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ABSTRACT
We analyse the internal structure and dynamics of cosmic-web filaments connecting massive high-𝑧 haloes. Our analysis is

based on a high-resolution AREPO cosmological simulation zooming-in on three Mpc-scale filaments feeding three massive
haloes of ∼ 1012 M⊙ at 𝑧 ∼ 4, embedded in a large-scale sheet. Each filament is surrounded by a cylindrical accretion shock
of radius 𝑟shock ∼ 50 kpc. The post-shock gas is in virial equilibrium within the potential well set by an isothermal dark-matter
filament. The filament line-mass is ∼ 9 × 108 M⊙ kpc−1, the gas fraction within 𝑟shock is the universal baryon fraction, and the
virial temperature is ∼ 7 × 105K. These all match expectations from analytical models for filament properties as a function
of halo-mass and redshift. The filament cross-section has three radial zones. In the outer “thermal” (T) zone, 𝑟 ≥ 0.65 𝑟shock, 
inward gravity and ram-pressure forces are over-balanced by outward thermal pressure forces, decelerating the inflowing gas 
and
expanding the shock outwards. In the intermediate “vortex” (V) zone, 0.25 ≤ 𝑟/𝑟shock ≤ 0.65, the velocity field is dominated by a 
quadrupolar vortex structure due to offset inflow along the sheet through the post-shock gas. The outward force is dominated by
centrifugal forces associated with these vortices, with additional contributions from global rotation and thermal pressure. Shear
and turbulent forces associated with the vortices act inwards. The inner “stream” (S) zone, 𝑟 < 0.25 𝑟shock, is a dense isothermal 
core, 𝑇 ∼ 3 × 104 K and 𝑛H ∼ 0.01 cm−3, defining the cold streams that feed galaxies. The core is formed by an isobaric cooling
flow and is associated with a decrease in outward forces, though exhibiting both inflows and outflows.

Key words: intergalactic medium – large-scale structure of Universe – hydrodynamics – methods: numerical – 
methods: analytical
1 INTRODUCTION

In the last two decades, our understanding of galaxy formation in
a cosmological context has undergone a paradigm shift. Galaxies,
as we now know, do not form in isolation, but rather are connected
through the “cosmic-web”, which dominates the matter distribution
on Mpc scales in both dark matter (DM) and baryons. This intricate
structure has been predicted theoretically (Zel’dovich 1970; Bardeen
et al. 1986; Bond et al. 1996; Springel et al. 2005), and can be seen in
the distribution of galaxies in observational surveys such as 2dFGRS
(Colless et al. 2001), SDSS (Tegmark et al. 2004), and the 2MASS
redshift survey (Huchra et al. 2005). Perhaps the most prominent
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feature of the cosmic-web is a network of intergalactic filaments,
which contain roughly half of the mass in the Universe (Zel’dovich
1970; Bardeen et al. 1986; Cautun et al. 2014; Eckert et al. 2015;
Libeskind et al. 2018).

The filaments connect the most massive galaxies at any given
epoch, which are located at the nodes of the cosmic-web, while more
typical galaxies are located along the filaments (see Fig. 1 below). At
high redshift, 𝑧 ∼ (2 − 6) near the peak of cosmic star- and galaxy-
formation, these filaments manifest as streams of cold, dense gas (𝑇 ∼
104 K, 𝑛 ∼ 10−2 cm−3), predicted to be the main mode of accretion
onto high-𝑧 galaxies, feeding them directly from the cosmic-web. In
massive haloes with virial mass 𝑀v >∼ 1012 M⊙ above the critical
mass for the formation of a stable virial shock (Rees & Ostriker
1977; White & Rees 1978; Birnboim & Dekel 2003; Fielding et al.
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2017; Stern et al. 2021b), the streams are predicted to penetrate
the hot circumgalactic medium (CGM), maintaining temperatures
of 𝑇s >∼ 104K and reaching the central galaxies in roughly a virial
crossing time (Dekel & Birnboim 2006; Dekel et al. 2009a). This
gas supply sustains the large observed star formation rates (SFRs)
of ∼ 100 M⊙ yr−1 without galaxy mergers (e.g., Förster Schreiber
et al. 2006, 2009; Genzel et al. 2006, 2008; Elmegreen et al. 2007;
Shapiro et al. 2008; Stark et al. 2008; Wisnioski et al. 2015).

Though their narrow size and low density (compared to the central
galaxies) make the streams difficult to directly detect observationally,
numerous observational studies of the CGM and the intergalactic
medium (IGM) around massive high-𝑧 galaxies, both in absorption
(Fumagalli et al. 2011, 2017; Goerdt et al. 2012; van de Voort et al.
2012; Bouché et al. 2013, 2016; Prochaska et al. 2014) and in emis-
sion (e.g., Steidel et al. 2000; Matsuda et al. 2006, 2011; Cantalupo
et al. 2014; Martin et al. 2014a,b, 2019; Hennawi et al. 2015; Farina
et al. 2017; Cai et al. 2017; Lusso et al. 2019; Umehata et al. 2019;
Daddi et al. 2021; Emonts et al. 2023; Zhang et al. 2023), reveal large
quantities of cold gas with spatial and kinematic properties consistent
with predictions for cosmic filaments and cold streams. Cold streams
are ubiquitous in cosmological simulations (e.g., Kereš et al. 2005;
Ocvirk et al. 2008; Dekel et al. 2009a; Ceverino et al. 2010; van de
Voort et al. 2011; Harford & Hamilton 2011), where they are found
to be the primary source of gas accretion onto both the halo and the
central galaxy (Dekel et al. 2009a; Dekel et al. 2013).

Besides supplying galaxies with cold gas to fuel ongoing star
formation, additional effects of filaments and streams on galaxies
and DM haloes have been extensively explored theoretically. These
include halo spin, galaxy angular momentum growth, and disk for-
mation (Pichon et al. 2011; Stewart et al. 2011, 2013; Kimm et al.
2011; Codis et al. 2012; Danovich et al. 2012, 2015; Laigle et al.
2015; Tillson et al. 2015; González et al. 2017), the shape and align-
ment of galaxies and haloes (Chen et al. 2015; Codis et al. 2015a,b;
Tomassetti et al. 2016; Ganeshaiah Veena et al. 2018; Pandya et al.
2019), driving and sustaining turbulence and disk instabilities (Bour-
naud & Elmegreen 2009; Dekel et al. 2009b; Ceverino et al. 2010;
Genel et al. 2012; Ginzburg et al. 2022; Forbes et al. 2022), and
the emission and absorption signatures of the CGM (Goerdt et al.
2010, 2012; Fumagalli et al. 2011; van de Voort et al. 2012; Man-
delker et al. 2020a,b). Gravitational instabilities in and fragmentation
of filaments and streams have also been speculated to contribute to
the formation of stars and even globular clusters outside of galaxies
(Mandelker et al. 2018; Aung et al. 2019; Bennett & Sĳacki 2020).

Despite their prominence in the large-scale structure of the cosmic-
web, and their clear importance for galaxy formation, the structure
and properties of filaments are incredibly poorly constrained. Even a
question as fundamental as what prevents the filaments from collaps-
ing under their own self-gravity remains open. Previous work has
suggested that this could be due to thermal pressure gradients (Har-
ford & Hamilton 2011; Klar & Mücket 2012; Ramsøy et al. 2021),
coherent filament rotation (Birnboim et al. 2016; Mandelker et al.
2018; Wang et al. 2021; Xia et al. 2021), helical vortices (Codis et al.
2012; Laigle et al. 2015), turbulence (Mandelker et al. 2018) or mag-
netic pressure. However, all of these works relied either on highly
simplified model assumptions or on low resolution simulations that
did not resolve the internal structure of intergalactic filaments. Works
that have measured filament properties in large-volume cosmological
simulations (e.g., Cautun et al. 2014; Laigle et al. 2015; Libeskind
et al. 2018; Ganeshaiah Veena et al. 2018, 2019, 2021; Uhlemann
et al. 2020; Song et al. 2021; Galárraga-Espinosa et al. 2021, 2022)
commonly involve DM-only N-body simulations or low-resolution

hydrodynamic simulations that do not resolve the inner structure
of filaments or their support against gravity. While cosmological
‘zoom-in’ simulations achieve much higher resolution in individual
galaxies, and recently also in the CGM (van de Voort et al. 2019;
Hummels et al. 2019; Peeples et al. 2019; Suresh et al. 2019; Bennett
& Sĳacki 2020), cosmic-web filaments in the IGM typically lie out-
side the high-resolution region and are still poorly resolved. Inferring
detailed filament properties from observations is extremely challeng-
ing, particularly in the IGM, owing to their low density, narrow size,
and uncertain chemical and ionisation compositions. The properties
of filaments as a function of halo mass, redshift, and environment
thus remain poorly constrained.

A recent effort to study the properties of intergalactic filaments
at high-𝑧 using cosmological zoom-in simulations with relatively
high resolution was made by Ramsøy et al. (2021). These authors
used a cosmological zoom-in simulation of a Milky Way (MW)-mass
halo, 𝑀v ∼ 5 × 1011M⊙ at 𝑧 = 0, taken from the NUT suite (Powell
et al. 2011) and run with the adaptive mesh refinement (AMR) code
RAMSES (Teyssier 2002). They studied the properties of the main
filament that feeds the central halo in the redshift range 𝑧 ∼ 3.5 − 8,
focusing primarily on 𝑧 ∼ 4 when the filament extended <∼ 200 kpc
on either side of the halo and did not seem to connect to any other
massive object. The spatial resolution of the analysed filament was
∼ 1.2 kpc, with small patches around haloes embedded in the filament
reaching a resolution of ∼ 0.6 kpc. These authors found the filament
to be well described by a model of an isothermal, self-gravitating,
infinite cylinder (Ostriker 1964), embedded inside an isothermal self-
gravitating sheet that dominated the mass distribution at 𝑟 >∼ (15 −
20) kpc from the filament axis. This was found to be true for both
the gas and the dark matter, whose density profiles had very similar
shapes and widths. An accretion shock was identified around the
filament by a sharp increase in gas temperature. However, the post-
shock gas was found to cool rapidly, and the shock width was limited
to a few kpc. The azimuthally-averaged radial profile of the gas
temperature increased by <∼ 60% between the central value and the
peak of the shock. While significant vorticity was identified within
the filament, consistent with previous results (Laigle et al. 2015), the
filament was found to be primarily supported by thermal pressure.

The analysis and results of Ramsøy et al. (2021) are novel and
extremely detailed. However, since their work focused on a single
filament feeding an isolated high-𝑧 progenitor of a MW-mass halo,
it is unclear whether their results describe filaments feeding mas-
sive, 𝑀v >∼ 1012M⊙ , haloes as cold streams at high-𝑧, as these are
much more massive than the studied system. Additional studies of
filaments feeding different mass haloes, in different environments,
and at different redshifts are needed to draw more general conclu-
sions about the filament population. Finally, while the resolution of
∼ 1 kpc in intergalactic filaments is quite good and better than most
state-of-the-art simulations, it is unclear whether this is enough to
resolve the detailed internal dynamics of filaments given the filament
radius of ∼ 15 kpc, and in particular the support due to turbulence
and/or vorticity (for discussions in the context of support of the CGM
see, e.g., Bennett & Sĳacki 2020; Lochhaas et al. 2023).

In this work, we seek to study filaments around more massive
haloes, in less isolated regions, and at higher resolution. We use a
novel suite of cosmological simulations first introduced in Mandelker
et al. (2019b) and Mandelker et al. (2021), which zoom in on a large
patch of the IGM in between two massive haloes, which at 𝑧 ∼ 2 are
𝑀v ∼ 5 × 1012 M⊙ each and connected by a ∼ Mpc-scale cosmic
filament. We hereafter refer to this suite of simulations as IPMSim,
where “IPM” refers to the “intra-pancake medium” of multiphase
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gas within cosmological sheets (or “Zel’dovich pancakes,” see Man-
delker et al. 2021; Pasha et al. 2023). The large filament at 𝑧 ∼ 2 was
formed by the merger of several smaller filaments at 𝑧 ∼ 2.5. Our
analysis focuses on 𝑧 ∼ 4, when the system contained several well-
defined filaments that connect three haloes with 𝑀v ∼ 1012 M⊙ each
(see Fig. 1 below). This simulation employs the resolution character-
istic of a standard “zoom-in” simulation of a single halo within the
entire IGM region between the two protoclusters. In the highest res-
olution version of the simulation used in this work (see Section 2.1),
the typical cell size in the IGM at 𝑧 ∼ 4 is ∼ 1 kpc near the midplane
of the sheet and ∼ 300 pc near the cores of the filaments. A detailed
convergence study presented in Mandelker et al. (2021) suggests that
this appears sufficient to resolve the formation of multiphase gas
in turbulent IPM. However, the morphology and distribution of the
cold component are likely only marginally resolved. As shown in
Section 3.1 below, the characteristic scale of the accretion shock that
surrounds our filaments is 𝑟shock ∼ 50 kpc, while the radius of the
cold stream is 𝑟stream ∼ 0.25𝑟shock ∼ 12 kpc. Thus, we have ∼ 80
cells across the diameter of the cold stream, and many more across
the diameter of the entire filament, sufficient to resolve the driving
scale of turbulence and a partial inertial range, thus resolving most
of the support due to turbulence and vorticity, if present.

This work is organised as follows: In Section 2, we introduce the
simulation, our method for selecting filament slices for analysis, and
our division of the filament cross-section into three distinct radial
zones. In Section 3, we analyse the radial structure of gas and dark
matter in filaments, including their thermal structure. In Section 4, we
discuss the thermal stability of gaseous filaments by comparing their
cooling and free-fall time scales. In Section 5, we address whether
the gaseous filaments are in virial equilibrium within the potential
well set by the dark matter filament. In Section 6, we decompose the
forces that support gaseous filaments against their self-gravity and use
a simple model to explain their origin. We discuss the implications of
our results and compare them to previous work in Section 7. Finally,
in Section 8, we conclude. Throughout, we assume a flat ΛCDM
cosmology with Ωm = 1 − ΩΛ = 0.3089, Ωb = 0.0486, ℎ = 0.6774,
𝜎8 = 0.8159, and 𝑛𝑠 = 0.9667 (Planck Collaboration et al. 2016).

2 METHODS

2.1 Simulation Method

We use the highest resolution version of IPMSim introduced in Man-
delker et al. (2019b) and Mandelker et al. (2021). We briefly describe
key aspects of the simulation below and refer the reader to those pa-
pers for additional details. The simulation was performed with the
quasi-Lagrangian moving-mesh code AREPO (Springel 2010). The
goal of the simulation was to zoom-in not just on a single halo, as is
commonly done, but rather on two protoclusters and the cosmic-web
elements that connect them. To select our target region, we first con-
sidered the 200 most massive haloes in the 𝑧 ∼ 2.3 snapshot of the
Illustris TNG1001 magnetohydrodynamic cosmological simulation
(Springel et al. 2018; Nelson et al. 2018; Pillepich et al. 2018b). These
have virial masses2 𝑀v in the range ∼ (1 − 40) × 1012M⊙ . We then
selected from all these halo pairs with a comoving separation in the
range (2.5−4.0)ℎ−1 Mpc ∼ (3.7−5.9)Mpc. There are 48 such halo
pairs, each of which is either connected by a cosmic-web filament or

1 http://www.tng-project.org
2 The virial radius, 𝑅v, is defined using the Bryan & Norman 1998 spherical
overdensity criterion, and the virial mass, 𝑀v, is the total mass within 𝑅v

else embedded in the same cosmic sheet. We randomly selected one
pair consisting of two haloes with 𝑀v ∼ 5×1012M⊙ each, separated
by a proper distance of 𝐷 ∼ 1.2 Mpc at 𝑧 ∼ 2.3. By 𝑧 = 0, the two
haloes evolve into mid-size groups with 𝑀v ∼ (1.6− 1.9) × 1013M⊙
separated by ∼ 2.7 Mpc, such that their comoving distance has de-
creased by <∼ 30%.

The zoom-in region is the union of a cylinder with length 𝐷 and
radius 𝑅ref = 1.5 × 𝑅v,max ∼ 240 kpc that extends between the two
halo centers, and two spheres of radius 𝑅ref centred on either halo,
where 𝑅v,max is the larger of the two virial radii at 𝑧 = 2.3. We
trace all dark matter particles within this volume back to the initial
conditions of the simulation at 𝑧 = 127, refine the corresponding
Lagrangian region to higher resolution, and rerun the simulation
to a final redshift, 𝑧fin. In this paper, we use the highest resolution
version of this simulation, dubbed ZF4.0 in Mandelker et al. (2021),
which has a dark matter particle mass of 𝑚dm = 8.2 × 104 M⊙
and a Plummer-equivalent gravitational softening of 𝜖dm = 250 pc
comoving. Gas cells are refined so that their mass is within a factor
of 2 of the target mass, 𝑚gas = 1.5× 104M⊙ . Gravitational softening
for gas cells is twice the cell size, down to a minimal gravitational
softening 𝜖gas = 0.5𝜖dm = 125 pc. The simulation was run until
𝑧fin ∼ 2.9, though our analysis here focuses on 𝑧 ∼ 4.

The simulations were performed with the same physics model
used in the TNG simulations, described in detail in Weinberger et al.
(2017) and Pillepich et al. (2018a). This includes radiative cooling
down to 𝑇 = 104K from Hydrogen and Helium (Katz et al. 1996),
metal-line cooling (Wiersma et al. 2009), radiative heating from a
spatially constant and redshift-dependent ionising ultraviolet back-
ground (UVB) (Faucher-Giguère et al. 2009), partial self-shielding of
dense gas from the UVB (Rahmati et al. 2013), and additional heat-
ing from the radiation field of active galactic nuclei (AGN) within
3𝑅v of haloes containing actively accreting supermassive black holes
(Vogelsberger et al. 2013). Star-formation occurs stochastically in gas
with densities greater than 𝑛thresh = 0.13 cm−3, which is placed on
an artificial equation of state meant to mimic the unresolved multi-
phase ISM (Springel & Hernquist 2003). We include feedback from
both supernova and AGN following the Illustris-TNG model.

To identify dark matter (sub)haloes in the simulation, we first
apply a Friends-of-Friends (FoF) algorithm with a linking length
𝑏 = 0.2 to dark matter particles. We then assign gas and stars to
FoF groups based on their nearest-neighbour dark matter particle.
Finally, we apply SUBFIND (Springel et al. 2001; Dolag et al. 2009)
to the total mass distribution in each FoF group. The most massive
SUBFIND object in each FoF group is identified as the central halo,
whose virial radius 𝑅v is defined using the Bryan & Norman (1998)
spherical overdensity criterion, and the virial mass 𝑀v is the total
mass of dark matter, gas, and stars within 𝑅v.

2.2 Filament Selection

We focus our analysis on 𝑧 ∼ 4. At this time, our system consists of
a well-defined cosmic sheet containing several prominent co-planar
filaments, with end-points at massive haloes with 𝑀v ∼ 1012 M⊙ ,
and along which nearly all haloes with 𝑀v > 109 M⊙ are located.
The sheet is formed by the collision of two smaller sheets at 𝑧 >∼ 5,
while most of the filaments merge by 𝑧 ∼ 2.5 (Mandelker et al.
2019b, 2021). Figure 1 shows the Hydrogen column density, 𝑁H, of
the sheet at 𝑧 ∼ 4 in face-on (left) and edge-on (right) projections3.

3 Projection maps of temperature, metallicity, and HI column density in the
same region can be found in Mandelker et al. (2021).
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Figure 1. Hydrogen column density, 𝑁H, of the large-scale cosmic sheet in our simulation at 𝑧 ∼ 4. Coordinates are given in proper physical distances. The
left panel shows the “face-on” view of the sheet, while the right panel shows an “edge-on” view. The integration depth for both panels is ±60 kpc. Haloes with
𝑀v ≥ 1010 M⊙ within ±60 kpc of the sheet midplane are marked in both panels by black circles, whose radii correspond to the halo virial radii. The three
largest haloes in the bottom-left, bottom-right, and top-right of the left-hand panel all have virial masses 𝑀v ∼ 1012 M⊙ . White boxes mark the ten filament
slices selected for analysis, numbered from 1 to 10, selected not to contain any haloes with 𝑀v ≥ 1010 M⊙ (see Section 2.2).

In order to minimise contamination of the filament properties by
haloes, we avoid analysing filament regions that contain haloes with
𝑀v ≥ 1010 M⊙ , marked by black circles in Fig. 1. This is ∼ 1% of
the mass of each of the three haloes at the nodes of the cosmic-web
in this region, located at the bottom-left, bottom-right, and top-right
of the left-hand panel in Fig. 1. We selected ten such slices from
three separate filaments, marked with white rectangles and numbered
from 1 − 10 in Fig. 1. Each slice is 30 kpc thick along the filament
axis, slightly larger than the typical characteristic scale radius of the
filaments, 𝑟0, as described in Section 3.1 below. However, we note
that using a slice thickness of (20 − 40) kpc does not change our
key results. We note that most of our slices contain 1-2 haloes with
masses 109 < 𝑀v/M⊙ < 1010, some of which appear assoiated with
local distortions in the density/temperature structure of the filament.
However, these distortions average out when stacking the slices, and
have no impact on our results. Likewise, all of our slices contain
several haloes with 𝑀v < 108M⊙ , though none of these appear to
have any impact on the filament structure.

The orientation of the filament axis in each slice is determined
by eye by approximating a straight line to the ridge line of maximal
𝑁H in each slice, as seen in the face-on projection through the sheet
(left-hand panel of Fig. 1). Given the relatively small length of our
slices compared to the total length of the filament, small changes to
the axial directions in each slice do not change any of our results. We
hereafter define the 𝑧-axis to refer to the local filament axis in each
slice, while the (𝑥, 𝑦) plane represents the filament cross-section with
the 𝑦-axis always aligned within the sheet.

