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Abstract 

Background: Current automated planning solutions are calibrated using trial and error or 

machine learning on historical datasets. Neither method allows for the intuitive exploration of 

differing trade-off options during calibration, which may aid in ensuring automated solutions 

align with clinical preference. Pareto navigation provides this functionality and offers a potential 

calibration alternative. The purpose of this study was to validate an automated radiotherapy 

planning solution with a novel multi-dimensional Pareto navigation calibration interface across 

two external institutions for prostate cancer. 

Methods: The implemented ‘Pareto Guided Automated Planning’ (PGAP) methodology was 

developed in RayStation using scripting and consisted of a Pareto navigation calibration interface 

built upon a ‘Protocol Based Automatic Iterative Optimisation’ planning framework. 30 previous 

patients were randomly selected by each institution (IA and IB), 10 for calibration and 20 for 

validation. Utilising the Pareto navigation interface automated protocols were calibrated to the 

mailto:philip.wheeler@wales.nhs.uk
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institutions’ clinical preferences. A single automated plan (VMATAuto) was generated for each 

validation patient with plan quality compared against the previously treated clinical plan 

(VMATClinical) both quantitatively, using a range of DVH metrics, and qualitatively through blind 

review at the external institution. 

Results: PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean 

reduced by 3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were 

mixed with low and intermediate dose metrics reduced for IB but increased for IA. Differences, 

whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The 

reduction in rectum dose was not at the expense of PTV coverage (D98% was generally improved 

with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum 

over conformality was however aligned with preferences expressed during calibration and was a 

key driver in both institutions demonstrating a clear preference towards VMATAuto, with 31/40 

considered superior to VMATClinical upon blind review. 

Conclusions: PGAP enabled intuitive adaptation of automated protocols to an institution’s 

planning aims and yielded plans more congruent with the institution’s clinical preference than 

the locally produced manual clinical plans. 

Keywords 

VMAT; IMRT; Automation; Treatment Planning; Prostate Cancer; Multi-Institutional; 

Radiotherapy; Pareto; MCO; AI 
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1 Background 

Automated radiotherapy treatment planning (AP) is an innovation that improves the quality and 

efficiency of plan generation when compared to traditional manual trial-and-error techniques  

[1].  Within the literature AP solutions can be separated into 3 broad categories:  

1. Knowledge based planning (KBP): utilise algorithms trained on databases of historical 

treatment plans to predict parameters (e.g. dose volume histograms) that inform the 

optimisation of novel patients [2–6].  

2. Constrained hierarchal optimisation (CHO): minimise clinical objectives in strict sequential 

order according to a predefined clinical ‘wish list’ [7,8]. 

3. Protocol-based automatic iterative optimisation (PBAIO): automatically adapt parameters 

during the plan generation process, tailoring the optimisation to the individual patient [9–

13]. 

Prior to automated plan generation all methods must be calibrated; a process that is critical in 

ensuring solutions are optimal and congruent with oncologists’ treatment wishes. At present two 

calibration methods are commonly employed. Simple trial-and-error, where AP parameters are 

iteratively adjusted manually based on the AP output, and machine learning where AP 

parameters/algorithms are trained on historical patient datasets. Trial-and-error is the 

predominant method used for PBAIO and CHO solutions, and machine learning for KBP solutions 

[1].  

Whilst trial-and-error and machine learning yield clinically acceptable AP solutions, there are 

limitations of both approaches than can hinder the efficiency and optimality of the AP 

calibration. Machine learning generally requires large historical datasets (typically n = 100) [14], 

which may not be present for novel techniques or prescriptions, and calibrations are strongly 
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dependent on the optimality and consistency of plans in the training dataset [15], which is not 

guaranteed. Additionally KBP trained with machine learning may still require considerable 

‘tuning’ to deliver suitable solutions [16]. For trial-and-error, a key issue is that due to the high 

number of calibration variables and their possible permutations, efficient and intuitive 

exploration of different treatment options is not possible. Trial-and-error is analogous to 

traditional manual planning (albeit at the patient cohort level); an approach prone to inter-

observer variability [17] and yielding plans that may not fully align with oncologists’ clinical aims 

[18]. The process is also inefficient with any change in calibration parameter requiring the 

generation of a new plan to assess the impact on the dose distribution.  

We propose an alternative method for AP calibration, which utilises Pareto navigation 

techniques in place of trial-and-error or machine learning. The concept of Pareto navigation is as 

follows: (i) a plan is considered Pareto optimal when improvement of one objective/trade-off can 

only be made a the detriment of another (ii) for a given optimisation problem there is an infinite 

set of Pareto optimal plans, which define the ‘Pareto front’ (iii) in Pareto navigation the Pareto 

front is sampled (for all or a selected number of trade-offs) via generating a set of discrete Pareto 

optimal plans, the decision maker (e.g. oncologist or dosimetrist) then interactively explores the 

Pareto front using a navigation star [19] or sliders [20] to select the clinically optimum solution. 

