16.97 0.27 10.37 11.96 1.16 1.43 0.02 97.77 52
WK1616 Kalagigu High-Mg diorite 7 ¢ 44.32 1.91 10.28 0.04 15.69 0.30 10.75 11.53 1.23 1.03 0.00 97.08 55
WK1616 Kalagigu High-Mg diorite 8 o 47.43 0.85 7.33 0.04 15.42 0.33 12.93 11.63 0.95 0.83 0.00 97.74 60

Struturale formulae is calculated for 23 oxygens with Fe**/Fe’ estimation assuming Y15 cations (Leake et al., 1997)

Sample Si AlY Tsite Al Ti o Fe** Mg Fe2* Mn2* Csite Fe* Mn2* Ca Na Bsite Na K Asite Mg/(Mg+Fe2+) Temperature (°C) fO, AFMQ Pressure (kbar) H,0 e (WH.%)
WK1616 6.77 1.24 8.00 0.39 0.16 0.00 0.16 2.66 1.62 0.00 5.00 0.03 0.04 1.85 0.08 2.00 0.26 0.18 0.44 0.62 847 -12.21 1.22 6.07 6.17
WK1616 6.54 1.46 8.00 0.31 0.19 0.01 0.27 2.51 1.71 0.00 5.00 0.01 0.04 1.89 0.06 2.00 0.31 0.25 0.56 0.59 880 -11.85 0.89 4.66 5.40
WK1616 6.46 1.54 8.00 0.47 0.23 0.01 0.09 2.40 1.79 0.00 5.00 0.04 0.04 1.84 0.09 2.00 0.36 0.23 0.59 0.57 907 -11.71 0.45 743 6.60
WK1616 6.77 1.23 8.00 0.24 0.12 0.01 0.37 2.74 1.52 0.00 5.00 0.02 0.04 1.88 0.07 2.00 0.24 0.19 0.43 0.64 834 -12.20 1.54 3.59 5.24
WK1616  7.16 0.84 8.00 0.26 0.10 0.00 0.14 2.89 1.62 0.00 5.00 0.00 0.04 1.91 0.05 2.00 0.17 0.13 0.30 0.64 771 -13.28 1.89 3.86 5.40
WK1616 6.49 1.51 8.00 0.35 0.20 0.01 0.23 2.32 1.90 0.00 5.00 0.00 0.04 1.92 0.04 2.00 0.30 0.27 0.57 0.55 889 -12.01 0.53 5.38 5.82
WK1616 6.64 1.37 8.00 0.45 0.22 0.01 0.09 2.40 1.84 0.00 5.00 0.03 0.04 1.85 0.08 2.00 0.28 0.20 0.47 0.57 869 -12.30 0.64 7.02 6.86
WK1616 6.96 1.04 8.00 0.22 0.09 0.01 0.39 2.83 1.46 0.00 5.00 0.04 0.04 1.83 0.09 2.00 0.18 0.16 0.33 0.66 795 -12.73 1.88 3.26 5.19

TFeO = Total FeO content; Mg" = 100*Mg”*/(Mg>* + TFe*")
Temperature, fO, and AFMQ values calculated using the formulations of Ridolfi et al. (2010).
Pressure calculated using an extended calibration of the Larocque and Canil (2010) barometer published by Krawczynski et al. (2012).

Hy0 e (Wt.%) calculated using the formulations of Ridolfi et al. (2010).

Supplementary Table 2-2 Representative electron probe analyses of biotite from the Kalaqigu pluton

Sample Locality Lithology Spot no. Comment SiO, TiO, AlLO; Cr,0; TFeO MnO MgO CaO Na,O K0 Ni Total Mg'
WK1616 Kalagigu High-Mg diorite 1 45.58 1.44 9.30 0.03 14.63 0.28 12.04 11.64 1.16 0.97 0.00 97.06 59
core
WK1616 Kalagigu High-Mg diorite 2 43.97 1.65 10.05 0.06 16.08 0.31 11.33 11.83 1.28 1.32 0.01 97.87 56
!
WK1616 Kalagigu High-Mg diorite 3 43.19 2.08 11.43 0.09 15.35 0.29 10.78 11.48 1.53 1.22 0.05 97.44 56
rim

WKI1616 Kalaqigu High-Mg diorite 4 4593 1.08 8.45 0.08 15.50 0.29 12.46 11.88 1.07 1.03 0.01 97.76 59



