
PHYSICAL REVIEW RESEARCH 6, 023185 (2024)

Transverse-electric surface plasmon polaritons in periodically modulated graphene
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Transverse-electric (TE) surface plasmon polaritons are unique eigenmodes of a homogeneous graphene layer
that are tunable with the chemical potential and temperature. However, as their dispersion curve spectrally lies
below the light line, they cannot be resonantly excited by an externally incident wave. Here, we propose a
way of exciting the TE modes and tuning their peaks in the transmission by introducing a one-dimensional
graphene grating. Using the scattering-matrix formalism, we show that periodic modulation of graphene makes
transmission more pronounced, potentially allowing for experimental observation of the TE modes. Furthermore,
we propose the use of turbostratic graphene to enhance the role of the surface plasmon polaritons in optical
spectra.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) in graphene have been
an interesting area of theoretical and experimental research
especially with the possibility of supporting SPPs with
transverse-electric (TE) polarization in a graphene layer [1].
More recently, TE SPPs were shown to exist in a homoge-
neous layer of graphene for an extended frequency range at
nonzero temperature [2] using a complex-frequency approach
that models an open system with temporal decay. Although
the TE SPP frequency dispersion is very close to the light line
due to the small magnitude of the conductivity of graphene,
proportional to the fine-structure constant [1], TE SPPs cannot
be resonantly excited by an externally incident light because
their dispersion curve lies below the light line.

Graphene is known for its tunability of optical conductivity
by application of suitable gate voltage that induces suffi-
ciently low but finite chemical potential [3]. This is because
the electronic transitions occur near the K point [4], where
the electronic dispersion is linear and the density of states
vanishes. Devices like optical modulators [5] and polarizers
[6], as well as absorption enhancement devices [7,8], benefit
from this tunability, which, together with the existence of TE
SPPs in graphene, provides exciting prospects for plasmonic
applications [9]. In addition, structures with periodic graphene
open the possibilities of generating topological plasmonic
states [10–13] when a magnetic field is applied. Periodic
plasmonic structures of graphene [14–17] and even multilayer
stacks of periodic graphene strips [18–22] have been already
studied. The effect of stacking graphene-dielectric layers on
the properties of transverse-magnetic (TM) SPPs has also
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been analyzed for up to ten graphene layers [23]. Although the
periodic graphene grating structure has been studied for TM
SPP modes [14,16], it has not been proposed for excitation
and measurement of TE SPPs in graphene, to the best of our
knowledge.

The finite-element and finite-difference time-domain meth-
ods have been employed in many studies of plasmonic struc-
tures [11,24–30] to investigate SPPs. These fully numerical
approaches are usually suitable for treating electromagnetic
systems of relatively small sizes, but suffer from an increase
in computation time for larger samples, since they require
discretization of Maxwell’s equations in real space over entire
samples. For larger samples and extended periodic systems,
expanding fields into Fourier harmonics presents a more suit-
able approach [31]. One can approximate structural details by
expanding the solutions to Maxwell’s equations in the Fourier
space [32], organizing the obtained solutions as coefficients
of Bragg diffraction orders, which is more appropriate for an
infinite system with translational symmetries presented in this
work. Although studies exist that consider periodic modula-
tion of graphene at the atomic scale [33], these are suitable
for periods of the order of nanometers. For a modulation
period of microns order, which is sufficiently large compared
to the electronic wavelengths, we may approximate the optical
conductivity of graphene as isotropic [34] and consider the
periodic modulation on the order of wavelengths of electro-
magnetic waves.

In this paper, we theoretically show that the TE SPP
modes can be excited by incident light with an angle close to
normal incidence with the help of one-dimensional periodic
modulation in graphene. We demonstrate the excitation of
the TE SPP modes as pronounced dips in the zeroth Bragg
diffraction order transmission spectra. We also show that the
in-plane wave number of the transmission dips are tunable
with the grating period. To enhance the transmission feature
of the graphene grating, we propose the use of multilayer
turbostratic graphene strips [35,36]. Note that the TE SPP
mode excitation presented here is different from excitation in
metallic gratings of TM SPP by TE-polarized light incident
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at a nonzero angle between the direction of incident light
projected onto the grating plane and the grating direction
[37–39], allowing a nonzero electric field component parallel
to the grating direction, in this way coupling the radiation to
the TM SPP. It is well known (see, e.g., Ref. [40]) that TE
SPPs do not form on homogeneous surfaces of metals with
the permittivity described by the Drude model. Here instead,
the TE SPP mode arises due to the interband part of the
conductivity of graphene [1,2,41], where the electric field is
always parallel to the graphene surface, and has no component
in the grating direction.

