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Abstract: In this paper, we propose a Support Vector Machine (SVM)-type algorithm, which is statis-
tically faster among other common algorithms in the family of SVM algorithms. The new algorithm
uses distributional information of each class and, therefore, combines the benefits of using the class
variance in the optimization with the least squares approach, which gives an analytic solution to the
minimization problem and, therefore, is computationally efficient. We demonstrate an important
property of the algorithm which allows us to address the inversion of a singular matrix in the solution.
We also demonstrate through real data experiments that we improve on the computational time
without losing any of the accuracy when compared to previously proposed algorithms.
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1. Introduction

Support Vector Machines (SVMs) have been used in a number of disciplines since
their introduction by [1] for classification and regression. Although the name is used to
describe the classic algorithm proposed by [1], SVMs have been extended in many different
directions and a lot of authors are now using the name to refer to a family of methods
that are based on the original idea by [1]. The basic purpose of SVM algorithms in binary
classification is to find an optimal hyperplane which separates the two classes of datapoints
with the maximum margin when the data are separable (hard margin). In cases where
the classes are not separable, a soft margin approach is used which finds the optimal
hyperplane by maximizing the margin and minimizing the sum of the misclassification
distances of the misclassified points.

There are three features that have made SVM algorithms popular since their intro-
duction. The first one is the use of nonlinear kernels, which map the observations from
the current space into a higher dimensional feature space to achieve linear separability
of the points using the kernel trick, that is without the need to know the exact mapping
to the feature space. The second important aspect of SVMs is the fact that they target
the minimization of structural risk (minimizing the risk of the misclassification of unseen
observations) rather than the minimization of empirical risk (minimizing the risk for points
in the sample). Finally, the optimization problem is solved relatively efficiently using
quadratic programming.

SVMs are continuing to be a popular option for researchers looking for classification
methodology to apply to their datasets. Therefore, there is a constant need for new ap-
proaches to be developed within the SVM framework in classification to address the many
challenges that the new era of massive and high-dimensional datasets brings to researchers.
A very small sample of new methods being proposed in the SVM literature includes [2],
which proposes a new fuzzy approach to Twin SVMs; [3], which presents an improved
version of the SVM with the radial basis function; and [4], who proposed a twin SVM
algorithm with the pinball loss. At the same time, there are some recent works which
demonstrate the usefulness in applying SVM variants for classification in other sciences.
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See, for example, [5] who applied SVMs to Twitter data, the work by the authors in [6] who
applied SVMs to remote sensing data, and [7] who applied them in seismic data.

In this paper, we propose a computationally efficient SVM-type algorithm which uses
distributional information of the classes. To achieve a computationally fast algorithm, we
replace the hinge loss in the classic SVM algorithms with the least squares approach, in
a similar way as it was done in the Least Squares SVM (LSSVM) by [8]. To introduce the
distributional information of the classes, we propose the use of the within-class variance in
a similar way as it was proposed in the Minimum Class Variance SVM (MCVSVM) by [9],
who reformulated the optimization problem in Fisher’s linear discriminant analysis (LDA)
to achieve this.

In Section 2, we revisit the algorithms in the literature which are important for our
development and in Section 3, we propose our new algorithm, presenting both the linear
and nonlinear approaches to the algorithm. We demonstrate a very powerful property
of the algorithm, which can overcome the issue of finding an inverse by using principal
projections, which is needed for the solution in Section 4. We discuss some real data analysis
in Section 5 and we close with a discussion section.

2. Literature Review on SVMs

In this section, we review some of the algorithms in the SVM family that were useful
for the development of our idea. We start with the classic SVM by [1] and then we present
the Least Squares SVM approach by [8]. Finally, we discuss the Minimum Class Variance
SVM (MCVSVM) by [9]. All the algorithms were initially developed in the simple case
where data are separable, and then extended in the soft margin case where the data are not
linearly separable. In this paper, we talk about the most general approach, that is, the soft
margin approach.

