
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 6 2 4 4/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Xu, Zich u a n, Qiao, H aiya n g, Liang, Weifa, Xu, Zhou, Xia, Qiufen, Zhou, Pan, R a n a,

O m e r F. a n d Xu, Wenzh e n g 2 0 2 4. Flow-tim e mi ni miza tion for ti m ely d a t a s t r e a m

p roc e s sing in UAV-aid e d m o bile e d g e co m p u ting. ACM Tra n s a c tions on S e n so r

N e t works 2 0 (3) , 5 8 . 1 0 .11 4 5/36 4 3 8 1 3

P u blish e r s p a g e: h t t p://dx.doi.or g/10.11 4 5/364 3 8 1 3

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Flow-Time Minimization for Timely Data Stream

Processing in UAV-Aided MEC

Abstract—Unmanned Aerial Vehicles (UAVs) have gained in-
creasing attentions by both academic and industrial communities,
due to their flexible deployments and efficient line-of-sight com-
munications. Recently, UAVs equipped with base stations have
been envisioned as a key technology to provide ubiquitous 5G
network services for mobile users. In this paper, we consider
the timely processing of data streams from mobile users by
network services in a UAV-aided Mobile Edge Computing (MEC)
network, where each UAV carries a 5G small-cell base station
for communication and data processing. We first formulate
a flow time minimization problem by jointly caching services
and offloading tasks of mobile users to the UAV-aided MEC,
with the aim to minimize the flow time that is the duration
from the issuing of a user request to its completion, subject
to resource and energy capacities on UAVs. We then propose
a spatial-temporal learning optimization framework. Built upon
the framework, we devise an online algorithm with a competitive
ratio for the problem, by leveraging the round-robin scheduling
and dual fitting techniques. We finally evaluate the performance
of the proposed algorithms. Experimental results show that the
proposed algorithms outperform their comparison counterparts
by reducing the flow time at least 19% on average.

I. INTRODUCTION

Recently, the technique of UAVs carrying small-cell base

stations with computing units (such as neural network accel-

erators and FPGAs) is considered as a novel mobile edge com-

puting (MEC) technique in 5G and beyond 5G networks [7],

[22], [26]. UAVs with small-cell base stations can serve mobile

users in various emergent events [23], such as earthquakes and

storm floods, by dynamically dispatching UAVs to extend the

coverage areas of terrestrial macro base stations. For example,

Wing Loong from China has been used to provide emergency

communications in 2021 Henan flood [28]. Further, venues

holding large-scale events, or traffic hotspots will have a surge

in demand for network services, and the terrestrial macro base

stations may be too overwhelmed and congested to serve such

demand from mobile users. In such cases, UAVs can also

implement computing intensive AI services by carrying AI

accelerators and FPGAs, when terrestrial base stations are out

of the range or congested in peak hours [5], [7], [26].

Data stream processing of mobile users in the emergent

events is a fundamental type of network services in a UAV-

aided MEC, such as continuous object recognition and video

streaming processing. Such data streams usually require to

be processed timely; otherwise, the emergent events may not

be resolved. For example, if the data streams assigned to a

congested macro base station cannot be alleviated timely by

computing units in UAVs, users may have degraded quality of

experiences (QoE). The flow time, which is defined as the time

from the data generation time to its completion time of data

processing, is emerging as an effective metric to guarantee the

real-time data processing of UAVs. In this paper, we study

the problem of flow-time minimization for processing data

streams in a UAV-aided MEC, by jointly caching services from

ground base stations and offloading user requests to the cached

services in UAVs with small-cell base stations.

Minimizing the flow-time for user requests with continuous

data streams in a UAV-aided MEC is challenging. First, the

arrival times and the data volumes of user requests have spatial

and temporal correlations and can be impacted by various side

information, such as festivals, weather, etc. Thus, minimiz-

ing the flow time of user requests requires precise spatial-

temporal predictions that embed such side information; other-

wise, requests in some locations may experience prohibitively

long processing delays. Second, the performance of service

caching and task offloading depend on intertwining factors,

such as energy statuses of UAVs, distances between UAVs,

and resource capacities of UAVs. How to jointly consider

dispatching UAVs to strategic locations, cache services, and

offload tasks of mobile users is challenging. Third, given

data stream processing requests issued by users in different

locations, minimizing the flow time of one request may lead

to the starvation of an other request with long processing times

or latencies. How to find a fine-grained tradeoff between the

fairness and the flow time among different user requests?

To the best of our knowledge, we are the first to investigate

the flow-time minimization in a UAV-aided MEC, by joint

service caching and task offloading for timely data stream

processing in a UAV-aided MEC. Although there are studies

on leveraging UAVs to collect data for Internet of Things (IoT)

networks [1], [6], [12], [21], [38], [41], [42], the continuous

data stream processing is largely ignored. Further, none of

the studies aimed to minimize the flow time of requests. In

addition, studies on service caching and task offloading have

been explored in conventional MECs [11], [13], [31], [33],

[45], instead of UAV-aided MECs.

The main contributions of this paper are as follows.

• We formulate a novel optimization problem of flow

time minimization problem in a UAV-aided MEC, by

formulating an Integer Linear Program (ILP) solution.

• We propose a spatial-temporal learning optimization

framework, and an online algorithm with a provable com-

petitive ratio for the problem by leveraging the Round-

Robin (RR) scheduling and dual fitting techniques.

• We evaluate the performance of the proposed algorithms

by extensive simulations, and results show that the per-

formance of our algorithms outperform an existing study

by reducing the flow time at least 19% on average.

The remainder of the paper is organized as follows. Sec-

tion II summarizes related studies. Section III introduces the

system model and defines the problem. Section IV presents an

exact solution to the offline version of the problem. Section V

details a learning-based optimization framework. Section VI

evaluates the performance of the proposed algorithms, and

Section VII concludes the paper.

II. RELATED WORK

UAV-aided MECs are gaining much attention due to high

flexibilities provided by UAVs. Most existing studies however

focused on communications relay, content caching, and data

collection or sensory coverage in UAV-aided networks [1],

[6], [12], [16], [21], [38], [41], [42], [46]. Joint service

caching and task offloading in UAV-aided MECs with flying

base stations have not been considered in these mentioned

studies. For example, Xu et al. [32] investigated the problem

of minimizing the deployment cost of UAVs to collect data

from IoT networks. Kong et al. [12] studied the problem of

scheduling a number of UAVs to serve mobile users in an

area to optimize system load, latency, and throughput. Zhong

et al. [41] aimed to maximize the throughput of a UAV-

aided and self-organized device-to-device (D2D) network, by

considering uncertainties of user locations and channel models.

None of the above mentioned studies can be directly or

indirectly applied to data stream processing, as the problems

are fundamentally different. For example, if UAVs serve as

a communication relay, the computing resource allocation

usually do not need to considered. Also, the data collection in

UAV-enabled IoT networks assumes that UAVs only need to

collect data without processing the collected data.

Meanwhile, there are several studies on provisioning data

processing services in UAV-aided MECs [3], [4], [6], [15],

[25], [29], [30], [34], [36], [37], [39], [44], they did not

consider the timely processing of data streams from mobile

users. Also, they did not find a non-trivial trade-off between

the fairness on different user request processing and the

responsiveness of network services. For example, Chen et

al. [3] investigated a problem of optimizing the quality-of-

experience of wireless devices in UAV networks. Yu et al. [36]

studied the problem of minimizing the weighted sum of service

delays of all devices and the energy consumption of a single

UAV. In contrast, Lin et al. [15] considered the coordination

of individual rationality and social benefits in UAV-assisted

MEC system. Although Zhang et al. [40] aimed to optimize

the delay of processing data streams, but they did not consider

the service caching and task offloading in MEC.

