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Word sense disambiguation of
acronyms in clinical narratives
Daphné Chopard, Padraig Corcoran and Irena Spasić*

School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
Clinical narratives commonly use acronyms without explicitly defining their long
forms. This makes it difficult to automatically interpret their sense as acronyms
tend to be highly ambiguous. Supervised learning approaches to their
disambiguation in the clinical domain are hindered by issues associated with
patient privacy and manual annotation, which limit the size and diversity of
training data. In this study, we demonstrate how scientific abstracts can be
utilised to overcome these issues by creating a large automatically annotated
dataset of artificially simulated global acronyms. A neural network trained on
such a dataset achieved the F1-score of 95% on disambiguation of acronym
mentions in scientific abstracts. This network was integrated with multi-
word term recognition to extract a sense inventory of acronyms from a
corpus of clinical narratives on the fly. Acronym sense extraction achieved
the F1-score of 74% on a corpus of radiology reports. In clinical practice,
the suggested approach can be used to facilitate development of
institution-specific inventories.
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1 Introduction

Acronyms are formed as systematic abbreviations of frequently mentioned words and

phrases, which follow special capitalisation and blending patterns (1). Their primary

purpose is to make written communication more efficient in terms of space and time.

The readers’ familiarity with specific acronyms rather than their orthographic regularity

plays a critical role in rapidly interpreting their intended meaning (2). Therefore, not

only do the globally accepted acronyms pose no major difficulties in specialist

communication, but they in fact facilitate such communication between domain experts.

For example, clinical narratives feature extensive use of acronyms, which are not

defined explicitly in the corresponding documents.

Even though such acronyms pose no difficulty to their intended users, they can still

hinder the performance of natural language processing (NLP) algorithms (3, 4) when

clinical narratives need to be analysed automatically. For example, the use of acronyms

(e.g. “DVT”) obscures the corresponding phrase (e.g. “deep vein thrombosis”) whose

constituents (e.g. “thrombosis”) cannot be indexed and, hence, cannot be retrieved. On

the other hand, clinical acronyms are highly polysemous (5), e.g. “ED” can be

interpreted as “eating disorder,” “elbow disarticulation,” “emotional disorder,”

“emergency department” or “erectile dysfunction,” which may cause irrelevant

documents to be retrieved when using the acronym as a search term. These problems

can be resolved by automatically mapping acronyms to their correct senses in an

external dictionary (6) based on their context of use.
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2024.1282043&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fdgth.2024.1282043
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1282043/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1282043/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2024.1282043
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Chopard et al. 10.3389/fdgth.2024.1282043
This may be viewed as a word sense disambiguation (WSD)

problem (7), commonly approached by supervised learning

approaches, which are trained using a set of annotated examples.

Their performance depends largely on the amount of annotated

data used for training. However, the data annotation bottleneck

presents one of the key obstacles to supervised learning

approaches in clinical NLP (8). Patient privacy concerns further

narrow down this bottleneck by removing the possibility of

crowdsourcing annotation. Crowdsourcing remains an option for

annotating synthetic data, but it is difficult to scale when medical

expertise is required for accurate annotation.

To eliminate the manual data annotation bottleneck altogether,

we looked at the possibility of generating an annotated dataset

automatically. Namely, scientific writing conventions prescribe

that all acronyms need to be explicitly defined the first time they

are mentioned. Local acronym definitions can be removed from

text and used instead as sense labels. By doing so, we can

simulate the clinical narrative style of acronym usage and create

a large dataset that can be used to train supervised approaches to

WSD of clinical acronyms. This leads us to the main

contribution of this study. We describe an algorithm for WSD of

clinical acronyms, which offers two key novelties. First, it

requires no manual annotation of data, be them clinical or

otherwise. Second, it requires no predefined sense inventory and

instead uses the corpus itself to extract potential senses on the fly.
2 Related work

Acronym-related NLP tasks can be divided into three groups

(9). Acronym definition identication is concerned with finding

pairs of acronyms and their long forms that are defined in the

input text. Similarly to named entity recognition, acronym

identification takes a text as input and tags the spans of

acronyms and long forms using the BIO format (short for

beginning, inside, outside). Finally, acronym disambiguation

takes a sentence that contains an ambiguous acronym as input

and aims to select an appropriate long form from a predefined

set of candidates. The first task was proposed long before the

other two and has attracted a lot of attention, especially in the

biomedical domain, where a variety of rule-based algorithms

have been developed with great success (10, 11).