To obtain the transmission spectra showing features due to
the TE SPP modes, we employ the scattering-matrix formal-
ism [42,43] that is commonly used for systems periodically
modulated in space. The fact that the width of single- or
multiple-layer graphene is much smaller than the SPP wave-
length allows us to obtain an explicit analytical expression for
the scattering matrix. The SPP modes, which are the eigen-
solutions of Maxwell’s equations satisfying outgoing wave
boundary conditions, correspond to the poles of the scattering
matrix for the grating system [43,44] and manifest themselves
as peaks and/or dips in transmission spectra. We have devel-
oped an analytical approximation for the scattering matrix,
eigenmodes, and transmission, providing a proof that the fea-
tures observed in optical spectra of periodically modulated
graphene are in fact a manifestation of the TE SPP modes,
which are unique to this kind of material.

II. THEORETICAL MODEL

In this section, we first derive, in the spirit of the scattering-
matrix formalism [43], the transmission coefficients for a sys-
tem containing an infinitesimally thin layer of a periodically
modulated dispersive material surrounded by vacuum. Gener-
alizations of the presented method to two-dimensional (2D)
periodic modulation of an infinitesimally thin material layer
and to systems with a substrate and/or superstrate are straight-
forward. The developed general formalism is applied to a
one-dimensional periodic array of single- and multiple-layer
graphene strips, by using the available analytic expression for
the conductivity of graphene. We also present here a useful ap-
proximation of the transmission at normal incidence, valid for
the frequencies near the crossing point of the folded SPP mode
dispersion, which allows us to analyze the optical response of
the periodically modulated system in terms of its SPP modes.

In the following, we use the model of the permittivity
which is described in the entire space as

ε(x, z; ω) = 1 + χ (ω)�(x)δ(z), (1)

where χ (ω) is the 2D susceptibility of the infinitesimal layer,
�(x) = �(x + d ) is a periodic function with period d describ-
ing the spatial modulation of the layer, and δ(z) is the Dirac
delta function approximating the system as an infinitesimally
thin layer. An illustration of the system studied in this work,
which is a periodic array of graphene strips, as well as the
geometry of the electromagnetic field in the TE polarization
are shown in Fig. 1(a). The use of the Dirac delta function is
justified by the condition that the graphene thickness is much
smaller than the wavelength of the electromagnetic field.

FIG. 1. Schematic of a graphene grating (a) in a perspective
view and (b) in the xz-plane side view. An infinitesimally thin
graphene layer at z = 0 is periodically modulated along the x axis
but homogeneous along the y axis. Arrows labeled An, Bn, Cn, and
Dn schematically represent incoming or outgoing coefficients of
diffracted plane waves with an angle of incidence not necessarily
normal.

A. Scattering matrix, transmission, and the eigenmodes of an
infinitesimally thin periodically modulated layer

The scattering matrix, transmission and reflection coef-
ficients, as well as the secular equation determining the
dispersion of SPP modes are obtained in this section by solv-
ing Maxwell’s equations,

∇ × E = iωH, (2)

∇ × H = −iωεE, (3)

in which we assume nonmagnetic materials and use the units
in which the speed of light c = 1. We also assume a har-
monic time dependence of the electromagnetic field in the
form of e−iωt and use the frequency- and position-dependent
permittivity ε(x, z; ω) introduced in Eq. (1). For the zero com-
ponent of the light wave number in the y direction, solutions
of Maxwell’s equations (2) and (3) split into TE and TM
polarizations. We focus below on the TE polarization. The
case of TM polarization for the same system is addressed in
Appendix A 3.

For TE-polarized waves propagating in the x direction
[Fig. 1(a)] with the wave number q, the magnetic and electric
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fields in Cartesian coordinates take the form

H =
⎛
⎝Hx

0
Hz

⎞
⎠, E =

⎛
⎝ 0

Ey

0

⎞
⎠, (4)

respectively. The periodic grating profile �(x) can be written
as a Fourier series,

�(x) =
∑

n

Vneignx, (5)

where

gn = 2πn

d
(6)

are the reciprocal lattice vectors and Vn are Fourier coeffi-
cients of the periodic function �(x). We can take the general
electric-field solution to Eqs. (2) and (3) in the basis of the
same Fourier harmonics,

Ey(x, z) =
∑

n

ei(q+gn )x ×
{

Cneiknz + Dne−iknz, z > 0
Aneiknz + Bne−iknz, z < 0,

(7)

where An, Bn, Cn, and Dn are the field coefficients of the
incoming and outgoing waves of Bragg order n, as depicted
in Fig. 1(b). The normal component of the light wave number
for each Bragg order is given by

kn =
√

ω2 − (q + gn)2, (8)

with the square root in Eq. (8) chosen in such a way that either
Re kn > 0 or Im kn > 0, for any real frequency ω and real
wave number q, so the term Cneiknz in Eq. (7) describes, re-
spectively, either a wave purely propagating in the z direction
or a purely evanescent wave. For complex frequencies, the
choice of the square root is determined by a proper analytic
continuation of Eq. (8) from the real ω axis into the com-
plex frequency plane. Note that the system has translational
invariance, meaning that the wave number q as a real quantity
is conserved (in periodic systems, up to the reciprocal Bragg
vector gn), making it a good quantum number. We therefore
use here a real-valued in-plane wave number q allowing the
mode eigenfrequency to be complex, as in our previous work
[2]. This approach is widely used in the literature [43–45].