III. PRELIMINARIES

A. System Model

We consider a UAV-aided MEC G = (V,E), where a set of

macro base stations and a set of UAVs jointly provide services

for mobile users in a given area. UAVs attached with small-

cell base stations can fly to a location to alleviate the pressure

of macro base stations in emergent events, such as network

failures or hotspot traffic [5], [7], [26], as shown in Fig. 1. Let

BS be a set of macro base stations, and bso ∈ BS is a macro

base station with 1 ≤ o ≤ |BS|. Denote by U a set of UAVs

in the area, and let u ∈ U be a UAV. We have V = BS ∪ U .

The small-cell base station attached to each UAV u has a

computing capability that can implement services required by

mobile users. Mobile users can access the services provided

by the MEC network via connecting to small-cell base stations

carried by UAVs in U . E represents the communication links

between base stations, UAVs, and mobile users.

Macro base station

UAV2

Cached services

UAV1

Services Task
offloading

Overloaded or out-of-service small-cell base stations

Small-cell base station

Mobile user
Server

Fig. 1: An example of the UAV-aided MEC G = (V,E).

B. Data Stream Processing, Aerial Service Caching and Task

Offloading

AI services, such as video stream processing and real-time

speech recognition, are deployed into macro base stations of

the network. Such services require processing continuous data

streams. When the macro base stations are congested, the

timely processing of data streams may not be possible. Instead,

we can cache such services from macro base stations to UAVs

that carry small-cell base stations, which is referred to as

aerial service caching. In this way, the UAVs with cached

services then fly to the macro base stations to provide timely

data stream processing. Let S be the set of services and Si

a service in S . Assuming that the storage of each UAV is

adequate, each service has its container image pre-stored in

the small-cell base station of each UAV. If Si is cached into

a UAV u, a service instance will be created by running the

container with the pre-stored image of Si.

Let rj be a request of a mobile user. Each rj requires to

stream an amount of data to a UAV for processing. Denote

by Dj the total volume of data of rj . Assuming that time

is divided into equal time slots, and each time slot t lasts τ
time units. Each rj arrives into the system at a time slot that is

denoted by aj . Once rj is scheduled, it can send its data stream

to the MEC continuously until all its data Dj are uploaded

for processing. Meantime, the system starts processing the

uploaded data. Notice that requests arrive into the system

dynamically. Also, the arrival time and data volumes of each

request rj are uncertain in the very beginning. Similar to [24],

we assume that the processing result of each request is small in

size, and the time of transmitting such results can be ignored.

Let Cj be the time slot when the system completes the

processing of request rj . The flow time of request rj is

Cj − aj . (1)

Offloading rj requires its service Si being cached in a UAV.

However, caching the service of rj permanently in a UAV may

not be possible due to the resource capacities on a UAV. We

thus need to update the state data generated while processing

data by the cached instance of Si with its original instance in

a macro base station. We assume that the volume of state data

of Si is φjDj , where φj is a given constant with 0 < φj ≤ 1.

C. UAV Dispatching, Hovering, and Data Processing

In emergent events, data stream processing usually lasts for

long periods. For example, the object recognition in a flooded

area usually needs to be performed continuously based on the

live feed of videos, to identify all trapped people. We thus

assume that continuous processing of data streams lasts for

tens of minutes or even hours. We further assume that each

UAV is dispatched to a hovering location for processing data

streams one time, and it is called back from its hovering

location until it finished the data stream processing or its

energy level is low. Unlike data collection in IoT, UAVs can

finish the data collection of an IoT device quickly, where

re-dispatching energy is the major energy consumption. Re-

dispatchments of UAV thus are not considered in this paper.

There are infinite potential hovering locations for UAVs in

the sky. Following standard practices [12], [16], to make the

problem tractable, we partition the hovering region of UAVs

into a finite number of identical squares, according to both the

transmission range of UAVs and the number of user requests

in the area. We make sure all requests can be responded if

each square has a single UAV, as shown in Fig. 2. Let Q be

the number of squares of the area. The center of the qth square

is denoted by coordinates (xq, yq, Hq), where q is in the range

of [1, Q], Hq is the hovering height of the UAV in square q.

Monitoring area (height = 0)

Communication link
between macro base
stations and UAVs

Communication link
between UAVs and
mobile users

Hovering region

Fig. 2: The UAV hovering model.

Each dispatched UAV u can process the data as long as it

receives the first unit of data of request rj . Therefore, if rj is

scheduled to be processed in a number of time slots after its

arrival time slot aj , its data stream has to be forwarded to the

selected UAV in its scheduled time slots. To ensure the fairness

of resource usages by different user requests and to avoid

starvation of requests, we assume that each UAV adopts a

preemption-enabled operating system, such as real-time Linux.

Each request rj can be preempted by other requests and

resumed for later execution [19]. The data of each rj can

thus be processed at different time slots since its arrival. Let

zjtq be the amount of request rj’s data that is scheduled for

processing in the UAV of square q at time slot t, where zjtq
is an integer with 1 ≤ zjtq ≤ Dj .

D. Energy Models of UAVs

UAVs have limited battery power. Each dispatched UAV is

recalled back for charge until it is done its service or using up

its energy. As such, most of the energy consumed by each UAV

is due to its activities when hovering in its dispatched location.

We thus assume that each UAV preserves enough energy

capacity for dispatching and returning for charge, which is

denoted by ENother and given as a priori. Let EN total be

the total energy capacity of a UAV. The energy consumption

due to activities when hovering in its dispatched location

can not be greater than EN total − ENother, which include,

communicating with mobile users and macro base stations,

processing offloading tasks, and hovering.

Each UAV u ∈ U receives data from mobile users and

updates the states of its cached services to their original

instances of the services in macro base stations. Let ercvj,q (zjtq)
be the energy consumption of the UAV in square q due to

receiving the amount zjtq of data from request rj , then,

ercvj,q (zjtq) = (zjtq/Rj,q) · P
r
u , (2)

where P r
u is the data reception power of a UAV, Rj,q

is the achieved data rate of the wireless channel between

the mobile user of rj and the UAV in square q [44].

Recall that UAV u hovers at the center (xq, yq, Hq) of

square q, the distance dj,q can be calculated by dj,q =
√

(xj − xq)2 + (yj − yq)2 +Hq
2, where (xj , yj , 0) is the lo-

cation of the mobile user of rj . Let eupdq,o (zjtq) be the energy

consumption of the UAV in square q due to transmitting the

state data of the cached service instance of service Si from

the UAV in square q to its nearest macro base station bso at

time slot t, then

eupdq,o (zjtq) = (φj · zjtq/Rq,o) · P
t
u, (3)

where P t
u is the transmitting power of UAV u, and Rq,o is the

achieved data rate via the wireless channel between the UAV

in square q and base station bso that can be obtained similar

to the calculation of Rj,q .

Following existing studies [8], [18], the energy consumption

of a UAV per computing unit is proportional to its workload

and the maximum power per computing unit. The workload

of processing data is proportional to the amount of data [34],

[44], the workload of rj thus is bj · zjtq , where bj is a given

constant. Let ecmp(zjtq) be the amount of energy consumed

due to processing an amount zjtq of request rj’s data in the

UAV of square q, then

ecmp(zjtq) = τ
(

(ξ · bj · zjtq/τ)P
max + P ′

)

,

where ξ is a given parameter that is used to calculate the access

rate of computing units of a UAV as shown in [8], Pmax is

the maximum power of all computing units of a UAV, and P ′

is the sum of the idle power and the leakage power of a UAV.