WK1616 Kalaqigu High-Mg diorite 5 48.69 0.87 6.34 0.00 14.29 0.34 13.16 12.15 0.74 0.71 0.00 97.29 62
WK1616 Kalaqigu High-Mg diorite 6 o 43.28 1.74 10.51 0.06 16.97 0.27 10.37 11.96 1.16 143 0.02 97.77 52
WK1616 Kalaqigu High-Mg diorite 7 ¢ 44.32 191 10.28 0.04 15.69 0.30 10.75 11.53 1.23 1.03 0.00 97.08 55
WK1616 Kalaqigu High-Mg diorite 8 " 47.43 0.85 733 0.04 15.42 0.33 12.93 11.63 0.95 0.83 0.00 97.74 60
Struturale formulae is calculated for 23 oxygens with Fe?*/Fe™* estimation assuming Y15 cations (Leake et al, 1997),
Sample Si AIY Tsite A% Ti o Fe* Mg Fe?* Mn2* Csite Fe?* Mn2* Ca Na Bsite Na K Asite Mg/(Mg+Fe2*) Temperature (°C) fO, AFMQ Pressure (kbar) H, 0, (WH.%)
WKI1616 6.77 1.24 8.00 0.39 0.16 0.00 0.16 2.66 1.62 0.00 5.00 0.03 0.04 1.85 0.08 2.00 0.26 0.18 0.44 0.62 847 -12.21 1.22 6.07 6.17
WK1616 6.54 1.46 8.00 0.31 0.19 0.01 0.27 2.51 1.71 0.00 5.00 0.01 0.04 1.89 0.06 2.00 0.31 0.25 0.56 0.59 880 -11.85 0.89 4.66 5.40
WKI1616 6.46 1.54 8.00 0.47 0.23 0.01 0.09 2.40 1.79 0.00 5.00 0.04 0.04 1.84 0.09 2.00 0.36 0.23 0.59 0.57 907 -11.71 0.45 7.43 6.60
WK1616 6.77 1.23 8.00 024  0.12 0.01 0.37 2.74 1.52 0.00 5.00 0.02 0.04 1.88 0.07 2.00 0.24 0.19 0.43 0.64 834 -12.20 1.54 3.59 524
WK1616 7.16 0.84 8.00 0.26 0.10 0.00 0.14 2.89 1.62 0.00 5.00 0.00 0.04 1.91 0.05 2.00 0.17 0.13 0.30 0.64 771 -13.28 1.89 3.86 5.40
WKI1616 6.49 1.51 8.00 0.35 0.20 0.01 0.23 2.32 1.90 0.00 5.00 0.00 0.04 1.92 0.04 2.00 030 027 0.57 0.55 889 -12.01 0.53 538 5.82
WKI1616 6.64 1.37 8.00 0.45 0.22 0.01 0.09 2.40 1.84 0.00 5.00 0.03 0.04 1.85 0.08 2.00 0.28 0.20 0.47 0.57 869 -12.30 0.64 7.02 6.86
WKI1616 6.96 1.04 8.00 0.22 0.09 0.01 0.39 2.83 1.46 0.00 5.00 0.04 0.04 1.83 0.09 2.00 0.18 0.16 0.33 0.66 795 -12.73 1.88 3.26 5.19
The Fe** and Fe** were calculated using the software of Geokit (Lu et al., 2004).
The crystallization pressures and temperatures of the biotites were estimated using formulations of Li et al. (2022).
Supplementary Table 2-3 Representative electron probe analyses of plagioclase from the Kalaqigu pluton
Sample Lithology Spot no. Comment SiO, TiO, ALO; Cr,0; TFeO MnO MgO Ca0 Na,O K,O Ni Total An (mol. %) Ab (mol. %) Or (mol. %)
WK1616 High-Mg diorite 1 rim 55.5 0.03 28.3 0.00 0.12 0.00 0.00 10.08 5.39 0.29 0.00 99.7 50 48 2
WK1616 High-Mg diorite 2 48.7 0.00 329 0.00 0.09 0.01 0.00 15.1 2.49 0.07 0.01 99.3 77 23 0
WK1616 High-Mg diorite 3 47.8 0.06 33.5 0.03 0.11 0.01 0.02 159 2.10 0.06 0.01 99.6 80 19 0
WK1616 High-Mg diorite 4 ¢ 47.7 0.00 334 0.00 0.14 0.00 0.01 15.8 2.18 0.04 0.00 99.4 80 20 0
WK1616 High-Mg diorite 5 48.2 0.00 332 0.04 0.08 0.03 0.00 15.74 2.22 0.05 0.01 99.6 79 20 0
WK1616 High-Mg diorite 6 core 47.0 0.00 339 0.00 0.12 0.00 0.00 16.77 1.78 0.05 0.00 99.7 84 16 0
WK1616 High-Mg diorite 7 46.9 0.00 33.7 0.00 0.12 0.01 0.00 16.60 1.78 0.05 0.09 99.2 83 16 0
WK1616 High-Mg diorite 8 ' 55.4 0.01 279 0.00 0.17 0.02 0.01 114 4.34 0.28 0.03 99.5 58 40 2
WK1616 High-Mg diorite 9 56.1 0.00 277 0.02 0.11 0.00 0.00 9.5 5.84 0.33 0.00 99.6 47 52 2
WK1616 High-Mg diorite 10 rim 56.3 0.00 277 0.03 0.12 0.02 0.02 9.5 5.90 0.33 0.03 99.9 46 52 2
WK1617 Monzogranite 11 core 62.30 0.00 23.26 0.02 0.00 0.00 0.00 5.02 8.28 0.23 0.00 99.1 25 74 1
WK1617 Monzogranite 12 ' 60.21 0.02 24.79 0.00 0.02 0.03 0.00 6.00 7.62 0.32 0.01 99.0 30 68 2
WK1617 Monzogranite 13 rim 60.25 0.00 24.47 0.01 0.00 0.01 0.00 6.93 7.23 0.30 0.02 99.2 34 64 2