Integrating Eqs. (2) and (3) across the infinitesimal grating
layer results in an infinite set of simultaneous equations for
the amplitudes An, Bn, Cn, and Dn:

ikn(Cn−Dn−An+Bn) = −ω2χ (ω)
∑

m

Vn−m(Am+Bm),

Cn+Dn = An+Bn. (9)

See Appendix A for a derivation.
Equations (9) can be written in matrix form as(

C
B

)
= S

(
D
A

)
, (10)

where S is the scattering matrix, and A, B, C, and D are
vectors containing the field coefficients An, Bn, Cn, and Dn,
respectively. The scattering matrix can be expressed as

S =
[−W−1U W−1

W−1 −W−1U

]
, (11)

where W−1 is the matrix inverse of W = I + U, I is the
identity matrix, and U is the matrix describing the coupling
between diffraction orders, with the matrix elements given by

Unm = ω2χ (ω)

2ikn
Vn−m. (12)

See Appendix A for details.
For any Bragg order n, the transmission coefficient Tn is

given by the ratio of the energy of the diffracted wave of order
n to the energy of an incoming wave (corresponding to n = 0),
which can both be evaluated from the normal component of
the Poynting vector [43], which yields

Tn =
∣∣∣∣kn

k0
C2

n

∣∣∣∣. (13)

Here, it is assumed without loss of generality that

An = δn0, Dn = 0, (14)

where δnm is the Kronecker delta, and the expansion coeffi-
cients Cn in Eq. (13) are found by solving the linear algebraic
equations (10) [or Eq. (9)] with the boundary conditions (14).
Note that the above definition of the transmission coefficients,
Eq. (13), is valid for so-called open diffraction channels only,
for which

ω2 > (q + gn)2, (15)

equivalent to kn being real [see Eq. (8)]. For “closed” chan-
nels, inequality (15) is not fulfilled, and the values of Tn

correspond to the near-field coefficients for these Bragg or-
ders.

All the electromagnetic modes of the system, including the
SPP modes and their dispersion relations, i.e., the dependence
of the mode frequency on the wave number q, can be found
from Eq. (10) by applying the outgoing boundary conditions,
A = D = 0, for all Bragg orders. This is equivalent to solving
a secular equation

Det[S−1(ω; q)] = 0, (16)

or finding the poles of the scattering matrix S(ω; q) in the
complex frequency plane for any real wave number q.

B. Graphene conductivity and normalized frequencies and
wave numbers

While the general method introduced in Sec. II A is
suitable for treating any infinitesimally thin periodically mod-
ulated layer, in what follows, we consider a graphene grating
structure depicted in Fig. 1. In this case, the susceptibility is
given by [2]

χ (ω) = 2iNσ (ω)

ω
, (17)

where σ (ω) is the 2D conductivity of a single homogeneous
graphene layer and N is the number of parallel graphene layers
stuck together in such a way that, on the one hand, the total
thickness of the system is much smaller than the SPP wave-
length, but on the other hand, all the layers are electronically
decoupled and periodically modulated with the modulation
function �(x), the same for all layers. For the graphene
strips shown in Fig. 1, we take this periodic function in the
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FIG. 2. Electronic dispersion, shown as electronic energy versus
two-dimensional electronic momentum, of graphene near the K point
with nonzero chemical potential μ and zero temperature. The darker
colored region of surface of cone depicts energies occupied by charge
carriers.

following form:

�(x) =
∑

n

	

(
b

2
− |x − nd|

)
, (18)

where 	(x) is the Heaviside step function and b is the width
of the graphene strips.

In the long-wavelength limit, the single-layer frequency-
dependent optical conductivity of graphene σ (ω) is presented
in Refs. [1,41]. It is dependent on the Fermi-Dirac distribu-
tion function of charge carriers in graphene, which in turn
depends on the electronic temperature Tel introduced at the
microscopic level (see Appendices A and B in Ref. [2]).
The conductivity is shown in Fig. 3(a) for zero temperature
for graphene. In terms of the notations used in Ref. [2], the
conductivity is given by

σ (ω) = 2π [σintra(ω) + σinter(ω)], (19)

and full expressions for σintra and σinter, the intraband and
interband parts of the graphene conductivity, are derived in
Ref. [2]. While the intraband part, given by the Drude model,
describes the physical mechanism of conductivity typical
for normal metals, the interband part can be understood
from the electronic band structure of graphene for a finite
chemical potential μ, as shown in Fig. 2. The interband
part σinter comes from optical transitions with energy greater
than 2μ, contributing to a steplike feature in the real part of
the conductivity, Re σ , at Re 
 = 2, which can be seen in
Fig. 3(a). The real part of the conductivity has the meaning
of absorption having nonzero values at zero temperature only
for frequencies greater than twice the chemical potential
Re 
 > 2, with no interband absorption taking place for
Re 
 < 2. There is also a dip in Im σ at Re 
 = 2 as shown
in Fig. 3(a), consistent with the aforementioned steplike
feature in Re σ and arising due to the Kramers-Kronig
relations of conductivity as a response function. This dip
is responsible for the enhancement of TE SPP features in
transmission spectra presented in Sec. III.