2.1. Support Vector Machines (SVMs)

The classic SVM algorithm was proposed by [1]. In the most general case, to find the
optimal separating hyperplane, it was proposed to solve the following optimization problem:

min
1
2

ψTψ + λ
n

∑
i=1

ξi

under the constraints:

yi(ψ
Txi − t) ≥ 1 − ξi, ξi ≥ 0,

where (ψ, t) ∈ Rp × R is the pair that characterizes the hyperplane that has equation
ψTX − t = 0, λ is a scalar known as the cost or the misclassification penalty, and the ξi’s
are slack variables which denote misclassification distances. If a point is correctly classified,
the slack variable ξi associated with it is set to 0, and if the point is incorrectly classified,
the ξi denotes the distance of the variable to the to the hyperplane.

To find the solution to the optimization problem above, one uses the Lagrangian
multipliers and tries to minimize the following Lagrangian equation:

L(ψ, t, ξ, α, β) =
1
2

ψTψ + λ
n

∑
i=1

ξi −
n

∑
i=1

αi(1 − ξi − yi(ψ
Txi − t))−

n

∑
i=1

βiξi

=
1
2

ψTψ + λ1Tξ − αT(1 − ξ − y ⊙ (ψTx − t))− βTξ

where y = (y1, . . ., yn)T ∈ Rn, x = (x1, . . ., xn)T ∈ Rp×n, 1 = (1, . . ., 1)T ∈ Rn, t =
(t, . . ., t)T ∈ Rn, α = (α1, . . ., αn)T ∈ Rn, β = (β1, . . ., βn)T ∈ Rn, and ξ = (ξ1, . . ., ξn)T ∈ Rn.
Using the derivatives, one finds the Karush–Kuhn–Tucker (KKT) equations:
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∂L
∂ψ

= ψ − x(α ⊙ y) = 0 ⇒ ψ = x(α ⊙ y),

∂L
∂t

= αTy = 0 ⇒ αTy = 0,

∂L
∂ξ

= λ − α − β = 0.

By replacing the result of the first derivative in the Lagrangian equation, one gets:

L(ψ, t, ξ, α, β) = 1
2 (x(α ⊙ y))Tx(α ⊙ y) + λ1Tξ − αT(1 − ξ − y ⊙ ((x(α ⊙ y))Tx − t))− βTξ

= 1
2 (α ⊙ y)TxTx(α ⊙ y) + αT1 − (λ1 − α − β)Tξ + (α ⊙ y)TxTx(α ⊙ y) + tαTy.

Now, the last term is equal to 0 from the result in the second KKT equation above, and
the third term is 0 by the third KKT equation. Hence, the above Lagrangian equation
reduces to:

L(α, β) = αT1 − 1
2
(α ⊙ y)TxTx(α ⊙ y)

subject to the constraint 0 < α < λ1. This is known as the dual problem. One can
use quadratic programming optimization to solve the dual problem to obtain α, which
is essential in estimating the normal vector of the optimal hyperplane according to the
solution in the first KKT equation above.

Two of the most important features of the classic SVM algorithm is the use of the
hinge loss in the objective function to be minimized and the fact that, in constructing the
hyperplane, only points that are incorrectly classified are used, as well as points that are
closer to the hyperplane. This gives a form of sparsity to the SVM, as not all points are
needed to construct the hyperplane. At the same time, it is computationally expensive as it
requires the solution of a quadratic programming optimization problem.

2.2. Least Squares Support Vector Machines (LSSVMs)

A least squares approach was proposed by [8], which essentially changes the geometry
of the problem from the way [1] framed it. It changes the hinge loss to the square loss,
which allows one to take a least squares approach and find the solution analytically. At the
same time, they changed the constraints from inequalities to equalities, allowing for the
ξi’s to be either positive or negative, which implies that all the points are needed to find he
optimal hyperplane, removing the sparsity of the classic SVM algorithm.

In the Least Squares SVM (LSSVM), one tries to find the optimal hyperplane by
minimizing the following objective function:

min
1
2

ψTψ + λ
n

∑
i=1

ξ2
i

under the constraints:

yi(ψ
Txi − t) = 1 − ξi.