When compared to traditional trial-and-error manual planning, on an individual patient basis 

Pareto navigation has been shown to improve planning efficiency by 70-90% [18,21,22] and yield 

solutions more congruent with the oncologists’ treatment aims [18]. It is therefore hypothesised 

that Pareto navigation presents an effective AP calibration alternative. 

Recently the methodology of a fully automated PBAIO solution that was calibrated using Pareto 

navigation techniques (Pareto Guided Automated Planning (PGAP)) has been presented [23]. The 
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solution was evaluated for prostate cancer patients with and without elective nodal irradiation at 

the local institution (Velindre Cancer Centre (VCC)), with results demonstrating superiority over 

manual planning [24]. However, in this initial implementation of PGAP, Pareto navigation was 

constrained to one trade-off (or dimension) at a time, which limited the effectiveness of the 

technique in exploring the Pareto surface. 

The purpose of this work is to firstly present a new PGAP solution that implements a multi-

dimensional Pareto navigation calibration interface and secondly to present results of a multi-

centre validation of this solution in two external institutions.  

2 Methods 

2.1 Patient selection and planning protocol 

For each institution (IA and IB) 30 patients (60 in total) treated with prostate only radiotherapy 

during the period of 1st April – 30th June 2017 were randomly selected, with 10 and 20 patients 

allocated to a calibration and validation dataset respectively. Patients with hip prosthesis were 

excluded.  Across both institutions patients were treated following the hypo-fractionated CHHIP 

trial protocol [25]; a simultaneous integrated boost technique delivering 60 Gy in 20#. The 

clinical goals associated with this protocol are presented in Table 1.  

Patients were planned on a CT scan of 2 mm slice thickness, with prostate and up to 2 cm of 

proximal seminal vesicles (sv) delineated as targets, and rectum, bladder, femoral heads (IB only) 

and bowel (IB only) delineated as organs at risk (OARs). As per the CHHIP protocol the following 

planning target volumes (PTV) were generated, with the PTV’s nominal prescription in Gy defined 

by the nomenclature’s suffix: prostate expanded by 5 mm (0 mm posteriorly) and 10 mm (5 mm 
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posteriorly) to form PTV60 and PTV57.5 respectively; and prostate + sv expanded by 10 mm to 

form PTV48. 

The clinically delivered treatment plans (VMATClinical) were generated by the institutions using 

RayStation v5 (RaySearch Laboratories, Stockholm). Treatments were delivered on a Varian 

TrueBeam STx (Varian Medical Systems, Palo Alto) and an Elekta Agility (Elekta Ltd, Crawley) linac 

for IA and IB respectively. Automated plans (VMATAuto) were generated at VCC using RayStation 

v4.99, a research release equivalent to v5. VMATAuto plans were generated using identical 

RayStation treatment planning machine models and arc configurations to VMATClinical (single 6MV 

360° VMAT arc). For IB, VMATAuto and VMATClinical were normalised such that PTV60’s median 

dose equalled 60.0Gy. 

2.2 Pareto Guided Automated Planning 

In this study PGAP was performed using EdgeVcc: a PBAIO automated planning solution 

developed at VCC and implemented in RayStation using python scripting. Full details of this PGAP 

solution are presented by Wheeler et al. [23], with the following providing a summary of the key 

aspects.  

Prior to automated planning a site specific ‘AutoPlan protocol’ is created and a set of planning 

goals defined (Table 2). Planning goals are split into 3 priority levels: critical normal tissue goals 

(P1), target goals (P2) and normal tissue goals (P3). P1 and P2 generally represent a clinical 

protocol’s mandatory dose constraints and P3 all other trade-offs which are to be minimised. This 

approach is analogous to using constraints and trade-offs in standard Pareto navigation 

applications. No weighting factors (WF) are specified by the user, instead they are generated 

through two processes. For P1 and P2, WF are defined by hard coded constants (1000 and 250 for 
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P1 and P2 respectively). For P3, balancing competing trade-offs is complex and difficult to define a 

priori. In this case WF are derived through the Pareto navigation calibration process.  

Calibration is initially performed on a single patient. Firstly, a set of automated plans with 

differing P3 WF are generated using the PBAIO automated planning algorithms. These plans 

represent different AutoPlan calibration options, each with a different balancing of competing 

trade-offs that constitute a point on the Pareto front. The operator then navigates through these 

differently weighted P3 treatment options via a sliding interface. The clinically optimum position 

on the Pareto front, determined qualitatively by the operator, is selected and the WF associated 

with this navigated position stored in the AutoPlan Protocol. The result is a calibrated AutoPlan 

protocol, which is ready for testing or further refinement. 