To find the filament centre in each slice, we project the gas density
in each slice along its axial direction and initially place the filament
centre at the point of maximum gas density. We then refine this
using the “shrinking-cylinders” method. We begin by calculating the
centre of mass of a cylinder of gas with radius 𝑅0 = 50 kpc and length
𝐿 = 30 kpc about our initial centre, i.e., spanning the entire thickness
of the slice, and update the centre to this position. We repeat this
process five times, where the radius of the cylinder at each step is half
that of the previous step, leading to a final radius of 50/25 ∼ 1.6 kpc,
while keeping 𝐿 unchanged. Changing the number of iterations from
4 − 6 has no effect on our results. We experimented with alternative
definitions of the filament centre, such as using shrinking-circles
of gas density projected along the length of the slice rather than

shrinking cylinders in 3D, using spheres rather than cylinders/circles,
and using total (gas plus dark matter) mass rather than gas mass. All
these definitions yield centres within ∼ (1 − 4) kpc of each other for
nearly all cases, and the differences have no bearing on our results.

2.3 Three Radial Zones

As will be made clear and expanded upon throughout Sections 3-6
below, we find that the filament cross section can be broadly divided
into three radial zones, with a fourth zone outside the stream bound-
ary. Since the details of each zone are motivated at different points in
the paper, yet we refer to each throughout the paper and mark them
on most figures, we introduce them here for the benefit of the reader.
A schematic diagram showing this proposed structure is presented in
Fig. 2.

(i) Outer thermal (T) zone, 0.65𝑟shock <∼ 𝑟 <∼ 𝑟shock: The post-
shock region, where the gas is hot (at the virial temperature, see
Section 5) and the dynamics are dominated by thermal and ram
pressure.

(ii) Intermediate vortex (V) zone, 0.25𝑟shock <∼ 𝑟 <∼ 0.65𝑟shock:
The gas is cooling and the dynamics are dominated by a quadrupolar
vortex structure and increasing centrifugal forces (see Section 6).

(iii) Inner stream (S) zone, 0 <∼ 𝑟 <∼ 0.25𝑟shock: A dense, isother-
mal core in the inner filament, representing the cold stream that
penetrates the CGM of massive haloes.

In addition, we define a fourth zone outside the filament boundary,
the Pre-shock (PS) zone at 𝑟 >∼ 𝑟shock. This is the region outside the
accretion shock surrounding the filament, where cold and diffuse gas
is free-streaming towards the filament. While 𝑟shock is well-defined
(Section 3.1), the boundaries between the T and V zones and between
the V and S zones are not as sharp. We crudely assign a width of
∼ 0.05𝑟shock to each of them, 𝑟/𝑟shock ∼ (0.6−0.65) and (0.2−0.25)
respectively, marked in the figures below. This roughly corresponds
to the width of transition regions of various zone characteristics in
stacked data, as detailed throughout the paper. However, we cau-
tion that the precise width of each zone likely depends on filament
properties and is not universal.

MNRAS 000, 1–32 (2023)
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Figure 2. A schematic diagram showing the structure of the filament cross
section, marking the key physical characteristics of the three zones described
in Section 2.3 and detailed throughout the paper. The stream is surrounded by
a cylindrical accretion shock, at a normalised radius of R = 1, which expands
outwards as the filament grows. The shock-heated gas in the outer Thermal
(T) zone, at R >∼ 0.65, is at the virial temperature of the underlying dark mat-
ter filament, with low density and inwardsradial velocity driven by an isobaric
cooling flow. In this region, the thermal pressure gradients balance both grav-
ity and the ram pressure from the inflowing gas. In the intermediate Vortex (V)
zone, at 0.65 >∼ R >∼ 0.25, the dynamics is dominated by a quadrupolar vortex
structure which is induced by shearing motions between the sheet that feeds
the filament and the post-shock filament gas. These vortices induce a complex
combination of inflows, outflows, and rotation in this zone. Gravity here is
balanced by a combination of thermal pressure gradients, centrifugal forces,
and non-thermal random motions. The inner stream (S) zone, at R <∼ 0.25,
is a dense, cold, isothermal core which represents the cold streams that feed
massive galaxies. While the stream boundary expands as the filament grows,
the gas in this region is also characterised by both ithats and outflows due to
non-radial inflow along the sheet.

3 FILAMENT RADIAL STRUCTURE

In this and the following sections, we analyse the radial structure
of various filament properties. These include the gas density, tem-
perature, and thermal pressure (Section 3.1), the baryon fraction
(Section 3.2), the dark matter density and radial velocity dispersion
(Section 3.3), the mass-per-unit-length of gas and the total mass
(Section 3.4), the ratio of cooling time to free-fall time (Section 4),
the virial parameter (Section 5), and the internal kinematics and dy-
namics (Section 6). We compute all profiles as a function of the
cylindrical radius, i.e., the distance from the local filament axis as
defined in Section 2.2, with each radial bin representing a cylindrical
shell extending the thickness of the slice, 𝐿 = 30 kpc.

3.1 Thermal Properties and Characteristic Radii

In Fig. 3, we address the distribution of gas density (top), tem-
perature (centre), and thermal pressure (bottom), stacked among
all ten slices. We present stacked projection maps on the left, and
stacked radial profiles on the right. The projection maps represent
weighted-averages along the filament axis (the 𝑧 direction) across

the slice thickness of 𝐿 = 30 kpc. The average density and pres-
sure are weighted by volume, while the temperature is weighted by
mass. Prior to stacking, we align the 𝑦-axes such that they lie in
the sheet containing the filaments (see Fig. 1), while the 𝑥-axes re-
main perpendicular to the sheet. We then normalize each property
by its value at the filament centre, and take the average in log-space
among all ten slices. The cross-sections are roughly circular with
high-density, low-temperature cores surrounded by a low-density,
high-temperature medium, and roughly constant pressure through-
out. The vertical high-density region extending from the filament in
the 𝑦-direction breaking the circular symmetry represents the sheet.
There are well-defined accretion shocks around both the filament and
the sheet, visible in both the temperature and pressure maps. The fila-
mentary accretion shocks identified here have typical Mach numbers
of orderM >∼ 10 (Appendix A). While the accretion-shock around
the sheet is discussed in Mandelker et al. (2019b, 2021); Pasha et al.
(2023), those works did not explicitly identify filamentary accretion
shocks as seen here. Such filamentary accretion shocks have been
both predicted theoretically (e.g., Klar & Mücket 2012; Birnboim
et al. 2016) and seen in other cosmological simulations (Ramsøy
et al. 2021). While the sheet clearly breaks the circular symmetry
of the filament cross-section, for most of our analysis (except Fig. 9
below) we ignore this complication and treat the filament as circular.
A more accurate analysis distinguishing between the on-sheet and
off-sheet properties and dynamics is deferred to future work.

When generating the profiles in the right-hand column, we first
use 150 linearly spaced bins out to a radius of 𝑅 = 100 kpc for each
individual slice, namely a bin size of Δ𝑟 = 100 kpc/150 ≈ 0.67 kpc.
While this is larger than the typical cell size near the filament centre,
it is slightly smaller than the typical cell size at large distances from
the filament axis (see Fig. C1 below). However, due to the unstruc-
tured nature of the grid, all of our bins are sufficiently populated
for good statistics, with ∼ (4000 − 6000) cells per bin in the S and
V zones, and ∼ (2000 − 4000) cells per bin in the T Zone. The
density and pressure (temperature) profiles represent the volume-
weighted (mass-weighted) average of all gas cells in each cylindrical
shell. In each slice, the temperature profile reaches a well-defined
maximum, which we define as the shock-radius, 𝑟shock. Once 𝑟shock
is identified, we recompute each profile using 150 linearly spaced
bins from 𝑟/𝑟shock = 0.1 − 2.0 and normalise them by their central
values. We then compute the mean (red dots) and standard devia-
tion (cyan shaded regions) in log-space among all ten slices in each
bin to produce the stacked profiles shown in Fig. 3. Hereafter, all
stacked profiles and projection maps presented used binonpropor-
tional to 𝑟shock of each slice. The location of the shock seen on the
temperature and pressure maps is indeed at 𝑟 ≃ 𝑟shock, marked by a
dashed-white circle in each projection.

At small radii, the filaments are characterised by a core of constant
density and temperature extending to roughly ∼ (0.2 − 0.25) 𝑟shock,
namely the S zone defined in Section 2.34. Outside of this radius,
the temperature begins increasing towards a maximum at the shock
radius, marked in each profile panel with a vertical dashed blue
line. On average, the peak temperature at the shock is ∼ (10 −
20) times larger than the core temperature. This is consistent with
the shock Mach number, which is measured to beM ∼ (10 − 20)

4 Note that our centering procedure described in Section 2.2 does not guar-
antee that each slice will be centered on its densest or coldest point. This leads
to slight offsets in the density maximum and temperature minimum with re-
spect to the centres of the projection maps shown in Fig. 3. Nonetheless, after
stacking the radial profiles do show a well-defined central core.
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Figure 3. Thermal structure of filaments, stacked among the ten slices. We show projected maps integrated along the filament axis (left) and radial profiles
(right) of gas density (top), temperature (middle), and thermal pressure (bottom) of the text for details regarding the averaging and stacking procedures. The
temperature profiles reach a well-defined maximum that defines a shock radius, 𝑟shock, marked by white circle in the projection maps and vertical blue lines in
the radial profiles. The temperature declines towards smaller radii, reaching an isothermal core in the S Zone, 𝑟 <∼ 0.25 𝑟shock, where the gas is dense and cold. In
the V zone, 𝑟/𝑟shock ∼ (0.25− 0.65) , the pressure is roughly constant while the temperature increases by a factor of ∼ 3. In the T zone, 𝑟/𝑟shock ∼ (0.65− 1.0) ,
the pressure drops by a factor of ∼ 2, the temperature increases by a factor of ∼ 5, and the density develops a slope of 𝜌 ∝ 𝑟−3. Beyond the shock radius, in the
PS zone, the density becomes dominated by the sheet and develops a shallower profile. The boundaries between the S and V zones and between the V and T
zones are marked by concentric circles in the projection maps and by shaded regions of width 0.05 𝑟shock in the radial profiles. At 𝑟 < 𝑟shock, the density profile
is well fit by an infinite self-gravitating isothermal cylinder in hydrostatic equilibrium, shown by the black dashed line, with a scale radius of 𝑟0 ∼ 0.5 𝑟shock
marked by a yellow star in the density profile. However, this model is a very poor fit to the pressure profile, where strong gradients are only present in the T
zone, while the S and V zones are nearly isobaric.
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Figure 4. Distribution of central densities, 𝜌0 on the 𝑥-axis, central temper-
atures, 𝑇0 on the 𝑦-axis, and shock radii, 𝑟shock shown in colour, for our ten
filament slices. The central density is noramlised by the average baryonic
density at 𝑧 = 3.93, 𝜌b = Ωb𝜌crit (1 + 𝑧)3 = 1.00 × 10−28g cm−3 (labelled
at the top). The corresponding slice numbers are denoted. Note that slices 03
and 04 in the lower right corner overlap with each other.

for all slices (see Appendix A). Within the V zone, 𝑟 ∼ (0.25 −
0.65)𝑟shock, the pressure remains roughly constant, decreasing by
only ∼ 10% from its central value. The temperature increases by a
factor of ∼ 3 from its central value, often considered the threshold
for ‘cool’ gas in studies of multiphase gas mixing (e.g., Scannapieco
& Brüggen 2015; Gronke & Oh 2018; Mandelker et al. 2020a),
though the density declines by a larger factor in this region. The cold
and dense filament core in the S zone thus seems to be in pressure
equilibrium with the hot and diffuse mixed gas in the V zone. In the T
zone, 𝑟 ∼ (0.65−1.0)𝑟shock, the pressure decreases by another factor
of <∼ 2, the temperature rapidly increases by a factor of ∼ 5, and the
density reaches a slope of roughly 𝜌 ∝ 𝑟−3 at 𝑟 <∼ 𝑟shock. As will
be discussed further below, thermal pressure gradients are indeed
not the dominant force in the S and V zones, becoming important
only in the T zone. Outside the shock, in the PS zone, the pressure
and temperature rapidly decline, while the slope of the density profile
becomes noticeably shallower. In this region, the density is dominated
by the underlying sheet, rather than by the filament itself (see also
Ramsøy et al. 2021). The boundaries between the four radial zones
are marked by vertical lines/shaded regions in the radial profiles and
by concentric circles in the projections.

We show the values of central density, 𝜌0, central gas temperature,
𝑇0, and shock radius, 𝑟shock, for our ten slices in Fig. 4. Most of
the slices have central densities 𝜌0 ∼ (10−26.5 − 10−25.5) cm−3,
corresponding to a Hydrogen number density of 𝑛H ∼ 0.01 cm−3

and to a baryonic overdensity of <∼ 100. Their central temperatures
are 𝑇0 ∼ 2× 104 K, placing the filament core in approximate thermal
equilibrium with the UVB (e.g., Mandelker et al. 2020a). The shock
radii are typically 𝑟shock ∼ (35 − 50) kpc, with an average value of
∼ 45 kpc among the ten slices. The typical core size is thus 𝑟core ∼
0.25 𝑟shock ∼ 12 kpc. These values of 𝜌0, 𝑇0, and 𝑟core are in good

agreement with those predicted for cold streams feeding massive
high-𝑧 galaxies from the cosmic-web (Dekel et al. 2009a; Mandelker
et al. 2018, 2020b).It thus seems that the cold streams predicted to
penetrate the CGM of massive haloes and feed their central galaxies
can be associated with the isothermal cores of cosmic-web filaments,
motivating our definition of the S zone.

Slices 05 and 10 seem to have much hotter cores, with𝑇0 >∼ 105 K.
Both of these slices lie close to the intersection between two filaments
(see Fig. 1 left), leading to a highly disturbed morphology where the
cold region of the filament is off-centre. However, even in these
cases, the minimum temperature in the filament is <∼ 3 × 104 K.
Similarly, slices 01 and 02 have unusually extended shocks, with
𝑟shock ∼ (70 − 80) kpc. Slice 01 is adjacent to a massive, ∼ 1012M⊙
halo, which likely influences both the extent and the Mach number
of the shock, the latter of which is >∼ 50% larger than the rest of the
sample (see Appendix A). The large shock radius in slice 02 seems to
be due to curvature in the filament in this region, making it difficult
to track the filament spine. However, these slice-to-slice variations
do not influence our stacked results.

To further characterise the filament radial structure, we fit the
stacked density profile shown in the upper-right hand panel of Fig. 3
to the density profile of an infinitely long, self-gravitating, isothermal
cylinder in hydrostatic equilibrium (Ostriker 1964),

𝜌isothermal (𝑟) = 𝜌0

[
1 +

(
𝑟

𝑟0

)2
]−2

, (1)

with

𝑟0 =

√︄
2𝑘B𝑇0

𝜇𝑚p𝜋𝐺𝜌0
, (2)

where 𝜌0 is the central density, 𝐺 is the gravitational constant, 𝑘B is
the Boltzmann constant, 𝑚p is the proton mass, 𝜇 is the mean molec-
ular weight, and 𝑇0 is the isothermal temperature. While the filament
is clearly not isothermal within 𝑟shock, several previous works have
attempted to model intergalactic filaments as such (e.g., Harford &
Hamilton 2011; Mandelker et al. 2018; Ramsøy et al. 2021). It is,
therefore, interesting to see how well this model can describe the
actual density profile. This is shown by the dashed black line in the
upper-right-hand panel of Fig. 3. As we can see, it actually fits the
density profile quite well, except at large radii, 𝑟 >∼ 𝑟shock, where the
density becomes dominated by the sheet rather than the filament.
Similar results were found in Ramsøy et al. (2021), who attempted
to fit the density profile with a combination of an isothermal cylinder
and an isothermal sheet, though we make no such attempt here.

When fitting our stacked density profile to eq. (1), the only free
parameter is 𝑟0/𝑟shock, since the density has been normalized to
its central value so effectively 𝜌0 = 15. From the fit, we derive a
characteristic scale radius of 𝑟0 ∼ 0.5 𝑟shock, marked by a yellow star
on the density profile. This is roughly twice as large as the radius of
the cold, dense, isothermal core that represents the cold stream. It is
slightly smaller than the outer radius of the V zone, though there is
no clear relation between these two radii.

We can use the isothermal fit to the density profile to find the cor-
responding temperature and pressure profiles. The isothermal tem-
perature is given by

𝑇isothermal =
𝑟2

0𝜇𝑚p𝜋𝜌0𝐺

2𝑘B
, (3)

5 Fitting for 𝜌0 as well produces a value extremely close to 1.
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Figure 5. Baryon fraction as a function of radius. As in Fig. 3, red dots indicate
the mean and the cyan-shaded region indicates the standard deviation among
our ten slices, while the vertical lines/shaded regions mark the boundaries
between the four filament zones. In the PS Zone, 𝑟 >∼ 𝑟shock, 𝑓b converges
to the universal baryon fraction of ∼ 0.16, marked by the horizontal dashed
green line. The gas is more centrally concentrated than dark matter due to
efficient cooling, so 𝑓b rises through the T and V zones, saturating at 𝑓b ∼ 0.5
in the S zone, where the gas and dark matter masses are comparable.

and the isothermal pressure profile is given by

𝑃isothermal (𝑟) =
𝜋𝐺𝜌2

0𝑟
2
0

2

[
1 +

(
𝑟

𝑟0

)2
]−2

. (4)

Plugging the average value of 𝜌0 ∼ 10−26 cm−3 and the derived
value of 𝑟0 ∼ 0.5𝑟shock ∼ 22 kpc into eq. (3) returns a value of
𝑇0 ∼ 3.6 × 104 K, which is roughly the average value of 𝑇isothermal
measured among our ten slices (see Fig. 4). The density profile thus
resembles that of an isothermal filament at the core temperature. We
discuss this further in Section 7.1. The model pressure profile, unsur-
prisingly, drastically underpredicts the pressure outside the core re-
gion (S zone), where the temperature increases and deviates strongly
from isothermality. This suggests that thermal pressure gradients are
not the primary force supporting the filaments against gravity, at least
not in the S and V zones where the pressure is nearly constant both
on and off the sheet. From the projection map we see that in the T
zone, the off-sheet pressure declines more rapidly, leading to stronger
gradients in this region. This will be discussed further in Section 6.2.

3.2 Baryon Fraction

In Fig. 5 we show the baryon fraction as a function of radius, stacked
among our ten slices as described in Section 3.1. The baryon fraction
in each radial bin, 𝑓b (𝑟), is given by the ratio of the baryonic mass
(gas and stars) to the total mass (gas, stars, and dark matter) enclosed
within the radius 𝑟. In practice, the stellar mass is negligible, con-
tributing ∼ 0.3% of the total baryon mass, and 𝑓b can be thought of
as the gas fraction. In the PS zone, 𝑟 >∼ 𝑟shock, 𝑓b (𝑟) converges to the

universal baryon fraction, 𝑓b ∼ 0.16, with very little scatter among
the different slices. Within the filament core, the S zone, 𝑓b, saturates
at roughly 0.5 on average, with a large scatter of ∼ (0.3 − 0.7). The
gas is thus more centrally concentrated than dark matter due to effi-
cient cooling, resulting in a comparable contribution of gas and dark
matter in the core. This is similar to galaxies in dark matter haloes,
for example, in the Milky Way the baryon-to-total mass ratio within
the solar circle is ∼ 0.5.

3.3 Dark Matter Properties

Following the discussion in Section 3.1 and Section 3.2, we now
examine the radial structure of the dark matter in our filament slices.
In the left panel of Fig. 6, we show a projected map of the dark matter
density, oriented and stacked among all ten slices in an identical way
to the projection map of gas density shown in Fig. 3. Similar to
gas, the dark matter filament has a roughly circular cross-section
if ignoring the contribution of the overdense pancake along the 𝑦

direction. However, unlike the gas density which is very centrally
concentrated, the dark matter density appears approximately constant
within 𝑟shock, marked with a white circle. The dark matter distribution
is also much clumpier than the gas, due to the presence of low mass
haloes with 𝑀v < 1010M⊙ (recall that higher mass haloes have
already been removed when selecting the slices). Removing haloes
with lower and lower masses prior to projecting the density results in
smoother and smoother maps, until the clumpiness disappears once
haloes with 𝑀v >∼ 108M⊙ are removed. This clumpiness thus does
not seem to be due to internal fragmentation within the filament, but
rather to the cosmological halo mass function.

In the middle panel of Fig. 6, we present the radial profile of dark
matter density, normalised by its central value and stacked among our
ten filament slices, using the same procedure described in Section 3.1
for the gas profiles. We fit the dark matter density profile to the same
parametric isothermal model used for the gas (eq. 1). The fit is shown
in the middle panel of Fig. 6 with a black-dashed line and is a good
representation of the data. From Fig. 5 we know that the central
dark matter density is comparable to the central gas density, namely
an overdensity of ∼ 30 with respect to the mean matter density6 at
𝑧 ∼ 4. From the fit, we extract the scale radius of the DM density
𝑟0,DM ≃ 1.17 𝑟shock, which is marked in Fig. 6 along with the scale
radius of the gas density profile, 𝑟0 <∼ 0.5 𝑟shock. The radius of the
DM density core is 𝑟core, DM ∼ 0.8𝑟shock, approximately 4 times
larger than the gas density core. This is consistent with the baryon
fraction profile (Fig. 5), which showed that the gas was much more
centrally concentrated than dark matter. This is unlike the case studied
in Ramsøy et al. (2021), where gas and dark matter were found to
have similar concentrations and density profiles. We address this in
Section 7.1.