By replacing the equality constraint in the objective function, one gets that is needed to
solve the objective function:

min
1
2

ψTψ + λ
n

∑
i=1

[1 − yi(ψ
Txi − t)]2.
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To find the values of the pair (ψ, t) which minimizes this objective function, one needs to
take the derivative with respect to both parameters. Here, we rewrite the objective function
by denoting r = (ψT, t)T and reexpress the above as:

rT I∗p,1r + λ
n

∑
i=1

[1 − yi(rTx∗i )]
2

where x∗i = (xT
i ,−1) and I∗p,q is the (p + q)× (p + q) diagonal matrix which has 1 on the

first p diagonal elements and 0 on the last q diagonal elements. In matrix form, we can
write this as:

rT I∗p,1r + λ(1n − DY X∗r)T(1n − DY X∗r)

where X∗ = (X,−1n) is the n × (p + 1) matrix which contains the variables X and an extra
column of −1’s, and DY is the diagonal matrix that has the vector Y = (Y1, . . ., Yn) on the
diagonal. Taking the derivative we have:

2I∗p,1r − 2λ(X∗)TDY (1n − DY X∗r)

which, if we set it to equal 0, gives the solution:

r =

(
I∗p,1

λ
+ (X∗)TX∗

)−1

(X∗)TDY 1n

where we use the fact that DY DY = In, the n × n identity matrix, to simplify the notation.
We are mostly interested in ψ = [r]p where [·]p denotes the first p entries in a vector or the
first p rows of a matrix, depending on the type of argument being used.

As one can see from the developments in this section, LSSVM does not need quadratic
optimization as it has an analytic solution and it is therefore much faster to find the equation
of the optimal hyperplane.

2.3. Minimum Class Variances Support Vector Machines (MCVSVMs)

A different extension of the SVM algorithm was proposed by [9], which is called
Minimum Class Variance SVM (MCVSVM). As its name suggest, this algorithm is focused
on finding the optimal hyperplane, not only by maximizing the margin, but also by mini-
mizing the class variance when projected on the normal vector. This method was inspired
by Fisher’s linear discriminant analysis [10], as it uses information from the distribution
of the classes to achieve better classification results. It is also interesting that the authors
showed that their approach can be used in a large p small n setting, despite using the
inverse of the pooled class covariance matrix (which is not invertible in large p small n
settings) in their solution.

In the Minimum Class Variance SVM (MCVSVM), one tries to find the optimal hyper-
plane by minimizing the following objective function:

min
1
2

ψTΣwψ + λ
n

∑
i=1

ξi

under the constraints:

yi(ψ
Txi − t) ≥ 1 − ξi, ξi ≥ 0

where Σw is the pooled covariance matrix as a weighted average of the covariance matrices
of the classes.
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Using the KKT equations, the solution of the hyperplane is found using:

ψ = Σ−1
w x(α ⊙ y)

3. New Method: LS-MCVSVM

As we said in the introduction, our objective in this section is to introduce the Least
Squares extension of the MCVSVM algorithm. This will allow us to utilize the advantages
of both algorithms in an effort to create a much broader algorithm than the already existing
one. First of all, the new algorithm is computationally very fast as it does not need quadratic
optimization due to the use of the least squares approach to the MCVSVM algorithm. It
is also an algorithm that utilizes the variability within each class due to the the use of
the MCVSVM.