The PGAP solution is built on a PBAIO automated planning framework, where during 

optimisation the position and weight of P3 related optimisation objectives are iteratively 

updated. The position is adjusted to maintain a constant difference (δ) between the optimisation 

objective and its corresponding DVH parameter. For example, if a dose volume objective (DVO) 

of V23.4Gy at 10.0% volume is defined and the resultant optimised dose yields a V23.4Gy 

equalling 9.0%, the DVO volume target will be set to [9.0% - δ]. In terms of objective weight, this 

is dynamically updated such that the objective function’s value trends towards a target objective 

value.  Utilising these two mechanisms within a PBAIO framework aims to both minimise OAR 

doses (via dynamic positioning) and ensure consistent trade-off balancing across all patients 

treated to the same clinical protocol (via dynamic weighting). This provides the potential for a 

Pareto navigation calibration on a single patient to yield a suitably calibrated AP solution for 

novel patients. In practice, especially for more complex sites with variable anatomy, it may be 
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necessary to perform additional Pareto navigation on outlier patients (with weights typically 

averaged) to improve the solution’s robustness across the whole cohort.  

In previous work, calibration via Pareto navigation was performed through sequential navigation 

of one trade-off (or Pareto dimension) at a time. In this regard a Pareto dataset (typically 

containing 5 plans) was generated with varying WF applied to the given trade-off and all other 

WF held constant (or set to zero if unnavigated). The process was repeated until all trade-offs 

were navigated. In this work we present a fully customisable interface (Fig. 1), where any 

number of dimensions can be navigated in parallel, thereby providing the opportunity for full 

Pareto navigation. Furthermore, dimensions are not limited to a planning goal’s WF, but rather 

any of its parameters, enabling navigation, for example, of individual P2 target values such as PTV 

min dose. 

For a given navigation the operator defines (via a config file) the dimensions to be explored and 

for each dimension the trade-off parameter values to be sampled during creation of the Pareto 

surface. Typically 3-5 parameter values are specified for each dimension. To populate the Pareto 

navigation dataset, a fully segmented treatment plan is generated (using the PBAIO framework) 

for all possible parameter value permutations across the different dimensions. The dataset is 

navigated in ‘parameter space’ using a slider interface with the navigated dose distribution 

estimated though linear interpolation of the neighbouring discrete Pareto plans using the 

navigated parameter values as the interpolation coefficients (see Wheeler et al [23]). Whilst the 

interface allows for any number of dimensions to be navigated in parallel, there are 

computational limitations as the number of plans in the navigation dataset increases to the 

power of the number of dimensions. Pareto navigation is therefore typically limited to < 5 
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dimensions, with additional navigations performed sequentially until all trade-offs have been 

navigated.  

2.3 AutoPlan Protocol Calibration 

Separate calibrations for both IA and IB were performed by VCC using the institution’s calibration 

patient cohort. Planning goals (Table 2) were based on CHHIP clinical goals (Table 1) and during 

calibration the balancing of trade-offs was informed by the corresponding VMATClinical plan and 

collaborative discussions with the external institution. 

2.4 Demonstrating the Utility of PGAP 

To demonstrate the potential utility of PGAP, using the calibrated IA protocol as a base, a 

multidimensional navigation consisting of the following four dimensions was generated for the 

first IA calibration patient: PTV60 Dmin (target parameter), PTV60 Dmax (target parameter), rectum 

Dmean (WF parameter) and external normal tissue fall off (WF parameter). Using the navigation 

interface two different calibrations were selected (Fig. 1): Cal1, where the rectum was spared at 

the expense of homogeneity and conformality, and Cal2, where parameter values were set to 

nominally equal the final calibrated IA protocol. For both Cal1 and Cal2 an automated plan was 

generated for all IA calibration patients. Pareto front representations of PTV60 homogeneity 

index (HIPTV60), PTV48 Paddick’s conformity index (CIPTV48) [26] and rectum DMean were generated 

to demonstrate the propagation of differing calibrations to novel patients. This evaluation was 

undertaken at VCC after the multi-institutional study proper using an upgraded version of 

RayStation (8b research). 

2.5 Evaluative Study design 
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For the evaluative study, VMATAuto plans were generated for all validation patients using the 

institution’s calibrated AutoPlan Protocol. Plan quality was quantitatively compared to 

VMATClinical using: CHHIP dose metrics; PTV D98%, D2%, HI and CI; and OAR mean doses. Higher 

prescription PTVs were subtracted from lower prescription PTVs when reporting D98%, D2% and 

HI. Differences were assessed for statistical significance using a two-sided Wilcoxon signed rank 

test. Statistical testing was not performed where, following omission of tied values (i.e. where 

metrics equalled zero for both VMATAuto and VMATClinical), sample size was < 10. In addition, a 

blind qualitative comparison of VMATAuto and VMATClinical was performed on-site at each external 

institution by a team consisting of a single oncologist and dosimetrist. During review the team 

would discuss the two plans under blind conditions and rank them in order of preference. Whilst 

the discussions were collaborative, it was permissible for the oncologist and dosimetrist to 

disagree on the final ranking. 