WKI1617 Monzogranite 14 63.58 0.00 22.35 0.00 0.02 0.00 0.00 4.47 8.51 0.26 0.05 99.2 22 76 2

WKI1617 Monzogranite 15 62.59 0.01 22.69 0.00 0.04 0.00 0.00 4.96 8.62 0.25 0.00 99.2 24 75 1
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Supplementary Table 3 Major (wt. %), trace (ppm) element compositions and Sr-Nd-Pb isotopic compositions of Kalaqigu diorite and monzogranite at the Chinese Wakhan

Corridor and Taxkorgan S-type monzogranites

Sample
Location
Rock type
Age
SiO,
TiO,
ALO;
Fe203T
MnO
MgO
CaO
Na,O
K,O
P,0s
LOI
Total
Mg"
A/CNK

SEu

Sample
Li
Be

Sc

Cr

WKI1616-  WKI1616-  WKI616-  WKI1616-  WKI616-  WKI1616- | WKI617-  WKI1617-  WKI617-  WKI1617-  WKI1617-  WKI617- PM-7-01*  PM-7-02*  PM-7-03*  PM-7-04*
1 2 3 4 5 6 1 2 3 4 5 6 AR-1* AR-2* AR-3* AR-4* * * * *
37°10'16"; 75°12'10" 37°10'48"; 75°16'09" 37°39'30"; 75°08'00" Taxkorgan pluton
Diorite Monzogranite Two-mica monzogranite Two-mica monzogranite
105.9+0.3 Ma 108.4+2.4 Ma 110.0+£2.4 Ma 118.0£0.9 Ma
53.36 51.93 52.05 54.48 53.93 5273 71.58 71.98 71.45 71.11 69.16 72.95 72.67 72.29 69.79 74.58 73.28 72.95 74.23
0.86 0.93 0.87 0.61 0.81 1.10 0.35 0.32 0.29 0.33 0.39 0.17 0.23 0.23 0.42 0.09 0.10 0.09 0.09
15.49 14.81 15.12 12.82 15.25 16.76 14.70 15.01 15.13 1537 16.19 14.63 14.35 14.52 15.23 13.63 14.73 14.84 14.27
8.74 9.49 9.45 8.92 8.09 8.58 2.06 1.86 1.75 2.16 2.88 1.47 1.88 1.88 2.56 0.81 1.07 1.10 0.80
0.13 0.15 0.16 0.15 0.11 0.13 0.03 0.02 0.02 0.03 0.04 0.06 0.05 0.05 0.05 0.06 0.05 0.03 0.03
6.63 7.26 7.22 8.31 6.44 5.43 0.64 0.60 0.58 0.61 0.98 0.35 0.55 0.55 0.78 0.21 0.22 0.28 0.17
8.66 9.35 8.24 7.91 8.65 7.73 1.91 1.90 1.63 1.90 2.63 1.31 1.61 1.65 1.55 0.79 0.89 0.76 0.88
2.34 2.06 2.29 1.94 2.04 2.36 3.12 332 3.30 3.50 4.18 3.65 3.07 3.11 3.18 3.32 3.97 3.58 3.57
2.06 2.25 2.22 2.55 2.29 2.99 4.14 391 4.42 3.84 2.61 4.15 4.71 4.72 4.54 4.30 3.96 4.64 4.37
0.28 0.24 0.23 0.17 0.15 0.35 0.12 0.14 0.18 0.23 0.19 0.13 0.14 0.14 0.24 0.14 0.11 0.32 0.12
1.46 1.51 1.55 1.45 1.72 1.50 0.80 0.71 0.62 0.61 0.73 0.70 0.80 0.75 1.02 1.46 1.08 0.80 0.89
100.01 99.98 99.4 99.31 99.47 99.65 99.46 99.76 99.38 99.69 99.99 99.57 100.07 99.89 99.35 99.38 99.46 99.38 99.41
60 60 60 65 61 56 38 39 40 36 40 32 37 37 38 34 29 34 30
0.73 0.67 0.73 0.64 0.72 0.82 1.15 1.17 1.19 1.20 1.16 1.16 1.13 1.13 1.23 1.22 1.21 1.29 1.20
0.80 0.85 0.77 0.79 0.81 0.88 0.67 0.67 0.78 0.83 0.75 0.40 0.52 0.48 0.50 0.53 0.44 0.62 0.46
WKI1616-  WKI1616-  WKI616-  WKI1616-  WKI616-  WKI616- | WKI1617-  WKI1617-  WKI1617-  WKI1617-  WKI1617-  WKI1617- PM-7-01*  PM-7-02*  PM-7-03*  PM-7-04*
1 2 3 4 5 6 1 2 3 4 5 6 AR-1* AR-2% AR-3* AR-4% * * * *
33.40 22.90 29.00 21.60 36.70 29.40 47.70 4470 40.50 57.70 73.60 53.80
2.56 1.95 2.36 2.12 2.02 1.68 1.39 1.69 2.17 341 4.00 1.83
29.45 29.37 24.49 25.03 29.66 25.37 4.21 3.90 3.75 3.74 4.22 2.86
189.80 207.96 173.44 139.04 192.04 171.98 15.48 14.02 13.97 11.84 17.69 12.15 7.30 18.40 17.80 26.50
117.20 92.14 54.65 87.06 86.43 75.50 2.61 2.53 2.17 2.15 2.87 291 5.00 4.40 6.50 10.80
24.92 27.39 28.98 33.70 24.16 18.58 2.14 1.78 1.68 2.09 2.87 1.93




Ni
Cu
Zn

Ga

Rb

Sr

Zr

Nb

Ba

La

Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
Pb

Th

Tz (°C)