In the right-hand panel of Fig. 6, we present the radial profile of
dark matter effective temperature, normalised by its central value
and stacked among our ten filament slices as described above. This is
derived from the radial velocity dispersion of dark matter, which we
compute in the standard way as 𝜎2

𝑟 = ⟨𝑣2
𝑟 ⟩ − ⟨𝑣𝑟 ⟩2, where 𝑣𝑟 is the

radial velocity with respect to the filament axis and ⟨. . . ⟩ represents
a mass-weighted average7 over all dark matter particles in a given

6 Corresponding to an overdensity of∼ 200 with respect to the mean baryonic
density, as shown in Fig. 4.
7 Note that since in our simulation every dark matter particle has the same
mass this is simply the arithmetic variance.
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Figure 6. Left panel: Projected map of the dark matter density averaged along the filament axis and stacked among our ten slices. The stacking procedure
and slice orientation are the same as in the projected maps of gas properties shown in Fig. 3. The shock radius, 𝑟shock, identified based on the gas temperature
profiles, is marked by a white circle. As in Fig. 3, we also mark the boundaries between the four radial zones with concentric circles. Middle and right panels:
Structure of the dark matter filaments, stacked among our ten slices. We show the radial profiles of dark matter density (middle) and effective temperature (right,
computed using the dark matter radial velocity dispersion following eq. 5). These were normalised, stacked, and averaged in the same way as the gas profiles
shown in Fig. 3, with red points (cyan shaded region) representing the mean (standard deviation) in log space. The 𝑦-axes in these two panels span the same
range as the upper and middle right-hand panels of Fig. 3. The black dashed line in the density profile shows a fit to the same parametric isothermal model used
for the gas (eq. 1), which matches the data well. The yellow and green stars mark the scale radii for the gas and dark matter density profiles, respectively. The
latter is slightly larger than the shock radius, 𝑟shock, marked with a vertical blue line. The vertical shaded regions mark the boundaries between the S and V
zones and the V and T zones. The effective dark matter temperature increases by a factor of ∼ 2 from the filament core to a peak near 𝑟0,DM, and is thus more
isothermal than the gas, whose temperature increases by a factor of ∼ 20 over the same radial range.

cylindrical shell at radius 𝑟. The effective dark matter temperature8

is then defined via

𝑘B𝑇eff (𝑟) =
3
2
𝜇𝑚p𝜎

2
𝑟 (𝑟). (5)

From the profile, we see that 𝑇eff increases by a factor of ∼ 2 from
the filament core to a peak just outside 𝑟shock, near 𝑟0,DM. This is
much less than the factor ∼ 20 increase in gas temperature, showing
that the isothermal approximation is more valid for dark matter than
for gas. The average central value of 𝑇eff in the filament core is
𝑇eff,C ∼ 9.6 × 105K. Using the average central dark matter density,
our fit to 𝑟0,DM, and eq. (3), we calculate the effective “isothermal”
temperature of the dark matter, 𝑇iso,DM = 1.2 × 106 K. This is very
similar to the measured central dark matter temperature, supporting
the validity of the isothermal model for the dark matter. We note that
dark matter haloes are also often modelled as isothermal spheres,
though as singular isothermal spheres with a central density cusp,
𝜌 ∝ 𝑟−2, rather than a central core as we find for filaments.

3.4 Mass per unit length (line-mass)

In Fig. 7 we show radial profiles of the mass per-unit-length (hereafter
line-mass), Λ(< 𝑟), normalised and stacked among our ten filament
slices. For a given slice, Λ(< 𝑟) is simply defined as the total mass
(of gas and/or dark matter, see below) interior to radius 𝑟, divided
by the thickness of the slice, 𝐿 = 30 kpc. Motivated by our fits of
the gas and dark matter density to isothermal profiles (Section 3.1,
Section 3.3), prior to stacking we normalise the line-mass in each

8 By assuming a mean particle mass of 𝜇𝑚p, eq. (5) defines the temperature
the gas would have if it were in equipartition with the dark matter, similar to
the way the halo virial temperature is typically defined.

slice by the maximal possible value of a self-gravitating isothermal
cylinder in hydrostatic equilibrium (Ostriker 1964),

Λmax =
2𝑐2

𝑠

𝐺
, (6)

where 𝑐2
𝑠 = 𝑘B𝑇/(𝜇𝑚p) is the isothermal sound speed squared,

and 𝑇 is the effective isothermal temperature given by the fit of
the model using the average central density, the characteristic scale
radius, 𝑟0, and eq. (3). This is similar to the central temperature in the
filament core. Filaments with Λ ∼ Λmax are unstable to gravitational
fragmentation and radial collapse (Mandelker et al. 2018; Aung et al.
2019), while much lower mass filaments are likely gravitationally
stable.

In Fig. 7, we show separately the normalised line-mass profiles of
gas alone (red) and total mass (blue, primarily gas and dark matter).
Note that the total line-mass is obviously larger than the line-mass
of gas alone, Λtot (𝑟shock) ∼ 9× 108 M⊙ kpc−1 while Λgas (𝑟shock) ∼
1.6 × 108 M⊙ kpc−1 ∼ 𝑓bΛtot (𝑟shock). However, the gas has a much
lower effective temperature than the dark matter, ∼ 3.6 × 104 K and
∼ 1.2 × 106 K respectively, while the effective temperature derived
from the density profile of total mass is ∼ 8.6 × 105 K. This leads to
a much smaller value of Λmax for the gas alone compared to the total
mass — 2.3× 108 M⊙ kpc−1 and 5.5× 109 M⊙ kpc−1 respectively.
As a result, the normalised line-mass of gas alone is larger than the
normalised total line-mass.

For the gas, Λ/Λmax ∼ 0.2 near the outer boundary of the S
zone at 𝑟 ∼ 𝑟core ∼ 0.25 𝑟shock, Λ/Λmax ∼ 0.7 near 𝑟shock, and it
approaches unity at 2 𝑟shock. This is consistent with the results of
Mandelker et al. (2018) (see their equation 40), who predicted that
cold streams feeding massive high-𝑧 galaxies should have Λ ∼ Λmax,
which could lead to gravitational fragmentation and star-formation
in filaments outside of galaxies. However, we stress that this estimate
ignores non-thermal support such as turbulence, which is important
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Figure 7. Profiles of the filament line-mass, Λ, accounting for only gas (red
points) and total mass (mostly gas and dark matter, blue points), averaged
among our ten filament slices. Each profile has been normalised by the corre-
sponding, temperature-dependent, maximal line-mass for hydrostatic equilib-
rium, Λmax (eq. 6). Cyan and orange shaded regions represent 1 − 𝜎 scatter
of Λgas and Λtot among our ten filament slices, respectively. Note that since
all slices have the same length (Section 2.2), this result is also the same as the
total line-mass of a single filament consisting of all our ten slices connected
end-to-end. While the total line-mass is clearly larger than the line-mass of
gas only, the higher temperature of the dark matter results in a higher value
of Λmax, leading to a lower normalised line-mass. While the normalised line-
mass for gas approaches unity near the filament edge, the total line-mass is
well below the critical value.

at small radii (see Section 6.2 below), and the non-isothermality of
the gas which is important at large radii (see Fig. 3). The net effect
on the gravitational fragmentation of star formation in filaments is
thus unclear and is left for future work. When considering the total
filament line-mass we have Λ/Λmax ∼ 0.02 and 0.15 within 𝑟core
and 𝑟shock respectively, suggesting that gravitational fragmentation
of the dark matter in the filament is unlikely, owing to its much larger
effective temperature.

4 THERMAL EQUILIBRIUM

In analogy with the gaseous haloes around massive galaxies, groups,
and clusters, we estimate the thermal stability of the shock-heated
gas surrounding the isothermal core by examining the ratio of the
gas cooling time, 𝑡cool, to the free-fall time, 𝑡ff .

The gas cooling time, 𝑡cool, is given by

𝑡cool =
𝑢𝜌

L𝑛2
H
, (7)

where 𝑢 is the gas internal energy per unit mass, 𝜌 is the gas density,
𝑛H is the hydrogen number density, andL = C−H is the net cooling
rate, i.e., cooling minus heating, per unit density squared. All these
properties are stored for each cell in the simulation, allowing us to
evaluate 𝑡cool for each cell. We then compute the average cooling

time as a function of radius, 𝑡cool (𝑟), by taking the mass-weighted
average of eq. (7) among all cells in each radial bin with temperatures
𝑇 > 𝑇0 = 3.6 × 104 K, the temperature of the cold isothermal core.
The gas with 𝑇 <∼ 𝑇0 is near thermal equilibrium with UVB and
often undergoes net heating, while virtually all gas with 𝑇 > 𝑇0 is
undergoing net cooling.

For an infinite cylinder, the free-fall time is given by

𝑡ff (𝑟) =

√︄
1

4𝐺𝜌mean (< 𝑟) , (8)

where 𝜌mean (< 𝑟) = Λ(< 𝑟)/(𝜋𝑟2) is the mean density interior to 𝑟 .

For isobaric cooling, 𝑢𝜌 ∝ 𝑃 ∼ const, so 𝑡cool ∝ 𝜌−2, while 𝑡ff ∝
𝜌−1/2. Therefore, the ratio 𝑡cool/𝑡ff is smaller at smaller radii closer to
the filament axis. When 𝑡cool/𝑡ff <∼ 1, the system cannot maintain the
shock-heated component, and the bulk of the gas cools and falls to the
centre (e.g., Rees & Ostriker 1977; White & Rees 1978; Birnboim
& Dekel 2003; Birnboim et al. 2016; Fielding et al. 2017; Stern
et al. 2020a, 2021a). The outer radius where 𝑡cool/𝑡ff = 1 and the
volume-filling medium transitions from hot to cool corresponds to
the ‘sonic radius’ (Bertschinger 1989; Stern et al. 2020b, 2023).
Even if 𝑡cool/𝑡ff > 1, the hot gas may be unstable to local thermal
instabilities where perturbations create dense clouds that cool and
condense out of the hot medium and “rain down” to the centre. In
studies of the hot CGM around massive galaxies or the ICM in galaxy
clusters, this process is often referred to as precipitation and occurs
when 𝑡cool/𝑡ff <∼ 10 (e.g., McCourt et al. 2012; Sharma et al. 2012;
Gaspari et al. 2012; Voit & Donahue 2015; Voit et al. 2015a,b). The
analogous threshold for cylindrical geometry may be different due
to the different radial dependences of stabilising buoyancy forces. A
detailed study of this is beyond the scope of this paper, and instead we
adopt the threshold of 𝑡cool/𝑡ff ∼ 10 as representative of the threshold
for condensation to occur.

Figure 8 shows the ratio 𝑡cool (𝑟)/𝑡ff (𝑟) as a function of 𝑟/𝑟shock,
stacked among the ten slices by taking the average and standard devi-
ation. At 𝑟 ∼ 𝑟shock, 𝑡cool/𝑡ff ∼ 3, which implies that while the shock
may be stable to monolithic cooling it is likely unstable to precipi-
tation and condensation. Indeed, we see several cases of cold clouds
encompassed by hot gas in the T and V zones in individual slices.
A more detailed analysis of these clouds is beyond the scope of the
current study, and is left for future work. The cooling radius, where
𝑡cool/𝑡ff ∼ 1, occurs near the outer edge of the S zone, consistent with
this being the boundary of the dense isothermal core. These results
suggest that the cold stream is built by cooling of the post-shock
filament gas, and that this cooling occurs roughly isobarically (see
Fig. 3).

5 VIRIAL EQUILIBRIUM

In this section, we wish to ascertain to what extent the gas is in
virial equilibrium within the gravitational potential of the filament.
While dark matter haloes are expected to be bound and virialized in
three dimensions, intergalactic filaments will at most be bound and
virialized in the two dimensions perpendicular to the filament axes,
while remaining unbound along their axis. Previous studies have
speculated that intergalactic filaments may result from cylindrical
collapse ending in virial equilibrium per-unit-length (Fillmore &
Goldreich 1984; Mandelker et al. 2018). In this section, we test this
hypothesis in our simulations.
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Figure 8. Stacked profile of ratio between cooling and free fall times for
gas with 𝑇 > 𝑇0 = 3.6 × 104 K, the temperature of the cold stream. Near
𝑟shock, 𝑡cool <∼ 3𝑡ff implying that the shocked medium is likely unstable to
condensation and precipitation. In the S Zone, 𝑡cool <∼ 𝑡ff consistent with the
formation of a cold isothermal core at these radii.

5.1 The Virial Theorem per-unit-length

An infinite, self-gravitating, collisionless and isolated cylinder in
virial equilibrium (per-unit-length) obeys (Mandelker et al. 2018)

2K = 𝐺Λ2, (9)

where K is the kinetic energy per-unit-length and Λ is the line-
mass. If the motions are confined to the plane perpendicular to the
filament axis, this becomes the two-dimensional version of the virial
theorem. In a confined, gaseous system such as ours, we must account
for additional terms related to thermal pressure, surface pressure, and
magnetic pressure.

As we show in Appendix B (Fig. B1), magnetic support is negli-
gible in the filament gas. Therefore, we use the virial theorem for an
unmagnetized gaseous system. For such a system in time-independent
equilibrium, the virial theorem states (Krumholz 2015, Chapter 6.1)

2(T − T𝑠) +W = 0, (10)

where T is the total thermal plus kinetic energy in the system, T𝑠
is the confining pressure on the surface, including both thermal and
ram pressure, andW is the total gravitational energy of the system.
In integral form, these terms can be expressed as

T =

∫
𝑉

(
1
2
𝜌𝑣2 + 3

2
𝑃

)
d𝑉, (11)

T𝑠 =
∮
𝑆

(
𝒓 · ←→𝜋

)
· d𝑺, (12)

W = −
∫
𝑉

(𝜌𝒓 · ∇Φ) d𝑉. (13)

In eqs. (11)-(13), 𝜌 is the gas density, 𝒗 is its velocity, 𝑃 is its thermal

pressure,Φ is the gravitational potential9, and←→𝜋 is the fluid pressure
tensor given by

𝜋𝑖 𝑗 = 𝜌𝑣𝑖𝑣 𝑗 + 𝛿𝑖 𝑗𝑃, (14)

where 𝛿𝑖 𝑗 is the Kronecker delta. We define the virial parameter

𝛼vir =
2(T − T𝑠)
|W| . (15)

Note that this differs from the standard virial parameter for unmag-
netized systems only in the inclusion of the surface pressure term,
which is important for non-isolated systems10. When 𝛼vir > 1, the
system expands due to kinetic plus thermal energy, while for 𝛼vir < 1
the system collapses due to the combined effects of surface pressure
and gravity.

When evaluating eqs. (11)-(13) for our filament slices, we recall
that we are only interested in virial equilibrium per-unit-length, in the
two dimensions perpendicular to the filament axis. We thus make an
approximation of cylindrical symmetry and treat the filament as an
infinite cylinder. We are here neglecting the non-axisymmetric nature
of the sheet, an approximation which will be validated by the results
below. Therefore, we approximate the gravitational acceleration as

∇Φ ≃ 2𝐺Λtot (< 𝑟)
𝑟

𝑟, (16)

withΛtot (< 𝑟) being the total line-mass interior to radius 𝑟. Similarly,
the gas density and line-mass are related by

2𝜋𝑟𝜌 ≃
dΛgas

d𝑟
. (17)

We, therefore, approximate the gravitational potential energy as

W(𝑟) ≃ −2𝐺𝐿

∫ 𝑟

0
Λtot

dΛgas
d𝑟′

d𝑟′, (18)

where 𝐿 = 30 kpc is the filament slice thickness. We note that this
factor 𝐿 is only included for consistency with the formalism presented
in Krumholz (2015), and in practice, we normalise all the energy
terms in eqs. (11)-(13) by 𝐿 to obtain energy per-unit-length before
computing 𝛼vir. We numerically evaluate the integral in eq. (18) by
performing the following double-sum:∫ Λgas (𝑟 )

0
dΛgasΛtot =

∑︁
𝑟 ′<𝑟

[∑︁
<𝑟 ′
(𝑚gas + 𝑚dm + 𝑚star)

∑︁
𝑟 ′

𝑚gas

]
,

(19)

where the sum
∑

<𝑟 ′ in the square brackets is taken over all particles
(dark matter and stellar) and gas cells interior to radius 𝑟′. The sum∑
𝑟 ′ is taken over all gas cells within the cylindrical shell of thickness

Δ𝑟′ at 𝑟′.
We numerically evaluate the volumetric kinetic and thermal terms

(eq. 11) as

T (𝑟) =
∑︁
<𝑟

1
2
𝑚gas𝑣

2 +
∑︁
<𝑟

3
2
𝑘B𝑇 ≡ Tdyn (𝑟) + Ttherm (𝑟), (20)

where 𝑣 =

√︃
𝑣2
𝑥 + 𝑣2

𝑦 + 𝑣2
𝑧 is the total velocity. Note that we include

9 Note that eq. (13) depends only on the gravitational acceleration, ∇Φ, and
therefore does not depend explicitly on the zero point of the potential, which
cannot be defined at 𝑟 = ∞ for an infinite cylinder as we are assuming.
10 See Shaw et al. (2006) for the importance of including an analogous
surface pressure term for collisionless particles when estimating the virial
equilibrium of dark matter haloes.
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𝑣2
𝑧 in T despite our assumption of filaments as infinite cylinders

when computingW. This is because even when evaluating the en-
ergy per-unit-length, such that there is no net velocity or acceleration
along the 𝑧 direction, we still expect the velocity dispersion to be
three-dimensional locally, such that 𝑣2

𝑧 remains an important contri-
bution to the kinetic energy density of the system. We comment in
Section 5.3 on the effect of removing 𝑣2

𝑧 from the kinetic term.
The surface term, eq. (12), comprises three surfaces for each radius

𝑟, one in the cylindrical shell, and two others at either end of the
cylindrical slice. However, the latter two surfaces are irrelevant for
evaluating the virial equilibrium per-unit-length. Therefore, we do
not consider them here. We comment in Section 5.3 on the effect of
including them in the calculation. The surface term is thus given by

T𝑠 (𝑟) =
∫ 𝐿/2

−𝐿/2

∫ 2𝜋

0

(
𝜌𝑟𝑣2

𝑟 + 𝜌𝑧𝑣𝑟 𝑣𝑧 + 𝑃𝑟
)
𝑟d𝜙d𝑧. (21)

The second term, namely the integral of 𝜌𝑧𝑣𝑟 𝑣𝑧 , is not compatible
with our assumption of an infinite cylinder, nor with the evaluation
of T𝑠 (𝑟) per-unit-length. For an infinite cylinder in equilibrium per-
unit-length, 𝑣z would be constant (or zero). Likewise, eqs. (16)-(18)
are only valid for 𝜌 which does not depend on 𝑧, and in such cases
𝑣r should also be independent of 𝑧. This term thus reduces to the
integral of 𝑧d𝑧 over a symmetric interval and is, therefore, 0. In light
of this, we neglect this term moving forward. In practice, it turns
out that this term is negligible anyway, at most a few percent of the
integral of 𝜌𝑟𝑣2

𝑟 at all radii 𝑟 >∼ 0.15 𝑟shock, because 𝜌𝑣𝑟 𝑣𝑧 is indeed
roughly independent of 𝑧, consistent with our assumed symmetry.

In practice, when numerically evaluating T𝑠 we perform the fol-
lowing sum over gas cells,

T𝑠 =
∑
𝑟 𝜌𝑟𝑣

2
𝑟𝑉

Δ𝑟
+

∑
𝑟 𝑃𝑟𝑉

Δ𝑟
≡ Tdyn,𝑠 + Ttherm,𝑠 , (22)

where 𝑉 is the volume of each gas cell and Δ𝑟 is the width of the
bin. Therefore, we have approximated d𝑆 ≃ 𝑉/Δ𝑟. We have verified
that this approximation is roughly independent of our choice of Δ𝑟 ,
as long as this is within a factor of ∼ (2 − 3) of the typical cell size
in the simulation.

5.2 Rapidly Flowing Gas on and off the Sheet

Finally, before we calculate the corresponding profiles, we wish to
remove gas that is rapidly accreting onto or outflowing from the
filaments. This gas is not expected to be in equilibrium within the
filament, but rather to be unbound or on its first infall, and therefore
will bias our results (see Lochhaas et al. 2021, for a similar discussion
in the context of DM haloes). We do this by applying a cut in the radial
velocity of gas cells included in the energy terms described above. At
each radius 𝑟, we calculate the corresponding “virial” velocity (from
eq. 9)

𝑣vir (𝑟) =
√︁
𝐺Λtot (𝑟), (23)

and only consider gas cells where |𝑣𝑟 | < 𝑣vir (𝑟). We apply this
threshold to all terms appearing above, except for Λtot which sets the
gravitational potential. In practice, this removes almost exclusively
gas which is rapidly inflowing along the sheet onto the filament.
To illustrate this, we present in the left-hand panel of Fig. 9 radial
profiles of the mass-weighted average radial velocity, stacked among
our ten filament slices as in previous figures. In the right-hand panel,
we show the radial mass flux, ¤𝑀 , stacked among the ten slices. In
both panels, we show separately the profiles for material within and
outside the sheet. We crudely define the sheet region for all the slices

as anything within |𝑥 | < 10 kpc ∼ 0.22 𝑟shock in the frame of the
projection maps in Figs. 3 and 6. In the left-hand panel, we also show
the profile of ±𝑣vir. It is evident that the radial velocities towards
the filament are quite different within and outside the sheet, and
that our velocity threshold of |𝑣𝑟 | < 𝑣vir (𝑟) for the virial parameter
predominantly removes rapidly inflowing gas (with 𝑣𝑟 < 0) along
the sheet in the T and V zones. The mean inflow velocity along the
sheet exceeds 𝑣vir at 𝑟 >∼ 0.3 𝑟shock, while outside the sheet it only
exceeds 𝑣vir at 𝑟 > 1.2𝑟shock.

Besides their use for our calculation of the virial parameter, it is
worth discussing the structure of the inflow velocity and mass accre-
tion profiles in detail. In the PS zone at 𝑟 <∼ 2𝑟shock, and throughout
the T zone, the off-sheet gas is decelerating as a result of the strong
thermal pressure gradients generated by the shock (see Section 6.2).
At 𝑟 > 2𝑟shock, the off-sheet gas is either accelerating or maintaining
constant velocity. However, note that the gas does not completely stall
at 𝑟shock, as might have been expected for a strong accretion shock,
because the cooling time is only slightly longer than the free-fall time
at 𝑟 <∼ 𝑟shock (Fig. 8)11. This generates a cooling flow and allows the
gas to continue flowing towards the centre, albeit at a reduced veloc-
ity. This is supported by the fact the mass-flux of off-sheet material
remains constant throughout the T zone, suggesting that the material
does not “pile-up” behind the shock. On the other hand, the on-sheet
gas maintains a roughly constant inflow velocity throughout the T
zone, as it interacts only weakly with the shock. This is similar to
how the inflow velocity of cold streams feeding massive galaxies at
high-𝑧 through their shock-heated haloes are seen in simulations to
maintain roughly constant inflow velocities throughout the hot CGM
(Dekel et al. 2009a; Goerdt & Ceverino 2015).