Acronym identification and acronym disambiguation tasks

were introduced recently at the AAAI Workshop on Scientific

Document Understanding (12). Given the success of neural

networks with a transformer architecture in a variety of NLP

tasks, it was not surprising that the majority of participants

opted for such an approach, which they used to model acronym

disambiguation as binary classification (13, 14), information

retrieval (15) or span prediction (16). They provided the best

performance with F1-scores ranging between 91.58% and 94.05%

lagging slightly behind the human performance of 96.10%. Other

types of neural networks architectures provided similar

performance of 91.34% (17). Traditional machine learning

approaches performed at 88.40% at best, struggling mostly in

terms of recall (18, 19).
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Clinical domain, in which almost one third of abbreviations

were found to be ambiguous (20), is very much in need of

effective acronym disambiguation methods. Approaches such as

the ones described above depend on predefined sense inventories.

Unfortunately, the two largest sense inventories for biomedical

acronyms, the Specialist Lexicon Release of Abbreviations and

Acronyms (LRABR) (21) and Another Database of Abbreviations

in MEDLINE (ADAM) (22), were shown to have micro-coverage

of acronyms in clinical narratives of 74.8% and 68.0%,

respectively. Micro-coverage of long forms was found to be

82.5% and 55.4%, respectively. Disambiguation cannot be

performed when an appropriate sense is missing from the

inventory. To address this issue, a method was developed to

automatically harmonise sense inventories from different regions

and specialties into a comprehensive inventory (23), which

improved micro-coverage of acronyms and their senses to 94.3%

and 99.6%, respectively.

Early approaches to disambiguation of clinical abbreviations

and acronyms, which were based on rules (24) and traditional

machine learning (25–28), performed with moderate accuracy

ranging between 50.1% and 75% (29). Despite the obvious

improvements that deep neural networks offer to acronym

disambiguation (12), there is evidence that rule-based approaches

may not only outperform them but error analysis even suggests

why (9). Namely, end-to-end machine learning commonly

emphasise certain types over others and by doing so fail to take

advantage of orthography, which plays an important role in the

formation of acronyms. Deep neural networks can capture

orthographic constraints by integrating token-based and

character-based networks.
3 Material and methods

3.1 System overview

The overall framework of our acronym disambiguation

approach is provided in Figure 1. The system has two main

modules, one treating WSD as a binary classification problem

(shown on the left-hand side) and the other one dedicated to

extracting acronyms and their potential senses from text (shown

on the right-hand side). Given a pair consisting of an acronym

within its context and a potential long form, binary classification

is performed to determine whether the long form represents a

correct interpretation of the acronym or not. In this framework,

the binary classification module is used to resolve the ambiguity

of acronyms arising from extracting multiple long form

candidates from the corpus.

The binary classifier is trained on a large corpus of scientific

abstracts. This choice of data serves two main purposes. First, it

bypasses the privacy concerns associated with clinical data.

Second, the scientific writing conventions allow for an easy

simulation of global acronyms, whose sense can be annotated

automatically. These two factors combined together allow for the

creation of a large annotated dataset that can be used to train a

deep learning model for disambiguation of global acronyms.
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FIGURE 1

An acronym disambiguation framework.
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To train the model, we fine-tuned Bidirectional Encoder

Representations from Transformers (BERT) (30), a large

pretrained language model, to perform binary classification as

indicated above.

To link acronyms to their long forms found within clinical

narratives, we start by extracting potential acronyms on one side

and extracting potential long forms on the other side. These two

activities are independent of each other and hence can be

performed in parallel. We extract potential acronyms using a

simple heuristic based on their orthographic properties. We

extract multi-word terms (MWTs) from text based on their

linguistic and statistical properties using a method called

FlexiTerm (31). Having retrieved both acronyms and MWTs,
Frontiers in Digital Health 03
they are matched using their internal properties. In a nutshell,

the characters from an acronym are aligned against each MWT

to shortlist potential long forms.