18.17

15.00

85.70

18.40

66.20

574.00

24.50

80.90

10.21

1.72

726.00

25.50

60.10

733

29.40

1.51

541

4.63

0.89

251

0.35

221

2.60

0.72

5.34

1.23

536

22.30

16.10

86.00

16.80

70.30

554.00

22.70

56.30

9.68

1.93

602.00

23.70

54.60

6.67

27.40

1.48

4.99

4.28

0.80

2.31

0.33

2.00

2.07

0.71

4.60

1.25

489

22.83

11.50

88.60

17.70

1.64

82.40

485.00

25.80

64.50

9.30

530.00

22.80

52.50

6.36

26.40

1.39

5.31

4.71

0.92

2.64

0.38

2.54

2.14

0.69

4.15

0.98

524

34.61

16.30

82.80

14.40

94.00

365.00

20.90

71.00

731

251

413.00

23.70

49.10

5.55

22.10

4.44

1.11

4.11

3.62

0.71

2.16

0.31

2.03

242

0.82

6.35

2.78

512

15.66

12.50

73.40

16.40

89.20

490.00

23.10

60.00

8.09

648.00

20.00

43.40

5.38

23.50

1.35

4.86

4.47

0.85

0.32

1.95

223

0.60

12.70

2.08

521

7.84

14.00

92.10

19.40

108.00

607.00

22.50

101.00

13.31

886.00

31.80

67.60

7.78

31.00

6.23

1.65

5.30

435

0.81

2.26

0.33

1.89

0.28

2.51

0.74

5.31

0.87

581

1.18

2.89

130.00

20.10

1.34

129.00

222.00

9.40

124.00

8.24

2.52

689.00

41.20

82.90

8.93

32.90

5.79

1.06

3.97

2.19

0.32

0.08

0.50

0.06

327

0.63

28.60

12.70

2.32

769

1.07

1.29

58.90

20.10

1.19

127.00

224.00

118.00

7.94

2.48

662.00

39.90

79.70

8.50

31.20

1.01

3.87

2.12

0.31

0.09

0.53

3.30

0.58

27.80

12.10

2.29

767

0.83

1.37

46.40

19.30

136.00

226.00

115.00

7.64

870.00

38.30

76.20

8.30

30.60

113

3.66

0.47

1.98

0.25

0.09

0.58

3.19

0.71

30.40

11.60

2.37

771

1.47

1.34

61.80

19.80

139.00

227.00

10.20

109.00

13.16

2.67

778.00

32.80

66.90

7.37

27.50

5.13

1.20

3.79

222

0.34

0.09

0.57

3.13

1.57

26.90

10.20

2.52

761

1.22

1.46

75.00

20.40

107.00

293.00

145.00

12.71

518.00

45.30

89.20

9.70

36.50

6.45

1.36

4.78

2.35

0.33

0.09

0.55

4.02

1.07

20.80

13.90

2.70

767

1.30

1.41

67.00

19.70

1.31

130.00

205.00