Therefore, the new algorithm minimizes the following objective function:

min
1
2

ψTΣwψ + λ
n

∑
i=1

ξ2
i (1)

under the equality constraints:

yi(ψ
Txi − t) = 1 − ξi, (2)

Using a similar approach as the LSSVM which we described in the review in the
previous section, we replace the equality constraint in the objective function to get the new
objective functions:

min
1
2

ψTΣwψ + λ
n

∑
i=1

[1 − yi(ψ
Txi − t)]2

We set r = (ψT, t)T and we rewrite the optimization function as:

rTr + λ
n

∑
i=1

[1 − yi(rTx∗i )]
2

where Σ∗
w = diag(Σw, 0) a (p + 1)× (p + 1) matrix and x∗i = (xT

i ,−1). We can also write
this in matrix form as:

rTΣ∗
wr + λ(1n − DY X∗r)T(1n − DY X∗r)

where X∗ = (X,−1n) is the n × (p + 1) matrix which contains the variables X and an extra
column of −1’s, and DY is the diagonal matrix that has the vector Y = (Y1, . . ., Yn) on the
diagonal. Now, if one takes the derivative and set it equal to 0, the solution is as follows:

r =

(
Σ∗

w
λ

+ (X∗)TX∗
)−1

(X∗)TDY 1n

where, as before, r = (ψT, t)T and Σ∗
w is a (p + 1)× (p + 1) matrix which has Σw in the first

p × p submatrix and everything else is completed with zeroes. We omitted the details of
the development as it is very similar to the one described in the LSSVM above.

It is also important to note that there are similar developments in the nonlinear setting.
Let ϕ be a functions such that ϕ : Rp → Rq where q >> p is the dimension of the feature
space where the points are mapped to be separated linearly. Then, we can define the within
sample variance in the ΣΦ

w in the feature space as:

ΣΦ
w = ∑

x∈C−
(ϕ(x)− µΦ

C−)(ϕ(x)− µΦ
C−)

T + ∑
x∈C+

(ϕ(x)− µΦ
C+)(ϕ(x)− µΦ

C+)
T
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where C−, C+ denote the points in each class and µΦ
C−, µΦ

C+ the means of the predictor
vectors when transformed by ϕ to the feature space.

This means that the optimization problem we are solving involves the minimization
of the following objective function:

min
1
2

ψT
ΦΣΦ

w ψΦ + λ
n

∑
i=1

ξ2
i

under the equality constraints:

yi(ψ
T
Φϕ(X i)− tΦ) = 1 − ξi,

which will give us the solution:

rΦ =

(
(ΣΦ

w )∗

λ
+ ϕ∗(X)Tϕ∗(X)

)−1

(ϕ∗(X))TDY 1n

where rΦ = (ψT
Φ, tΦ)T, (ΣΦ

w )∗ = diag(ΣΦ
w , 0), and ϕ∗(X) = (ϕ(X)T, 1)T.

4. Addressing Singularity Using Principal Projections

As one can see in the discussion in the previous section, in order to solve the optimiza-
tion problem and find r, we need the inverse matrix of:

A =
Σ∗

w
λ

+ (X∗)TX∗

which may not be invertible. In this section, we will try to address the possible singularity of
this matrix and demonstrate how one can overcome this difficulty using principal projections.

We first assume that the eigenvalues of A form an orthonormal basis. Then, we can
define the space A spanned by the eigenvectors corresponding to the nonzero eigenvalues
of A and the space A⊥ spanned by the eigenvectors corresponding to the zero eigenvalues
of A. Therefore, we can write each vector in a (p + 1)-dimensional space as r = ϕ + ζ,
where ϕ ∈ A and ζ ∈ A⊥.

We also note that the optimization problem in (1) alongside the constraint in (2) can be
rewritten as:

min
1
2

rTΣ∗
wr + λ

n

∑
i=1

ξ2
i

under the equality constraints:

yi(rTx∗i ) = 1 − ξi,

and when we replace ξi from the constraint to the optimization, the above simplifies to:

min
1
2

rTΣ∗
wr + λ

n

∑
i=1

(1 − yi(rTx∗i ))
2

which, in matrix form, looks like:

min
1
2

rT(Σ∗
w + λ(X∗)T(X∗))r + λn + 2λrT(X∗)TDY1

which can also be rewritten as:

min
1
2

rT

(
Σ∗

w
λ

+ (X∗)T(X∗)

)
r + n − 2rT(X∗)TDY1
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where, if we replace the definition of A, we get:

min
1
2

rT Ar + n − 2rT(X∗)TDY1. (3)