All candidate pairs of acronyms and their potential long forms

are then disambiguated using the previously trained

disambiguation model based on the context in which the

acronym is mentioned. The final result is an inventory of

acronyms mapped to their senses. The inventory is derived

directly from the corpus. In that aspect, our method departs

from the traditional acronym disambiguation approaches, which

rely on an external inventory to obtain a list of possible senses.

The following sections provide further details about each

module of the proposed framework.
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3.2 Binary classification of acronym senses

3.2.1 Data collection and annotation
Data collection and annotation were performed using a web-

based application for simulation and annotation of global

acronyms (32), whose long forms are not defined explicitly in

text. This application automatically modifies PubMed abstracts to

simulate global acronym usage by removing their explicitly

defined long forms and using them to annotate their senses

without any need for external lexicons or manual annotation.

Thus, it can be used to create large training datasets for WSD of

biomedical acronyms. Given the automated extraction of

acronym definitions, such data will inevitably contain some

degree of noise, which based on the performance of the

underlying algorithm (10) is estimated to be around 4%.

We started by defining a PubMed search query that targeted

the journals that cover clinical applications. We combined the

keyword “clinical” with the suffix “-logy” to refer to various

clinical domains (e.g. “rheumatology”) while also explicitly

excluding certain keywords (e.g. “biology”). The corresponding

abstracts were downloaded from PubMed and annotated

automatically. We downloaded the sense inventory, which was

also generated automatically by the web-based application. Each

acronym associated with a single long form in the sense

inventory was discarded as it was unambiguous and thus

irrelevant for the disambiguation task at hand. A total of 963

unique acronyms remained, each having between 2 and 27

possible long forms with the mean of 4.09 and the median of 3

long forms.

Given an acronym’s potential long form, we choose to tackle

WSD as a binary classification task. To properly train such a

WSD model, we needed both positive examples, where the

long form candidate is correct, and negative examples, where

the long form candidate is incorrect. Using the previously

annotated acronyms, we proceeded as follows. First, we

extracted every sentence containing an annotated acronym.

For each sentence, we created two examples: a positive

example corresponding to the original triplet (sentence,

acronym, correct long form) and a negative example, in which

the correct long form was replaced at random by another long

form according to the dictionary created in the previous step.
FIGURE 2

BERT-based representation of the acronym disambiguation problem.
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In this manner, we obtained a balanced dataset of positive and

negative examples, both in the form of a triplet (sentence,

acronym, long form).

Prior to training a WSD model, we set aside a portion of the

data for validation, i.e. to evaluate the model’s fit throughout its

development including hyperparameter optimisation. For each of

the 963 ambiguous acronyms, a total of 1,000 examples (or 10%

if fewer than 10,000 examples were available) were randomly

selected and reserved for validation. We repeated this process on

the remainder of the data to obtain a test set. A total of

16,130,782 remaining examples were used for training.

3.2.2 Training a disambiguation model
Recall that each example is in the form of a triplet (sentence,

acronym, long form). The long form needs to be classified to

determine whether or not it represents a correct interpretation of

the acronym within the given sentence. For this task we used a

transformer-based architecture similar to that of (33). This

architecture fine-tunes BERT (30) to perform WSD given a

sentence and one of its ambiguous words. More specifically, the

model is fed two text sequences: (i) an ambiguous word within

its context and (ii) that word followed by its gloss (one of many)

from WordNet (34). In our case, the word and its gloss

correspond to an acronym and its potential long form,

respectively as shown in Figure 2. The rest of the BERT-based

neural network architecture is identical to the one we previously

used for binary classification of potential adverse events (35),

where practical implementation details can be found. In

summary, three types of embeddings were used: token

embeddings to represent tokens, segment embeddings to

differentiate between different segments in the input (see

Figure 2) and position embeddings to encode the word order.