Within the V zone, at 0.2 <∼ 𝑟/𝑟shock <∼ 0.6, the off-sheet gas is
outflowing with an average outflow velocity smaller than 𝑣vir. This
seems to be caused by a strong quadrupolar vortex structure that
develops in this region, as discussed in Section 6.3. These vortices
cause the gas outside the sheet to swirl around and can lead to
outwards radial motions. In this same region, the gas within the sheet
decelerates due to a combination of shear against the shock-heated
gas and interaction with the vortices, both of which drain momentum
from the inflowing gas (Mandelker et al. 2016; Padnos et al. 2018;
Mandelker et al. 2019a), and also due to a non-zero impact parameter
of the sheet with respect to the filament, which decreases the radial
component of the velocity closer to the filament centre. In general,
mass accretion into the S zone is dominated by flow outside the sheet
in the PS zone, and by flow along the sheet in the T and V zones.

Within the S zone, the off-sheet component is not well-defined
due to our crude definition of the sheet as everything within |𝑥 | <
10 kpc ∼ 0.22 𝑟shock. The sheet material continues inflowing towards
the filament axis, slowly decelerating from ∼ 0.1 𝑣vir (𝑟shock) in the
outer S zone towards smaller radii.

5.3 Virial Equilibrium and the Virial Radius

Using eqs. (15), (18)-(20), and (22), we evaluate 𝛼vir for each slice
as a function of radius for gas with |𝑣𝑟 | < 𝑣vir (𝑟). We discuss the
sensitivity of our results to this threshold below. We then stack all
the ten slices by weighting 𝛼vir (𝑟) by |W(𝑟) |. This is equivalent to
treating all ten slices as one long cylinder when computing the virial

11 Note that while there is some slice-to-slice variation in the width of the
radial shell around 𝑟shock where the off-sheet gas decelerates, this is never
less than >∼ 0.3𝑟shock, and is ∼ 1𝑟shock on average, as seen in Fig. 9.
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Figure 9. Profiles of gas radial velocities (left) and gas mass flow rate (right). Negative values refer to inflow towards the filament axis while positive values
refer to outflowing gas. We distinguish between gas outside the sheet (blue lines) and within the sheet (red lines), where the sheet region is crudely defined as
|𝑥 | < 10 kpc ∼ 0.22 𝑟shock (see Fig. 3). The dashed-orange line in each panel shows the results for all gases regardless of their position relative to the sheet. The
value of 𝑣𝑟 in each bin is the mass-weighted average radial velocity, and the value of ¤𝑀 in each bin is

∑
𝑚𝑣𝑟/Δ𝑟 , where Δ𝑟 is the width of the bin. Prior to

stacking, the 𝑣𝑟 profiles for each slice are normalised by the corresponding virial velocity at 𝑟shock, 𝑣vir (𝑟shock ) = (𝐺Λshock )1/2 (eq. (23)), while the profiles
of ¤𝑀 were normalised by Λ(𝑟shock )𝑣vir (𝑟shock ) . In the left-hand panel, the green lines show the profiles of ±𝑣vir (𝑟 )/𝑣vir (𝑟shock ) . The sheet is inflowing at all
radii, with |𝑣𝑟 | > 𝑣vir (𝑟 ) outside the S zone and with |𝑣𝑟 | < 𝑣vir (𝑟 ) inside the S zone. On the other hand, the off-sheet gas is inflowing in the T zone and
outflowing in the V zone, but always with |𝑣𝑟 | < 𝑣vir (𝑟 ) .

parameter per-unit-length, in accordance with our modelling of the
filaments as infinite cylinders.

We present the stacked profile of 𝛼vir (𝑟) in Fig. 10 in black, along
with the ratios of the four energies in the numerator of 𝛼vir (volu-
metric and surface kinetic and thermal energies) to the gravitational
energy. Due to the inclusion of the surface terms, the virial parame-
ter should be well-defined at each radius rather than just at the outer
boundary of the system. Examining the profile of 𝛼vir (𝑟) is useful
to locate the radius where 𝛼vir ∼ 1, which may be considered the
“virial radius” of the system. The profile monotonically decreases
from 𝛼vir ∼ 10 in the S zone to 𝛼vir ∼ 1 in the T and outer V zones,
0.5 <∼ 𝑟/𝑟shock <∼ 1. It then increases towards larger radii as the sur-
face thermal term sharply declines outside the shock. We may thus
associate a virial radius of 𝑟vir ∼ 𝑟shock with our filament sample.

We further note that the volumetric and surface thermal terms
are both ∼ 1 in the T zone, where the gas temperature is roughly
equal to the effective temperature of dark matter defined by its ve-
locity dispersion (Section 3.3). This implies that dark matter is also
expected to be in approximate virial equilibrium (per-unit-length)
within 𝑟shock. This is consistent with previous estimates of the virial
radii of filaments feeding massive haloes at high-𝑧 (Mandelker et al.
2018, equation 14). For a filament feeding a 1012 M⊙ halo at 𝑧 ∼ 4,
these authors predict 𝑟vir ∼ 55 kpc, slightly larger than our average
𝑟shock ∼ 45 kpc and within the range of 𝑟shock values among our
ten slices (Fig. 4). Note that this is different from the case of galaxy
clusters, where the shock radius is found to be larger than the virial
radius (Lau et al. 2015; Zinger et al. 2018; Aung et al. 2021).

Removing 𝑣2
𝑧 from T and T𝑠 reduces 𝛼vir by ∼ 30%, such that

𝛼vir ∼ 0.6 near 𝑟shock. This is consistent with the approximate config-
uration between the three dimensions of kinetic energy. Our inclusion

of 𝑣2
𝑧 in the calculation is thus justified because if small-scale motion

along this dimension were restricted, the same kinetic energy would
likely be split between the remaining two dimensions. On the other
hand, including the axial surface terms in T𝑠 results in 𝛼vir < 0 at all
radii. The exact numerical value of 𝛼vir, in this case, is of little con-
sequence, but suffice to say that the system is clearly not virialized or
even bound along its axis, as expected. Finally, regarding our velocity
cut, excluding the gas with |𝑣𝑟 | > 2𝑣vir does not affect our results,
showing that the exclusion is dominated by a very rapidly flowing
gas. Changing our threshold in 𝑣𝑟 to only exclude inflowing gas with
𝑣𝑟 < −𝑣vir while including rapidly outflowing gas retains 𝛼vir ∼ 1
in the T and outer V zones, showing that our estimation of a virial
radius at 𝑟vir ∼ 𝑟shock is robust. At smaller radii, where the system
is still far from equilibrium based on Fig. 10, 𝛼vir becomes negative
due to a much larger surface kinetic term. Including a rapidly flow-
ing gas also results in negative 𝛼vir everywhere, consistent with our
interpretation that the gas currently inflowing towards the filament
along the sheet is not yet in equilibrium.

In summary, the gas within 𝑟shock, and by extension the dark matter
as well, is in virial equilibrium within the potential well set by the dark
matter filament, allowing us to define a virial radius 𝑟vir ∼ 𝑟shock.
Within the T zone, the gas is approximately at the virial temperature,
and additional kinetic motions are largely offset by surface pressure.
However, in the V and S zones, these kinetic motions grow stronger
with respect to the gravitational potential, and the surface pressure
terms cannot keep up. This drives the system out of equilibrium in
these regions, consistent with the outflow velocities seen in Fig. 9.
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Figure 10. Radial profile of the virial parameter, 𝛼vir (black line), along with
the ratios of the various energy terms in the numerator of eq. (15) to the
gravitational energy, |W(𝑟 ) |. Specifically, these are the volumetric kinetic
and thermal terms, Tdyn (green solid line) and Ttherm (solid magenta line), and
the surface kinetic and thermal terms, Tdyn,𝑠 (green dashed line) and Ttherm,𝑠

(solid magenta line). We see that 𝛼vir, Ttherm/|W|, and Ttherm,𝑠/|W| are all
of order unity in the T and outer V zones, where the gas temperature is hot
and comparable to the effective temperature of the dark matter. Therefore,
the filaments are in approximate virial equilibrium per unit-length with 𝑟vir ∼
𝑟shock.

6 DYNAMICAL EQUILIBRIUM

In this section, we study the dynamical stability of gaseous filaments.
In particular, we seek to address what the dominant force is that
supports the filament against gravitational collapse towards its axis.
We begin in Section 6.1 by describing the mathematical formalism of
our force decomposition and present results from our simulation in
Section 6.2. In Section 6.3, we interpret the simulation results using
an analytic toy model for the internal filament dynamics. In Appendix
Section C, we discuss the robustness of the results presented in
Section 6.2 to our numerical method.

6.1 Force Decomposition

6.1.1 Basic Framework

As we show in Appendix B (Fig. B1), magnetic fields are not dy-
namically important in the filaments, with typical plasma 𝛽 values of
𝛽 = 𝑃thermal/𝑃magnetic > 105. Therefore, the equation of motion for
gas in our simulation can be approximated by the Euler equation:

𝜕𝒗

𝜕𝑡
+ (𝒗 · ∇) 𝒗 = − 1

𝜌
∇𝑃 − ∇Φ. (24)

We follow Lau et al. (2013) in using eq. (24) to determine the rel-
ative importance of the different terms in maintaining dynamical
equilibrium and supporting the system against gravitational collapse.
Specifically, we use a modified version of the “summation method”
detailed in that paper. While that work focused on gas in massive

galaxy clusters assuming spherical symmetry, we generalise their
method to study gas dynamics in intergalactic filaments assuming
cylindrical symmetry. We describe the method below, both for gen-
eral considerations and for formulas specific to cylindrical geometry.

6.1.2 Primary Decomposition

Gauss’s law relates the total mass in any arbitrary volume to the
gravitational potential at the boundary of that volume,

𝑀grav ≡
1

4𝜋𝐺

∮
𝑆
∇Φ · d𝑺 = 𝑀tot, (25)

where 𝑀tot is the total mass enclosed by an imaginary closed surface
𝑆 over which the surface integral is taken. Combining eq. (24) and
eq. (25), we have the following.

𝑀grav = − 1
4𝜋𝐺

∮
𝑆

(
𝜕𝒗

𝜕𝑡
+ (𝒗 · ∇) 𝒗 + 1

𝜌
∇𝑃

)
· d𝑺. (26)

Each of the terms in the integral on the right-hand-side of eq. (26)
represents an acceleration. When combined, these terms must bal-
ance gravitational acceleration. From the left-hand side of eq. (26),
we learn that these terms can be considered as “mass terms”, con-
tributing to the total mass interior of the surface 𝑆. Thus, we define

𝑀grav = 𝑀accel + 𝑀therm + 𝑀inertial, (27)

where

𝑀accel ≡ −
1

4𝜋𝐺

∮
𝜕𝒗

𝜕𝑡
· d𝑺, (28)

is the acceleration term representing the temporal change of the
velocity field normal to the bounding surface, 12

𝑀therm ≡ −
1

4𝜋𝐺

∮
1
𝜌
∇𝑃 · d𝑺, (29)

is the thermal term representing the support of the filament against
gravity by thermal pressure gradients, and

𝑀inertial ≡ −
1

4𝜋𝐺

∮
(𝒗 · ∇) 𝒗 · d𝑺, (30)

is the inertial term. As we demonstrate below and expand upon
in Section 6.3, this term can be decomposed into several fictitious
forces resulting from the fluid motion, each of which can either help
support the filament against gravity or else work together with gravity
to induce collapse.

In order to estimate the overall dynamical equilibrium of the fila-
ment and the relative contribution of each term to the support of the
filament against gravity, we analyse eqs. (28)-(30) as a function of
the radius of each filament slice and compare their sum (eq. 27) to
the true mass enclosed within the radius 𝑟 in the simulation. For each
radius 𝑟 , we assume a Gaussian surface that is a cylinder of radius
𝑟 and length 𝐿 = 30 kpc, the thickness of each filament slice. We
comment on the impact of 𝐿 on our results in Section 6.2. Unlike
the discussion of virial equilibrium presented in Section 5, here we
are interested in the dynamical state in three dimensions rather than
per-unit-length. Furthermore, Gauss’s theorem, in this case, requires
a closed surface around the three-dimensional volume of interest.
This results in three surface integrals for each radius, one on the

12 Note that in our Eulerian representation, this represents a temporal change
of the velocity field inside the filament, rather than the local acceleration
experienced by a test particle as it moves through the filament.
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cylindrical shell itself, hereafter 𝑆0 with d𝑺0 = d𝑆0𝑟, and two others
on either end of the cylinder, hereafter 𝑆±, with d𝑺± = d𝑆±±𝑧. Then,
we have the following:∫
𝑆0

d𝑆 = 𝑟

∫ 2𝜋

0
d𝜙

∫ 𝐿/2

−𝐿/2
d𝑧, (31)

and∫
𝑆±

d𝑆 =

(∫ 𝑟

0
𝑟′d𝑟′

∫ 2𝜋

0
d𝜙

) ����
𝑧=±𝐿/2

. (32)

Now let∫
R

d𝑆 ≡
∫
𝑆0

d𝑆,
∫
A

d𝑆 ≡
∫
𝑆+

d𝑆 −
∫
𝑆−

d𝑆, (33)

whereR stands for radial andA stands for axial. Each of the integrals
in eqs. (28)-(30) is decomposed into two parts,

∮
cylinder d𝑆 =

∫
R d𝑆+∫

A d𝑆.
Using this notation, we can explicitly write out all the terms in

eqs. (28)-(30) as follows:

𝑀accel,r (𝑟) = −
1

4𝜋𝐺

∫
R

𝜕𝑣𝑟

𝜕𝑡
d𝑆, (34)

𝑀accel,a (𝑟) = −
1

4𝜋𝐺

∫
A

𝜕𝑣𝑧

𝜕𝑡
d𝑆, (35)

𝑀therm,r (𝑟) = −
1

4𝜋𝐺

∫
R

1
𝜌

𝜕𝑃

𝜕𝑟
d𝑆, (36)

𝑀therm,a (𝑟) = −
1

4𝜋𝐺

∫
A

1
𝜌

𝜕𝑃

𝜕𝑧
d𝑆, (37)

𝑀inertial,r (𝑟) = −
1

4𝜋𝐺

∫
R

(
𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+
𝑣𝜙

𝑟

𝜕𝑣𝑟

𝜕𝜙
+ 𝑣𝑧

𝜕𝑣𝑟

𝜕𝑧
−
𝑣2
𝜙

𝑟

)
d𝑆,

(38)

𝑀inertial,a (𝑟) = −
1

4𝜋𝐺

∫
A

(
𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟′
+
𝑣𝜙

𝑟′
𝜕𝑣𝑧

𝜕𝜙
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧

)
d𝑆. (39)

Note that all the integrals in eqs. (34)-(39) are functions of radius,
𝑟, which we have highlighted on the left-hand-side of each of these
equations. Eqs. (34), (36), and (38) represent radial accelerations
toward or away from the filament axis, while eqs. (35), (37) and (39)
represent axial accelerations along the filament axis.

6.1.3 Further decomposing the Inertial Terms

The last term in the integrand of eq. (38) represents the centrifugal
acceleration and is hereafter referred to as the rotation term,

𝑀rot (𝑟) =
1

4𝜋𝐺

∫
R

𝑣2
𝜙

𝑟
d𝑆. (40)

When evaluating eq. (40), we further decompose the azimuthal ve-
locity at radius 𝑟 into mean and residual components. The mean
rotation is given by

𝑣𝜙,mean (𝑟) =
1

2𝜋𝑟𝐿

∫ 𝐿/2

−𝐿/2

∫ 2𝜋

0
𝑣𝜙𝑟d𝜙d𝑧. (41)

Note that eq. (41) represents the volume-weighted average azimuthal
velocity at radius 𝑟, rather than the mass- or density-weighted av-
erage. This is necessary for consistency with eq. (40). The residual
azimuthal velocity in each cell is then given by

𝑣𝜙,res (𝑟, 𝜙, 𝑧) = 𝑣𝜙 (𝑟, 𝜙, 𝑧) − 𝑣𝜙,mean (𝑟). (42)

With these definitions, it is straightforward to show that

𝑀rot (𝑟) =
1

4𝜋𝐺

∫
R

(
𝑣2
𝜙,mean
𝑟

+
𝑣2
𝜙,res
𝑟

)
d𝑆

≡ 𝑀rot,mean (𝑟) + 𝑀rot,res (𝑟),
(43)

where we have further decomposed the rotation term into a mean and
a residual component, resulting from the mean and residual rotation
velocity, respectively.

The first three terms in the integrand of eq. (38) can be interpreted
in two ways. The first, which we will demonstrate in detail in Sec-
tion 6.3, is the additional fictitious forces resulting from the fluid
motion. The second contributes to ram pressure, turbulent pressure,
and shear forces acting on the fluid. The ram (turbulent) pressure in
the radial direction is the flux of radial momentum associated with
mean (residual) radial motions, while radial shear forces represent
flux of radial momentum caused by non-radial motions. These three
terms in eq. (38) represent the radial momentum advected into a
volume element by radial, azimuthal, or axial motions, respectively.
If one defines mean and residual radial/axial motions analogously to
eqs. (41)-(42), such that the mean is only a function of 𝑟, then it is
straightforward to show that these terms can be written as follows:

𝑀ram,𝑟 (𝑟) = −
1

4𝜋𝐺

∫
R
𝑣𝑟 ,mean

𝜕𝑣𝑟 ,mean
𝜕𝑟

d𝑆, (44)

𝑀turb,𝑟𝑟 (𝑟) = −
1

4𝜋𝐺

∫
R
𝑣𝑟 ,res

𝜕𝑣𝑟 ,res
𝜕𝑟

d𝑆, (45)

𝑀shear,𝑟 𝜙 (𝑟) = −
1

4𝜋𝐺

∫
R

( 𝑣𝜙,mean
𝑟

+
𝑣𝜙,res
𝑟

) 𝜕𝑣𝑟 ,res
𝜕𝜙

d𝑆, (46)

𝑀shear,𝑟 𝑧 (𝑟) = −
1

4𝜋𝐺

∫
R

(
𝑣𝑧,mean + 𝑣𝑧,res

) 𝜕𝑣𝑟 ,res
𝜕𝑧

d𝑆. (47)

We expect the first terms in eqs. (46) and (47) are negligible compared
to the second, because 𝑣𝜙,mean (𝑟) and 𝑣𝑧,mean (𝑟) can be taken out-
side the integral and the average of the derivatives of 𝑣𝑟 ,res should be
small. Analogous divisions13 into the ram, turbulent and shear forces
in the axial direction can be applied to the three terms in eq. (39).

Finally, we also divide the gravitational term (eq. 27) into its radial
and axial components:

𝑀grav,r (𝑟) =
1

4𝜋𝐺

∫
R

𝜕Φ

𝜕𝑟
d𝑆, (48)

and

𝑀grav,a (𝑟) =
1

4𝜋𝐺

∫
A

𝜕Φ

𝜕𝑧
d𝑆. (49)

13 We note that this distinction between ram and turbulent pressure is not
unique. If one defines the mean motion with respect to some local smoothing
kernel around each fluid element (e.g., as was done in the study of CGM
dynamics by Lochhaas et al. 2023), then the mean motion is no longer only
a function of 𝑟 and all three terms contribute to both the ram and turbulent
pressure.
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These represent the radial and axial gravitational fields in the fila-
ment, respectively. Note that since the gravitational field is 𝒈 = −∇Φ,
𝑀grav,r and 𝑀grav,a are defined to be positive when the radial and
axial gravitational fields are directed inwardstowards the filament
centre. However, the thermal and inertial terms in eqs. (36)-(39) and
eqs. (43)-(47) are defined as positive when the respective forces are
directed outwards, away from the filament centre. The equation of
force equilibrium within the filament in the radial directions is

𝑀grav,r = 𝑀accel,r + 𝑀inertial,r + 𝑀therm,r, (50)

with an analogous equation for the axial direction.

6.1.4 Numerical Calculation

Using our simulations, we numerically evaluate eqs. (34)-(49) as a
function of radius, 𝑟, for each filament slice. Full details of how this
is done, including convergence and robustness tests, are provided
in the Appendix Section C. Here, we briefly review the key points
of our fiducial method. For each slice, we begin by depositing all
fluid properties, including the gravitational potential, onto a uniform
cylindrical grid extending from (0.05 − 1.1)𝑟shock with a typical
cell-size of Δ ∼ 300 pc, comparable to the size of the smallest gas
cells in the simulated filaments. We assign to each grid-cell the
fluid properties of its nearest-neighbour gas cell in the simulation.
Despite not being inherently conservative, this method conserves
mass, momentum, and energy to better than <∼ 2% both globally
and locally. All numerical derivatives and integrals are evaluated on
these grids. Before computing any partial derivatives, we smooth the
relevant quantity with a one-dimensional Gaussian in the direction
along which we are evaluating the derivative, with a width of 𝜎 =

0.5 kpc. Evaluating both sides of eq. (25), we find that our numerical
estimate of 𝑀grav deviates from 𝑀tot by at most <∼ 5% at each radius.

After computing the radial profiles of each mass term for each
filament slice, we normalise these by 𝑀tot (< 𝑟) and stack the ten
filament slices by taking the average of each normalised mass term
in each radial bin. While it is the ratio of each mass term to 𝑀grav (𝑟)
that tells us the contribution of the respective force to the filament
support at that radius, we normalise the mass terms by 𝑀tot (< 𝑟),
which is a smooth, monotonically increasing function within <∼ 5%
of 𝑀grav (𝑟), which exhibits small fluctuations. Hereafter we use the
notation 𝑀.../𝑀tot, 𝑀.../𝑀grav, and 𝐹.../𝐹grav interchangeably and
think of these as ratios of forces/accelerations rather than ratios of
masses.