Denote by ζ the energy consumption rate on hovering. The

energy consumption of each UAV on hovering thus is

ehov(t) = τ · ζ. (4)

E. Transmission and Resource Consumption Models

Once the UAV in square q receives the first unit Dunit of

data of request rj in each time slot t, the data processing

procedure will start immediately. For example, an application

of object detection can start processing a stream of images

once it receives the first few images. The time that can be

used for data processing is τ − Dunit

Rj,q
, if rj is scheduled in

time slot t, where Rj,q is the data transmission rate between

the mobile user of rj and the UAV in square q. We assume

that the data of most requests can be processed within a time

of δ by assigning amount η of computing resource to process a

unit amount of its data [11], [35]. To speed up the processing,

the UAV can assign more computing resources to process the

data. Specifically, in time slot t with length τ , if UAV u wants

to process zjtq amount of data of rj within τ − (Dunit/Rj,q)
time, the amounts of computing resource needed is

C(zjtq) = η · zjtq
(

δ/(τ − (Dunit/Rj,q))
)

. (5)

F. Problem Definition

Given a UAV-aided MEC G = (V,E) providing AI ser-

vices for a set R of user requests, we aim to enhance the

responsiveness of AI services by minimizing the total flow

time of all requests. This however may not be fair for some

requests that are forced to wait for prohibitive long times

before being scheduled. Thus, to strive for a fine balance

between the fairness and the flow time among requests, we

adopt the lk norm of flow time of requests, defined by

lk = (
∑

rj∈R
(Cj − aj)

k)1/k, (6)

where k is a fixed integer in the range of [1, 3]. The flow

time minimization problem in a UAV-aided MEC is to dispatch

UAVs in U to the Q squares of a monitoring area to serve

requests arrived within a given time horizon T (denote by

R the set of all requests arrived for the given time horizon

T), by caching the services in S to the dispatched UAVs and

offloading the tasks of requests to the UAVs, such that the lk-

norm flow time of all admitted requests is minimized, subject

to the computing capacity CR and energy capacity EN total

on each UAV.

IV. AN ILP FOR THE OFFLINE FLOW TIME MINIMIZATION

PROBLEM

In each time slot t, a portion data of each request rj may

be uploaded to a UAV for processing. We thus use zjtq to

denote the amount of data of request rj offloaded to the UAV

in square q for processing at time slot t, and z = {zjtq |
∀t, rj ∈ R, q ∈ [1, Q]+}. Let xt,q is a binary decision variable

that shows whether there is a UAV hovering in square q at

time slot t. The objective of the problem then is to

ILP: min
z

(
∑

rj∈R
(Cj − aj)

k)1/k, (7)

subject to the following constraints.
∑

t≥aj

∑

q
zjtq = Dj , ∀rj ∈ R (8)

∑Q

q=1
xt,q = |U|, ∀t (9)

∑

j:t≥aj

η · zjtq · δ/
(

τ −
Dunit

Rj,q

)

≤ xt,q · CR, ∀t, q ∈ [1, Q]+ (10)

∑

t,rj∈R
ercvj,q (zjtq) + eupdq,o (zjtq) + ecmp(zjtq) ≤ xt,qEN, (11)

zjtq ∈ [1, Dj]
+, (12)

where EN = EN total − ENother. Constraint (8) says that

request rj can only be implemented after its arrival and all its

data has to be processed. Constraint (9) guarantees that there

are |U| UAVs in all squares in any time slot. Constraint (10)

indicates the computing resource capacity of UAV u cannot

be violated, where the LHS of Ineq. (10) includes the time

used for transmitting an amount zjtq of rj to the UAV in

square q. Intuitively, if the transmission of a unit amount of

data Dunit takes longer time in time slot t, less time can

be used for processing zjtq amount of data. This means that

more computing resource is needed to speed up the process

to make sure the amount zjtq of data is processed within time

slot t. Constraint (11) ensures that the energy consumption of

each UAV does not exceed its energy capacity. Constraint (12)

guarantees that zjtq is an integer in the range of [1, Dj].

V. A LEARNING-BASED ONLINE OPTIMIZATION

FRAMEWORK FOR THE FLOW TIME MINIMIZATION

PROBLEM

We here propose a learning-based optimization framework

for the problem. We first propose an online algorithm to

schedule requests to the UAVs, if UAVs are dispatched and

data volumes are given; otherwise, we devise a learning-based

algorithm to dispatch UAVs.

A. An Online Algorithm with a Number of Dispatched UAVs

and Given Data Volumes

Given a number of dispatched UAVs and the data volumes,

we need to assign requests to the dispatched UAVs. To this

end, we create a number of virtual UAV copies of each UAV

u with each having the same location as u. Denote by u′

l

the lth virtual UAV of UAV u. We ensure that each virtual

UAV should have the sufficient resource to implement a single

request, and each virtual UAV u′

l is assigned to at most a

single request. That is, any virtual UAV has enough resource

to implement the request with the maximum data volume that

is transmitted via the wireless link with the minimum rate.

Then, each u′

l has an amount

C′(Dmax) = η ·Dmax

(

δ/(τ −Dunit/Rmin)
)

(13)

of computing resource, where Dmax = max{Dj | ∀rj ∈ R},

and Rmin = min{Rj,q} for mobile users in the transmission

range of UAV u. Similarly, to avoid quick energy depletion, we

assume that the amount of communication energy consumed

by each virtual UAV u′

l is due to the communication with the

farthest mobile user. That is, for a unit amount of data virtual

UAV u′

l consumes the amount
P r

u

Rmin
and

P t
u

R′

min

of energy for

receiving and sending a unit amount of data, respectively,

where Rmin = min{Rj,q} for mobile users in the transmission

range of UAV u, R′

min = min{Rq,o} for all macro base

stations in the transmission range of UAV u. The number of

virtual UAVs of UAV u is

L = ⌊CR/C′(Dmax)⌋. (14)

Let z′jt be the amount of data of rj that is scheduled for

processing by one virtual UAV at time slot t, and z′ = {z′jt |
∀t, rj ∈ R}. Following studies in [2], [10], we approximate

the objective in ILP by

LP : min
z′

(

(t− aj)
k/Dj +Dk

j /Dj

)

· z′jt, (15)

subject to the following constraints.
∑

t≥aj

z′jt ≥ Dj , ∀rj ∈ R (16)

∑

j:t≥aj

z′jt ≤ |U| · L ·Dmax, ∀t (17)

∑

t
z′jt · e

′
unit · L ≤ EN, ∀rj ∈ R (18)

0 ≤ z′jt ≤ Dj , (19)

where e′unit is the maximum energy consumption of transmit-

ting, updating, and processing a unit amount of data by each

virtual UAV. Constraint (16) ensures that all the data of rj is

processed. Constraint (17) guarantees that the total volume of

data dispatched to UAVs at each time slot does not exceed

the total amount of data that can be processed by all virtual

UAVs. Constraint (18) says that the energy consumption of

each request does not exceed the capacity of each virtual UAV.

The flow time minimization problem then is reduced to

the problem of allocating data portions of each request rj to

different time slots. The allocated data portions in each time

slot are then scheduled by the RR scheduling policy with |U|·L
virtual UAVs, and we call the requests that are scheduled for

execution and have not finished processing of all data as alive

requests. To enhance the service responsiveness, we adopt an

immediate-dispatch rule. That is, the assignment of a request

has an impact on the admissions of other requests in time slot

t. On the arrival of request rj , it is assigned to a virtual UAV

that has a minimum impact on the flow time of existing tasks

in the system, where the impact is defined as

ωj,t = (ρj,t · k · (t− aj)
k−1)/nt + k · (t− aj)

k−1 − ǫ, (20)

where ρj,t is a discount factor on the impact of scheduling

rj on the currently alive requests, nt is the number of alive

requests at time slot t, and ǫ is a constant. The detailed steps

of the algorithm are shown in Algorithm 1, referred to as OL.