3 Results 

3.1 AutoPlan Protocol Calibration 

Details of the calibrated AutoPlan Protocols are provided in Table 2. The final IA protocol was 

used as a base for IB following simplification (low weighted and similar planning goals removed). 

Due to substantial similarities in clinical preference between the two institutions only two key 

changes were made for the final IB protocol: the addition of bowel goals and an increased intra-

PTV dose fall-off WF. 

3.2 Demonstrating the Utility of PGAP 

The Pareto front representations in Fig. 2 demonstrate how the two different calibrations 

propagated to novel patients. Across patients 2-10 there was a clear and consistent change in the 
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balancing of automated plans between Cal1 and Cal2 with changes in rectum Dmean, CIPTV48 and 

HIPTV60 of 8.7 Gy, 0.068, and -0.031 respectively. This compares with changes of 7.4 Gy, 0.073 and 

-0.034 respectively for the calibration patient (patient 1).  

3.3 Evaluative Study 

Results of the evaluative study on the validation patient cohort are presented in Table 3, with 

Fig. 3 providing 1-1 plots comparing VMATAuto with VMATClinical across a range of key OAR and PTV 

dose metrics. Across both institutions VMATAuto led to a statistically significant (p < 0.05) 

improvement across all but two rectal dose metrics (V48.6Gy, V52.7Gy). For IA, several reductions 

were substantial, with Dmean and V24.3Gy reduced by 3.7 Gy and 15.1% respectively. For IB 

improvements were more modest [ΔDmean = -1.8 Gy, ΔV24Gy = -8.4%]. For bladder, VMATAuto led to 

a small but statistically significant detriment in low and intermediate dose level metrics for IA 

[ΔV40.5Gy = +1.3%, ΔV48.6Gy = +0.6%] with the situation reversed for IB [ΔV40.5Gy = -1.0%, ΔV48.6Gy = -

0.7%]. VMATAuto led to a moderate reduction in bladder Dmean for IB [ΔDmean = -1.3 Gy]. 

VMATAuto yielded moderate improvements in D98% for PTV57.5 [IB only, ΔD98% = +1.0 Gy] and 

PTV48 [IA ΔD98% = +0.7 Gy, IB ΔD98% = +1.0 Gy], which did not result in a detriment in rectal doses.  

Significant but small differences were also observed for PTV60 D98% [ IA ΔD98% = -0.2 Gy, IB ΔD98% = 

+0.3 Gy]. D2% was significantly increased for PTV60 [IA only, ΔD2% = +0.4 Gy], PTV48 [IB only, ΔD2% 

= +0.6 Gy] and deceased for PTV57.5 [IA only ΔD2% = -0.3 Gy]. Worthy of note was the reduction 

in the variation of HI across all study patients when planning with VMATAuto, which was for all 

PTVs across both institutions (Fig. 3). In terms of conformality, VMATAuto led to moderate 

reductions in the CI index for IA [ΔCIPTV57.5 = -0.035, ΔCIPTV48 = -0.039] and IB [ΔCIPTV60 = -0.035, 

ΔCIPTV57.5 = -0.019]. This degradation was attributed to a higher prioritisation being placed on 

rectum dose reduction during calibration when compared with VMATClinical.  
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Upon blind review all plans were considered clinically acceptable. For IA there was a clear 

preference towards VMATAuto with 90% considered superior to VMATClinical. For IB this percentage 

dropped to 65% but the overall preference towards VMATAuto was maintained. Agreement 

between the oncologist and dosimetrist was very good with only one plan without a consensus 

decision. MU for VMATAuto was 12% and 15% higher than VMATClinical for IA and IB respectively. 

This increase was not of concern to either institution.   

4 Discussion 

In this study a PBAIO automated solution with a novel multi-dimensional Pareto navigation 

calibration methodology has been evaluated for prostate cancer in a multi-centre context. 

Results from the study demonstrated a clear clinical preference towards VMATAuto and provides 

supportive evidence on both the calibration method and underlying PBAIO framework that 

together form the PGAP solution. 