Finally, we note that we did not directly compute the two acceler-
ation terms in eqs. (34)-(35), representing a temporal change in the
velocity field in the filament. Direct evaluation of these terms requires
the use of multiple snapshots. As detailed in Appendix Section C,
this is difficult due both to the time between adjacent snapshots being
comparable to both the cooling time and the eddy crossing time of
filament gas, and to complications in identifying the same volume
elements in each adjacent timestep while the entire filament moves
through the sheet. Therefore, we use eq. (50) and the corresponding
equation for the axial terms to infer the acceleration terms from the
difference between the gravitational, thermal and inertial terms.

6.2 Results

In what follows, we present the results of our analysis of the dy-
namical state of filaments. We begin in Section 6.2.1 by analysing
where the velocity field in the filaments is in steady state, with
𝑀accel ∝ 𝜕𝒗/𝜕𝑡 ≃ 0, and where it is changing over time. We then

analyse the various components of the thermal and inertial terms in
Section 6.2.2, to better characterise the force balance and dynami-
cal state in the filaments. Throughout, we emphasise key trends and
physical processes in the three radial zones.

6.2.1 Overall Force Balance

In Fig. 11, we assess to what extent thermal and inertial forces bal-
ance gravity within the filament, as a function of 𝑟/𝑟shock. The dashed
dark-blue (hereafter navy) and pink lines show the stacked profiles
of 𝑀grav,r/𝑀tot and 𝑀grav,a/𝑀tot, respectively, representing the nor-
malized radial and axial gravitational fields. Notice that the radial
term is positive, while the axial term is negative. As discussed follow-
ing eqs. (48)-(49), this implies that the radial gravitational field is di-
rected inwards towards the filament axis, as expected, while the axial
gravitational field is directed outwards. The latter is a manifestation
of the fact that filaments are unbound along their axis (see Section 5),
and are being stretched apart by large-scale tidal forces. Note that the
influence of the background Hubble expansion on this result is neg-
ligible. For reference, the dashed magenta line and the cyan-shaded
region show the mean and 1-𝜎 standard deviation among our ten
slices of the radial profile of 𝑀grav/𝑀tot = (𝑀grav,r +𝑀grav,a)/𝑀tot.
This ratio is≃ 1 everywhere, as Gauss’s Theorem tells us, and must be
(eq. 25). Although our numerical method introduces an error ∼ 5%
in 𝑟/𝑟shock <∼ 0.3 and >∼ 0.8 (see also Fig. C3), this is negligible
compared to the variations in 𝑀grav,r and 𝑀grav,a.

The solid navy and pink lines show the stacked profiles of
(𝑀therm,r + 𝑀inertial,r)/𝑀tot and (𝑀therm,a + 𝑀inertial,a)/𝑀tot, re-
spectively (eqs. 36-39). In a steady state where thermal and inertial
forces balance gravity and the filament velocity field is constant in
time, these must equal 𝑀grav,r/𝑀tot (eq. 50) and 𝑀grav,a/𝑀tot, re-
spectively. If they are larger (smaller) than the corresponding terms
𝑀grav,r and 𝑀grav,a at some radius 𝑟, then the velocity field at that
radius accelerates outwards (inwards) in the corresponding direction.

In the radial direction, the filament exhibits a dynamical steady-
state with no temporal acceleration throughout the inner halves
of both the V zone and the T zone, 0.25 <∼ 𝑟/𝑟shock <∼ 0.4 and
0.6 <∼ 𝑟/𝑟shock <∼ 0.8. However, each zone contains regions with net
temporal acceleration where the velocity field is not in a steady state.

In the T zone, at 𝑟 >∼ 0.8𝑟shock, there is an outwards radial acceler-
ation which appears to be due to the outwards expansion of the shock.
While a full analysis of filament properties as a function of time is
beyond the scope of this paper, we repeated the analysis presented in
Section 3.1 to identify the shock radius in our ten filament slices at
𝑧 ∼ 4.05 and 𝑧 ∼ 3.82, roughly 55 Myr before and after our fiducial
snapshot at 𝑧 ∼ 3.93. The typical 𝑟shock increases from ∼ 36 kpc to
∼ 51 kpc during this interval, corresponding to a shock velocity of
𝑣shock ∼ 130 km s−1, while the sound speed in the post-shock gas
is 𝑐s ∼ 85 km s−1. The outer T zone near 𝑟shock has not reached
equilibrium after being hit by the shock, which explains the positive
acceleration in this region.

In the V zone, there is an outwards radial acceleration at
0.4 <∼ 𝑟/𝑟shock <∼ 0.6. This is the region where the radial velocity
of the sheet material begins to decrease and the off-sheet material
begins to move outwards (Fig. 9). As we show in Section 6.3 below,
this is also the location of peak vorticity in the filament, where a
quadrupolar vortex structure induced by the non-radial flow of the
sheet towards the filament centre, dominates the dynamics.

In the S zone, at 𝑟 <∼ 0.25𝑟shock, there is an inwards accelera-
tion. This corresponds to the outer boundary of the isothermal core
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Figure 11. Force equilibrium in the filaments. We compare the sum of ther-
mal and inertial forces (solid lines) with the gravitational force (dashed lines),
in both the radial and axial directions, as a function of 𝑟/𝑟shock. The ma-
genta dashed line and cyan shaded region show 𝑀grav (𝑟 )/𝑀tot (< 𝑟 ) , which
is ≃ 1 everywhere with a <∼ 5% error at 𝑟/𝑟shock <∼ 0.3 and >∼ 0.8 due
to our numerical method. The navy and pink dashed lines show the ratios
𝑀grav,r (𝑟 )/𝑀tot (< 𝑟 ) and 𝑀grav,a (𝑟 )/𝑀tot (< 𝑟 ) , respectively. The former
is positive, indicating a radial gravitational field directed inwards, while the
latter is negative, indicating an axial gravitational field directed outwards
since the filament is unbound along its axis. Solid navy and pink lines show
(𝑀therm,r+𝑀inertial,r )/𝑀tot (< 𝑟 ) and (𝑀therm,a+𝑀inertial,a )/𝑀tot (< 𝑟 ) , re-
spectively (eqs. 36-39). Radii, where the navy or the pink solid lines are equal
to the corresponding dashed lines, indicate regions in a dynamical steady
state without temporal acceleration in the corresponding direction (eqs. (34)
and/or (35) are equal to 0). If, however, the solid lines are greater (smaller)
than the corresponding dashed lines, this indicates a negative (positive) tem-
poral acceleration at this radius. Over a fairly large radial range in the V and
T zones, 𝑟/𝑟shock ∼ (0.25 − 0.40) and (0.60 − 0.80) , there is a dynamical
steady-state in the radial direction. 𝜕𝑣𝑟/𝜕𝑡 > 0 at 𝑟/𝑟shock ∼ (0.40 − 0.60)
and (0.80 − 1.0) , while 𝜕𝑣𝑟/𝜕𝑡 < 0 in the S zone at 𝑟/𝑟shock <∼ 0.25. In the
axial direction, there is no dynamical steady state at 𝑟/𝑟shock >∼ 0.2.

(Fig. 3), where the thermal pressure decreases locally due to strong
cooling (Fig. 8). However, we do not interpret this as evidence that
the cold-stream is collapsing with no support against gravity. Rather,
when examining the radial velocity profiles (as in Fig. 9) at 𝑧 ∼ 4.05
and 𝑧 ∼ 3.82, roughly 55 Myr before and after our fiducial snap-
shot at 𝑧 ∼ 3.93, we see that the mild inwards velocity along the
sheet in the S zone increases slightly with amplitude towards lower
redshift, from <∼ 0.05𝑣vir (𝑟shock) to >∼ 0.1𝑣vir (𝑟shock). This may be
due to additional gas accumulation near the filament axis, due to both
inflows along the sheet and the off-sheet cooling flow. This results
in a slightly larger inwards gravitational acceleration in the central
regions, which leads to slightly more rapid inflow along the sheet.
However, since the radial velocities in this region are always small
anyway, we defer a more detailed study of the temporal evolution of
the central streams to future work.

Finally, we note that in the axial direction, there is no steady-
state at 𝑟 >∼ 0.2 𝑟shock, as the filament is continually stretched by tidal
forces and the material accelerates towards the massive haloes on

either end. Note that the acceleration term is positive in the S zone
and negative outside it. This suggests that the velocity of the cold
streams towards the haloes increases with time, whereas that of the
hot filament gas decreases with time. We discuss this further below.

6.2.2 Detailed Force Decomposition

In Fig. 12, we show the individual profiles of all the forces that
went into the curves shown in Fig. 11, to assess their individual
contributions to the dynamical state of the filament. On the left,
the solid lines show 𝐹therm,r/𝐹grav (red), 𝐹inertial,r/𝐹grav (green),
𝐹therm,a/𝐹grav (orange), and 𝐹inertial,a/𝐹grav (yellow). The dashed
lines are as in Fig. 11, showing 𝐹grav,r/𝐹grav (navy), 𝐹grav,a/𝐹grav
(pink), and 𝑀grav/𝑀tot (magenta). First, we note that the four non-
gravitational forces obtain both positive and negative values. As
discussed in the following eqs. (48)-(49), a positive value implies an
acceleration outwards that counteracts the collapse, while a negative
value implies an acceleration inwards. In the centre and right panels,
we show the profiles of all the individual components that comprise
the radial and axial inertial terms, respectively (eqs. 38-39). We
begin with the radial direction, discussing the left and centre panels
simultaneously, and focusing on the different radial zones.

In the T zone, at 𝑟 >∼ 0.6𝑟shock, 𝐹therm,r is directed outwards and is
stronger than the gravitational force inwards, monotonically increas-
ing from ∼ |𝐹grav,r | at 𝑟 ∼ 0.6 𝑟shock to ∼ 4|𝐹grav,r | at 𝑟 ∼ 𝑟shock.
This excess in the force of the external thermal pressure is partially
balanced by a strong inertial force in the inside, 𝐹inertial,r, which
increases in amplitude from ∼ (0.3 − 2) |𝐹grav,r | in the same radial
range. The inwards inertial force in this region is dominated by the
−𝑣𝑟𝜕𝑣𝑟/𝜕𝑟 term (centre panel, red lines), which increases in am-
plitude from ∼ (1.5 − 3) |𝐹grav,r |. As discussed in Section 6.1, this
term contributes to the radial components of both the ram pressure
force (eq. 44, dot-dashed red line) and the turbulent pressure force
(eq. 45, solid red line). The ram pressure force can be visualised by
examining the radial velocity profiles in Fig. 9. While the velocity
in the sheet is roughly constant in the T zone, the inwards velocity
outside the sheet decreases from ∼ 𝑣vir at 𝑟shock to ∼ 0 at 0.6 𝑟shock,
resulting in −𝑣𝑟𝜕𝑣𝑟/𝜕𝑟 < 0. In the outer T zone, 0.8 <∼ 𝑟/𝑟shock
where there is a positive radial acceleration term (Fig. 11), the ram
pressure force dominates over the turbulent pressure force, which
actually becomes negligibly small at 𝑟 >∼ 𝑟shock. In the inner T zone,
0.6 <∼ 𝑟/𝑟shock <∼ 0.8 where the radial velocity field is in steady-state
(Fig. 11), the ram pressure and turbulent pressure forces are compa-
rable. The two shear forces, 𝑟𝜙 and 𝑟𝑧 (eqs. 46-47, orange and blue
lines in the centre panel, respectively), are dominated by residual
motions (solid lines), while the shear generated by the mean flow
(dot-dashed lines) is negligible. Together with the centrifugal forces
(purple dot-dashed and solid lines for mean and residual rotation,
respectively), these four terms combine to produce a net outwards
force that is smaller than both the thermal and ram pressure forces
throughout this region. In summary, strong thermal pressure gradi-
ents in the T zone support the filament against both gravity and ram
pressure from the inflowing gas. At 𝑟 <∼ 0.8 𝑟shock, the gas is roughly
in a steady state, while at 𝑟 >∼ 0.8 𝑟shock the velocity field accelerates
outwards in response to the shock.

The V zone, 0.25 <∼ 𝑟/𝑟shock <∼ 0.6, is the only zone where both
𝐹therm,r and 𝐹inertial,r are directed outward. In the outer V zone,
0.4 <∼ 𝑟/𝑟shock <∼ 0.6 where there is a positive radial acceleration
(Fig. 11), the thermal pressure is dominant and still stronger than the
radial gravitational force and is comparable in amplitude to its value
in the inner T zone. In the inner V zone, 0.25 <∼ 𝑟/𝑟shock <∼ 0.4 where
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Figure 12. Detailed force balance in filaments. Left panel: We compare the radial thermal and inertial forces (solid red and green lines) with the radial
gravitational force (navy dashed line, as in Fig. 11), and the axial thermal and inertial forces (solid orange and yellow lines) with the axial gravitational force
(pink dashed line). Centre panel: We show the four constituent forces comprising the radial inertial force (eq. 38), namely the centrifugal force (purple lines),
the ram/turbulent pressure forces (red lines) and the shear forces (orange and blue lines for azimuthal and axial shear, respectively). For each force, we further
distinguish between their mean (dot-dashed lines) and residual (solid lines) components. The legend for this panel is in the box located below all of the panels.
Right panel: We show the three constituent forces that comprise the axial inertial force (eq. 39). These are the ram/turbulent pressure forces (blue lines) and
the two shear forces (red and yellow lines for radial and azimuthal shear, respectively). Based on all three panels, we conclude: In the T Zone, the radial
thermal force is directed outwards and is stronger than the gravitational force inwards, while the inertial forces are directed inwards and are dominated by the
ram pressure, which mainly offsets the excess thermal pressure. In the V Zone, the radial thermal force is directed outwards and decreases from ∼ 1.5 |𝐹grav,r | to
∼ 0.6 |𝐹grav,r | as 𝑟 decreases. Radial inertial forces are directed outwards with a roughly constant amplitude of ∼ 0.6 |𝐹grav,r |, and are dominated by centrifugal
forces. The mean rotation has a roughly constant amplitude of ∼ |𝐹grav,r |. The residual rotation is much larger, but is largely offset by ram/turbulent pressure
and azimuthal shear. In the S Zone, the radial thermal and inertial forces become negative at 𝑟 >∼ 0.15 𝑟shock and 𝑟 <∼ 0.15 𝑟shock, respectively, resulting in a net
inwards acceleration in this region. The axial gravitational force is directed outwards, representing the tidal stretching of the filament along its axis. It is roughly
balanced by axial ram pressure forces at all radii, while the axial thermal pressure force is relatively small, directed outwards in the S zone and inwards the T
and V zones.

the radial velocity field is in steady-state (Fig. 11), the thermal pres-
sure term decreases and becomes comparable to the inertial term,
which maintains a value of <∼ 0.6|𝐹grav,r | throughout the entire V
zone. The change in sign of the inertial term, from negative in the
T zone to positive in the outer V zone, is mainly due to a decrease
in the force of ram pressure inwards and an increase in the centrifu-
gal force outward. The mean rotation term increases from ∼ 0 at
𝑟 ∼ 𝑟shock to a constant ∼ |𝐹grav,r | throughout the S and inner V
zones, at 𝑟 <∼ 0.4𝑟shock. The residual rotation term is ∼ 1.5|𝐹grav,r | at
𝑟 ∼ 𝑟shock, and increases monotonically toward smaller 𝑟. Through-
out the V and S zones, at 𝑟 < 0.6𝑟shock, this is mainly offset by
the inwards 𝑟𝜙 shear force, −(𝑣𝜙/𝑟)𝜕𝑣𝑟/𝜕𝜙, with a smaller con-
tribution from the ram/turbulent pressure. In Section 6.3, we will
show that the behaviour of this trio of forces is generic, resulting
from the quadrupolar vortex structure that dominates the filament
dynamics throughout the V zone. To summarise the situation in the
outer V zone, at 0.4 𝑟shock <∼ 𝑟 <∼ 0.6 𝑟shock, strong thermal pressure
forces combined with increasing centrifugal forces and decreasing
ram pressure forces lead to a net outwards acceleration of the velocity
field. The lack of a steady state here may be linked to an evolving vor-
ticity structure fuelled by ongoing accretion onto the inner filament
(see Section 6.3 below).

In the inner V zone, at 0.25𝑟shock <∼ 𝑟 <∼ 0.4𝑟shock where the fila-
ment velocity field is in steady state with no acceleration (Fig. 11),
the thermal force continues to be directed outwards but is now weaker

than the gravitational force inwards, ∼ (0.3 − 0.6) |𝐹grav,r |. The in-
ertial term continues to be directed outward, maintaining a constant
amplitude of ∼ 0.6|𝐹grav,r |. The components of the inertial term
behave similarly here to the outer V zone. The outwards inertial
force is dominated by the centrifugal force, with the mean rotation
term roughly balancing gravity with an amplitude of ∼ |𝐹grav,r |. The
residual rotation term continues to increase towards smaller 𝑟, with
amplitudes in the range ∼ (4 − 7) |𝐹grav,r |, though this is again com-
pensated for by shear and turbulent pressure (see Section 6.3 below).
This trio yields a slight net inwards acceleration that lowers the total
inertial term compared to the mean rotation. To summarise the situa-
tion in the inner V zone, at 0.25 𝑟shock <∼ 𝑟 <∼ 0.4𝑟shock, the filament
remains in force equilibrium with roughly equal contributions from
thermal pressure forces and centrifugal forces in the support against
gravity.

In the S zone, at 𝑟 <∼ 0.25𝑟shock, there is a net inwards acceleration
term (Fig. 11). This is mainly driven by the thermal pressure force
becoming negative at 𝑟 ∼ (0.15−0.25)𝑟shock, near the outer boundary
of the isothermal core, where the cooling is maximal. The inertial
term becomes negative at 𝑟 <∼ 0.15𝑟shock due to a slight drop in
centrifugal and residual shear forces (dot-dashed purple and solid
blue lines). This suggests that the dynamics of the isothermal cores of
high-𝑧 filaments, representing the cold streams feeding massive high-
𝑧 galaxies (Section 3.1), are far from a relaxed state of equilibrium,
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but are dominated by strong cooling flows and complex motions and
accelerations of infalling and strongly rotating gas.

We broadly summarise the balance of the radial force throughout
the filament, highlighting the key physical characteristics of each of
the three radial zones. In the T (thermal) zone, thermal pressure forces
dominate, roughly balancing gravity and ram pressure forces. In the
V (vortex) zone, the thermal pressure forces become comparable to
the centrifugal forces induced by mean rotation, and these combine
to roughly balance gravity. At the same time, the dominant forces are
actually residual rotation, shear, and turbulent pressure, which are
induced by the vortex structure of the filament. Individually, each of
these is stronger than gravity in absolute value, though they roughly
cancel out, leaving a relatively small combined force, which is weaker
than the mean centrifugal term. In the S (stream) zone, a drop in both
centrifugal and thermal pressure forces due to the development of
a strong cooling flow results in a net inwards acceleration of the
velocity field.

In the axial direction, the situation is much simpler. The axial
inertial force is comparable in amplitude and opposite in sign to
the axial gravitational force, which both exhibit a very weak radial
dependence. 𝐹inertial,a is dominated by axial ram pressure forces
encapsulated in the term −𝑣𝑧𝜕𝑣𝑧/𝜕𝑧, while the other two terms, rep-
resenting turbulent forces, are very small. The axial thermal pressure
force is comparatively small in amplitude, directed outwards in the
S zone and inwards at larger radii. This is consistent with a picture
where the cold stream gas penetrates the hot CGM and free-falls
towards the massive central galaxies on either end, while the hot fila-
ment gas does not penetrate the virial shock and instead builds up in
the CGM and IGM around the haloes, providing additional pressure
confinement that slightly weakens the tidal stretching of the filament
in the axial direction. We will discuss this further in Section 7.2.

6.3 A Toy Model for the Filament Velocity Field

In Section 6.2, we saw that, in addition to thermal pressure gradi-
ents, the filament inertia plays a major role in its overall equilibrium.
In particular, the residual rotation provides a very strong outwards
force that significantly exceeds the inwards gravitational force at
small radii, and is largely balanced by the shear and ram/turbulent
forces, (𝑣𝜙/𝑟)𝜕𝑣𝑟/𝜕𝜙 and 𝑣𝑟𝜕𝑣𝑟/𝜕𝑟. In this section, we wish to un-
derstand the origin of these terms and in particular how they represent
fictitious forces acting on the gas along its streamlines, rather than
our description of them as ram/turbulent/shear forces in Section 6.2.
We begin in Section 6.3.1 by discussing the very simple case of an
elliptical orbit in a Keplerian potential as an instructive example. In
Section 6.3.2, we discuss the vorticity structure of the filaments in
our simulation, highlighting a characteristic quadrupolar structure.
Finally, in Section 6.3.3, we discuss how such dynamics can give rise
to the inertia forces we find.

6.3.1 The Keplerian Orbit

Consider an elliptical Keplerian orbit of a test particle around a
central mass 𝑀 . The equation of motion in the radial direction, with
respect to the central mass, is

𝑟 ¤𝜙2 − ¥𝑟 = 𝐺𝑀

𝑟2 , (51)

where 𝑟 is the distance from the central mass and 𝜙 is the azimuthal
angle. The azimuthal and radial velocities are 𝑣𝜙 = 𝑟 ¤𝜙, and 𝑣𝑟 = ¤𝑟.
The first term on the left-hand side of eq. (51) is thus 𝑣2

𝜙
/𝑟 while the

second is 𝑑𝑣𝑟/𝑑𝑡. The latter term can be expressed in two possible
ways, depending on whether the orbit is parametrised with respect to
the radius, 𝑟, or the azimuthal angle14, 𝜙.