From this, we can see that by essentially replacing r with ϕ + ζ we have:

min
1
2

ϕT Aϕ + ζT Aζ + n − 2ϕT(X∗)TDY1 − 2ζT(X∗)TDY1.

where the term ζT Aζ = 0, since Aζ = 0 as ζ ∈ A.
Furthermore, it is important to note that if ζT Aζ = 0 then, because both Σ∗

w
λ and

(X∗)T(X∗) are nonnegative matrices, one can show that ζT Σ∗
w

λ ζ = 0 and ζT(X∗)T(X∗)ζ = 0.
From the latter, one can infer that all points x∗i are projected on the same point under ζ,
which leads to the fact that ζT(X∗)T = k, which makes the last term a constant which can
be ignored. Therefore, the optimization problem (3) is equivalent to:

min
1
2

ϕT Aϕ + n − 2ϕT(X∗)TDY1. (4)

Now, this means we can solve the problem in a space isomorphic to A and, essentially,
we can choose to do it on the space spanned by the eigenvectors corresponding to the
nonzero eigenvalues of A. These can be found using the matrix (p + 1)× d matrix P (where
d is the number of nonzero eigenvalues of A), which has for columns the eigenvectors
corresponding to the nonzero eigenvalues. This means the data can be projected to the new
data X† = X∗P. Similarly, we can project ϕ to get η = PTϕ. Therefore, we can show that
the objective function (4) is equivalent to:

min
1
2

ηTPT APη+ n − 2ηTPT(X∗)TDY1.

which simplifies to:

min
1
2

ηT A†η+ n − 2ηT(X†)TDY1. (5)

where A† = PT AP = PT Σ∗
w

λ P + PT(X∗)TX∗P which is a d × d matrix and is also equal to
Σ†

w
λ + (X†)TX†. That is, Σ†

w is the within variance when X∗ is replaced with X†. Therefore,
we have a projection problem which uses the projected data X† in the lower dimensional
space (dimension d) only and it is equivalent to the original problem in (5). The solution of
this problem is:

η = (A†)−1
(

X†
)T

DY 1n

which uses the inverse of the A†, which is nonsingular by construction.

5. Real Data Experiments

To demonstrate the performance of the new algorithm, we ran an analysis on eight
datasets. All eight datasets are from the UCI Machine Learning repository. Since we do not
discuss multicategory SVM approaches in this paper, we have chosen datasets that have
only two classes, or, in the case of multiple classes, we merged together all the classes but
the first to create two classes. The datasets we used are summarized in Table 1.
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Table 1. Dataset description. All source links start with ‘https://archive.ics.uci.edu/dataset’ and
were valid on the final access on 25 January 2024.

Dataset Observations Features Source, Citation

Iris 150 4 /53/iris , [11]

Haberman’s 306 3 /43/haberman+s+survival, [12]

Ionosphere 351 34 /52/ionosphere, [13]

Breast Cancer 699 9 /15/breast+cancer+wisconsin+original, [14]

Diabetes ≈253,000 21 /891/cdc+diabetes+health+indicators, [15]

Fertility 100 10 /244/fertility, [16]

Seeds 210 7 /dataset/236/seeds, [17]

Banknote 1372 5 /267/banknote+authentication, [18]

We split the data into 60% training, 20% testing, and 20% validation datasets and we
reported the misclassification rates in the validation dataset, where we use the linear kernel
to find an optimal hyperplane and calculate the quantities. The reported quantities in
this paper are the average of 10 iterations. Table 2 summarizes the mean misclassification
rates and the standard errors. We see that the four algorithms are relatively close, and
the least squares approaches (either the classic LSSVM or our proposed methodology,
which combines the least squares approach with the minimum class variance) to performed
slightly better in most cases.

Table 2. Overall misclassification errors (standard errors) for each algorithm in each dataset. The best
algorithm for each dataset is highlighted in bold.