797

129.00

9.53

772.00

36.90

76.50

8.17

31.00

1.07

3.80

1.90

0.26

0.08

0.44

3.70

0.89

27.00

12.30

2.54

824

1.90

22.00

200.00

88.00

12.50

47.00

20.00

93.00

13.00

25.00

3.10

11.00

229

0.29

2.16

2.37

0.43

125

0.20

1.29

0.17

152

2.16

26.00

8.90

1.80

697

4.20

19.00

193.00

207.00

15.80

88.00

18.00

412.00

22.00

39.00

4.80

17.00

0.57

3.08

3.03

0.58

0.27

1.60

2.76

1.92

33.00

14.20

18.10

741

2.90

21.00

192.00

190.00

15.20

122.00

20.30

384.00

25.00

51.00

5.90

21.00

4.20

0.59

3.43

2.87

0.53

1.44

0.23

1.46

3.43

229

32.00

17.00

3.20

768

4.70

24.00

184.00

178.00

231.00

21.10

583.00

54.00

96.00

13.40

44.00

0.95

4.46

2.18

0.33

0.12

0.83

0.11

6.16

3.08

32.00

35.20

3.60

829

354.00

100.00

11.65

37.74

16.91

147.00

9.59

17.44

2.17

7.51

0.31

1.58

2.10

0.40

0.21

1.27

2.06

4.74

26.52

6.90

1.63

291.00

99.40

13.63

48.46

17.13

118.00

9.90

18.09

226

793

2.17

0.28

1.74

225

0.47

1.31

0.26

1.71

1.90

1.92

25.15

7.32

2.77

199.00

56.00

38.42

11.54

232.00

591

10.85

1.37

5.62

1.91

0.37

1.77

0.42

2.11

0.34

0.11

0.53

1.79

1.96

22.44

1.44

1.41

311.00

100.00

13.42

31.45

14.87

130.00

9.57

17.79

223

7.70

2.16

0.29

1.72

226

0.47

1.27

0.26

1.62

1.58

1.66

28.57

6.95

2.89



SRb/*Sr 0.3334 0.3669 1.6800 1.6392 6.5660 2.6980 2.9190 2.9890
070926 0.70864  0.71435  0.70753
*'Sr/*Sr); 0.708590  0.707473 0.715400  0.715753
0 0 0 0
WSm/Nd | 0.1245 0.1248 0.1063 0.1040 0.1288  0.1298 01229  0.1047
051210 051209  0.51190  0.51208
"UNd/Nd | 0512220 0.512282 0.511936  0.511942
9 9 1 3
enalf) -7.18 -5.97 -12.45 -12.30 -9.40 -9.60 -13.30 9.50
TN(LDM
1592 1491 1724 1679
(Ma)
Tz,\!dj)M
1491 1393 1921 1909
(Ma)
(**Pb/**'Pb
18.4337 18.3246 18.5056 18.4918
)i
(ZD7Pb/2°4Pb
15.6938 15.6853 15.7495 15.7481
)i
(ZDSPb/me
38.7664 38.6378 38.8710 38.8572
)i

* is from Jiang et al. (2014).
** is from Li et al. (2019).