Here and below we use for convenience dimensionless
frequencies and wave numbers, all normalized to the chemical
potential μ as


 = h̄ω

μ
, Q = h̄q

μ
, Gn = h̄gn

μ
, Kn = h̄kn

μ
. (20)

Equation (8) then modifies to Kn =
√


2 − (Q + Gn)2, and
similar changes are made in all other equations. The period-

FIG. 3. (a) Conductivity of graphene at zero temperature (T =
0), sharing the frequency axis with dispersion in (b). The frequency
of the interband dip in imaginary part of conductivity is affected
by μ but not d . (b) Real part of the frequency of the TE mode
dispersion of the homogeneous graphene structure folded into the
first Brillouin zone, shown for G1 = 2, 2.3, and 2.6 (thin, medium
and thick blue lines, respectively). The size of the first Brillouin
zone, and consequently the frequency of mode crossing at Q = 0,
is controlled by μd . The TE mode frequency is close to the light
line due to small value of the fine-structure constant. (c) The period
of grating, d , required for normalized frequency 
 = 2, various
chemical potentials μ, and corresponding frequencies ω (legend) as
a function of desired incidence angle θ = arcsin(q/ω) in degrees,
using Eq. (21).

icity of the structure generates the first Brillouin zone with
the range Q ∈ [−G1/2, G1/2], as depicted in Fig. 3(b). The
conductivity σ (ω) is then called below σ (
), which is a
function of the normalized frequency 
, but it also depends
on a normalized inverse temperature μβ = μ/kBTel, where kB

is the Boltzmann constant.
Let us note finally that multilayer graphene structures gen-

erally have interlayer coupling which alters the electronic
band structure near the K point and thus qualitatively changes
the optical conductivity spectrum. However, it is known
that turbostratically stacked graphene layers have negligi-
ble interlayer coupling [46], simply factorizing the graphene
conductivity [36]. Such graphene stacks have already been
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synthesized [35,47]. We propose to use turbostratic multilayer
graphene strips [48] to enhance features in transmission due to
the TE SPP mode, including the increase of its linewidth and
the frequency gap in the SPP mode dispersion. In this work,
we obtain transmission spectra and approximate frequencies
of the TE modes for both single-layer (N = 1) and turbostratic
(N = 10) graphene grating by using the suitable number of
graphene layers, N , in Eq. (17).

C. Controlling mode frequency and wave number

The conductivity spectrum of graphene has a key frequency
Re 
 = 2 where the interband dip occurs in the imaginary part
of the conductivity at low temperatures [see Fig. 3(a)]. Since
the scattering matrix depends on frequency ω = μ
/h̄ and
the SPP mode coupling due to the periodic modulation of the
system depends on the grating period d , one can control this
coupling and the SPP mode properties by varying the chemi-
cal potential μ and the period d . In fact, by tuning the grating
period d , the edge of the first Brillouin zone G1/2 where the
bands are folded also changes, leading to variations of the
frequency of the TE SPP folded mode crossing at Q = 0,
as is clear from Fig. 3(b). Within and above the micrometer
range, the grating period has a negligible effect on the conduc-
tivity spectrum, since the photon wave numbers in this case
are much smaller than the electronic wave numbers [2]; this
regime of a negligible spatial dispersion is described above as
the long-wavelength limit of the conductivity. One can there-
fore independently choose a particular part of the conductivity
spectrum shown in Fig. 3(a) and the desired normalized cou-
pled mode frequency where the two TE SPP dispersion lines
(which are close to the light lines) cross. For a better descrip-
tion of this tuning process, we define the normalized interband
detuning  = G1 − 2, between the crossing in dispersion at

 = G1 = 2π h̄/(μd ) and the interband dip in the imaginary
part of conductivity at 
 = 2 as illustrated in Fig. 3(a). As
an example, for a chemical potential of μ = 0.2 eV, zero
detuning ( = 0) would require the graphene stripe width to
be on the order of micrometers. Since the dispersion of the
TE mode is close to the light line [1,2], we may approximate
the TE mode dispersion as the folded light line and estimate
the grating period required to tune the TE mode to a desired
frequency 
, for any in-plane wave number Q. In Fig. 3(c) we
show the dependence of the grating period d required for the
TE SPP mode of the n = −1 diffraction order to reach the fre-
quency 
 = 2. For general 
 and Q this condition is given by

d = h̄

μ

2π


 + Q
. (21)

Note that this dependence is shown in Fig. 3(c) in terms
of different values of the chemical potential μ in eV,
unnormalized frequency ω in hertz, and the angle of
incidence, θ , measured from the normal to the graphene plane
and defined as sin θ = Q/
. Clearly |θ | � 30◦ in this case,
since 
 = G1 and |Q| � G1/2 within the first Brillouin zone.