Datasets
Algorithm SVM LS SVM MCV SVM LSMCV SVM

Iris 0 (0) 0 (0) 0 (0) 0 (0)

Haberman’s 0.27 (0.002) 0.25 (0.002) 0.27 (0.002) 0.25 (0.002)

Ionosphere 0.14 (0.002) 0.14 (0.002) 0.14 (0.002) 0.14 (0.002)

Breast Cancer 0.04 (0.000) 0.04 (0.000) 0.04 (0.000) 0.04 (0.000)

Diabetes 0.24 (0.001) 0.23 (0.001) 0.24 (0.001) 0.23 (0.001)

Fertility 0.17 (0.010) 0.12 (0.005) 0.17 (0.009) 0.12 (0.005)

Seeds 0.07 (0.001) 0.06 (0.001) 0.04 (0.001) 0.03 (0.001)

Banknote 0.01 (0.000) 0.03 (0.000) 0.01 (0.000) 0.03 (0.000)

In addition to the misclassification rate, we calculated the average value of the pre-
cision, the recall, and the F1 score in each dataset. We present the results in Figures 1–3.
As we can see, the performance of the algorithms is very similar across the different metrics.
In some cases, our method performs better than the rest (i.e., diabetes and seeds datasets)
and in some cases, not as well (i.e., fertility). The differences are small, with our method
being very close to the LSSVM performance. In the seeds dataset, our method is better than
the LSSVM algorithm, but, in that case, it is very close to the MCVSVM algorithm. This is
another indication that our method is able to simultaneously capture the advantages that
both the LSSVM and MCVSVM algorithms offer.

https://archive.ics.uci.edu/dataset
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Iris Habermans Ionosphere BreastCancer Diabetes Fertility Seeds Banknote
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Figure 1. Barcharts show the precision for the four different algorithms on the 8 datasets.

Iris Habermans Ionosphere BreastCancer Diabetes Fertility Seeds Banknote
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LSSVM
MCVSVM
LSMCV

Figure 2. Barcharts show the recall for the four different algorithms on the 8 datasets.

Most importantly, we can see in Table 3 that both the least square approaches are
significantly faster. This difference is actually statistically significant. To demonstrate this,
we ran two sample paired nonparametric tests, i.e., Wilcoxon signed-rank tests, for all
six pairs of algorithms. The comparison between our algorithm, LSMCVSVM, and SVM
gives a p-value of 0.0078, and the comparison between LSMCVSVM with MCVSVM gives
a similar p-value, i.e., 0.0078. The comparison between LSSVM and LSMCVSVM gives a
nonsignificant p-value (0.7422), which is expected as both algorithms use the least squares
approach and have similar running times. The computational gains can be further sig-
nified if one extrapolates this difference in massive datasets where we may have a few
million datapoints.
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Iris Habermans Ionosphere BreastCancer Diabetes Fertility Seeds Banknote

F1 score

Datasets

F1
 s

co
re

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SVM
LSSVM
MCVSVM
LSMCV

Figure 3. Barcharts show the F1 score for the four different algorithms on the 8 datasets.

Table 3. Duration of each algorithm for each dataset (in seconds)—the faster algorithm for each
dataset is highlighted in bold.

Datasets
Algorithm SVM LS SVM MCV SVM LSMCV

Iris 0.229 0.00931 0.205 0.0207

Haberman’s 0.953 0.0305 0.783 0.0334

Ionosphere 1.29 0.0593 1.12 0.0784

Breast Cancer 8.79 0.241 6.34 0.217

Diabetes 10.4 0.342 8.003 0.307

Fertility 0.139 0.00786 0.125 0.016

Seeds 0.441 0.0164 0.372 0.0224

Banknote 59.3 1.67 49.1 1.42

For the interested reader, the codes are available at [19].