B. A Learning-Based Online Optimization Framework

We now remove the assumption that the data volumes are

given and the UAVs are already dispatched. We propose an

online optimization framework based on predict-and-dispatch

strategy for the problem. That is, we first predict the data vol-

umes of user requests, and then dispatch or re-dispatch (when

UAVs are already dispatched) UAVs to squares according to

the prediction results. However, if the data volumes of requests

are predicted every time slot, it may lead to frequent UAV

dispatchment, thereby wasting energy on flying around. We

thus let p be a period with multiple time slots, and predict

the data volumes of requests every period. This means that

when there are fewer time slots in a period, the UAVs will be

dispatched more frequently.

Algorithm 1 OL

Input: G = (V,E), a set R of user requests that arrive into the system
dynamically, a set U of UAVs that are already dispatched to Q squares.

Output: Schedules for all requests in R.
1: Create L virtual copies of each UAV u by Eq. (14);
2: for each time slot t do

3: Assign each arrived request rj to the central queue of the system;
4: Sort unfinished and newly arrived requests in increasing order of their

impact defined in Eq. (20), and denote by Rt sorted requests;
5: for each request rj in Rt do

6: U ′
j ← ∅ ;

7: for each UAV u in U do

8: if the mobile user of rj is in the transmission range of UAV u

then

9: Add all virtual UAV u′
l of UAV u to set U ′

j ;

10: Assign each request rj in Rt to a virtual UAV in U ′
j , by the RR

scheduling policy;
11: All assigned requests to each virtual UAV share the same amount of

resource of the UAV;
12: return A scheduling for all requests.

E
n
c
o
d
e
r

D
e
c
o
d
e
r

P
r
e
-
t
r
a
in

In
fe
r
e
n
c
e

time

Mobile users

Embedded
features

External features

UpdateDispatch

convLSTM4

Output

convLSTM3

convLSTM2

convLSTM1

Prediction
(MC dropout)

Fig. 3: The learning-based online optimization framework.

The data volumes of requests usually have spatial and

temporal patterns due to the mobility of users. To learn such

spatial and temporal patterns, our idea is to use a grayscale

image to represent the accumulative data volumes of requests

in a hovering region for a given time period. It is known

that the convolutional neural networks (CNN) architecture

is a powerful tool to capture spatial information while the

long short-term memory (LSTM) method [9] is capable to

perform accurate time series predictions. We thus make a full

customization of convLSTM [27] to predict the spatial and

temporal patterns of data volumes of requests, by taking a

series of grayscale images as inputs. The prediction results

are finally used to guide the dispatchment of UAVs.

In the following, we describe the details of the proposed

learning optimization framework.

Spatial-temporal prediction: Mobile users in each square

may form into different groups, and their data volumes are

correlated in each group. We thus divide each square of the

area into a number of cells with smaller sizes. We predict the

data volumes in a fine granularity of cells. Let M and N be the

number of rows and columns of all cells in the area. Denote

by cellm,n the cell located at row m and column n. In the

grayscale image of a period, its pixel in row m and column n
denotes the data volume in cellm,n. Then, the gray value of

the pixel in cellm,n is Dp
m,n/maxDp

m,n, where Dp
m,n is the

total data volume of all requests from cellm,n in period p.

We now describe the prediction algorithm based on a series

of given grayscale images. Considering that the data volumes

of requests are affected by many types of side information,

such as festivals, weather, etc., we need to embed these

external features into the neural network, such that a higher

accuracy can be obtained. To this end, we refine the neural

network in [43] by replacing the traditional LSTM with the

convLSTM, as shown in Fig. 3. Specifically, the learning

optimization framework first trains the encoder and decoder

(blue dashed box in Fig. 3), using a series of grayscale images.

Since the decoder cannot predict with external features, the

framework then uses the trained encoder to train the neural

network used for prediction (red dashed box in Fig. 3).

To reduce the dispatch distance of UAVs, we predict the

accumulative data volume of all requests in each square

by looking-ahead a number of periods. The rationale be-

hind is that prediction each period may lead to frequent re-

dispatchment of UAVs. Let wo be the number of time periods

that we look-ahead. However, considering the longer we look

ahead, the lower the prediction accuracy will be, we put an

exponentially decreasing weight on the predicted values of the

wo periods. We then dispatch UAVs according to the weighted

sum of data volumes of wo periods. Let D̂′

q(p) be the predicted

data volume of square q in the beginning of period p, then,

D̂′
q(p) = maxDp

m,n

wo
∑

p′=1



hp′
∑

cellm,n∈q

Dp−1+p′

m,n

maxDp−1+p′
m,n



, (21)

where hp′

is the weight of period p′ with 0 < hp′

< 1.

UAV dispatchment: Given the predicted data volumes

of requests in different squares, we now dispatch UAVs

to their hovering regions. Note that the UAV in a single

square can implement the requests in its nearby squares.

If a few neighbour squares have a surge of data volumes

of requests, there may be a UAV in each of the squares.

This unfortunately may lead to the under utilization of UAV

computing resources. To further avoid UAV gathering around

a few squares and leave some squares unattended, we adopt

an incremental deployment algorithm. That is, we dispatch

a UAV to square argmaxq D̂
′

q(p). The requests are then

assigned to each dispatched UAV greedily. Afterwards, we

update D̂′

q(p) by setting it to the remaining unassigned data

volumes. The above procedure continues until all data volumes

of requests are assigned to UAVs. The detailed steps are shown

in Algorithm 2, referred to as OL_LEARN.

C. Algorithm Analysis

We first give the dual of LP. Let αj , βt, and γj be the dual

variables of Constraints (16), (17), and (18), respectively. The

dual objective then is to

LP-DUAL: max
∑

j
αj −

∑

t
βt −

∑

j
γj , (22)

αj

Dj
− βt

|U|LDmax
−

γjLe′unit

EN
≤

((t−aj)
k

Dj
+

Dk
j

Dj

)

, (23)

αj , βt, γj ≥ 0. (24)

We now define a new setting for dual variables to capture the

marginal impact of the arrival of request rj . Motivated by [10],

Algorithm 2 OL_LEARN

Input: G = (V,E), a set R of user requests that arrive into the system
dynamically, a set U of UAVs.

Output: The total flow time of all requests in R.
1: Divide the hovering region into M × N cells with equal sizes, where

each square have multiple cells;
2: for each period p do

3: Convert the data volumes of the cells to grayscale images;
4: Predict the grayscale images of future wo periods, through adopting

the prediction method in Fig. 3, to obtain the predicted data volume

D̂′
q(p) of each square q;

5: for each UAV u in U do

6: Dispatch the UAV to the square with the maximum remaining

predicted data amount D̂′
q(p);

7: Update the D̂′
q(p) as the remaining unprocessed data volume;

8: Invoke algorithm OL to schedule requests in period p.
9: return Scheduling for all requests and the total flow time.

we divide time slots into two sets: overloaded time slots and

underloaded time slots, denote by To and Tu, respectively.

In overloaded time slots in To, UAVs are busy in the RR’s

schedule as the number of requests assigned to each UAV is

higher than the number L of its virtual UAVs. This means that

there exists at least one virtual UAV having multiple requests

scheduled to it. For the underloaded time slots in Tu, each

virtual UAV has at most one request assigned to it.

The assignment of request rj impacts the alive requests that

are currently under executions in overloaded and underloaded

time slots. We adopt an accounting method to capture this

impact on the flow time of requests. Let Ralv(t,≤ aj) be

the set of alive requests arrived prior to rj at time slot t.
Specifically, we set αj to

αj =
∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)

(

ρj′,t′ · k · (t′ − aj′)
k−1)/nt′ (25)

+
∑

t′∈[aj ,Cj]∩Tu;j′∈Ralv(t,≤aj)
k · (t′ − aj′)

k−1
(26)

− ǫ · F k
j . (27)

The setting of parameter ρj′,t′ in αj is because that rj may

only be assigned to portion of the UAVs, and it may not impact

the requests arrived at time slot t′ with t′ < t. Request rj can

only be assigned to a virtual UAV if the UAV’s transmission

range covers the mobile user of request rj . In Eq. (26), each

virtual UAV has at most one assigned request, and its impact

on the total flow time is not amortized by other requests. Since

Ralv(t,≤ aj) contains request rj , we have to subtract the flow

time of rj by ǫ · F k
j .