D. Role of the TE SPP modes in the transmission: Analytic
approximation at normal incidence

To reveal the effects of periodic modulation on TE SPP
modes and the role of these modes in the transmission, we

focus in this section on the normal incidence and develop ap-
proximate analytical expressions for the transmission around
the frequency Re 
 = G1. To do so, we truncate W in the
scattering matrix [Eq. (11)] to the lowest three diffraction
orders, n = 0 and n = ±1:

W =

⎛
⎜⎜⎜⎝

1 + 
Ṽ0
K−1


Ṽ−1

K−1


Ṽ−2

K−1


Ṽ1
K0

1 + 
Ṽ0
K0


Ṽ−1

K0


Ṽ2
K1


Ṽ1
K1

1 + 
Ṽ0
K1

⎞
⎟⎟⎟⎠, (22)

where Ṽn = Nσ (
)Vn and Kn ≡
√


2 − (Q + Gn)2.
The transmission amplitudes tn(tn = Cn assuming An = δn0

and Dn = 0), related to the transmission coefficients Tn de-
fined in Eq. (13) as Tn = |Knt2

n /K0|, are then given by the
middle column entries of W−1,

t±1 = F±1

|W| , t0 = F0

|W| , (23)

where

F±1 = 
2

K1K−1
Ṽ∓1Ṽ±2 −

(
1 + 


K∓1
Ṽ0

)



K±1
Ṽ±1, (24)

F0 =
(

1 + 


K−1
Ṽ0

)(
1 + 


K1
Ṽ0

)
− 
2

K1K−1
Ṽ2Ṽ−2, (25)

and the determinant of Eq. (22) is given by

|W| =
(

1 + 


K0
Ṽ0

)
F0 + 


K0
Ṽ1F−1 + 


K0
Ṽ−1F1. (26)

Note that the modulated TE SPP mode frequencies correspond
to the zeros of this determinant.

For Q = 0, corresponding to normal incidence, the approx-
imate transmission amplitudes obtained in Eq. (23) can be
further simplified by using the fact that K0 = 
 and K±1 =√


2 − G2
1, which results in

F±1 = −
Ṽ1

K1
D−(
), (27)

F0 = D−(
)D+(
), (28)

|W| = D−(
)B(
), (29)

where

D±(
) = 1 + 


K1
(Ṽ0 ± Ṽ2), (30)

and

B(
) = 1 + Ṽ0 + 


K1

[
Ṽ0 + Ṽ2 + Ṽ0(Ṽ0 + Ṽ2) − 2Ṽ 2

1

]
. (31)

Here, without loss of generality, we have made use of the
fact that the Fourier coefficients Vn of the grating profile func-
tion �(x) are real, if �(x) is an even function of x; therefore,
Ṽn = Ṽ−n. Thus, for Q = 0, the transmission amplitudes in
Eq. (23) reduce to

t0(
) = D+(
)

B(
)
, t±1(
) = − 


K1

Ṽ1

B(
)
. (32)

As it is clear from Fig. 3(b), the two folded dispersion lines
originating from the unperturbed TE SPP of the homogeneous

023185-5



AHMAD, OH, AND MULJAROV PHYSICAL REVIEW RESEARCH 6, 023185 (2024)

FIG. 4. Transmission spectra (1 − T0) for zeroth diffraction order (close-to-normal incidence) when a TE-polarized light with parallel wave
number Q is incident on the grating with b/d = 0.3,  = 0, for (a) single-layer graphene with σ/2π = σintra + σinter, (b) single-layer graphene
without interband conductivity σ/2π = σintra, and (c) turbostratically stacked graphene with σ/2π = N (σintra + σinter ), for N = 10. The dashed
red line indicates T0 = 0. Spectra for Q �= 0 are offset by powers of 10 in increasing order of Q. Red and black vertical dash-dotted lines indicate
the real parts of the bright and dark TE SPP resonance frequencies for Q = 0, which are solutions of Eqs. (34) and (33), respectively.

layer, corresponding to the n = 1 and n = −1 Bragg orders
and crossing at 
 ≈ G1, produce in a periodically modulated
system two perturbed TE SPP modes at each Q. The fre-
quencies of these modes can be found from the zeros of the
determinant in Eq. (26), which factorizes at Q = 0, according
to Eq. (29). One mode, having frequency 
d , is found from
the condition D−(
d ) = 0, which yields


d

G1
= 1√

1 − (Ṽ0 − Ṽ2)2
, (33)

and is further referred to as the dark mode, as it does not
manifest itself in the normal-incidence transmission. In fact,
since F±1 and F0 are proportional to D−(
) there is an exact
cancellation of this factor in t±1 and t0. The other mode,
having frequency 
b, which we further call the bright mode,
is obtained from equating to zero the other factor in |W| given
by Eq. (29), B(
b) = 0, which yields


b

G1
= 1 + Ṽ0√

(1 + Ṽ0)2 − [
(1 + Ṽ0)(Ṽ0 + Ṽ2) − 2Ṽ 2

1

]2
. (34)

This mode does contribute to the transmission, which in turn
can be approximated for the frequencies 
 close to 
b as

t0(
) ≈ D+(
b) + (
 − 
b)D′
+(
b)

(
 − 
b)B′(
b)
, (35)

and a similar approximate expression can be obtained for
t±1(
). While the Ṽ 2

1 term in Eq. (34) presents a higher-order
correction (comparable to the contribution of all neglected
Bragg orders) and results in a relative change of 
b of order
10−4, it is significant for the zeroth-order transmission, oth-
erwise the pole at the bright mode is exactly compensated by
the numerator in t0, as can be seen from Eqs. (30)–(32).