For each token, these embeddings were added and passed onto

to the pretrained BERT–BASE model comprised of 12 layers of

transformer encoders, each having a hidden size of 768 and 12

attention heads. A token-specific output produced at each layer

can be interpreted as its contextualised embedding. The final

output produced for the initial [CLS] token, commonly used as

an aggregate problem representation, was forwarded to the

classification layer, but only after a 0.1 dropout to reduce

overfitting. The two logits outputted by the classification layer
frontiersin.org
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TABLE 1 Heuristic rules for acronym recognition.

ID Rule Rationale
1 The token has to be 2–10 characters

long.
Acronyms are short forms.

2 The token has to be tagged as a
noun.

Acronyms are matched against MWTs,
which are noun phrases.

3 The first character of the token has
to be a capital letter.

Apart from few exceptions (e.g.
“mRNA”) most acronyms start with a
capital letter.

4 The number of letters has to be
greater than the number of digits.

To prevent retrieving numerical
expressions (e.g. “USD5000”).

5 The number of uppercase letters
has to be greater than the number
of lowercase letters.

To prevent retrieval of outliers such as
personal names (e.g. “McMurray”) and
titles (e.g. “Miss”).

6 The token has to occur at least 10
times in the corpus.

Acronyms are introduced because the
corresponding concepts are referred to
frequently.
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correspond to the question of whether the given longform is a

correct interpretation of the given acronym given its context or

not. The weights of the classification layer were learned during

BERT fine-tuning. They were initialized using a truncated

normal distribution with mean 0 and standard deviation of 0.02.

Next, a softmax function was applied to obtain the probability

distribution of the two classes. The loss function (softmax cross

entropy between the logits and the class labels) was optimized

using the Adam optimizer with an initial learning rate of

2� 10�5. The binary classification model was trained for

8 epochs. All other parameter values were identical to those

used in the original BERTBASE uncased model, including the

clip norm of 1.0 and 100 warmup steps with linear decay of

learning rate.

Of note, a similar approach developed by (13) was the winning

solution for the second SDU@AAAI-21 shared task on acronym

disambiguation in English scientific papers (12). They used a

different problem representation with the long form as the first

text sequence and the acronym within its context as the second

sequence. To direct the model’s attention to the ambiguous

acronym, they marked up the acronym using two special tokens

(<start> and <end>).
3.3 Acronym sense extraction

The purpose of this section is twofold. First, it aims to

demonstrate the effectiveness of the acronym disambiguation

module trained on a corpus of biomedical abstracts using a

corpus of clinical narratives. Second, it extends the functionality

of acronym disambiguation to include the extraction of potential

acronyms and the corresponding long form candidates

automatically from a given corpus.

3.3.1 Data collection and annotation
To assemble a corpus of clinical narratives, we used MIMIC-

III. This large, freely available database comprises de-identified

health-related data associated with over forty thousand patients

who stayed in critical care units of the Beth Israel Deaconess

Medical Center between 2001 and 2012 (36). We retrieved a

total of 2,609 knee radiology reports. This choice of clinical

narratives was motivated by the availability of local expertise

needed to interpret the results. Specifically, we had access to the

team who developed the TRAK ontology (37), which defines

standard care for the rehabilitation of knee conditions, and who

previously applied this ontology to support text mining of knee

radiology reports (38).

The raw reports were processed as follows. We extracted the

main body of each report. A set of simple regular expressions

were used to recognise section headings and remove them from

further consideration. The main reason for discarding section

headings was the subsequent recognition of potential acronyms.

Section headings are usually written in uppercase, which is one

of the properties used to identify acronyms.

To recognise potential acronyms, we used a simple heuristic

based on the rules described in Table 1, which, when tested on
Frontiers in Digital Health 05
an inventory of 36,162 acronym definitions derived from (39),

was able to match a total of 32,940 (91.09%) acronyms. Using

this heuristic, we extracted a total of 26 potential acronyms from

the corpus, which were then interpreted manually by analysing

their concordances (see Figure 3). One of the potential acronyms,

LF, turned out to be a special token used in MIMIC-III to

indicate missing information that had been removed to

anonymise the data. Hence its long form is not available in the

ground truth. Nonetheless, we retained it as a potential acronym

to challenge the disambiguation model to reject potential long

forms as false positives. Further, the long forms of three

acronyms, IV, OA and SI, consist of a single word. In this study,

we are exploring only MWTs as potential long forms. Thus,

when these acronyms are paired with MWTs as potential long

forms, we know in advance that it can result in either a false

positive or a true negative.