If we parametrize the orbit in terms of 𝑟 we have
d
d𝑡

= ¤𝑟 d
d𝑟

= 𝑣𝑟
d
d𝑟

. (52)

Inserting this into eq. (51) yields

𝑣2
𝜙

𝑟
− 𝑣𝑟

d𝑣𝑟
d𝑟

=
𝐺𝑀

𝑟2 , (53)

showing that in the frame of the particle, gravity is indeed balanced by
the two relevant components of the inertial term in eq. (38), which act
as fictitious forces along the orbit. We can explicitly evaluate eq. (53)
for the Keplerian orbit by recalling that both the specific angular
momentum, 𝑙 = 𝑣𝜙𝑟, and the specific energy, E = −𝐺𝑀/(2𝑎) with
𝑎 the semi-major axis, are conserved. Therefore,

𝑣𝜙 (𝑟) =
𝑙

𝑟
, (54)

and

𝑣𝑟 (𝑟) =

√︄
2𝐺𝑀

𝑟
− 𝑙2

𝑟2 −
𝐺𝑀

𝑎
. (55)

One can easily verify that eqs. (54)-(55) obey eq. (53).
If we parametrize the orbit in terms of 𝜙, eqs. (52)-(55) become

d
d𝑡

= ¤𝜙 d
d𝜙

=
𝑣𝜙

𝑟

d
d𝜙

, (56)

𝑣2
𝜙

𝑟
−
𝑣𝜙

𝑟

d𝑣𝑟
d𝜙

=
𝐺𝑀

𝑟2 , (57)

𝑣𝑟 (𝜙) =
𝐺𝑀

𝑙
𝑒 sin 𝜙, (58)

𝑣𝜙 (𝜙) =
𝐺𝑀

𝑙
(1 + 𝑒 cos 𝜙), (59)

where 𝑒 is the eccentricity of the orbit, which is a conserved quantity.
Again, one can easily verify that eqs. (58)-(59) obey eq. (57) and that
gravity is balanced by the two relevant components of the inertia
term in eq. (38), which act as fictitious forces along the orbit.

This simple example shows that in a steady flow around a central
mass without thermal pressure, the three major terms appearing in
eq. (38) act as fictitious forces that balance gravity.

6.3.2 The Velocity Structure of Filaments

In order to model the inertia forces seen in Fig. 12 using an analysis
similar to that presented in Section 6.3.1, we must first characterise
the gas velocity field within the filaments. In Fig. 13, we show the
velocity field in slice 2 (see Fig. 1), projected along the filament
cross-section and overlaid on a map of the average density along
the filament’s axis, in the same orientation as the stacked projec-
tions shown in Fig. 3. The arrows represent the 2D gas velocity
field perpendicular to the filament’s axis, 𝑣𝑥𝑥 + 𝑣𝑦 �̂�, mass-weighted-
averaged along the axis. Several features of the velocity field are
apparent. Outside the shock radius (dashed-white circle), gas flows

14 An ellipse is a one-dimensional curve with one independent parameter.
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Figure 13. The projected velocity field of slice 2, a representative example
among our 10 slices. The colour map encodes the average gas density pro-
jected along the line-of-sight, and arrows represent the projected 2D velocity
field perpendicular to the line-of-sight. The longest arrows correspond to
290 km s−1, with lengths scaling as 𝑙 = 30 sinh−1

(
𝑣/30 km s−1

)
, such that

a 30 km s−1 arrow is ∼ 3.36 times shorter than the longest one. Four major
vortices forming a quadrupolar pattern are present near the outer boundary
of the V zone (𝑟 ∼ 0.6 𝑟shock, orange circle). These are highlighted with
schematic eddies to guide the eye.

towards the filament from both inside and outside the sheet (aligned
parallel to the 𝑦-axis). The cylindrical shock is evident in the flow
pattern of off-sheet material whose velocity suddenly changes orien-
tation and develops vorticity, as expected from a curved shock. The
sheet gas, on the other hand, maintains its approximate trajectory due
to its higher density, which destabilises the shock there (see Dekel
& Birnboim 2006, for an analogous discussion of cold streams in
hot haloes). Inside 𝑟shock, the velocity is broadly characterised by
four vortices centred near the transition between the T and V zones
at 𝑟 ∼ 0.6 𝑟shock, in a quadrupolar pattern with the upper-right and
lower-left quadrants spinning counter-clockwise (positive vorticity),
and the upper-left and lower-right quadrants spinning clockwise (neg-
ative vorticity). Such a quadrupolar vorticity structure has been seen
in previous studies of intergalactic filaments using lower-resolution
cosmological simulations (e.g., Pichon & Bernardeau 1999; Codis
et al. 2012, 2015b; Laigle et al. 2015; Xia et al. 2021; Ramsøy et al.
2021), and is thought to arise from asymmetric inflow into filaments
from sheets with non-zero impact parameters. While this is the only
source of vorticity for dark matter, an additional source of vorticity
for the gas is shear due to the inflow along the sheet interacting with
the hot gas in the T and V zones, combined with the vorticity cre-
ation due to the curved shocks. We defer a more detailed study of the
origin of this vorticity structure in our simulations to future work.

The quadrupolar vortex structure is a generic feature of fila-
ment dynamics in our simulation, not unique to slice 2. In Fig. 14
(left), we show a stacked projection map of 𝜔𝑧 , the vorticity com-
ponent parallel to the filament axis. In each slice, we compute
the mass-weighted average value of 𝜔𝑧 along the line-of-sight,
and weigh this by 𝑣circ (𝑟shock)/𝑟shock prior to stacking, where
𝑣circ (𝑟) =

√︁
2𝐺Λtot (𝑟) =

√
2𝑣vir is the circular velocity of the cylin-

drical filament. Despite slice-to-slice variation in the detailed ve-
locity field and in the location and strength of the four vortices, the
stacked projection nicely recovers the quadrupolar structure, with the
vorticity being primarily positive (negative) in the upper-right and
lower-left (upper-left and lower-right) quadrants15.

In the right-hand panel of Fig. 14, we address the fraction of
vorticity aligned with the filament axis. For each slice, we compute
the mass-weighted average of both 𝜔2

𝑧 and 𝜔2
tot = (𝜔2

𝑥 +𝜔2
𝑦 +𝜔2

𝑧) at
each radius 𝑟, and take the square-root of their ratio. We then present
the mean and standard deviation of this ratio among the ten slices.
If the vorticity were randomly oriented, this ratio would be ∼ 0.5,
which is the average of cos(𝜃) uniformly distributed between 0 and
1. Instead, the typical ratio is >∼ 0.6 within the shock and increases
slightly toward smaller radii, displaying a preference for the vorticity
to align with the filament axis. This is broadly consistent with the
results of Laigle et al. (2015) who found a preference for the filament
vorticity to align with its axis, with an excess probability of ∼ 20%
having an angle less than 60◦, corresponding to a cosine greater than
0.5.

6.3.3 Ideal Vortex Model

While the gas dynamics in filaments is inherently three-dimensional
and complex, the quadrupolar vortex structure seen in Figs. 13-14
appears to be the most robust feature common to all filament slices.
Therefore, we examine to what extent such a velocity field alone
can reproduce the robust features of the radial inertial forces seen
in Fig. 12 (centre panel). To this end, we construct a simple two-
dimensional toy model for the filament velocity field, characterised
by four ideal vortices in a quadrupolar configuration, such that the
vorticity is positive (negative) in the first and third (second and fourth)
quadrants, following Figs. 13-14. This model is shown in Fig. 15. In
the frame of each vortex (hereafter the primed frames), its velocity
contribution is given by

𝒗 = 𝑣𝜙′𝜙
′ = ±𝛽𝑟′𝛼𝜙′, (60)

where the plus sign applies to the first and third quadrants and the
minus sign applies to the second and fourth quadrants. 𝛼 sets the
slope of the rotation curve with respect to the vortex centres while
𝛽 is a normalisation constant. 𝑟′ is the distance to the centre of each
vortex, which is assumed to be at (𝑥, 𝑦) = (±𝑎,±𝑎).

The vorticity corresponding to such a velocity field, in the vortex
frame, is:

𝝎 = ∇ × 𝒗 =
1
𝑟′

𝜕 (𝑟′𝑣𝜙′ )
𝜕𝑟′

𝑧′ = ±𝛽(𝛼 + 1)𝑟′𝛼−1𝑧′ . (61)

For any 𝛼 ≠ −1, the vorticity is non-zero16 and finite at all 𝑟′ > 0.
Transforming the velocity field to the filament frame (hereafter the
unprimed frame) yields

𝒗 = ∓𝛽𝑟′𝛼 sin
(
𝜙′

)
𝑥 ± 𝛽𝑟′𝛼 cos

(
𝜙′

)
�̂�, (62)

where in every plus/minus combination, the upper symbol applies
to the first and third quadrants, and the lower symbol applies to
the second and fourth quadrants. The transformation of 𝑟′ and 𝜙′

15 Note that while all of our previous analysis was symmetric under the
transformation 𝑧 → −𝑧, not so 𝜔𝑧 . Although the vorticity in each slice
located in the same filament has the same orientation, we take care to orient
the three different filaments (see Fig. 1) such that 𝜔𝑧 is mostly positive
(negative) in the first and third (second and fourth) quadrants prior to stacking.
16 𝛼 = −1 corresponds to a constant specific angular momentum profile.
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Figure 14. Vorticity along the filament axis. Left: Projection map of the vorticity along the filament axis, mass-weighted along the line of sight, normalized by
𝑣circ/𝑟shock, and stacked among the 10 filament slices. The same quadrupolar structure visible in the single slice shown in Fig. 13 is evident in the stacked map.
The upper-right and lower-left (first and third) quadrants have positive vorticity, while the upper-left and lower-right (second and fourth) quadrants have negative
vorticity. Right: The stacked profile of the contribution to the filament vorticity oriented along its axis. We calculate the mass-weighted average profiles of 𝜔2

𝑧

and 𝜔2
tot for each slice and take the square root of their ratio. We then compute the average and standard deviation of this ratio among our ten slices. Filaments

prefer vorticity to align with their axis, with a typical ratio of >∼ 0.6, compared to 0.5, which is characteristic of a random distribution.

Figure 15. Our ideal vortex model is used to interpret the main fea-
tures of the radial inertial forces from Fig. 12. The red dashed circle rep-
resents the “shock” radius, 𝑅, and we have added circles at 0.6𝑅 and
0.25𝑅, schematically representing the borders between the three zones in
our simulated filaments. Each quadrant has a rotational vortex centred at
(𝑥, 𝑦) = (±𝑎, ±𝑎) ≃ (±0.42 𝑅, ±0.42 𝑅) . These form a quadrupolar struc-
ture, with positive (negative) vorticity in the first and third (second and fourth)
quadrants. Within each quadrant, the rotation velocity scales as 𝑟 ′ 0.5, where
𝑟 ′ is the distance to the vortex centre.

into the unprimed coordinates 𝑥 and 𝑦 depends on the quadrant. For
example, in the first quadrant 𝑟′ = [(𝑥 − 𝑎)2 + (𝑦 − 𝑎)2]1/2 and
𝜙′ = arctan[(𝑦 − 𝑎)/(𝑥 − 𝑎)]. We can then write the full velocity
field in terms of the polar coordinates in the filament frame, 𝑟 and 𝜙

using 𝑥 = 𝑟 cos(𝜙) and 𝑦 = 𝑟 sin(𝜙). We use this model within the
boundaries |𝑥 |, |𝑦 | ≤ 𝑅, where 𝑅 can be thought of as analogous to the
shock radius of the filament, 𝑟shock. Hereafter, we place the vortices at
a radius of 𝑟 = 0.6 𝑅, motivated by Fig. 13, so 𝑎/𝑅 = 0.6/

√
2 ≃ 0.42.

The trends at 𝑟 < 𝑎 and 𝑟 > 𝑎 are independent of this choice.

A visual inspection of Fig. 13 indicates that, the rotation velocity
increases away from the vortex centres. Therefore, we take 𝛼 > 0.
We further require that the ram/turbulent pressure term, −𝑣𝑟𝜕𝑣𝑟/𝜕𝑟
be negative, based on the middle panel of Fig. 12, which turns out to
require 𝛼 < 1. We use 𝛼 = 0.5 as our fiducial value, but note that we
obtain similar trends with any value of 𝛼 ∼ (0.1 − 0.9). The value
of the normalisation constant 𝛽 is arbitrary, and hereafter we take
𝛽 = 1.

Given parameters 𝑎, 𝛽, and 𝛼, we compute the velocity field and
the resulting fictitious forces using the same method we used in
Section 6.1. We set up a cylindrical grid with linear spacing in the
radial and azimuthal directions and evaluate the velocity in each
bin. Note that since our assumed velocity field is explicitly two-
dimensional, all axial derivatives vanish, i.e., 𝜕/𝜕𝑧 = 0. Furthermore,
in our highly idealised model, both the mean azimuthal and radial
velocities are zero, 𝑣𝜙,mean = 𝑣𝑟 ,mean = 0. This leaves only the three
components in the radial inertial term, which depend only on the
residual velocities, namely the turbulent pressure (eq. 45), residual
azimuthal shear (eq. 46), and residual centrifugal force (eq. 43) (red,
orange, and purple solid lines in the centre panel of Fig. 12). We
evaluate these following our methodology described in Appendix
Section C. Finally, we normalise all forces by (𝑟/𝑅)𝛾 , with 𝛾 = 1.48.
This accounts for the radial dependence of the gravitational force,
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Figure 16. Inertial (fictitious) force terms resulting from our toy model of an
ideal quadrupolar vortex structure (Fig. 15). Since our model is completely
symmetric, the mean parts of 𝑣𝑟 and 𝑣𝜙 are, by definition, 0, and therefore only
the residual parts contribute. Each force term of our model has been scaled by
an additional 𝑟𝛾 to account for the radial dependence of 𝐹g, the denominator
in the ratios presented in Fig. 12. Our simple model reproduces many of the
trends seen in the simulation in the V zone, at 0.25 <∼ 𝑟/𝑟shock <∼ 0.6 (Fig. 12,
middle panel, solid lines), where the ram pressure force has decreased and
vortices dominate the dynamics of the filament (see the text for details).

𝐹g, the denominator in all the profiles shown in Fig. 12, which is
given by the total mass interior to radius 𝑟 (blue line in Fig. 7).

The resulting force terms are plotted in Fig. 16. These reproduce
many of the trends seen in the corresponding curves in the centre
panel of Fig. 12. At small radii (𝑟 <∼ 0.5𝑅), the residual rotation is
mostly balanced by azimuthal shear, both of which appear to diverge
as 𝑟 → 0 as 𝑟−𝛾 . The turbulent pressure also contributes to the
balance of the rotation term, but saturates at a finite value as 𝑟 → 0.
Even the sign-flip in this term at 𝑟 <∼ 0.6 𝑅, near the singularity
present in our model at the location of the vortices, resembles the
sharp decrease in the amplitude of the corresponding term in Fig. 12
near the location of the vortices at 𝑟 ∼ 0.6 𝑟shock. The corresponding
sign flip of the shear force at 𝑟 = 𝑎 is not seen in the data. However,
in the simulations, the inertial forces in the T zone at 𝑟 > 0.6 𝑟shock
are dominated by the ram pressure of the inflowing gas, which is
not included in our ideal vortex model. Therefore, it is expected
that it will only represent the data at 𝑟 < 𝑎 = 0.6 𝑅. Furthermore,
unlike our simple two-dimensional toy model, the actual filament
dynamics is complex and three-dimensional, with vorticity that is
not even truly aligned with the filament axis (Fig. 14). Despite these
caveats, our model confirms that the structure of the quadrupolar
vorticity in intergalactic filaments produces fictitious force terms that
resemble the inertial terms dominating the dynamics of the filament
at 𝑟 <∼ 0.6 𝑟shock. More detailed theoretical studies of cosmic velocity
fields in filaments can be found in, e.g., Pichon & Bernardeau (1999);
Pichon et al. (2011); Laigle et al. (2015); Hahn et al. (2015).

7 DISCUSSION

7.1 Comparison to Previous work

7.1.1 Filament Thermal Structure and Size

We compare our results with those of Ramsøy et al. (2021), who used
an AMR simulation to study the properties of an intergalactic filament
that feeds the progenitor of a MW-mass halo (𝑀v ∼ 1011.5M⊙ at
𝑧 = 0). While they examined the filament in the redshift interval
𝑧 ∼ (3.5−8), their main analysis focused on 𝑧 ∼ 4 as ours, and many
of their results are similar to ours. They too find that the filament
is surrounded by a cylindrical accretion shock and embedded in
an intergalactic sheet with a planar accretion shock. The filament
density in their simulation is well fit by the profile of an infinite, self-
gravitating, isothermal cylinder, out to the radius where the sheet
begins dominating the mass distribution. This was true for both gas
and dark matter. Finally, similar to our results, their filaments were
characterised by a quadrupolar vorticity structure with a weak radial
dependence inside the filament shock radius.

Despite these similarities, there are several important differences
between our results. In their simulation, the density profiles of gas
and dark matter were extremely similar. In particular, the character-
istic scale radii, 𝑟0, for the gas and dark matter were within a few tens
of percent of each other, while these differed by a factor of >∼ 3 in
our simulations. Similarly, the effective dark matter temperature in
Ramsøy et al. (2021) was only a factor of <∼ 2 higher than the central
gas temperature (see their figure 7), while it was ∼ 30 times higher
in our simulations (Section 3.3). Furthermore, the shock surround-
ing the filament in their simulation was weaker and narrower than
in ours. They measured an azimuthally-averaged gas-temperature in-
crease of <∼ 60% between the filament core and the shock, while the
temperature in our simulation increases by a factor of ∼ (20 − 30).
Likewise, they found the shock to be nearly isothermal, with the gas
temperature reaching its core value ∼ 3 kpc from the shock front,
while in our case the gas remains hot outside the cooling radius of
∼ 0.5 𝑟shock ∼ 25 kpc (Section 4) and only reached the core tem-
perature ∼ (30 − 40) kpc from the shock front. Finally, while they
find that thermal pressure alone can account for most of the filament
support against gravity, we find this to be true only in the T zone
near the shock radius, while the V and S zones are dominated by
vortical, turbulent, and rotational motions driving the filament far
from equilibrium.

The primary reasons for these differences are likely the different
environments and line-masses of the filaments studied in this work
compared to that studied in Ramsøy et al. (2021). While these authors
studied a single, relatively low-mass and isolated filament feeding a
single MW-progenitor halo, 𝑀v ∼ 1010.5M⊙ at 𝑧 ∼ 4, we analyse
ten slices of three filaments in a crowded region between three haloes
with 𝑀v ∼ 1012M⊙ at 𝑧 ∼ 4. In general, more massive filaments are
predicted to have more prominent accretion shocks, similar to the
transition from cold to hot CGM for haloes (Birnboim et al. 2016).
More quantitatively, the shock Mach number is predicted to scale as
M ∝ 𝑣r ∝ 𝑣vir ∝ Λ0.5 (eq. 23, see also Appendix A). Based on
Eq. (10) from Mandelker et al. (2018), the filament line-mass scales
with the halo mass as Λ ∝ 𝑀0.77

v , implying that our filament is <∼ 15
times more massive (per-unit-length) than theirs. For a filament in
virial equilibrium per-unit-length (see Section 5), the effective DM
temperature is expected to scale as 𝑇 ∝ 𝐺Λ, implying that the DM
temperature in our filaments should be <∼ 15 times larger than in
Ramsøy et al. (2021). On the other hand, the central gas temperature
is ∼ (2 − 3) × 104 K in both cases, set by thermal equilibrium with
UVB, as the central gas can efficiently cool. We thus expect the ratio
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of DM to gas temperature to be ∼ 15 times larger in our simulations
compared to Ramsøy et al. (2021), consistent with the simulation
results cited above. This demonstrates how filament properties are
sensitive to the masses of the haloes they feed, and validates several
scaling relations.

Another important difference between our studies is the resolu-
tion in the filaments. In the simulations analysed by Ramsøy et al.
(2021), the filaments were resolved by ∼ 1.2 kpc with small patches
surrounding haloes embedded in the filament resolved with∼ 600 pc.
In our simulations, the typical cell size is ∼ (300 − 500) pc in the S
zone and (0.5− 1.0) kpc in the T zone (Fig. C1). Combined with the
fact that our filaments are ∼ 3 times wider than the filament studied
in Ramsøy et al. (2021), we have nearly an order of magnitude more
cells across the filament diameter in our simulation, allowing us to
better resolve the turbulent cascade and reduce artificial dissipation
of turbulent energy. Finally, it is possible that some of the differences
are driven by differences in the hydro-solver (Eulerian AMR versus
moving-mesh) and the different sub-grid models implemented in the
simulation. More work with larger samples of filaments in differ-
ent simulations using different codes will be required to break these
degeneracies.

Another interesting question is why the gas density profile is well-
fit by an isothermal model with the correct core temperature, despite
the temperature increasing by a factor of ∼ 20 from the core to
the shock. If we assume that the gas initially traced the DM and
was thus roughly isothermal at the post-shock temperature, then
the gas density is initially cored with a comparable radius to the
DM core, as in Ramsøy et al. (2021). This constant-density and
constant-temperature core then begins to cool monolithically toward
a temperature of ∼ 3×104, set by thermal equilibrium with the UVB.
If this cooling is isobaric, as suggested by the gas pressure profile
(Fig. 3), then the density in the core increases by a factor of∼ (15−20)
as the gas cools. From the mass conservation in the core, we thus
expect the core radius to shrink by a factor of ∼ (15 − 20)1/2 ∼ 4,
consistent with the ratio of the DM core radius to that of the gas.
On the other hand, at large radii, near 𝑟shock, the gas density is much
smaller. Cooling, therefore, is much less efficient, so we may assume
that the density profile of the gas at these large distances continues to
trace the DM, and thus asymptotically approaches the slope 𝜌 ∝ 𝑟−4

of an isothermal cylinder irrespective of the central temperature. This
will produce a density profile consistent with Fig. 3 despite the gas
not being isothermal.