This work builds upon the previous single institution study (performed at VCC [24]) in three key 

ways. Firstly, the updated calibration interface enabled multi-dimensional Pareto navigation, 

whereas the initial study was limited to a single dimensional proof of principle approach. This 

new method was fully congruent with the principles of Pareto navigation; enabling intuitive 

exploration of multiple competing trade-offs simultaneously. Secondly, the previous study 

provided no demonstration of the utility of PGAP; only presenting comparison of a single 

calibrated automated solution against manual planning. In this work a clear presentation of how 

different calibration choices propagate to novel patients via the PBAIO framework is provided 

(Fig. 2). Finally, a key challenge of any automated solution is demonstrating adaptability to the 

clinical requirements, techniques, and delivery machines of differing institutions. This study 

provides clear evidence that PGAP is a versatile solution, which can be successfully translated to 
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independent external centres. Furthermore, with the vast majority of published studies being 

single institutional [1], this work helps to strengthen the evidence base on multi-institutional 

validations of automated solutions. 

Within the literature there are limited examples on the utilisation of Pareto navigation to 

calibrate AP solutions and to our knowledge this work presents the first example where Pareto 

navigation is incorporated natively into the calibration process. The most relevant example is for 

KBP, where Pareto navigation was utilised by Miguel-Chumacero et al. [27] and Wall et al. [28] to 

improve the quality of the training dataset for head and neck, and prostate cancer respectively. 

This led to substantial reductions in OAR doses compared to a KBP model trained on the original 

manual planning based dataset. It is unclear if this is due to a conscious change in trade-off 

prioritisation or improving the optimality of the original manual plans. This approach, whilst 

promising, requires all training patients to be replanned, which is time consuming and presents a 

key barrier for practical implementation in the clinic. This is especially true for state-of-the-art 

dose distribution prediction solutions where training datasets are of the order of 100 patients 

[29]. In contrast the PGAP approach we developed can be calibrated through Pareto navigation 

on more limited patient datasets and is therefore ideal for rapid implementation of novel 

protocols or changes to clinical priorities due to emerging evidence. 

The process of effective calibration is non-trivial; it requires an assessment of not only the clinical 

acceptability of a given calibration, but also the rate of change of competing dose metrics as the 

balancing of parameters is adjusted. For example, a detriment in CI of 0.05 may be acceptable if 

rectum Dmean reduces by 0.5 Gy but unacceptable for a 0.05 Gy reduction. It is our view that 

Pareto navigation is currently the only method that provides the operator with live access to this 

key information when calibrating an automated solution (via both the DVH and whole 3D dose 
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distribution) and offers a clear alternative to machine learning and trial-and-error. Fig. 1 

illustrates the benefits of this approach, demonstrating how different treatment options can be 

interactively explored to identify the solution which best aligns with clinical preferences of the 

institution. 

Successful PGAP implementation requires trade-off balancing of novel patients to be consistent 

with that selected during calibration. In our implementation, this function was fulfilled through 

building the solution on a PBAIO framework. This study provides evidence supporting this 

approach, firstly by demonstrating how trade-off balancing during calibration propagates 

effectively to novel patients (Fig. 2) and secondly through results of the blind review, which 

showed that PGAP yielded plans of high congruence with the institutions’ clinical preferences. 

Importantly, it is our view that a broad spectrum of PBAIO and CHO solutions presented in the 

literature also fulfil this requirement and therefore could benefit from integration of Pareto 

navigation into their calibration process. 

The implemented approach does have limitations. Firstly, sampling the Pareto front using a 

simple exhaustive approach (plans generated for all parameter permutations) was 

computationally expensive and limited the practical number of Pareto dimensions per navigation 

to ≈4. Whilst, in this study it was not considered a significant constraint as many trade-offs were 

observed to be uncorrelated (e.g. CIPTV48 and rectum Dmax), it reduced the efficiency and elegance 

of the calibration process. Utilisation of more sophisticated sampling strategies [30] to reduce 

the computational burden would help increase the number of dimensions possible per 

navigation. Secondly, as is the case with all CHO and PBAIO solutions presented in the literature, 

a single AutoPlan Protocol was used across all study patients. Whilst resultant plans were on 

average superior to VMATClinical, utilisation of a single AutoPlan protocol assumes the clinically 
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optimum balancing of competing trade-offs is consistent across individual patients, which may 

not be the case. It is recommended that further work evaluating per patient Pareto navigation vs. 

AP should be performed to explore the validity of this assumption. 

In terms of the multi-centre evaluation a key observation during calibration was that, whilst the 

Pareto navigation interface enabled navigation of a wide range of differing trade-off options (Fig. 

1), a solution which aligned reasonably closely to local clinical practice in terms of HIPTV60, CIPTV48 

and modulation was selected by each institution. This was at the expense of further potential 

reductions in rectum DMean and reflected the institutions’ measured and proportional caution in 

selecting a solution, which if implemented would substantially change not only the planning 

method (automated from manual) but also the plan distribution and modulation for the whole 

treatment site. This trade-off prioritisation differed to VCC (where rectum DMean is prioritised 

over HIPTV60 & CIPTV48) and highlighted the importance of AP solutions having the functionality to 

allow full customisation of protocols to suit local requirements such that potential 

implementation barriers can be reduced.  