The zircon saturation temperatures (T,) were estimated using thermobarometers from Watson and Harrison. (1983).
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Supplementary Table 4 Lu-Hf isotopic compositions of Kalaqigu diorite at the Chinese Wakhan Corridor, Southern
Pamir

Sample Age Ma)  "°yb/'Hf  °Lu/''Hf 26 ToHE/ T HE 26 Enr fom Tuow Thiowe

Diorite (WK1616)

WKI1616-01 105.9 0.014094 0.000652 0.000003 0.282428 0.000016 -9.9 -0.98 1154 1791
WK1616-02 105.9 0.014484 0.000600 0.000003 0.282363 0.000014  -122  -0.98 1243 1934
WKI1616-03 105.9 0.017451 0.000783 0.000003 0.282420 0.000027  -10.2  -0.98 1168 1807
WKI1616-04 105.9 0.020054 0.000888 0.000024 0.282415 0.000016  -10.4  -0.97 1180 1820
WKI1616-05 105.9 0.018204 0.000820 0.000005 0.282403 0.000016  -10.8  -0.98 1193 1845
WK1616-06 105.9 0.024250 0.001046 0.000008 0.282412 0.000016  -10.5  -0.97 1189 1828
WKI1616-07 105.9 0.026881 0.001083 0.000003 0.282395 0.000016  -11.1 -0.97 1213 1864
WK1616-08 105.9 0.018689 0.000734 0.000012 0.282378 0.000015  -11.7  -0.98 1226 1901
WK1616-09 105.9 0.011516 0.000498 0.000008 0.282411 0.000017  -10.5  -0.99 1173 1827
WKI1616-10 105.9 0.018273 0.000830 0.000004 0.282417 0.000016  -10.3  -0.98 1174 1814
WKI1616-11 105.9 0.018392 0.000835 0.000006 0.282403 0.000015  -10.8  -0.97 1194 1845
WKI1616-12 105.9 0.020144 0.000906 0.000004 0.282405 0.000015  -10.7  -0.97 1194 1842
WKI1616-13 105.9 0.019794 0.000907 0.000006 0.282398 0.000017  -11.0  -0.97 1204 1858
WKI1616-14 105.9 0.018751 0.000810 0.000006 0.282367 0.000014  -12.1 -0.98 1243 1925
WKI1616-15 105.9 0.022458 0.000950 0.000015 0.282415 0.000016  -10.4  -0.97 1181 1820

WK1616-16 105.9 0.022262 0.001012 0.000007 0.282387 0.000018  -11.4  -0.97 1222 1882




Supplementary Table 5 Zircon O isotopic compositions of Kalaqigu diorite and monzogranite at the Chinese
Wakhan Corridor, Southern Pamir

Analysis spot  Age M) nensity 0 00" Mean 0O (%) 20

Diorite (WK1616)

WK1616-01 979518000 0.002055 8.03 0.38
WK1616-03 103 986419500 0.002055 7.91 0.43
WK1616-04 975533400 0.002055 8.13 0.15
WK1616-05 104 976108100 0.002055 8.14 0.51
WK1616-06 105 983103700 0.002054 7.49 0.46
WK1616-07 103 983825500 0.002056 8.32 0.35
WK1616-09 104 967447600 0.002055 8.08 0.47
WK1616-10 105 952977200 0.002056 8.23 0.30
WK1616-11 106 987485400 0.002056 8.30 0.47
WK1616-12 109 969187100 0.002056 8.24 0.31
WK1616-14 108 962150800 0.002055 8.13 0.34
WK1616-15 108 942879200 0.002057 9.01 0.37
Monzogranite (WK1617)

WK1617-01 1523824000 0.002032 8.85 0.25
WK1617-02 108 1543593000 0.002030 8.00 0.17
WK1617-03 1549577000 0.002031 8.47 0.25
WK1617-04 112 1554741000 0.002031 8.25 0.25
WK1617-05 623 1565975000 0.002031 831 0.25
WK1617-06 941 1569459000 0.002030 7.97 0.24
WK1617-07 1571741000 0.002030 7.90 0.20
WK1617-08 772 1566809000 0.002030 7.99 0.23
WK1617-09 956 1576714000 0.002031 8.49 0.27

WK1617-10 672 1578725000 0.002030 7.82 0.23