We can use these insights to derive a prediction for the size of the
isothermal filament core (the S zone) as a function of redshift and
the mass of the halo that the filament is feeding. From Mandelker
et al. (2018), the line-mass and virial radius of filaments are given
by (their equations 10 and 14)

Λfil ≃ 2 × 109M⊙ kpc−1 𝑀0.77
12 (1 + 𝑧)

2
5 𝑓s,3M

−1
v , (63)

𝑅v,fil ≃ 55 kpc 𝑀0.38
12 (1 + 𝑧)

−0.5
5 𝑓 0.5

s,3M
−0.5
v , (64)

where 𝑀12 = 𝑀v/1012M⊙ , (1+ 𝑧)5 = (1+ 𝑧)/5,Mv = 𝑉s/𝑉v ∼ 1 is
the inflow velocity of the filament towards the halo in units of the halo
virial velocity, and 𝑓s,3 = 𝑓s/(1/3) ∼ 1 is the fraction of the total
accretion onto the halo flowing along a given filament normalized
by a fiducial value of 1/3. These predicted values are only a few tens
of percent larger than those found in our simulation, in Section 3.4
and Section 5 respectively. For a filament in virial equilibrium per-
unit-length, eq. (9) relates the line-mass to the kinetic energy per-
unit-length. The latter is related to the virial temperature through

eq. (5), K ∼ 1.5𝑘B𝑇vΛgas/(𝜇𝑚p), with Λgas ∼ 𝑓bΛfil the line-mass
of gas within the filament. Taken together with eq. (63), we obtain
an expression for the filament virial temperature,

𝑇v,fil ≃ 1.2 × 106 K 𝑀0.77
12 (1 + 𝑧)

2
5 𝑓s,3M

−1
v . (65)

Compared to the virial temperature of dark matter haloes (e.g., Dekel
& Birnboim 2006),𝑇v ∼ 2.5×106 K 𝑀

2/3
12 (1+𝑧)5, the virial tempera-

ture of filaments increases more rapidly with redshift for a given halo
mass. This is consistent with the results of Birnboim et al. (2016),
who predicted more stable shocks in filaments feeding a given halo
mass at higher redshifts.

We now assume that the initial gas core is comparable to the DM
core, which is comparable to 𝑅v,fil (Section 3.3), and that this core
cools isobarically from 𝑇v,fil to 𝑇s ∼ 2×104 K. The core density thus
increases by a factor of 𝑇v,fil/𝑇s, and thus mass conservation dictates
that the core radius is roughly

𝑅s ∼
(
𝑇v,fil/𝑇s

)−0.5
𝑅v,fil ≃ 7 kpc (1 + 𝑧)−1.5

5 , (66)

with no dependence on halo mass, 𝑓s orM. This is consistent with
the fact that the core radius in our simulation of 𝑅s ∼ 10 kpc is similar
to the core radius in Ramsøy et al. (2021) despite the factor ∼ 30
difference in the halo mass. Associating the filament core (the S zone)
with the cold stream that penetrates galaxy haloes, this model predicts
a stream radius that scales differently from the predictions of both
Mandelker et al. (2018), who assumed contraction from 𝑅v,fil until
full angular momentum support with a constant spin parameter and
obtained 𝑅s ∝ 𝑀0.38

v (1 + 𝑧)−0.5 (their equation 23), and Mandelker
et al. (2020b), who assumed thermal pressure equilibrium between
the cold stream and the hot CGM at the halo virial temperature
and obtained 𝑅s ∝ (1 + 𝑧)−1 independent of the halo mass (their
equations 21 and 27). While all three of these models roughly agree
on the radius of streams feeding haloes of 𝑀v ∼ 1012M⊙ at 𝑧 ∼ 4,
future studies of the properties of cold streams as a function of halo
mass and redshift will be able to distinguish these models and shed
further light on what determines the size of cold streams.

Combining eqs. (63)-(65) and setting 𝑧 = 3.93 (the redshift for the
simulation we used), we obtain relations between the filament virial
radius and temperature and the total filament line-mass,

𝑅v,fil ≈ 40 kpcΛ0.5
9 , (67)

𝑇v,fil ≈ 0.6 × 106KΛ9, (68)

where Λ9 ≡ Λfil/109M⊙ kpc−1. Associating the filament virial
radius with the shock radius (Fig. 10), we substitute 𝑅v,fil ≈ 𝑟shock,
Λfil ≈ Λtot (𝑟shock) ≡ Λshock and 𝑇v,fil ≈ 𝑇 (𝑟shock) ≡ 𝑇shock. In
Fig. 17, we plot 𝑟shock and 𝑇shock versus Λshock for our ten slices.
We find eqs. (67)-(68) to be reasonably good fits to the data, despite
slice-to-slice variations and the fact that our measured shock radii
seem to be on average ∼ 50% higher than predicted.

7.1.2 Filament Dynamics

One of our main findings was the presence of a strong quadrupolar
vorticity structure in the filaments, which dominates the filament
dynamics and inertial forces in the S and V zones, at 𝑟 <∼ 0.6𝑟shock
(Fig. 12 and Section 6.3). Similar quadrupolar vorticity structures
in intergalactic filaments have been found in several previous works
using a variety of simulation and analysis methods (e.g., Pichon
& Bernardeau 1999; Pichon et al. 2011; Codis et al. 2012, 2015b;
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Figure 17. Correlations between the total line-mass within 𝑟shock, Λshock,
and the shock radius, 𝑟shock (top) as well as the post-shock temperature,
𝑇shock (bottom). Points mark the different slices, which are numbered in each
figure (see also Fig. 4). Dashed lines in each panel show our predictions from
eqs. (67) and (68), respectively, which are both reasonable matches to the
simulation data.

Laigle et al. 2015; Ramsøy et al. 2021; Xia et al. 2021). This vortical
structure is thought to result from anisotropic accretion onto filaments
from surrounding sheets, either due to a non-zero impact parameter or
to shearing flow through a curved shock. While this seems consistent
with our simulations, we defer a more detailed study of the origin
and evolution of vorticity to future work.

Perhaps more intriguing, several recent works have claimed that
filaments have a net coherent rotation or spin, giving rise to a helical
flow along the filament, which can dominate over the quadrupolar
vorticity structure discussed above. This has been claimed both us-
ing simulations (Xia et al. 2021) and stacked observations at low-𝑧
(Wang et al. 2021). The filaments in our simulations show evidence

for mean rotation which actually seems to be the primary support
against gravity in the inner regions (Fig. 12). However, the strength
of the mean rotation in our simulations is much weaker than the
“residual” rotation resulting from the quadrupolar vorticity field. Fu-
ture work with larger samples of filaments of different masses and
across different environments and redshifts will be required to study
the evolution of filament spin.

Finally, it is worth commenting on the similarities and differences
between our force analysis presented in Section 6 and the recent force
analysis of CGM gas in <∼ 1012M⊙ haloes at 𝑧 ∼ 0 from the FOG-
GIE simulations (Lochhaas et al. 2023). While our mathematical
formalism, based on previous works focusing on the ICM (e.g., Lau
et al. 2013), derives directly from the Euler equation and is hence
exact, the interpretation of some of the inertial terms can be rather
abstract (see the discussion in Section 6.1 and Section 6.2). On the
other hand, Lochhaas et al. (2023) focused on five effective forces
operating on the gas, which are all intuitive: gradients of thermal, tur-
bulent, and ram pressure, centrifugal forces, and gravity. This results
in a much more intuitive picture, as all the forces are well-defined and
have clear physical meanings. However, while their thermal pressure
gradients and gravitational forces have a one-to-one correspondence
with ours, the other three forces are explicitly tied to a smoothing
scale that separates mean from residual motions and serves only as
approximations of the full shear tensor, which is accurately captured
by the inertial forces in our method. Therefore, the exact force balance
is not guaranteed in their method, even in the absence of temporal ac-
celerations. Despite these differences and the very different systems
studied (high-𝑧 intergalactic filaments versus low-𝑧 CGM), many of
our results are similar. In particular, we both find that the outskirts of
the system are primarily supported against gravity by thermal pres-
sure gradients, while kinematic (inertial) forces dominate the inner
regions and are not in a steady-state equilibrium. Moreover, we both
find that locally, turbulent and ram pressure forces can act either
outwards (opposing gravity) or inwards (aiding gravity). A more de-
tailed comparison between these two mathematical methods of force
decomposition is left for future work. This highlights the similarity
between gaseous atmospheres in different cosmic-web elements and
makes it tempting to describe the post-shock region in our filaments
as a ‘circumfilamentary medium’ (CFM) surrounding the central cold
stream within the potential well of the dark matter filament, much
like the CGM surrounding the central galaxy within the potential
well of the dark matter halo.

7.2 Implications for Cold Streams

The S zone of filaments is a dense, cold, isothermal core, where
the density and temperature are roughly 𝑛H ∼ 10−2 cm−3 and 𝑇 ∼
2 × 104 K (Section 3.1, Figs. 3 - 4). This core represents the ‘cold
streams’, predicted to be the main mode of gas accretion onto massive
high-𝑧 galaxies and to penetrate the virial accretion shocks around
their dark matter haloes (Dekel & Birnboim 2006; Dekel et al. 2009a).
As described above, the radius, density, and temperature of this region
are consistent with predictions from various analytic models for the
properties of cold streams as a function of the halo mass and redshift.

Several recent studies have attempted to model the evolution
of cold streams as they travel towards massive central galaxies
while interacting with the hot CGM, subject to various (mag-
neto)hydrodynamic, thermal, and gravitational instabilities using an-
alytic models and idealised numerical simulations (Mandelker et al.
2016, 2018, 2019a, 2020a,b; Padnos et al. 2018; Aung et al. 2019;
Berlok & Pfrommer 2019). While these models are adding more and
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more physics and thus becoming more realistic, all of them have
modelled the streams as initially laminar, hydrostatic systems sup-
ported predominantly by thermal pressure. While Mandelker et al.
(2018) did account for mild turbulence with Mach numberMturb <∼ 1
driven by accretion onto the filament from the surrounding sheet, this
is still a fundamentally different picture from the highly turbulent en-
vironment of cold streams in our simulations, which is dominated
by vorticity and accretion and is surrounded by a cylindrical accre-
tion shock. These must be accounted for in future work studying the
stability and evolution of intergalactic filaments and cold streams.
In particular, future models should account for internal filament dy-
namics such as rotation and turbulence, and for the confining ram
pressure from the accreting gas, along with turbulence in the confin-
ing medium.

Finally, while the cold streams are dominated by non-thermal, tur-
bulent, and vortical motions, they are in pressure equilibrium with the
post-shock volume-filling CFM gas. This implies that as the streams
penetrate the hot CGM of massive dark matter haloes, where both the
densities and temperatures are larger, their confining pressure will
increase by a factor of several. Indeed, we find in our simulations that
the confining pressure of filaments jumps by a factor of ∼ (10 − 20)
as they penetrate the virial shocks around >∼ 1012M⊙ haloes at 𝑧 ∼ 4
(Lu et al., in prep.). First, it is unclear what happens to the hot CFM
gas as the cold stream penetrates the halo. Does it stay behind and
accumulate at the virial radius, or does it partially penetrate as well,
dragged along by the cold stream? Second, this can have important
implications for the morphology of cold gas in the outer CGM of such
haloes, since such a sudden increase in confining pressure may cause
the streams to ‘shatter’ into tiny fragments of order of the cooling
length, 𝑙cool ∼ 𝑐s𝑡cool, with 𝑐s and 𝑡cool the sound speed and cooling
time of gas with 𝑇 >∼ 104 K (e.g., McCourt et al. 2018; Gronke &
Oh 2020, 2022). Similar phenomena have been predicted by other
models of streams that penetrate virial shocks, although for different
reasons (Cornuault et al. 2018). If the streams do shatter as they
penetrate the virial shock, this may explain puzzling observations
of large area covering fractions and small volume filling fractions
of cold gas in the CGM of massive high-𝑧 galaxies, which are con-
sistent with a shattered mist-like collection of small cloudlets (e.g.,
Borisova et al. 2016; Cantalupo et al. 2019; Pezzulli & Cantalupo
2019). The process of how cold streams first penetrate the hot CGM
around massive galaxies remains poorly understood and will be the
subject of future work using idealised simulations of stream-shock
interactions and shattering of filamentary systems (Yao, Mandelker,
et al., in preparation).

8 SUMMARY AND CONCLUSIONS

Using a novel high-resolution cosmological simulation, IPMSim, that
zooms in on a large patch of the cosmic-web in a large-scale proto-
group environment, we study the structure and internal dynamics
of sections of ∼ Mpc-scale intergalactic filaments feeding three
∼ 1012M⊙ haloes at 𝑧 ∼ 4. We select ten slices 30 kpc in length
from three independent filaments that feed these three haloes and are
embedded in the same cosmic sheet, so that no slice intersects any
halo with 𝑀v > 1010M⊙ . We then study these slices independently
and in stacked form to reach the following conclusions:

(i) Radial zones: The filaments can be broadly characterised by
three radial zones (Fig. 2). We summarise the key properties of these
zones here, while further below we offer a more detailed summary
of each property over the entire filament.

• In the outer “thermal” (T) zone, a cylindrical accretion shock
heats the gas to the virial temperature associated with the potential
well of the dark-matter filament, and strong thermal pressure forces
balance both inwardsgravitational and ram pressure forces resulting
from the inflowing gas. Near 𝑟shock, excess thermal pressure forces
cause the shock to expand, though the gas continues to flow with a
roughly constant mass accretion rate throughout the T zone, both on
and off the sheet, due to cooling of the gas behind the shock. The gas
outside the sheet decelerates throughout this zone, while the sheet
gas maintains a roughly constant inflow velocity.
• In the intermediate “vortex” (V) zone, the filament dynamics

is dominated by a quadrupolar vortex structure in the velocity field,
induced by the flow of gas through the sheet towards the central fila-
ment. The outwards centrifugal force due to the global net rotation is
already comparable to the gravitational force inward, but it is small
compared to the centrifugal forces due to the residual rotations asso-
ciated with the quadrupolar vortices. The latter are largely balanced
by shear and turbulent forces. These vortices lead to net outflows
outside the sheet, and the induced mixing causes the gas inflowing
along the sheet to decelerate.
• In the inner “stream” (S) zone, a dense isothermal core forms

from an isobaric cooling-flow resulting from post-shock cooling in a
freefall time, and is associated with a decrease in outwards forces. The
size of this region expands with time, though the gas within this zone
can move both inwards and outwards due to the impact parameter of
the sheet and the resulting vorticity. The S zone represents the cold
streams that feed massive galaxies from the cosmic web.

While this basic structure appears generic, the locations of the
boundaries between these zones depend on filament line-mass (Sec-
tion 7.1). In our case the T zone is at 𝑟 >∼ 0.65𝑟shock and the S zone
is at 𝑟 <∼ 0.25𝑟shock.

(ii) Thermal structure: The gas density profiles are well fit by
the density profile of a self-gravitating isothermal filament with a
temperature of∼ 3×104 K. However, the filaments are not isothermal,
and the temperature increases by a factor of ∼ (20 − 30) from the
core in the S zone to the cylindrical accretion shock outside the T
zone, at 𝑟shock ∼ 50 kpc (Figs. 3-4). The isothermal core in the S
zone is characterised by densities 𝑛H ∼ 0.01 cm−3, temperatures
𝑇 ∼ 3 × 104 K, and sizes ∼ 0.25 𝑟shock ∼ 10 kpc, consistent with
predictions for cold streams that feed massive high-𝑧 galaxies from
cosmic-web filaments (Mandelker et al. 2018, 2020b). The thermal
pressure in the filament is roughly constant within the S and V zones,
suggesting that the confining pressure of cold streams in the IGM is
∼ (10 − 20) times smaller than their confining pressure once they
penetrate the CGM of massive haloes. Outside 𝑟shock, the density
becomes dominated by the underlying sheet, which penetrates and
feeds the filament much the same way that filaments penetrate and
feed haloes.

(iii) Dark matter structure: The gaseous filaments are embed-
ded in dark matter filaments that set the gravitational potential wells.
These are also well-fitted by models of self-gravitating isothermal
cylinders, and dark matter is much more isothermal than gas with
its effective temperature (i.e., kinetic energy or velocity dispersion
squared) varying by a factor of <∼ 2 over the range (0.1 − 1.0)𝑟shock
(Fig. 6). The effective temperature of dark matter is very similar to
the post-shock temperature of the gas, 𝑇 ∼ 8×105 K, yielding a core
radius that is ∼ 4 times larger than that of the gas (the S zone). How-
ever, this result is a function of the filament line-mass (Section 7.1).
The baryon fraction near 𝑟shock approaches the universal value, while
in the S zone 𝑓b >∼ 0.5 (Fig. 5).

(iv) Line-mass: The line-mass (mass per unit-length) of the dark
matter filament is < 10% of the maximal line-mass for hydrostatic
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equilibrium in a self-gravitating isothermal cylinder at the tempera-
ture of the dark matter (Fig. 7). The line-mass for the gas is > 30%
of this threshold, but still below it, which implies that intergalactic
filaments are typically stable against gravitational fragmentation17.

(v) Thermal equilibrium: The cooling time near 𝑟shock is only
slightly longer than the free fall time, 𝑡cool ∼ 3𝑡ff , implying that
the post-shock state is unstable to thermal condensation and the
formation of multiphase gas. This prevents the gas in the T zone
from maintaining hydrostatic equilibrium and results in a cooling
flow towards the cold-stream in the S zone, where 𝑡cool < 𝑡ff (Fig. 8).

(vi) Virial equilibrium: The filament gas is in virial equilibrium
per-unit-length, once we account for surface-pressure terms and re-
move the gas that is rapidly inflowing toward the filament along the
sheet, with |𝑣𝑟 | > 𝑣vir =

√
𝐺Λ (Figs. 9-10). The virial radius of the

filament is 𝑟vir ∼ 𝑟shock. The associated virial temperature is approx-
imately equal to the post-shock temperature, which is also roughly
the dark matter effective temperature, suggesting that the dark mat-
ter is in virial equilibrium per unit-length as well. Throughout the T
zone, the gas maintains the local virial temperature, with non-thermal
motions offset by surface pressure. However, in the V and S zones
these motions increase faster than the surface pressure with respect
to the gravitational potential energy, resulting in net radial outflows
induced by the vortices and the motion of the sheet. On the other
hand, the filament is unbound along its axis, at all radii.

(vii) Filament dynamics: The component of vorticity along the
filament axis has a characteristic quadrupolar structure, with two sets
of counter-rotating vortices centred near the boundary between the
T and V zones (Figs. 13-14). However, despite a slight preference
for the filament vorticity to align with its axis, there is substantial
vorticity along the other axes as well (Fig. 14, right). In the T zone,
the filament dynamics is dominated by accretion onto the filament
(Fig. 13), with most of the mass flux flowing along the sheet (Fig. 9),
whose impact parameter with respect to the filament centre seems
related to the formation of the aforementioned vortices.

(viii) Dynamical equilibrium: We quantify the various force
terms acting on the filament gas by decomposing the Euler equa-
tion into gravitational forces, thermal pressure forces and inertial
forces. The latter is composed of ram, turbulent pressure, and shear
forces. We find that over a large radial range, these forces balance
each other, and the velocity field within the filament is in a steady-
state (Fig. 11). However, near the location of the vortices in the outer
V zone, and near the location of the shock in the outer T zone, the
radial velocity field accelerates outward. Similarly, in the S zone, the
velocity field accelerates inwards, damping transient outflows caused
by the impact parameter of the sheet. In the T zone, the outwards
thermal pressure forces roughly balance the inwardsgravity and the
ram pressure forces (Fig. 12). In the V zone, where the dynamics is
dominated by quadrupolar vortices, thermal pressure forces are com-
parable to centrifugal forces due to net average rotation, and these
combine to provide support against gravity. At the same time, cen-
trifugal forces due to residual rotation associated with the vortices
are cancelledcanceled by shear forces and ram/turbulent pressure
(Figs. 12, 16). In the S zone, a drop in both centrifugal and thermal
pressure forces, due to the development of a strong cooling flow,
results in a net inwards acceleration of the velocity field.

While our analysis has been comprehensive and these results are
enlightening, we stress that the properties of the filaments studied in

17 Though they may still become unstable in the inner CGM (Mandelker
et al. 2018; Aung et al. 2019).

this work certainly depend on the mass of the filament, the redshift,
and the environment (see, e.g., Ramsøy et al. 2021). Future studies
using similarly high-resolution simulations and employing similar
analysis methods to study a much larger sample of filaments across
different redshifts and environments will be necessary to elucidate
the properties of these extremely important elements of the cosmic-
web and their implications for galaxy formation.
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APPENDIX A: MACH NUMBER

To add additional context to the strength of the filamentary accretion
shock (Section 3.1) and the radial velocity profiles (Section 5.2), we
here present an analysis of the radial Mach number of inflowing gas,
M𝑟 , defined as

M𝑟 ≡
|𝑣𝑟 |
𝑐s

, (A1)

Figure A1. The radial Mach number of inflowing gas, M𝑟 , for the on-sheet
(red) and off-sheet (blue) components, stacked among our ten filament slices.
The cyan and orange shaded regions show the 1 − 𝜎 scatter for the two
components, respectively. The off-sheet M𝑟 changes much more drastically
than the on-sheetM𝑟 , indicating that the on-sheet gas has undergone a much
weaker and more diffusive shock compared the off-sheet gas.

where 𝑣𝑟 is the radial velocity, and 𝑐s =
√︁
𝛾𝑃/𝜌 =

√︁
𝛾𝑘B𝑇/(𝜇𝑚p)

is the adiabatic (constant entropy) sound speed. In our case, 𝛾 = 5/3.
We computeM𝑟 only for radially inflowing gas cells, and then take
the volume-weighted average over each radial bin, as in the profiles
presented throughout the paper. However, we distinguish the on-sheet
and off-sheet components of gas when taking the average, as in our
analysis of radial velocity profiles in Section 5.2.

The radial profiles ofM𝑟 for the on-sheet and off-sheet compo-
nents, stacked among our ten filament slices, are shown in Fig. A1.
Outside the shock, at 𝑟 <∼ 2 𝑟shock, the off-sheet gas is inflowing with
M𝑟 ∼ 10 on average18while the on-sheet gas has M𝑟 ∼ 3. This
is consistent with what we found in Fig. 9: the off-sheet gas in-
flows much faster than the on-sheet gas at large distances from the
shock. Close to the shock, at 𝑟 ∼ 1.2 𝑟shock, the off-sheetM𝑟 begins
to rapidly decline, reaching M𝑟 ∼ 1 just outside the V zone, and
continuing to decline towards very subsonic values at smaller radii.
This suggests that the radial extent of the T zone, over which the
Mach number declines towards unity converting bulk kinetic energy
into thermal energy, is representative of the shock thickness. On the
other hand, the on-sheetM𝑟 has a much shallower profile, retaining
M𝑟 ∼ 1 throughout the T and V zones, and declining toM𝑟 ∼ 0.5
in the S zone.