To find potential long forms within the corpus, we applied a

method called FlexiTerm, which was originally developed to

recognise MWTs (31). Even though it was subsequently extended

to recognise acronyms as MWTs (40), we did not use this option

in order to test acronym disambiguation with our newly

developed model. The list of MWTs was obtained using the

latest implementation of FlexiTerm (41). It consisted of 2,079

terms, each linked to multiple variants arising from inflection,

derivation or hyphenation.

To match potential acronyms and MWTs, we used a simple

heuristic based on the rules described in Table 2. When tested

on an inventory of 32,940 definitions whose acronyms matched

the rules described in Table 1 (see above), a total of 31,241

(94.84%) acronym definitions were consistent with the patterns

described in Table 2. Of course, all ambiguous acronyms will

match most of the corresponding long forms and potentially

other phrases extracted from the corpus. At this stage, the

matching procedure was deliberately loose so as to extract as

many potential long forms in order to challenge the

disambiguation model. As a result, we assembled a list of 110

pairs of acronyms and their potential long forms. Each acronym

was mapped to 4.19 MWTs on average with standard deviation

of 2.91 (see Figure 3 for distribution).
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FIGURE 3

Ground truth with the distribution of long form candidates.

TABLE 2 Heuristic rules for matching acronyms and MWTs.

ID Rule Rationale
1 Both acronym and MWT have to

start with the same letter.
Apart from few exceptions (e.g.
“XML”), most acronyms start with the
initial letter of the long form.

2 All characters from the acronym have
to occur in the same order within the
MWT.

Acronyms are formed by removing
characters from the long form, which
preserves their original order.

3 The acronym cannot occur as a token
within the long form.

Acronym cannot abbreviate itself.

4 The last character from the acronym
has to occur in the last token of the
MWT.

With the exception of prepositions,
which cannot occur at the end of a
noun phrase, most other tokens are
referenced by a character within the
acronym.

5 The Damerau–Levenshtein distance
between the acronym and the
initialism constructed out of the
MWT is less than 2.

To ensure that most initial characters
correspond to a character within the
acronym.

Chopard et al. 10.3389/fdgth.2024.1282043
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Having paired acronyms and long forms, each pair was then

labelled as either positive or negative example according to the

ground truth provided in Figure 3. All terms that conveyed the

sense of the long form provided in the ground truth were

annotated as positive examples. For example, terms “total knee

arthroplasty” and “total knee replacement” are synonyms and as

such they convey the same sense as the acronym “TKA.”

Similarly, “total left knee arthroplasty” is a “total knee

arthroplasty” and as such is accepted as a correct sense of

“TKA.” The ground truth was extended by manually annotating

all 110 pairs of acronyms and their potential long forms (see

Supplementary Material).

Recall that the disambiguation model expects a triplet

(sentence, acronym, long form) as its input (see Figure 2).

Having paired acronyms and long forms, for each acronym we

extracted all sentences that mention the acronym. Given that the
frontiersin.org
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corpus of clinical narratives belonged to a single domain of knee

radiology reports, we used one sense per discourse hypothesis

(42) to propagate the label originally assigned to the pair

(acronym, long form) to all corresponding triplets (sentence,

acronym, long form).
3.4 Binary classification of acronym senses

All triplets (sentence, acronym, long form) extracted from

clinical narratives were passed through the BERT-based

disambiguation model trained on scientific abstracts described

in Section 3.2.2. For each (acronym, long form) pair,

individual classifications of acronyms occurrences in the

corresponding sentences were aggregated. A long form was

deemed positive if it was classified as such in at least 75% of

the acronym occurrences; otherwise it was deemed negative.