Note that Eqs. (33) and (34) are not explicit expressions
for 
d and 
b respectively, but should instead be solved self-
consistently, as the matrix elements Ṽn, even though small, are
dependent on frequency through the conductivity σ (
). How-
ever, one can use 
 = G1 as a good starting value for a quickly
converging self-consistent iterative solution of Eqs. (33) and
(34), which is implemented in this work and illustrated in
Sec. III.

Note also that in the absence of the periodic modulation
Ṽn = δn,0Nσ (
), and both modes have exactly the same fre-
quency, given by 
b,d = G1/

√
1 − Ṽ 2

0 , which coincides with
the homogeneous graphene dispersion [2] folded into the cen-
ter of the first Brillouin zone.

III. RESULTS

We now present transmission spectra of periodically mod-
ulated graphene at μβ = 105, with 30% filling factor (b/d =
0.3), for normal and close-to-normal incidence of a TE-
polarized incoming plane wave. Here, the grating period d
is chosen in such a way that  = 0 (equivalent to G1 = 2).
For this grating period, the crossing point of the folded light
dispersion at Q = 0 coincides with the interband dip in the
imaginary part of the conductivity [see Figs. 3(a) and 3(b)]. It
is therefore expected that the coupling of the TE SPP modes
of a homogeneous graphene, which is caused by its periodic
modulation, is maximized, and thus features in transmission
due to the TE SPP modes are enhanced.

Figure 4 shows the transmission spectra in the zeroth
diffraction order, 1 − T0, for single-layer graphene grating
in Fig. 4(a), single-layer graphene grating without interband
conductivity σinter in Fig. 4(b), and turbostratic (N = 10)
graphene grating in Fig. 4(c), calculated with the scattering
matrix truncated to the lowest 21 Bragg orders (−10 � n �
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10). In all three cases, the first (n = 1) and minus-first (n =
−1) Bragg order light lines are evident as dips in 1 − T0

that move away from each other almost linearly with Q, as
Q increases starting from zero. When the contribution of the
interband conductivity σinter is removed from the total conduc-
tivity σ , these dips are clearly seen in Fig. 4(b) in addition to a
steplike feature also moving linearly with Q along the minus-
first Bragg order light line. This steplike feature, also present
in some form in the graphene transmission [Figs. 4(a) and
4(c)], is caused by opening the minus-first diffraction channel
with increasing frequency in accordance with Eq. (15). Such
features are common to the optical spectra of periodic systems
[49,50].

The most important features in the spectra of periodically
modulated graphene [Figs. 4(a) and 4(c)] are also highlighted
by their comparison with the normal metal spectra [Fig. 4(b)].
These are peaks in 1 − T0 which appear also close to the
folded light lines and are the manifestation of the TE SPP
modes in periodically modulated graphene. At the frequen-
cies of these TE SPP peaks, the energy of the incoming
TE beam is diverted back into reflection, as demonstrated
in Appendix B, showing in the same and in a much larger
frequency range the transmission in zeroth and other (n = ±1)
diffraction orders, as well as the absorption (see Figs. 9 and 12
for  = 0; results for nonzero detuning  are also presented
in Appendix B).

In the selected frequency range close to 
 = G1, one
would expect to observe in Figs. 4(a) and 4(c) two TE SPP
modes, separated by a frequency gap, in accordance with
Fig. 3(b). This is a general property of planar photonic-crystal
structures which is usually caused by guided-mode folding
and their hybridization due to the coupling between Bragg
orders [43,51,52]. However, for Q = 0, we see in Fig. 4(a)
only one peak at around 
 − 2 ≈ −1.76 × 10−4. The second
peak is missing for Q = 0 and appears only at nonzero values
of Q. This is, however, in full agreement with our analysis
of the transmission, presented in Sec. II D in terms of the
bright and dark TE SPP modes. The real parts of their fre-
quencies, 
b and 
d , are also shown in Fig. 4(a) by vertical
dash-dotted lines, demonstrating a good agreement with the
peak positions. The linewidth of the dark mode is increasing
with Q, and both modes are deviating from their positions
at Q = 0. We evaluate the frequency gap between the two
TE SPP modes to be approximately 1.47 × 10−4. Note that a
similar behavior has been observed in transmission spectra of
a distributed feedback microcavity structure [51,52] in which
bright and dark modes originate from the interaction of the
folded guided-mode dispersion lines.