As with the previously reported single institutional study of PGAP, this multicentre evaluation 

demonstrates superiority of automated planning over manual planning, both in terms of reduced 

rectum doses and clinical preference. This superiority was attributed to the improved alignment 

of trade-off balancing with clinical preference (particularly for CI vs rectum Dmean), and the PBAIO 

framework dynamically adjusting objectives to drive plans towards Pareto optimality. For IA, 

reductions in rectum Dmean were more substantial than IB (3.7 Gy vs. 1.8 Gy respectively) due to 

their increased prioritisation of CIPTV48 for VMATClinical. This prioritisation was not congruent with 

the institution’s clinical preferences and was reflected in 90% of VMATAuto plans being preferred 

to VMATClinical (compared to 65% for IB). Results (Fig. 3 and Table 3) also highlighted a wide 
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variation in the differences between VMATAuto and VMATClinical both at an inter-patient and inter-

institutional level. This was attributed to the inconsistencies associated with manual planning 

that have been widely reported in the literature [17,31]. In comparison to a similar study [32] 

that evaluated a CHO approach across 4 institutions for prostate cancer our results are aligned, 

with that work also demonstrating overall superiority of VMATAuto, with a median reduction in 

rectum DMean of 3.4 Gy (range [-4,12] Gy) as compared to 2.8 Gy (range [-1,7] Gy) in this study. 

Whilst direct comparison of the two approaches (PGAP/PBAIO vs CHO) is not appropriate due to 

confounding factors such as differing planning systems, clinical protocols and the underlying 

quality of the manual comparators, this alignment adds strength to the findings by both authors 

that: (1) wide variations in the differences between VMATAuto and VMATClinical are suggestive of 

inconsistencies in manual planning; and (2) AP solutions that seek Pareto optimality can yield 

substantial improvements in plan quality. 

Finally, an interesting and unexpected outcome from this study was that once presented with 

results from both institutions, IA adapted their manual planning practice to align closer with 

clinical preferences (i.e. prioritise rectum at the expense of CIPTV48). This led to a sustained 

reduction in rectum doses for clinical patients and highlighted the potential in utilising AP for 

cross-institutional audits to improve practice. 

5 Conclusions 

A novel PGAP solution has been successfully validated against clinical practice for two external 

institutions. The multi-dimensional Pareto navigation calibration methodology enabled intuitive 

adaptation of automated protocols to an institutions’ individual planning aims without the 

requirement of large training datasets. Automated plans were more congruent with the 
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institutions’ clinical preferences than manual plans and considered to represent a higher quality, 

more consistent and more efficient plan generation method. 
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Figure Legends 

Fig. 1. Pareto navigation calibration interface. Navigation is performed using the slider bars (top 

left), with the dose distribution (top centre) and DVH (top right – solid line) updated in real time 

within RayStation’s evaluation module. During navigation the operator can set the navigated 

distribution as a reference distribution (bottom centre) and DVH (top right – dotted line) to aid in 

the decision making. In this example the navigated position represents a solution where the 

rectum is spared at the expense of homogeneity and conformality (Cal1) with the reference 

distribution representative of the final calibration for IA (Cal2). The corresponding Cal2 slider 

positions are provided for reference (bottom left) and isodose legends have been enhanced for 

clarity. ROIs: rectum (brown), bladder (yellow), external (blue), PTV60 (pink), PTV57.5 (red) and 

PTV48 (orange). 

Fig. 2. Pareto front representations of the three navigated trade-offs (rectum Dmean, HIPTV60 and 

CIPTV48) demonstrating the dosimetric impact of two differently balanced calibrations (Cal1 & Cal2) 

on novel patients in the IA calibration dataset. Data from the navigation patient (Patient 1) is 

presented for reference, with Cal1 and Cal2 data points encompassed by the red and blue boxes 

respectively. 

Fig. 3. 1-1 plots comparing VMATAuto and VMATClinical across a range of OAR and PTV dose metrics 

for both institutions. Unity line is presented for reference and represents equivalence between 

the two techniques. 
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Tables 

Table 1 

CHHIP Trial Based Clinical Planning Goals for IA and IB 

Target and Max Dose Goals 

ROI Name Dose Parameter Goal 

All PTVs D99% 
≥95% of PTV 
prescription 

PTV57.5 - PTV60 D50% ≥57.5 Gy 

PTV48 - PTV57.5 D50% ≥48 Gy 

PTV60 D1% ≤63.0 Gy 

Patient Outline D1.8 cm3 ≤63.0 Gy 

OAR Goals 

ROI Name Dose Parameter Goal 

Rectum V24.3 Gy ≤80% 

Rectum V32.4 Gy ≤70% 

Rectum V40.5 Gy ≤60% 

Rectum V48.6 Gy ≤50% 

Rectum V52.7 Gy ≤30% 

Rectum V56.8 Gy ≤15% 

Rectum V60.0 Gy ≤3% 

Bladder V40.5 Gy ≤50% 

Bladder V48.6 Gy ≤25% 

Bladder V60.0 Gy ≤5% 

Femoral Heads V40.5 Gy ≤50% 

Bowel V40.5 Gy ≤17 cm3 
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Table 2             