We then set dual variables βt and γj . The scheduling of rj
has an immediate impact on Constraint (17) during the time

period when it is alive, and also has the following impact when

it completes. Since βt =
∑

j βjt, where βjt = (1/2−3ǫ)·1(t ∈

[aj , Cj + λ · Fj]) · F
k−1

j , where λ denotes a parameter that

captures the length of time of rj’s impact after its completion,

and 1(t ∈ [aj , Cj + λ · Fj]) = 1 if t ∈ [aj , Cj + λ · Fj] and 0

otherwise. Similarly, we set the dual variable γj by

γj =
(

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)

ρj′,t′(
1
4
− 2ǫ)e′unit

nt′
· F k−1

j

)

+
(

∑

t′∈[aj ,Cj]∩Tu

j′∈Ralv(t,≤aj)

(1/4− 2ǫ)e′unitF
k−1
j

)

− ǫe′unitF
k
j .

Given the dual variable settings, our analysis follows three

steps.

Step 1: We first show the dual feasibility by showing that the

dual Constraint (23) is met Lemma 1.

Lemma 1: The settings of the dual variables meet the dual

Constraint (23) of LP-DUAL.

Proof: We bound αj/Dj as follows.

αj

Dj
=

1

Dj

(

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)

(ρj′,t′k(t
′ − aj′)

k−1)/nt′

)

(28)

+
1

Dj

(

∑

t′∈[aj ,Cj]∩Tu

j′∈Ralv(t,≤aj)

k(t′ − aj′)
k−1

)

−
1

Dj
ǫ · F k

j . (29)

We analyze the bounds of terms (28) and (29) of RHS of

the above equation, respectively. Specifically, assuming that

e′unit ≤ 1/Dj and k ·Dj ≥ ǫFj , we have

(1/Dj)
(

(

∑

t′∈[aj ,Cj]∩Tu

j′∈Ralv(t,≤aj)

k · (t′ − aj′)
k−1)− ǫ · F k

j

)

(30)

≤ (1/Dj)(Dj/µ)k · F k−1
j − (1/Dj)ǫ · F

k
j (31)

≤ (1/Dj)
(

k(k/ǫ)k−1Dk
j

)

− (ǫF k
j)/Dj (32)

≤ k(k/ǫ)k−1Dk
j − ǫ · e′unit · F

k
j , since e′unit ≤ 1/Dj

≤ k(k/ǫ)k−1Dk
j − ǫ · e′unit · F

k
j +

(L · e′unit/E)
(

∑

t′∈[aj ,Cj]∩Tu

j′∈Ralv(t,≤aj)

(1/4− 2ǫ)e′unitF
k−1
j

)

. (33)

The derivation from Ineq. (30) to (31) is due to that at each

underloaded time slot, each request is guaranteed with a speed

of µ to process its data. Also, the derivation from Ineq. (31)

to (32) is due to that k ·Dj ≥ ǫFj .

We then analyze the bound of (28). Note that the scheduling

of request rj needs to meet Constraint (17). rj contributes

to βt before and after its completion. The reason is that the

resource it occupied may influence the scheduling of other

future requests, as the virtual UAVs are overloaded and may

take much longer times to finish their assigned requests.

Let B(t′) be the set of requests that contribute to B(t′) by

a positive quantity, i.e., B(t′) = {rj′ | t
′ ∈ [aj′ , Cj′ +λFj′]}.

We thus divide Ineq. (28) into two parts, i.e.,

(28) = 1/Dj

(

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)

(ρj′,t′ · k · (t′ − aj′)
k−1)/nt′

)

=
1

Dj

(

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)\B(t)

ρj′,t′ · k · (t′ − aj′)
k−1

nt′

)

(34)

+
1

Dj

(

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)∩B(t)

ρj′,t′ · k · (t′ − aj′)
k−1

nt′

)

. (35)

We now analyze the bound of Ineq. (34). That is, for any

request rj and t ≥ aj , let ρ = max{ρj′,t′}, we have

(1/Dj)
∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)\B(t)

(ρj′,t′ · k · (t′ − aj′)
k−1)/nt′

≤ (1/Dj)
∑

t′∈[aj ,min{t,Cj}]∩To

j′∈Ralv(t,≤aj)\B(t)

(ρ · k · (t′ − aj′)
k−1)/nt′

≤ (1/Dj)
∑

t′∈[aj ,min{t,Cj}]∩To

j′∈Ralv(t,≤aj)\B(t)

(

(ρ · k · (t′ − aj′)
k−1)/nt′

+
(

(1/2)ρ(1/4− 2ǫ)e′unitF
k−1
j′

)

/nt′

)

≤
1

Dj

∑

t′∈[aj ,min{t,Cj}]∩To

j′∈Ralv(t,≤aj)\B(t)

(ρ · k · (1
λ
)k−1 · (t′ − aj′)

k−1

nt′

+
(

1/2ρ(1/4− 2ǫ)e′unitF
k−1
j′

)

/nt′

)

, since 1/λ ≥ 1

≤ (1/Dj)k · (1/λ)k−1 · (t′ − aj′)
k−1+

L · e′unit

2E

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)\B(t)

(ρ(1/4− 2ǫ)e′unitF
k−1
j′

nt′

)

,

since L · e′unit/EN > 1 and Dj ≥ 1. (36)

The bound of Ineq. (35) can be derived similarly, omitted

due to space limitation. That is, assuming that µL ≤ (1/4 −
2ǫ)e′unitF

k−1

j for each request rj and t ≥ aj , we have

(1/Dj)
∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)∩B(t)

(ρj′,t′ · k · (t′ − aj′)
k−1)/nt′

≤ βt/(Q · L ·Dmax) + (L · e′unit)/(2 · E)

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t,≤aj)∩B(t)

(ρ(1/4− 2ǫ)e′unitF
k−1
j′

nt′

)

. (37)

Combining inequalities (33), (36), and (37), we conclude that

the dual constraint is met.

Step 2: We then show that the obtained solution is feasible to

the flow time minimization problem by the following lemma.

Lemma 2: The solution obtained by algorithm OL is feasible.

Proof sketch: The solution feasibility of the algorithm is

to show that Constraints (8), (10) and (11) are met. We can

show the feasibility according to the setting of virtual UAVs.

Omitted, due to space limitation.

Step 3: We finally analyze the competitive ratio.

Theorem 1: The competitive ratio of Algorithm 1 is

O(k
ρ+ǫ

), where ρ = max{ρj′,t′}, and ǫ is a constant.

Proof: We first show the bound on the dual objective in

Eq. (22). To this end, we show the lower bound of
∑

j αj .

Let Ralv(t) be the set of alive requests in time slot t, then,

∑

j
αj =

∑

j

((

∑

t′∈[aj ,Cj]∩To

j′∈Ralv(t
′,≤aj)

(ρj′,t′ · k · (t′ − aj′)
k−1)

nt′

)

+
(

∑

t′∈[aj ,Cj]∩Tu

j′∈Ralv(t
′,≤aj)

k · (t′ − aj′)
k−1

)

− ǫ · F k
j

)

(38)

=
(

∑

t′∈To

j∈Ralv(t
′)

ρj,t′ · k · (t′ − aj′)
k−1|Ralv(t

′,≥ aj)|/nt′
)

+
(

∑

t′∈To;j∈Ralv(t
′)
k · (t′ − aj′)

k−1
)

− ǫ ·RR (39)

≥ 1/2
∑

t′∈To;j∈Ralv(t
′)
ρ/b · k · (t′ − aj′)

k−1

+
(

∑

t′∈To;j∈Ralv(t
′)
k · (t′ − aj′)

k−1
)

− ǫ ·RR (40)

≥ (ρ/2b− ǫ)RR, (41)

where Ralv(t,≥ aj) is the set of alive requests at time slot

t and have arrived no earlier than rj , RR is the objective of

RR scheduling, ρ/b = min{ρj,t′}, and b is a constant. The

derivation from Eq. (38) to Eq. (39) is because request rj is

counted by every request that arrives after time slot aj . To

derive inequality (40), we see the requests in Ralv(t) in pairs:

the earliest arrived request is counted by nt′ times while the

latest arrived request is counted by once; then,

(ρ · k · (t′ − aj)
k−1 · nt′ + ρ · k · (t′ − ai)

k−1)/nt′ (42)

≥ (nt′ + 1)/2nt′(ρ · k · (t′ − aj)
k−1 + ρ · k · (t′ − ai)

k−1)

≥ ρ/2(k · (t′ − aj)
k−1 + k · (t′ − ai)

k−1).