A further analysis of the transmission spectrum at Q = 0 is
presented in Fig. 5, which shows 1 − T0 calculated using the
approximation (35) (red line) and the full scattering matrix
truncated up to 21 Bragg orders (blue line), demonstrating a
good agreement between the two near 
 ≈ 
b (vertical red
dashed line). Away from 
b, the approximate transmission
[Eq. (35)], based on the first-order Taylor expansion, natu-
rally deviates from the exact result. This analysis provides
a proof that the observed peaks in the transmission are in
fact a manifestation of the TE SPP modes predicted in a ho-
mogeneous graphene layer [1,2]. However, in homogeneous
systems, these modes spectrally lie below the light line and

FIG. 5. Approximation of transmission (red solid line) using
Eq. (35) showing consistency with the TE peak for Q = 0 and  = 0
(blue solid line). Red and black dashed lines indicate the real part of
the frequencies of the bright and dark TE SPP modes, obtained using
Eq. (34) and Eq. (33), respectively. The frequency gap between the
dashed lines is approximately 1.47 × 10−4.

thus cannot be excited resonantly. By periodically modulating
the homogeneous graphene layer, the TE SPP modes can be
seen in optical spectra.

Using turbostratic graphene grating as shown in Fig. 4(c),
TE mode peaks coming from interband conductivity can be
further pronounced. Similar to the single-layer case, the main
peak reaches its maximum value of 1. However, both the width
of the peaks due to TE SPPs and their positions in frequency
are affected by the use of turbostratic graphene. Note that
the TE mode peak at Q = 0 has been shifted further away
from the light line, about a factor of 35 more compared to
its previous position for the single-layer case in Fig. 4(a).
The peak has a larger full width at half maximum (FWHM),
making TE SPP mode easier to detect. The peak frequency
does not change much for Q close to zero, but eventually starts
to shift to lower frequencies as Q is increased [this can be
seen in Fig. 12(c) in Appendix B]. The dark TE SPP mode
peak only appears for Q �= 0 as seen in Fig. 4(c), similar to
the single-layer case. However, it demonstrates a fine struc-
ture, consisting of multiple peaks, which is due to a stronger
coupling between the TE SPP modes and higher Bragg orders
more strongly contributing to the scattering matrix.

The effect of temperature Tel on the transmission spectrum
is presented in Fig. 6 for Q = 0. Note that the dependence
on Tel arises due to the interband conductivity of graphene,
strongly dependent on temperature through the Fermi-Dirac
distribution function as already discussed in Refs. [1,2,41]. It
is evident from Fig. 4, comparing transmission spectra with
and without the interband term of the conductivity, that inter-
band conductivity is crucial for the formation of the TE mode;
hence the transmission may strongly depend on temperature.
In fact, increasing temperature smears the Fermi-Dirac distri-
bution function, in turn smearing the interband conductivity
function near 
 = 2 [2]. Figure 6 shows that the TE mode
peak is reaching its maximum height of 1 at zero temper-
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FIG. 6. Transmission spectra (1 − T0) for zeroth diffraction or-
der when a TE-polarized light is normally incident (Q = 0) on
grating with b/d = 0.3, for  = 0, shown from zero temperature
(red) to finite temperature (green), for (a) single-layer graphene and
(b) turbostratically stacked graphene. Red and green dash-dotted
lines indicate T0 = 0 for zero temperature and Tel = 0.3 K (single)
or Tel = 3 K (turbostratic), respectively.

ature in both the single-layer and turbostratic case. For the
single-layer case, increasing temperature smears the peak out,
with the peak maximum reduced. For the turbostratic case,
the peak is still present at 3 K with minimal smearing. This
reduced sensitivity of transmission to temperature suggests
further in favor of turbostratic over single-layer graphene for
applications using TE SPPs operating within the temperature
range presented in Fig. 6(b).

To estimate a potential role of disorder in the transmission
spectra of the system, we have evaluated the FWHM of the
TE peak in the transmission of the periodically modulated
turbostratic graphene in Fig. 4(c) at b/d = 0.3. We found that
for up to 20% deviation of filling factor, a shifted TE SPP peak
still lies within the original FWHM. Furthermore, in the case
of turbostratic graphene, the FWHM is larger, making the TE
mode more robust with respect to temperature changes.

IV. CONCLUSIONS

We have shown that the complex-frequency transverse-
electric surface plasmon polariton (TE SPP) modes in a
graphene grating can be excited by external electromagnetic
waves with close-to-normal incidence. Specifically, a signifi-
cant reduction in the zeroth diffraction order transmission is
observed near the interband transition frequency of graphene.
This reduction can be explained as a reflection of the energy of
the incoming beam due to the resonant coupling to the TE SPP
modes. In addition, we have shown that the frequency and the
in-plane wave number of TE SPP modes seen in transmission

can be tuned by controlling the graphene chemical potential
and grating period. Specifically, we have demonstrated that for
zero detuning, that is, the grating period is chosen so that the
TE SPP mode energy matches the interband threshold of the
graphene conductivity, the features in the optical spectra due
to the TE SPPs are significantly enhanced. Furthermore, by
using turbostratic graphene layers with negligible interlayer
interactions, we can enhance these features further, making
them experimentally more accessible than in the single-layer
graphene.