Final planning goals and weighting factors for both institutions 

Priority 1: Primary Conformality Goals (WF = 1000)       

ROI Name Dose Parameter Target (Gy) Distance (cm)       

PTV48 Dmax 46.8 1.5       

Priority 2: Target Goals (WF = 250)         

ROI Name Dose Parameter 

Target  

(%Presc,PTV)         

PTV60 Dmin 98.7         

PTV60 Dmax 101.7         

PTV60 D50% max 99.5         

PTV57.5 Dmin 98.7         

PTV57.5 Dmax 102.5         

PTV48 Dmin 97.3         

PTV48 Dmax 104.9         

Priority 3: Trade-off Goals (Standard)   

ROI Name Dose Parameter 

Target  

(Gy or %Vol) WF (IA) WF (IB)     

Rectum V23.4Gy (%) 0.0 3.5 3.5     

Rectum V31.5Gy (%) 0.0 3.5 3.5     

Rectum V39.6Gy (%) 0.0 0.044 -     

Rectum V47.7Gy (%) 0.0 0.088 -     

Rectum V51.8Gy (%) 0.0 29.9 29.9     

Rectum V55.9Gy (%) 0.0 3.5 -     

Rectum Dmax (Gy) 60.0 0.586 0.586     

Rectum Dmean (Gy) 5.0 5.84 5.84     

Bladder V30.0Gy (%) 0.0 0.316 0.316     

Bladder V39.6Gy (%) 0.0 0.316 0.316     

Bladder V47.7Gy (%) 0.0 0.316 0.316     

Bladder V51.8Gy (%) 0.0 0.316 0.316     

Bladder V55.9Gy (%) 0.0 0.316 -     

Bladder Dmax (Gy) 54.0 0.316 0.316     

Bladder Dmean (Gy) 5.0 3.73 3.73     

Bowel V36.0Gy (%) 0.0 - 0.413     

Bowel V45.6Gy (%) 0.0 - 0.413     

Priority 3: Trade-off Goals (Dose Fall Off)      

ROI Name Fall Off Type 

High Dose 

Level (Gy) 

Low Dose Level 

(Gy) 

Dose Gradient 

(%Presc cm-1) WF (IA) WF (IB) 

External Normal Tissue Falloff 60.0 30.0 50% 204 204 

PTV57.5 Intra PTV Falloff 54.0 54.0 75% 10.7 29.8 

PTV48 Intra PTV Falloff 54.6 (54.0)* 45.6 75% 29.8 29.8 

Abbreviations:  %Presc, PTV = % of individual PTV prescription dose; %Presc = % of overall treatment prescription; %Vol 

= % volume of ROI, WF =  weighting factor 

Notes:  Differences between IA and IB AutoPlan protocols are highlighted in bold.  WF = '-' indicates the planning 

goal was removed for the institution specific protocol.  Priority 3 targets = 0.0 by default, but can be specified if 

desired. The target is dynamically adjusted during optimisation and therefore initial values have negligible impact 

plan quality, but may decrease planning time if correctly defined. 

*Value outside and inside parenthesis correspond to IA and IB respectively. 
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Table 3  

Dosimetric comparison of VMATAuto and VMATClinical for institution A and B (mean ± standard deviation) 