Summing over all pairs in Ralv(t), inequality (40) follows.

We then show an upper bound on
∑

t βt. By the definition

of βt,
∑

t
βt =

∑

j,t
βjt =

∑

j
(1 + λ)Fj(1/2− 3ǫ)F k−1

j

= (1 + λ)(1/2− 3ǫ)RR ≤ (1/2− 3ǫ+ ρ/4)RR, if λ = ρ/2.

We finally show an upper bound on
∑

j γj , i.e.,

∑

j

γj =
(

∑

t′∈To

j∈Ralv(t
′)

ρj,t′(
1
4
− 2ǫ)e′unit|Ralv(t

′,≥ aj)|F
k−1
j

nt′

)

+
(

∑

t′∈To

j∈Ralv(t
′)

(1/4− 2ǫ)e′unitF
k−1
j

)

− ǫe′unitF
k
j (43)

< (1/4− 2ǫ)e′unit

(

∑

t′∈To,j∈Ralv(t
′)
ρF k−1

j

+
∑

t′∈To,j∈Ralv(t
′)
F k−1
j

)

− ǫ · e′unit ·RR (44)

≤
(

(1/2− 4ǫ)e′unit − ǫe′unit

)

RR, since ρ ≤ 1 (45)

≤ (1/2e′unit − 5e′unitǫ)RR. (46)

The derivation from (43) to (44) is similar to that in (42).

That is, considering two requests that are counted by nt′ and

nt′ − 1 times respectively, we have (ρF k−1

j · nt′ + ρF k−1

i ·

(nt′ − 1))/nt′ < ρF k−1

i .

By the dual variable settings, the objective is Ω(ρ+ǫ) times

RR’s kth power. Let OPTILP and OPTLP be the optimal

solutions of ILP and LP, respectively. Let F ′ be the obtained

solution by algorithm OL. We have F ′/OPTLP ≥ c · (ρ+ ǫ),
where c is a given constant. By using the same argument as

that of [10], we have OPTLP ≤ 2 ·OPTILP . The competitive

ratio of algorithm OL thus is O(k
ρ+ǫ

).

VI. EXPERIMENTS

A. Parameter Settings

We consider 1, 000m×1, 000m square area with two macro

base stations, which is evenly divided into 25 squares. We use

two different datasets to simulate the distribution of mobile

users. One is the real-world location information of 6,080

mobile users in the dataset [20] and the other dataset has

272 mobile users in the EUA-dataset [14]. Each mobile user

generates requests following the Poisson distribution. Each

UAV has an energy capacity of 3×105 joules, the energy con-

sumption rate ζ on hovering is 150 J/s. The communication

distance of each UAV is 224 meters, and the hovering height of

a UAV is lower than its maximum communication distance.

The data rate of wireless channel is set according to [44].

The maximum power of all computing units of UAV Pmax is

75 W , and the sum of P idle and P leak is 10W [8], [18]. The

transmitting power of mobile users and UAVs is 3.16 W [37].

The data volume Dj of each request is randomly withdrawn

from [0.5, 2] Mega Bytes (MB) [17]. The duration of a time

slot τ is set as 0.1 seconds, and there are 1, 000 time slots in

each time period p. The number wo of looking-ahead periods

of the prediction algorithm is 6, i.e., 10 minutes. Dunit is set to

1KB, and the delay δ of processing the data of each request

is 0.2 seconds [31]. We set k = 2 of the lk-norm. Unless

otherwise specified, these parameters will be adopted in the

default setting. The values of the performance of the proposed

algorithms are the average of 15 random draws of the default

setting. The running times are obtained in a machine with a

3.20GHz Intel Core i7-8700 CPU and 16 GiB RAM.

We compared the proposed algorithms with the following

algorithms: (1) algorithm OL that adopts a one-time dis-

patchment of UAVs without re-dispatchment, referred to as

OL_FIX; (2) algorithm OL that randomly dispatches UAVs,

referred to as OL_RANDOM; (3) an algorithm that dispatches

UAVs based on LSTM predictions and OL, referred to as

OL_LSTM; (4) the first come first served algorithm, i.e.,

FCFS, which schedules the earliest arrived request first; (5)

the shortest job first, referred to as SJF, which schedules

the request with the minimum data volume; (6) a successive

convex approximation algorithm in [36], referred to as SCA,

which considers the optimization of task completion time

in UAV-aided MEC; and (7) an online convex optimization

method in [19], referred to as OCO, which aims to strike a

balance between fairness and latency. Since FCFS, SJF, SCA,

and OCO do not consider the UAV dispatchment, we adopt the

method in OL_LEARN for the UAV dispatchment.

B. Performance Evaluation

We first evaluate the performance of OL_LEARN against

OL_FIX, OL_RANDOM and OL_LSTM on both datasets with

10 UAVs. Fig. 4 (a) and (b) show that OL_LEARN has the

lowest total flow time on both datasets. The reason is that

the OL_LEARN predicts the data volumes of requests via the

spatio-temporal prediction of the convLSTM, which can well

capture clustering and mobility of mobile users. Meanwhile, it

adopts an incremental deployment strategy, which can better

optimize the coverage of base stations in each hovering region.

5 9 13 17 21
The number of requests

10
00

20
00

To
ta

l f
lo

w
tim

e
(s

)

×103

OL_LEARN
OL_LSTM

OL_RANDOM
OL_FIX

(a) Total flow time on IoT-dataset.

5 9 13 17 21
The number of requests

20
00

40
00

To
ta

l f
lo

w
tim

e
(s

)

×103

OL_LEARN
OL_LSTM

OL_RANDOM
OL_FIX

(b) Total flow time on EUA-dataset.

Fig. 4: The performance of algorithms OL_LEARN.

We then study the performance of algorithms OL_LEARN,

FCFS, SJF, SCA, and OCO on IoT-dataset, with 10 UAVs by

varying the number of requests from 1, 000 to 21, 000. We can

see from Fig. 5 (a) that the total flow time by OL_LEARN is

the lowest. The reason is that OL guarantees the fairness on

scheduling requests via the RR policy. Since OL_LEARN lever-

ages a tradeoff of the total flow time and energy consumption,

in Fig. 5 (b) it is observed that OL_LEARN has the lowest

average energy consumption per request of the algorithms.

We can also see that the average energy consumption of

all algorithms increases first from 1, 000 to 5, 000 requests,

peaking at 9, 000 requests, and decreases afterwards. This is

because the amortized energy consumption decreases with the

increase of the number of requests. However, as the number

of requests keeps increasing, more UAVs are needed, leading

to more energy consumption. The running time of OL_LEARN

is at around 70 seconds almost the same as OCO and FCFS.

1 5 9 13 17 21
The number of requests

0

20
00

40
00

To
ta

l f
lo

w
tim

e
(s

)

x 103

OL_LEARN
FCFS

OCO
SJF

SCA

(a) Total flow time.