In this manner, a sense inventory is constructed (see bottom

left in Figure 1).
4 Results

4.1 Binary classification of acronym senses

Collocational stability refers to the consistency and

predictability of words that tend to appear together. High

frequency of multi-word phrases implies their collocational

stability (43), which in turn enhances semantic clarity of a

discourse. Acronym definitions themselves are collocations (44).

Given that, in our approach, potential long forms are not

sourced from a predefined inventory but are instead extracted

from a corpus using a method that measures their collocational

stability (31, 41), it is intuitively plausible to assume that the

most frequent one is indeed the correct one. In other words,

whenever multiple MWTs extracted by FlexiTerm match a given

acronym according to the rules described in Table 2, the baseline

method selects the most frequent one.

We evaluated the BERT-based disambiguation model described

in Section 3.2.2 on the test subset of PubMed abstracts. The results

provided in Table 3 were compared against a baseline classifier

described above. At almost 95% across all metrics, our model

outperformed the frequency-based approach indicating that it

successfully identified patterns for acronym disambiguation.

While this disambiguation model proved to be both effective and

efficient, its main drawback comes from the supervised training

as it may struggle to disambiguate acronyms that were not

represented in the training data. This is a valid concern when a

model trained on scientific abstracts is applied on genuine
TABLE 3 Performance of the acronym disambiguation model on scientific
abstracts.

Method Accuracy Precision Recall F1-score
Baseline 64.96% 69.15% 54.02% 60.65%

BERT 94.62% 94.45% 94.89% 94.67%
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clinical data. The next section evaluates the performance of

acronym sense extraction, which incorporates binary

classification, on clinical data, hence offering an insight into its

performance of such data.
4.2 Acronym sense extraction

The first row of Table 4 provides the results of acronym sense

extraction on clinical narratives. Before interpreting the evaluation

results, it is worth pointing out that one major difference between

the two evaluations. The evaluation results on the set of scientific

abstracts shown in Table 3 were obtained on a balanced set

where the number of positive and negative test examples was

equal. The balance was achieved by design. When evaluating

acronym sense extraction, the distribution of potential senses is a

function of the corpus from which these senses were extracted.

Not surprisingly, the distribution of correct and incorrect senses

was heavily skewed in favour of the incorrect ones, which

outnumbered the correct senses by a ratio of over 5:1. In an

attempt to redress the extreme imbalance, we tried to filter the

long forms prior to passing them on to the binary classifier for

disambiguation. For each acronym, we kept only the top two

matching MWTs according to their termhood score calculated by

FlexiTerm under an assumption that acronyms are more likely to

be introduced for collocationally stable phrases. This somewhat

reduced the number of incorrect senses, which, however, still

outnumbered the correct senses by a ratio of over 3:1. The

corresponding evaluation results are provided in the second row

of Table 4.

Accuracy is a poor measure for imbalanced data as any model

that predicts the majority class for all predictions is bound to

achieve a high classification accuracy. We, therefore, turn our

attention to precision and recall. We can immediately observe

the perfect recall, which indicates that none of the correct senses

were misclassified. However, the precision of at most 60%

indicates a high number of false positives. Error analysis revealed

an interesting fact. The majority of false positives shared a word

(or a subword) with the corresponding true positive. Consider

for example, “lateral condyle” and “medial condyle,” which were

incorrectly classified as long forms of the acronyms MCL (medial

collateral ligament) and LCL (lateral collateral ligament). In both

cases, the false and true positives share the first word. A similar

pattern can even be observed at the subword level. For example,

“intraoperative views” was incorrectly classified as a long form of

IV (intravenous). Similarly, “osseous abnormality” was

incorrectly classified as OA (osteoarthritis). “Osseous” is an

adjective meaning “bony,” whereas “osteo-” is a combining form

meaning “bone.”
TABLE 4 Performance of the acronym disambiguation model on clinical
narratives.

Long forms Accuracy Precision Recall F1-score
All terms 84.40% 55.26% 100.00% 71.19%

Top 2 terms 80.85% 59.09% 100.00% 74.29%
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The masked language modelling, which is used to pretrain

BERT, may provide a plausible explanation for this phenomenon.