    Institution A Institution B 

  Metric VMATAuto VMATClinical p value VMATAuto VMATClinical p value 

PTV60 D98% (Gy) 58.8 ± 0.1 59.0 ± 0.2 0.00 59.0 ± 0.1 58.7 ± 0.3 0.00 

  D99% (Gy) 58.7 ± 0.1 58.8 ± 0.3 0.03 58.9 ± 0.1 58.5 ± 0.4 0.00 

  D2% (Gy) 61.3 ± 0.1 60.8 ± 0.3 0.00 61.0 ± 0.1 60.9 ± 0.4 0.68 

  CI 0.562 ± 0.027 0.570 ± 0.041 0.31 0.601 ± 0.031 0.636 ± 0.042 0.00 

  HI 0.041 ± 0.002 0.030 ± 0.007 0.00 0.032 ± 0.002 0.037 ± 0.009 0.03 

PTV57.5 D98% (Gy)* 55.9 ± 0.1 55.5 ± 0.9 0.06 55.7 ± 0.2 54.7 ± 0.2 0.00 

  D99% (Gy) 56.0 ± 0.2 55.6 ± 0.9 0.07 55.9 ± 0.2 54.9 ± 0.2 0.00 

  D2% (Gy)* 59.9 ± 0.1 60.2 ± 0.4 0.02 60.3 ± 0.1 60.1 ± 0.5 0.18 

  CI 0.827 ± 0.013 0.862 ± 0.043 0.00 0.845 ± 0.013 0.863 ± 0.040 0.02 

  HI* 0.068 ± 0.004 0.080 ± 0.014 0.00 0.077 ± 0.004 0.093 ± 0.009 0.00 

PTV48  D98% (Gy)* 46.5 ± 0.3 45.8 ± 0.5 0.00 46.5 ± 0.2 45.5 ± 0.7 0.00 

  D99% (Gy) 47.1 ± 0.7 46.5 ± 0.9 0.00 47.1 ± 0.8 46.4 ± 1.0 0.00 

  D2% (Gy)* 57.0 ± 0.4 57.3 ± 0.9 0.37 57.2 ± 0.3 56.5 ± 0.9 0.01 

  CI 0.707 ± 0.017 0.745 ± 0.033 0.00 0.698 ± 0.021 0.683 ± 0.044 0.23 

  HI* 0.206 ± 0.007 0.224 ± 0.015 0.00 0.211 ± 0.005 0.219 ± 0.020 0.17 

Rectum V24.3Gy (%) 47.2 ± 13.0 62.3 ± 10.4 0.00 51.9 ± 11.6 60.3 ± 10.3 0.00 

  V32.4Gy (%) 32.9 ± 12.1 44.1 ± 11.5 0.00 38.6 ± 10.9 43.6 ± 9.9 0.00 

  V40.5Gy (%) 23.0 ± 9.1 26.5 ± 8.9 0.00 28.2 ± 8.8 29.7 ± 8.4 0.05 

  V48.6Gy (%) 13.6 ± 4.3 14.5 ± 5.3 0.17 15.9 ± 4.4 15.8 ± 5.0 0.79 

  V52.7Gy (%) 9.5 ± 2.8 10.4 ± 3.8 0.16 10.1 ± 3.0 10.4 ± 3.9 0.50 

  V56.8Gy (%) 3.9 ± 1.6 6.4 ± 2.6 0.00 4.8 ± 2.0 5.5 ± 2.3 0.00 

  V60.0Gy (%) 0.0 ± 0.0 0.3 ± 0.4 0.00 0.0 ± 0.1 0.3 ± 0.4 0.00 

  DMean (Gy) 25.3 ± 4.7 29.0 ± 4.3 0.00 28.3 ± 4.1 30.1 ± 3.3 0.00 

Bladder V40.5Gy (%) 25.3 ± 14.7 24.0 ± 14.1 0.00 15.5 ± 7.4 16.4 ± 7.4 0.01 

  V48.6Gy (%) 18.5 ± 11.3 17.9 ± 11.1 0.02 10.7 ± 5.9 11.4 ± 5.6 0.02 

  V60.0Gy (%) 1.8 ± 1.6 2.3 ± 1.7 0.07 1.2 ± 0.9 1.1 ± 0.8 0.65 

  DMean (Gy) 24.3 ± 9.3 23.8 ± 9.2 0.20 17.4 ± 5.3 18.7 ± 5.7 0.00 

Bowel V40.5Gy (cm3)               0.8 ± 1.8 0.8 ± 1.6 n<10 

Femoral Head (Lt) V40.5Gy (%)               0.0 ± 0.0 0.0 ± 0.1 n<10 

Femoral Head (Rt) V40.5Gy (%)               0.0 ± 0.0 0.0 ± 0.0 n<10 

External D1.8cm3 (Gy) 61.2 ± 0.1 60.8 ± 0.2 0.00 61.0 ± 0.1 61.0 ± 0.4 0.88 

External V5.0Gy (%) 34.8 ± 6.1 32.5 ± 6.0 0.00 27.2 ± 2.7 27.4 ± 2.8 0.17 

Beam MU MU 637 ± 36 570. ± 37 0.00 739 ± 53 640 ± 118 0.01 

Plan Ranking vs Plans Superior (%) 90%     65%     

VMATClinical Plans Equivalent (%) 0%     30% (35%)     

  Plans Inferior (%) 10%     5% (0%)     

Results in bold indicate statistically significant differences (p<=0.05). Dosimetrist plan rankings are provided in parenthesis where 

preference differs from the oncologist 

CI: Paddick’s Conformity Index for the specified PTV. 

HI: homogeneity index for the specified PTV 

*Higher prescription PTV(s) subtracted from PTV when reporting 

 