1 5 9 13 17 21
The number of requests
22

27

32
36
40

Av
er

ag
e

en
er

gy
co

ns
um

pt
io

n
(J)

x 103

OL_LEARN
FCFS

OCO
SJF

SCA

(b) Average energy consumption.

Fig. 5: The performance of algorithms OL_LEARN, FCFS,

SJF, SCA, and OCO.

We then investigate the total energy consumption of UAVs

of algorithm OL_LEARN due to dispatching, hovering, and

communicating and processing in different time periods p
during the time when they are providing services for mobile

users, by dispatching 10 UAVs to serve a number of 40,000

requests. From Fig. 6 (a), we can see that the hovering

energy accounts for the highest proportion of the total energy

consumption of UAVs. In addition, the energy consumption

due to communicating and processing grows the faster than

dispatching. The reason is that we consider continuous pro-

cessing of data streams from users, which usually lasts longer

time than that spent on dispatching.

We also study the minimum and maximum energy con-

sumption due to communicating and processing of the 10

UAVs of algorithms OL_LEARN, OCO, SCA, FCFS, and SJF

with 40,000 requests. In Fig. 6 (b), each curve represents the

energy consumption due to communicating and processing of

an individual UAV, where a solid line shows the minimum

energy consumption due to communicating and processing of

a UAV and a dashed line represents the maximum one. We

can see that OL_LEARN has the smallest difference (shaded

area with blue color) between the maximum and minimum

energy consumption due to communicating and processing of

a UAV. Namely, OL_LEARN balances the energy consumption

of UAVs, because it assigns requests as evenly as possible to

each UAV to prevent some UAVs from running out of energy.

We also evaluate the performance of OL_LEARN,

OL_LSTM, OL_RANDOM, and OL_FIX in terms of the number

of implemented requests and data volumes processed by

10 UAVs. As shown in Fig. 7, algorithms OL_LEARN and

OL_LSTM can enable UAVs to process more requests and

data volumes. Besides, OL_LEARN outperforms OL_LSTM in

terms of both the number of implemented requests and the data

volume, because OL_LEARN fully utilizes the spatio-temporal

information and side information of data volumes.

1 2 3 4 5
Period

0
2
4
6

En
er

gy
 c

on
su

m
pt

io
n

(J)

×105

Dispatching
Communicating & Processing

Hovering

(a) The total energy consumption
of the dispatched 10 UAVs.

1 2 3 4 5
Period

0

5

10

En
er

gy
 c

on
su

m
pt

io
n(

J)

×103

MAX

MIN

OL_LEARN
FCFS

OCO
SJF

SCA

(b) The maximum and minimum
energy consumption of a UAV.

Fig. 6: Energy consumption of UAVs.

1 2 3 4 5
Period

1

2

3

4

Th
e

nu
m

be
r o

f r
eq

ue
st

s

×104

OL_LEARN
OL_LSTM

OL_RANDOM
OL_FIX

(a) The number of requests.

1 2 3 4 5
Period

2

4

Da
ta

 v
ol

um
es

 (M
B)

×104

OL_LEARN
OL_LSTM

OL_RANDOM
OL_FIX

(b) Data volumes.

Fig. 7: The number of requests and data volumes processed

by UAVs.

10 12 14 16 18
The number of UAVs
0

20
00

40
00

To
ta

l f
lo

w
tim

e
(s

)

OL_LEARN
FCFS

OCO
SJF

SCA

(a) Total flow time.

10 12 14 16 18
The number of UAVs

30

40

50

Av
er

ag
e

en
er

gy
co

ns
um

pt
io

n
(J)

OL_LEARN
FCFS

OCO
SJF

SCA

(b) Average energy consumption.

Fig. 8: The impact of the number |U| of UAVs.

We finally evaluate the impact of the number |U| of UAVs

on the performance of OL_LEARN, FCFS, SJF, SCA, and

OCO on IoT-dataset, by varying |U| from 10 to 18. From

Fig. 8, we can see that the total flow time of OL_LEARN keeps

decreasing, and the flow time of FCFS, SJF, SCA, and OCO

fluctuates. This is due to the fact that the system will have

more processing capacity with the growth of |U|; however,

FCFS, SJF, SCA, and OCO do not give equal sharing among

UAVs to all requests. Also, we can see that the average energy

consumption of the algorithms is generally on the rise with

the growth of |U|. The reason is that the system will consume

more energy on hovering with the growth of |U|.

VII. CONCLUSION

In this paper, we studied the problem of joint service

caching and task offloading in a UAV-aided MEC. We aim to

minimize the total flow-time of all user requests while meeting

both computing and energy resource capacity constraints on

UAVs. We proposed a learning optimization framework, and

an online algorithm with a competitive ratio for the problem,

by leveraging the round-robin scheduling and dual fitting

analysis techniques. We evaluated the performance of the

proposed online algorithm against existing studies empirically.

Experimental results show that the proposed online algorithms

outperform existing studies by reducing the flow time at least

19% on average.

REFERENCES

[1] A. Azizi, S. Parsaeefard, M. R. Javan, et al.Profit maximization in 5g+
networks with heterogeneous aerial and ground base stations. IEEE

Transactions on Mobile Computing, Vol.19, No.10, pp. 2445–2460,
2020.

[2] N. Bansal and K. R. Pruhs. Server scheduling to balance priorities,
fairness, and average quality of service. SIAM Journal on Computing,
Vol. 39, No. 7, pp.3311–3335, SIAM, 2010.

[3] M. Chen, M. Mozaffari, W. Saad, et al. Caching in the sky: Proactive
deployment of cache-enabled unmanned aerial vehicles for optimized
quality-of-experience. IEEE Journal on Selected Areas in Communica-

tions, Vol. 35, No. 5, pp. 1046–1061, 2017.

[4] W. Chen, Z. Su, Q. Xu, et al. VFC-based cooperative UAV computation
task offloading for post-disaster rescue. Proc. of INFOCOM, IEEE,
2020.

[5] S. Dang, O. Amin, B. Shihada, et al. What should 6G be? Nature

Electronics, Vol. 3, No. 1, pp. 20–29, Nature Publishing Group, 2020.

[6] Y. Du, K. Wang, K. Yang, et al. Energy-efficient resource allocation in
UAV based MEC system for IoT devices. Proc. of GLOBECOM, IEEE,
2018.

[7] A. Fotouhi, H. Qiang, M. Ding, et al. Survey on UAV cellular commu-
nications: Practical aspects, standardization advancements, regulation,
and security challenges. IEEE Communications Surveys & Tutorials,
Vol. 21, No. 4, pp. 3417–3442, 2019.

[8] S. Hong and H. Kim. An integrated GPU power and performance model.
Proc. of ISCA, ACM, 2010.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

Computation, Vol. 9, No. 8, pp. 1735–1780, MIT Press, 1997.

[10] S. Im, J. Kulkarni, and B. Moseley. Temporal fairness of round robin:
Competitive analysis of Lk-norms of flow time. Proc. of SPAA, ACM,
2015.

[11] H. Jeong, H. Lee, C. Shin, and S. Moon. IONN: Incremental offloading
of neural network computations from mobile devices to edge servers.
Proc. of SoCC, ACM, 2018.

[12] X. Kong, N. Lu, and B. Li. Optimal scheduling for unmanned aerial
vehicle networks with flow-level dynamics. IEEE Transactions on

Mobile Computing, Vol.20, No. 3, pp. 1186–1197, 2021.

[13] C. Liu, M. Bennis, M. Debbah, and H. V. Poor. Dynamic task offloading
and resource allocation for ultra-reliable low-latency edge computing.
IEEE Transactions on Communications, Vol. 67, No. 6, pp. 4132–4150,
2019.