6. Conclusions

In this work, we presented a new algorithm for classification which combines two
existing algorithms. The first algorithm used is the LSSVM, which is one of the fastest
algorithms in the SVM family of algorithms, as it has analytical solution. The second
algorithm is the MCVSVM, which is an algorithm that generalizes better than the classic
SVM algorithm, and it also allows for the variability in each class to be taken into account.
The new algorithm, called LSMCVSVM, as demonstrated in our numerical section, has
comparable performance with other classic SVM algorithms, like the SVM, LSSVM, and
MCVSVM, but it runs in a fraction of time due to the fact that there is no need to solve
a quadratic programming optimization problem as one can find an analytic solution.
The computational gains of the new algorithms are similar to the computational gains
of the LSSVM and the performance is very similar to the MCVSVM, demonstrating that
the combination of the two algorithms creates a new algorithm which also combines the
advantages of the two algorithms.

Another important aspect of the new method and an important contribution of this
paper is the use of principal projections to address the singularity in the solution of r.
Since the solution of LSMCVSVM requires the use of the inverse of a matrix, without this
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equivalence, we would not have been able to apply this algorithm to large p small n
problems. This provides a way to do this, without the need to introduce other difficult
and time-consuming methods for inverse matrix approximation to find the singularity in
the matrix.

Other Approaches and Future Work

The SVM literature is full of variants of the classic SVM algorithm since its introduction
by [1]. One can combine any of the existing algorithms and create new algorithms, which
can be extremely valuable tools in the classification framework. For example, one of
the many ideas that can be implemented is the combination of our algorithm with the
two-cost alternative, which is an idea used to handle imbalanced classes, i.e., problems
where one class has a lot more points than the other class. In this case, it makes sense that a
misclassification from the small class should be more costly. Therefore, ref. [20] proposed the
use of two different costs or penalties. By giving a bigger penalty to the smaller class, we try
to minimize the effect of misclassifying one point may have. The theoretical development
of this variation is similar to the development demonstrated in the previous section for
LSMCVSVM; therefore, we present only a small introductory development and leave
further development for future work. We start first by stating the optimization problem
people need to optimize, which is the minimization of the following objective function:

min
1
2

ψTΣwψ + λ1

n

∑
i:yi=1

ξ2
i + λ−1

n

∑
i:yi=−1

ξ2
i

under the equality constraints:

yi(ψ
Txi − t) = 1 − ξi,

If someone follows the proper procedure, then the solution will be:

r = (ΛDΣ∗
w + (X∗)TX∗)−1(X∗)TDY 1n

where ΛD is the diagonal matrix that has, as the ith entry on the main diagonal, the quantity
(1/λ1)I(Yi = 1) + (1/λ−1)I(Yi = −1), where I(·) denotes the indicator function. There
are different suggestions to select the two different costs, although the most frequently
used in the literature (see for example [21]) is λ1/λ−1 = n−1/n1 where ni is the number
of observations in class i = {−1, 1}. Here, we emphasize that the topic of imbalance is a
very rich topic, in terms of literature, with hundred methods available on how to address
imbalance in the SVM framework (see [22] for a comprehensive overview). Therefore, we
prefer to address this topic separately, as this will give us a way to check the impact that
our new algorithm may have in addressing imbalance.

In addition to the development of new classification methodologies by utilizing the
SVM algorithm and its variants, in the literature, there are more ideas which use the
SVM type of algorithms to implement new approaches. One such way of utilizing the
new algorithm beyond the classification framework is its use in the sufficient dimension
reduction (SDR) framework. Recently, SVMs have been introduced extensively in SDR (see
for example [23–25]), and, therefore, much more developments may be studied in SDR by
utilizing new algorithms. The least squares approach, which allows for the use of analytic
solution to estimate the optimal hyperplane, might lead to the use of a real-time dimension
reduction method, as was demonstrated by [23].

Finally, an anonymous reviewer pointed out to us that there was a similar work that
was performed much earlier than our work. The work by [26] discusses a similar idea, as
indicated by the title. Unfortunately, we were not able to find a version of that paper to
read and compare it to our work. The only pointer to the paper we found online was in
Chinese, which was impossible for us to read. It may be an interesting exercise for someone
to compare our developments with their development and see if there are any differences.
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