During pretraining, 15% of the words are masked randomly

forcing the model to predict the output for those words based on

the words around them. When BERT encounters an acronym,

especially if it has not been seen during pretraining, it will try to

predict its embedding based on its context. As the long form of

an acronym is fully compatible with the context of the acronym,

when some of the corresponding words (or subwords) are found

in a potential long form, the classification model may use them

as evidence for positive classification.

Finally, let us address our previous concern of applying a

disambiguation model trained on scientific abstracts on genuine

clinical data. Out of 26 acronyms extracted from the test data

(clinical narratives), nine were not found in the training data

(scientific abstracts). Despite this, the classifier correctly

disambiguated all but two of them. In line with our previous

observation about the masked language model, this suggests that

the model was able to exploit the words in the long form to

disambiguate an acronym based on its context.
5 Discussion

We described a system for WSD of global acronyms in

clinical narratives. It integrates a rule-based method for data

annotation, a statistical method for MWT recognition, a rule-

based method for extracting a sense inventory from a corpus

and, finally, a neural network for disambiguation. These

methods complement one another in a way that offers

multiple advantages over the state of the art. First, it uses

scientific abstracts to simulate clinical narrative style of

acronym usage and annotate them automatically with the

correct senses. This circumvents the problems associated with

patient privacy and manual annotation overhead, which have

traditionally plagued the use of clinical text data in machine

learning (8). In turn, large amounts of annotated data lay a

foundation for training a robust neural network, which fosters

trust and reliability necessary for real-world clinical

applications. Another practical advantage of our approach is

that it does not require predefined sense inventories, which are

known to vary greatly across different geographic regions and

medical specialties (23). Instead, an inventory of potential

senses is extracted from a corpus on the fly. This does not

only make our approach readily portable across different

domains, but also improves its utility in clinical practice. For

example, our approach can be used to facilitate development

of institution-specific inventories, which in turn can be used

to improve communication and shared decision making.

CLASSE GATOR (CLinical Acronym SenSE disambiGuATOR)

(45) is the most similar system for WSD of clinical acronyms.

The key similarity is in the use of scientific literature for

bootstrapping training data. The key difference is that their

clinical acronym senses are also extracted from the literature.

This fact requires the two corpora of scientific literature and

clinical narratives respectively to belong to the same domain.
Frontiers in Digital Health 08
It also requires the acronym sense to be used in the literature.

The main criticism of previous acronym disambiguation

systems is that they constructed a sense inventory from a

single institutional corpus, which hindered their generalisability,

because acronyms tend to vary across institutions (23). Therefore,

scientific literature cannot reasonably be expected to cover

acronyms as they are used in clinical practice. Nonetheless, the

two systems advance the area of acronym disambiguation in

complementary ways.

Both CLASSE GATOR and our own approach are based on

BERT, one of many large pretrained language models. It was fine-

tuned for the WSD task using a scientific corpus as a proxy for

clinical narratives, which remain largely inaccessible due to

privacy concerns. However, recent advances in generative

language models have opened up a new opportunity for training

NLP models in a clinical domain. What sets apart generative

models from other types of language models is their ability to

produce original content. This can be used to generate potentially

unlimited amounts of training data. Early efforts have

demonstrated that even though the generated text was of poorer

quality relative to the original text, when it was used to augment

the training data, it still boosted the performance of downstream

NLP tasks (46). Domain-specific databases can be used to

mitigate the inherently stochastic nature of large language models

(47) in an attempt to improve the accuracy, diversity and

complexity of generated clinical data (48). Nonetheless, the data

annotation bottleneck still persists but may be addressed with

strategic prompt engineering. Our future work will explore this

opportunity to make further advances in WSD of clinical acronyms.

While our evaluation demonstrates the generalisability of our

approach in that it can successfully disambiguate acronyms that

have not been seen in the training data, it certainly stands to

further improve its performance by utilising the context of long

form candidates. Further performance improvements may be

gained by modeling the orthographic constraints of acronym

formation. This would help eliminate some of the false positives.

Therefore, we will be looking to extend the binary classification

component by integrating token-based and character-based

neural networks.
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