[14] P. Lai, Q. He, M. Abdelrazek, et al. Optimal edge user allocation in
edge computing with variable sized vector bin packing. Proc. of ICSOC,
Springer, 2018.

[15] W. Lin, T. Huang, X. Li, et al. Energy-efficient computation offloading
for UAV-assisted MEC: a two-stage optimization scheme. ACM Trans-

actions on Internet Technology, Vol. 22, No. 1, pp. 1533–5399, 2021.

[16] Y. Li, W. Liang, W. Xu, and X. Jia. Data collection of IoT devices using
an energy-constrained UAV. Proc. of IPDPS, IEEE, 2020.

[17] C. Luo, M. N. Satpute, D. Li, et al. Fine-grained trajectory optimization
of multiple UAVs for efficient data gathering from WSNs. IEEE/ACM

Transactions on Networking, Vol. 29, No. 1, pp. 162–175, 2021.

[18] C. Luo and R. Suda. A performance and energy consumption analytical
model for GPU. Proc. of DASC, IEEE, 2011.

[19] Y. Liu, H. Xu, and W. C. Lau. Online job scheduling with resource
packing on a cluster of heterogeneous servers. Proc. of INFOCOM,
IEEE, 2019.

[20] C. Marche, L. Atzori, V. Pilloni, and M. Nitti. How to exploit the social
internet of things: Query generation model and device profiles dataset.
Computer Networks, Vol. 174, p. 107248, Elsevier, 2020.

[21] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah. Drone small cells
in the clouds: Design, deployment and performance analysis. Proc. of

GLOBECOM, IEEE, 2015.

[22] Nokia. https://www.nokia.com/about-us/news/releases/2016/ 10/03/f-
cell-technology-from-nokia-bell-labs-revolutionizes-small-cell-
deployment-by-cutting-wires-costs-and-time. Accessed on Apr.

2022.

[23] Qualcomm. Paving the path to 5G: Optimizing
commercial LTE networks for drone communication.
https://www.qualcomm.com/news/onq/2016/09/06/paving-path-5g-

optimizing-commercial-lte-networks-drone-communication. Accessed

on Apr. 2022.

[24] Y. Qu, H. Dai, H. Wang, et al. Service provisioning for UAV-
enabled mobile edge computing. IEEE Journal on Selected Areas in

Communications, Vol. 39, No. 11, pp. 3287–3305, 2021.
[25] Z. Qin, H. Wang, Z. Wei, et al. Task selection and scheduling in UAV-

enabled MEC for reconnaissance with time-varying priorities. IEEE

Internet of Things Journal, Vol. 8, No. 24, pp. 17290–17307, 2021.
[26] W. Saad, M. Bennis, and M. Chen. A vision of 6G wireless systems:

Applications, trends, technologies, and open research problems. IEEE

Network, Vol. 34, No. 3, pp. 134–142, 2020.
[27] X. Shi, Z. Chen, H. Wang, et al. Convolutional LSTM network: A

machine learning approach for precipitation nowcasting. Proc. of NIPS,
Curran Associates, Inc., 2015.

[28] https://www.globaltimes.cn/page/202107/1229309.shtml. Accessed on

Apr. 2022.
[29] R. Wang, Y. Cao, A. Noor, et al. Agent-enabled task offloading in UAV-

aided mobile edge computing. Computer Communications, Vol. 149, pp.
324–331, Elsevier, 2020.

[30] D. Wei, J. Ma, L. Luo, et al. Computation offloading over multi-UAV
MEC network: A distributed deep reinforcement learning approach.
Computer Networks, Vol. 199, p. 108439, Elsevier, 2021.

[31] Q. Xia, Z. Lou, W. Xu, and Z. Xu. Near-optimal and learning-driven task
offloading in a 5G multi-cell mobile edge cloud. Computer Networks,
Vol. 176, p. 107276, Elsevier, 2020.

[32] W. Xu, T. Xiao, J. Zhang, et al. Minimizing the deployment cost of
UAVs for delay-sensitive data collection in IoT networks. IEEE/ACM

Transactions on Networking, Vol. 20, No. 2, pp. 812–825, 2022.
[33] Z. Xu, L. Zhou, S. Chi-Kin Chau, et al. Collaborate or separate?

distributed service caching in mobile edge clouds. Proc. of INFOCOM,
IEEE, 2020.

[34] Y. Xu, T. Zhang, Y. Liu, et al. UAV-assisted MEC networks with aerial
and ground cooperation. IEEE Transactions on Wireless Communica-

tions, Vol. 20, No. 12, pp. 7712–7727, 2021.
[35] Q. Yang, X. Luo, P. Li, et al. Computation offloading for fast CNN

inference in edge computing. Proc. of RACS, ACM, 2019.
[36] Z. Yu, Y. Gong, S. Gong, and Y. Guo. Joint task offloading and resource

allocation in UAV-enabled mobile edge computing. IEEE Internet of

Things Journal, Vol. 7, No. 4, pp. 3147–3159, 2020.
[37] L. Yang, H. Yao, J. Wang, et al. Multi-UAV enabled load-balance mobile

edge computing for IoT networks. IEEE Internet of Things Journal, Vol.
7, No. 8, pp. 6898–6908, 2020.

[38] C. You and R. Zhang. Hybrid offline-online design for UAV-enabled
data harvesting in probabilistic LoS channels. IEEE Transactions on

Wireless Communications, Vol. 19, No. 6, pp. 3753–3768, 2020.
[39] L. Zhang and N. Ansari. Latency-aware IoT service provisioning in

UAV-aided mobile edge computing networks. IEEE Internet of Things

Journal, Vol. 7, No. 10, pp. 10573–10580, 2020.
[40] Q. Zhang, J. Chen, L. Ji, et al. Response delay optimization in mobile

edge computing enabled UAV swarm. IEEE Transactions on Vehicular

Technology, Vol. 69, No. 3, pp. 3280–3295, 2020.
[41] X. Zhong, Y. Guo, N. Li, and Y. Chen. Joint optimization of relay

deployment, channel allocation, and relay assignment for uavs-aided d2d
networks. IEEE/ACM Transactions on Networking, Vol. 28, No. 2, pp.
804–817, 2020.

[42] C. Zhan, H. Hu, X. Sui, et al. Completion time and energy optimization
in the UAV-enabled mobile-edge computing system. IEEE Internet of

Things Journal, Vol. 7, No. 8, pp. 7808–7822, 2020.
[43] L. Zhu and N. Laptev. Deep and confident prediction for time series at

Uber. Proc. of ICDMW, IEEE, 2017.
[44] T. Zhang, Y. Xu, J. Loo, et al. Joint computation and communication

design for UAV-assisted mobile edge computing in IoT. IEEE Transac-

tions on Industrial Informatics, Vol. 16, No. 8, pp. 5505–5516, 2020.
[45] G. Zhao, H. Xu, Y. Zhao, et al. Offloading dependent tasks in mobile

edge computing with service caching. Proc. of INFOCOM, IEEE, 2020.
[46] L. Zhu, J. Zhang, Z. Xiao, et al. Millimeter-wave full-duplex UAV relay:

Joint positioning, beamforming, and power control. IEEE Journal on

Selected Areas in Communications, Vol. 38, No. 9, pp. 2057–2073, 2020.

	Introduction
	Related Work
	Preliminaries
	System Model
	Data Stream Processing, Aerial Service Caching and Task Offloading
	UAV Dispatching, Hovering, and Data Processing
	Energy Models of UAVs
	Transmission and Resource Consumption Models
	Problem Definition

	An ILP for the Offline Flow Time Minimization Problem
	A Learning-Based Online Optimization Framework for the Flow Time Minimization Problem
	An Online Algorithm with a Number of Dispatched UAVs and Given Data Volumes
	A Learning-Based Online Optimization Framework
	Algorithm Analysis

	Experiments
	Parameter Settings
	Performance Evaluation

	Conclusion
	References