This suggests that the effect of the shock is much less significant
on the sheet compared to off the sheet. The on-sheet gas might
partially bypass the shock and therefore avoid interacting with it.

18 We note that Slice 01 (Fig. 1) has the highest Mach number among our
slices, reaching M𝑟

>∼ 15 at 𝑟shock, and it also has the largest 𝑟shock (Fig. 4).
This is due to the fact that Slice 01 is close to a massive halo, and the
circum-filamentary shock gets mixed up with the halo accretion shock.
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Figure B1. Radial profile of the plasma 𝛽 parameter, the ratio of thermal to
magnetic pressure, stacked among our filament slices. We compute the value
of 𝛽 for each individual gas cell, and then average them over each radial
bin weighted by volume (blue line, cyan shaded region), mass (orange line,
yellow shaded region), and density (green line, pink shaded region). The three
solid lines show the results after stacking the ten slices in log space, while
the shaded regions show the 1 − 𝜎 scatter. 𝛽 evolves from ∼ (105 − 106 ) at
𝑟 ∼ 0.1 𝑟shock to ∼ (1010 − 1011 ) at 𝑟 ∼ 𝑟shock, implying that magnetic fields
are not dynamically important in the filaments.

This is reminiscent of speculations concerning how cold streams
penetrate the virial shocks around the CGM in massive halos as seen
in simulations (Dekel & Birnboim 2006; Dekel et al. 2009a; Bennett
& Sĳacki 2020). However, a comprehensive discussion of this topic
is beyond the scope of this paper.

APPENDIX B: MAGNETIC FIELDS AND HUBBLE DRAG

In Section 6.1, we analysed the gas dynamics assuming that this
obeyed the Euler equation (eq. 24). However, this was just an ap-
proximation, as it neglects the effect of magnetic fields and the ex-
pansion of the Universe. In this section, we justify both of these
approximations.

The gas dynamics in the simulation follow the ideal magnetohydro-
dynamics (MHD) equations. In particular, the Eulerian momentum
equation reads

𝜕𝒗

𝜕𝑡
+ (𝒗 · ∇) 𝒗 = − 1

𝜌
∇

(
𝑃 + 𝐵2

8𝜋

)
+ 1

4𝜋𝜌
(𝑩 · ∇) 𝑩 − ∇Φ, (B1)

where 𝒗 is the fluid velocity, 𝜌 is its density, 𝑃 its thermal pres-
sure, Φ the gravitational potential, and 𝑩 the magnetic field. Here,
𝒗 represents the physical velocity, including the Hubble flow in an
expanding Universe. In practice, the simulation stores the peculiar
velocity, 𝒗pec = 𝒗 − 𝐻 (𝑧)𝒓 with 𝐻 (𝑧) the Hubble parameter at red-
shift 𝑧, for which an additional term of (−𝐻 (𝑧)𝒗) representing the
so-called “Hubble drag” must be added to the right-hand side of
eq. (B1). However, over the scales of interest, 𝑟 <∼ 𝑟shock ∼ 50 kpc,

the Hubble flow 𝐻 (𝑧)𝑟 <∼ 10 km s−1 is negligible compared to the
peculiar velocity. Likewise, the Hubble drag is negligible compared
to the other forces discussed in Section 6, at the level of a few percent
at most, and has no effect on our results. We therefore have neglected
this subtlety, and treat peculiar and physical velocities interchange-
ably.

The dynamical importance of the magnetic field is often quantified
by the plasma 𝛽 parameter, which is the ratio of thermal to magnetic
pressure,

𝛽 ≡ 𝑃th
𝑃B

=
8𝜋𝑃
𝐵2 , (B2)

where 𝑃B = 𝐵2/(8𝜋) is the magnetic pressure. In Fig. B1, we show
profiles of 𝛽 stacked among our filament slices. We compute the
value of 𝛽 for each cell in the simulation and compute the mean
value at each radius 𝑟 weighted by volume (blue line, cyan shading),
mass (orange line, yellow shading), and density (green line, pink
shading). In all cases, 𝛽 increases monotonically from the S zone
to the T zone, consistent with magnetic field amplification due to
gas condensation as it cools together with a turbulent dynamo effect.
The volume-weighting, which highlights the hot and diffuse volume-
filling gas, presents the highest values of 𝛽, i.e. the lowest values of
the magnetic fields, with 𝛽 ∼ 107 in the S zone and 𝛽 ∼ 1011 in the
T zone. The density-weighting, which highlights cold and dense gas,
presents the strongest magnetic fields, but even here 𝛽 ∼ 105 in the
S zone and 𝛽 ∼ 1010 in the T zone. The magnetic pressure is thus
negligible compared to the thermal pressure.

Furthermore, magnetic pressure gradients are negligible compared
to thermal pressure gradients. Even in the extreme case where the
thermal pressure varies over a characteristic length-scale of order
𝑟shock <∼ 50 kpc, and the magnetic pressure varies over a characteris-
tic length-scale of order the smallest cell size, Δ >∼ 100 pc, magnetic
pressure gradients would still be at least 100 times smaller than ther-
mal pressure gradients. We conclude that magnetic fields are not
dynamically important in our filament sample, and do not contribute
to filament support against self-gravity. We, therefore, neglect them
in our further analysis, simplifying eq. (B1) to the Euler equation
(eq. 24).

Observations of low-𝑧 filaments in the vicinity of galaxy clusters
do reveal the presence of magnetic fields (e.g., O’Sullivan et al.
2019; Vernstrom et al. 2021), though to our knowledge no such
observational constraints exist for high-𝑧 filaments. However, we
note that values of 𝛽 ∼ 105, as found for cold and dense gas in the
S zone, have been assumed for cold streams feeding massive high-z
galaxies in idealized studies of stream evolution in the CGM (Ledos
et al. 2023). A study of the growth of magnetic fields in intergalactic
filaments over cosmic time is beyond the scope of this paper and is
left for future work.

APPENDIX C: NUMERICAL DETAILS OF THE FORCE
DECOMPOSITION

In this section, we provide further details regarding our numerical
method for analysing the forces (Section 6.1-Section 6.2) and present
several validation tests. Using our simulations, we numerically eval-
uate eqs. (34)-(49) as a function of radius, 𝑟 , for each filament slice.
We begin by generating a uniform cylindrical grid in each slice, with
𝑁𝑟 radial bins in the range 𝑟 = (0.05 − 1.1)𝑟shock, 𝑁𝜙 azimuthal
bins in the range 𝜙 = (0 − 2𝜋), and 𝑁𝑧 axial bins from 𝑧 = −15 kpc
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to 𝑧 = 15 kpc. We assign to each bin the density, velocity, and pres-
sure of the gas cell whose centre is closest to the bin centre. While
this does not conserve the total mass, momentum, or thermal energy
in the slice, it accurately represents the fluid properties on the grid
points, provided the bins are not much larger than the gas cells in
the simulation. On the other hand, if the bins are much smaller than
the gas cells, this can result in artificially null-gradients when using
the grid to compute the terms in the integrals of eqs. (34)-(49). We,
therefore, wish to use bin sizes as close as possible to the typical
sizes of gas cells in the simulation.

In Fig. C1, the solid lines show the radial profiles of the average
cell size, defined as the cubic root of the cell volume, 𝑙 = Vol1/3,
as a function of 𝑟/𝑟shock stacked among our 10 filament slices. We
show profiles for the volume-weighted average cell size (orange),
the mass-weighted average cell size (blue), and the density-weighted
average cell size (green). Since cells have the same mass to within
a factor of ∼ 2, these averages roughly represent the largest, me-
dian, and smallest cells at a given radius, respectively. As in previ-
ous figures, the cyan-shaded regions represent the 1 − 𝜎 standard
deviations among the slices. The median cell size increases from
∼ 0.5 kpc in 𝑟 ∼ 0.1𝑟shock, to ∼ 1.5 kpc at 𝑟 >∼ 𝑟shock, while the
smallest densest cells grow from ∼ (0.3 − 0.7) kpc in the same
range. We also show as dot-dashed lines in Fig. C1 the bin sizes,
defined as the cubic root of the bin volume, for cylindrical grids
with different numbers of radial, azimuthal, and axial bins as in-
dicated in the legend. Note that in each case, the bin size scales
as 𝑟1/3, since the bin volume is ∼ 𝑟 Δ𝑟Δ𝜙Δ𝑧. For our fiducial grid
we use (𝑁𝑟 , 𝑁𝜙 , 𝑁𝑧) = (195, 180, 101), the highest-resolution grid
shown in Fig. C1, corresponding to Δ𝑟 ∼ 0.005 𝑟shock ∼ 0.23 kpc,
Δ𝜙 ∼ 𝜋/90, and Δ𝑧 ∼ 0.3 kpc. These dimensions are very similar
to the density-weighted average cell size at all radii. However, all of
our results are very similar when varying the number of bins as in
Fig. C1 (see Figs. C2-C3 below)

To verify the validity of our method of depositing gas properties
in the grid, which is not strictly conservative, we test the degree
to which various gas quantities are conserved. In Fig. C2, we show
the ratio of the enclosed gas mass profile inferred from our grid
to that of the actual simulation cells. We see that for all but our
lowest resolution grid, with (𝑁𝑟 , 𝑁𝜙 , 𝑁𝑧) = (87, 70, 43), the error
on the enclosed mass is <∼ 5% at all radii and approaches 0 at 𝑟shock.
For our highest resolution grid, (𝑁𝑟 , 𝑁𝜙 , 𝑁𝑧) = (190, 180, 101), the
error on both the total mass interior to 𝑟 and the mass contained
between 𝑟 and 𝑟 + Δ𝑟 (not shown) is <∼ 2% at all radii. The ratio of
enclosed momenta and thermal energies is similar. We conclude that
the fluid properties are sufficiently conserved when generating our
highest-resolution grid.

We also experimented with other methods for depositing the fluid
properties into the cylindrical grids. Specifically, we deposited the
mass, momentum, and thermal energy of each gas cell onto the grid
using either a top-hat or a cubic-spline smoothing kernel, with the
kernel size set to the cell size (not shown). While this conserves
the total mass, momentum, and thermal energy of gas within each
slice, the unstructured nature of the mesh and the non-uniform sizes
of gas cells result in many “empty” bins, into which no gas cell is
deposited, unless we use a kernel size much larger than the cell size.
For this reason, we prefer the deposition method described above,
which guarantees that each bin has a well-defined non-zero value.
However, we note that all three methods for depositing the gas data
onto the cylindrical grid yield qualitatively similar results.

We compute the gradients, 𝜕/𝜕𝑟, 𝜕/𝜕𝜙, 𝜕/𝜕𝑧, on the uni-

Figure C1. Cell-sizes in the simulation compared to bin-sizes of the uniform
cylindrical grid we use to evaluate eqs. (34)-(49). Solid lines show the average
cell size as a function of radius, weighted by volume (orange), mass (blue),
or density (green), and stacked among our 10 filament slices. Dot-dashed
lines show the bin sizes of our cylindrical grids, with different numbers
of bins as indicated in the legend. At all radii, the bin size in our fiducial
grid is comparable to the density-weighted average cell-size, representing the
smallest and densest cells in the simulation.

form cylindrical grid using the standard fourth-order centred finite-
difference approximation for evenly-spaced data:(

d 𝑓
d𝑥

)
𝑖

=
𝑓 (𝑥𝑖−2) − 8 𝑓 (𝑥𝑖−1) + 8 𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖+2)

12ℎ
+ O(ℎ4). (C1)

We also experimented with second-order centred finite-difference
derivatives:(

d 𝑓
d𝑥

)
𝑖

=
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖+1)

2ℎ
+ O(ℎ2), (C2)

and obtained very similar results with no qualitative differences (see
Figure C3 below). Note that in order to compute these derivatives
at the grid boundaries self-consistently, we padded our grid with
extra bins in both the radial and axial directions, with fluid properties
deposited in the same way as described above. This is especially
important for the 𝑧 direction, since the axial terms (eqs. 35, 37, 39,
and 49) are evaluated only at the boundaries of 𝑧 = ±15 kpc. However,
all of our results are presented only for the main grid, without the
extra padding cells.

Prior to computing each spatial derivative, we smooth the grid with
a one-dimensional Gaussian kernel along the direction of the deriva-
tive. For example, prior to computing 𝜕𝑃/𝜕𝑟, we smooth the pres-
sure values on the grid using a smoothing kernel ∝ exp

[
−𝑟2/(2𝜎2

𝑟 )
]
,

while prior to computing 𝜕𝑃/𝜕𝑧, we smooth the pressure values on
the grid using a smoothing kernel ∝ exp

[
−𝑧2/(2𝜎2

𝑧 )
]
. This is similar

to the smoothing method employed by Lau et al. (2013), though they
used one-dimensional Savitzky-Golay filters rather than Gaussians.
Our fiducial results use 𝜎𝑟 = 𝜎𝜙 = 𝜎𝑧 = 0.5 kpc, ∼ (1 − 2) times
the bin size in our highest resolution grid. We also present results for
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Figure C2. Mass conservation test of our method for depositing gas cells
into uniform cylindrical grids. We show the ratio of the enclosed gas mass
inferred from our grid to the actual enclosed gas mass from the simulation. At
all but our lowest resolution (blue line), the cumulative error in the gas mass
in the grid is < 5% everywhere and approaches 0 at 𝑟shock. At our highest
resolution (red line), both the cumulative and the local error in gas mass (not
shown) are < 2% at all radii.

no-smoothing and for smoothing with 𝜎𝑟 = 𝜎𝜙 = 𝜎𝑧 = 1.0 kpc in
Fig. C3 below, and find overall good agreement between these differ-
ent methods. In the same figure, we also present results for 𝜎𝑖 = 𝑎Δ𝑖,
with 𝑖 = 𝑟, 𝜙, 𝑧 and 𝑎 = 1, 2, which yield very similar results as well.

Using the above procedures, we obtain all the terms in the in-
tegrands of eqs. (36)-(49) (we address the temporal derivatives of
eqs. (34)-(35) below). We then perform the integrations using the
“trapezoid-method”, the standard second-order centred approxima-
tion for numerical integration of evenly-spaced data,∫

𝑓 (𝑥)d𝑥 =

𝑛−1∑︁
𝑖=1

ℎ
𝑓𝑖 + 𝑓𝑖+1

2
+ O(ℎ2). (C3)

We also experimented with a first-order, “rectangular”, approxima-
tion, which yielded a slightly poorer fit to Gauss’s theorem. We did not
experiment with higher-order approximations involving higher-order
interpolations between the grid points, as we found the trapezoidal
method to be satisfactory and numerical integration is inherently less
sensitive to noise than numerical differentiation.

We evaluated the robustness and validity of our methodology by
directly computing∇Φ on our grid and testing Gauss’s law. The grav-
itational potential at the location of each gas cell in the simulation
is provided in the simulation output and deposited into our uniform
cylindrical grids in the same manner as the gas density, pressure, and
velocity. We then compute 𝑀grav (𝑟) following eq. (25), and com-
pare this to 𝑀tot (< 𝑟), the total mass of gas, stars, and dark matter
enclosed within the cylinder of radius 𝑟. The results of this test are
shown in Fig. C3. The 𝑦-axes show the ratio of 𝑀grav (𝑟)/𝑀tot (< 𝑟),
which should be unity everywhere according to Gauss’s law. The
𝑥-axes show the radius normalized to 𝑟shock. We computed the radial

profile of this ratio for each slice and then stacked the slices by com-
puting the mean and standard deviation of the ratio at each radius
𝑟 . In the left panel, we show results for different grid resolutions,
focusing on those where the error on the enclosed mass is <∼ 5%
(Fig. C2). In each case, we used fourth-order derivatives and applied
no smoothing prior to computing the derivatives. The three solid
curves represent the mean ratio among our ten slices, while the cyan-
shaded region represents the 1 − 𝜎 standard deviation of the highest
resolution grid. The three different grid resolutions yield extremely
similar results, with no systematic differences. Overall, our method
for evaluating the enclosed mass using Gauss’s law seems to system-
atically underpredict the true mass, with an average error of ∼ 5% at
𝑟 > 0.3𝑟shock, and <∼ 10% at smaller radii. The scatter, however, is
more symmetric about an error of 0 and is still limited to <∼ 10% in
most of the radial range. The scatter in the lower resolution versions
(not shown) is somewhat larger, but qualitatively very similar with
errors in the range of ∼ (10 − 20)%. In the right panel, we focus
on the highest resolution grid and examine the effect of different
smoothing widths (no smoothing, constant 𝜎 = 0.5 or 1.0 kpc, and
coordinate-dependent 𝜎𝑖 = 𝑎Δ𝑖, where Δ𝑖 is the bin width along the
𝑖 direction with 𝑖 = 𝑟, 𝜙, 𝑧 and 𝑎 = 1, 2) and differentiation methods
(second-order and fourth-order), as noted in the legend. At this reso-
lution, the order of the numerical derivatives has hardly any impact
on the results for each smoothing method. The version smoothed with
𝜎 = 0.5 kpc seems to yield the best results, with effectively no error
on the enclosed mass at 0.3 <∼ 𝑟/𝑟shock <∼ 0.8, and errors of < 5%
elsewhere. The version smoothed with 𝜎 = 1.0 kpc yields the largest
errors, of (5 − 10)%. Also, interestingly, unlike the no-smoothing
and 𝜎 = 0.5 kpc versions, which both systematically underestimate
the enclosed mass, the 𝜎 = 1.0 kpc version systematically overesti-
mates the enclosed mass. As expected, given the bin sizes at this grid
resolution, 𝜎𝑖 = Δ𝑖 is very similar to no smoothing while 𝜎𝑖 = 2Δ𝑖

is very similar to 0.5 kpc smoothing. We note that similar errors of
∼ 5% on estimates of the enclosed mass using Gauss’s law were also
reported in Lau et al. (2013) (the bottom panel of Fig. 1), which
formed the inspiration for our methodology, but whose simulations
were run on a much simpler Cartesian mesh.

We adopt a constant𝜎 = 0.5 kpc as our fiducial smoothing method,
along with fourth-order centred finite differences and our highest
resolution grid. The results presented in Figs. C2 and C3 suggest that
this method produces reliable and robust results, both in terms of the
conservation of fluid properties and in terms of accurately evaluating
the necessary surface integrals in eqs. (34)-(49).

Finally, we address the computation of the two acceleration terms
in eqs. (34)-(35), which represent a temporal change in velocity
within a fixed volume. We attempted to compute these directly using
multiple simulation snapshots, experimenting with first, second, and
fourth-order finite-difference approximations for the time derivatives.
When doing so, we attempted in each snapshot to centre ourselves
on the same ten filament slices as in our fiducial snapshot. However,
since the filaments themselves are all moving with respect to the
simulation box, since the first stage of our filament selection process
(Section 2.2) is done by-eye. Since there is some inherent uncer-
tainty associated with defining the filament centre and rest-frame (as
discussed in Section 2.2), this process is prone to errors and uncer-
tainties. Furthermore, the time in between consecutive snapshots of
the simulation, Δ𝑡 ∼ 55 Myr near 𝑧 ∼ 4, is within a factor of <∼ 2
of both the cooling time and the eddy-crossing time for gas within
the V and S zones, 𝑟 <∼ 0.6𝑟shock. All of this makes the direct com-
putation of the acceleration terms highly uncertain. As a result, in
none of our experiments did the acceleration terms balance the other
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Figure C3. Testing our numerical methods for evaluating gradients and surface integrals on our cylindrical grids, using Gauss’s law. We show the ratio of the
gravitational mass at radius 𝑟 , 𝑀grav from eq. (25), and the total mass interior to radius 𝑟 . Gauss’s law states that this ratio must be unity everywhere. On the left,
we show the results using fourth-order differentiation (eq. C1) with no smoothing applied. Different colour solid lines represent the mean ratio among the ten
filament slices for different grid resolutions as shown in the legend. The cyan-shaded region represents the 1 − 𝜎 standard deviation among the filament slices
for the highest resolution. All resolutions yield similar results, with 𝑀grav systematically underpredicting the true enclosed mass by ∼ 5%. On the right, we
show results for our fiducial (highest) resolution grid, but using different methods for smoothing the data and computing the gradients, as indicated in the legend.
Using second or fourth-order derivatives has no effect on the results. The best results are obtained when smoothing the data with a Gaussian of 𝜎 = 0.5 kpc
prior to computing the derivatives. In this case, there is effectively no error on the enclosed mass at 0.3 <∼ 𝑟/𝑟shock <∼ 0.8, and <∼ 5% error elsewhere. The worst
results are obtained with 1.0 kpc smoothing, but even here the errors are only ∼ (5 − 10)%. This confirms the validity and robustness of our methodology.

terms in eq. (50). Since we have shown that our method reliably
reproduces 𝑀grav (𝑟) (Fig. C3), and since 𝑀therm (𝑟) and 𝑀inertial (𝑟)
are computed similarly, we can assume that these are also computed
reliably. We, therefore, use eq. (50) and the corresponding axial equa-
tion to infer the acceleration terms from the difference between the
gravitational, thermal, and inertial terms.

After computing the radial profiles of each mass-term from
eqs. (36)-(49) for each filament slice, we normalise these by 𝑀tot (<
𝑟) and stack the ten filament slices by taking the average of each
normalised mass term in each radial bin. While it is the ratio of each
mass term to 𝑀grav (𝑟) that tells us the contribution of the respective
force term to the support of the filament against gravity at that radius,
we nonetheless opt to normalise the mass terms by 𝑀tot (< 𝑟). As
shown in Fig. C3, 𝑀tot (< 𝑟) ≃ 𝑀grav (𝑟) to within ∼ 5%. How-
ever, while 𝑀grav (𝑟) can fluctuate, especially for individual slices,
𝑀tot (< 𝑟) is a smooth, monotonically increasing function. We have
verified that normalising by 𝑀grav (𝑟) instead does not have a no-
ticeable impact on our results. In Section 6.2, we use the notations
𝑀.../𝑀tot, 𝑀.../𝑀grav, and 𝐹.../𝐹grav interchangeably, and think of
these as ratios of forces/accelerations rather than ratios of masses.
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