The data that support the findings of this study are available
in the Cardiff University Research Portal at Ref. [53].
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APPENDIX A: SCATTERING-MATRIX APPROACH

1. Solving Maxwell’s equations for an infinitesimally
thin periodic layer

We start from Maxwell’s equations having the form

∇ × E = −∂t H, (A1)

∇ × H = ∂t D, (A2)

where we assume nonmagnetic materials, i.e., the permeabil-
ity μ = 1 everywhere in space, and use the units in which
the speed of light c = 1. Assuming a harmonic dependence
on time of the electromagnetic field in the form of e−iωt , we
obtain

∇ × E = iωH, (A3)

∇ × H = −iωε(ω)E. (A4)

For the TE polarization, the magnetic and electric fields can
be expressed in terms of their Cartesian components as

H =
⎛
⎝Hx

0
Hz

⎞
⎠, E =

⎛
⎝ 0

Ey

0

⎞
⎠. (A5)

Maxwell’s equations then take the form⎛
⎝−∂zEy

0
∂xEy

⎞
⎠ = iω

⎛
⎝Hx

0
Hz

⎞
⎠, (A6)

⎛
⎝ ∂yHz

∂zHx − ∂xHz

−∂yHx

⎞
⎠ = −iωε

⎛
⎝ 0

Ey

0

⎞
⎠. (A7)

These can be rewritten as

−∂zEy = iωHx, (A8)

∂xEy = iωHz, (A9)

∂zHx − ∂xHz = −iωεEy. (A10)
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As defined in Eq. (1), the permittivity in the whole space
is given by ε(x, z; ω) = 1 + χ (ω)�(x)δ(z), where χ (ω) is the
2D susceptibility of an infinitesimally thin layer and �(x) is a
periodic function describing its spatial modulation, which can
be represented by its Fourier series as

�(x) =
∑

n

Vneignx. (A11)

Integrating Eqs. (A8) and (A10) over z across the point z =
0, we obtain

−Ey|z=0+ + Ey|z=0− = 0, (A12)

Hx|z=0+ − Hx|z=0− = −iωχ (ω)�(x)Ey|z=0, (A13)

where 0+(−) is a positive (negative) infinitesimal. For the TE
polarization, it is easier to eliminate Hx and write equations in
terms of the Ey component having the following general form,

Ey(x, z) =
∑

n

ei(q+gn )x ×
{

Cneiknz + Dne−iknz, z > 0
Aneiknz + Bne−iknz, z < 0,

(A14)

in which gn and kn are defined, respectively, by Eqs. (6) and
(8), and q is the wave number along x.

Substituting Eq. (A8) into Eq. (A13), we obtain

∂zEy

∣∣
z=0+ − ∂zEy

∣∣
z=0− = −ω2χ (ω)�(x)Ey

∣∣
z=0, (A15)

which after using the series of Eqs. (A11) and (A14) becomes∑
n

ikn(Cn − Dn − An + Bn)ei(q+gn )x

= −ω2χ (ω)
∑
mn

eiqxeigm+nxVm(An + Bn). (A16)

By shifting the indices of summation n −→ n − m in the right-
hand side of Eq. (A16), we find∑

n

ikn(Cn − Dn − An + Bn)ei(q+gn )x

= −ω2χ (ω)
∑
m,n

eiqxeignxVm(An−m + Bn−m), (A17)

and then equating the coefficients at ei(q+gn )x in Eq. (A17), we
obtain

ikn(Cn − Dn − An + Bn) = −ω2χ (ω)
∑

m

Vm(An−m + Bn−m).

(A18)

Finally, shifting the indices again in the summation in
Eq. (A18), by substituting m −→ −m + n, we arrive at

ikn(Cn−Dn−An+Bn)=−ω2χ (ω)
∑

m

Vn−m(Am+Bm).

(A19)
In addition to this, we find from the continuity of the electric
field, Eq. (A12), that

Cn + Dn = An + Bn. (A20)

An infinite set of simultaneous equations given by Eqs. (A19)
and (A20) presents a general solution of Maxwell’s equa-
tion in TE polarization for the infinitesimally thin periodically
modulated layer.

FIG. 7. Transmission spectra for single-layer graphene (N = 1),
for the [(a), (b)] minus-first diffraction order, [(c), (d)] zeroth diffrac-
tion order, and [(e), (f)] first diffraction order, for the period d
adjusted so that  = −1 (G1 = 1). Panels (b) and (d) zoom in the
spectral features near 
 = G1 in (a) and (c), respectively, for Q = 0.
(g) Absorption calculated using Eq. (B1), with waterfall increment
of 0.02. A(
 < 2) = 0 for zero temperature. The gray solid lines
correspond to the forbidden frequency range where Eq. (15) is not
satisfied, and the curve has the meaning of the near-field amplitude.

2. Deriving the scattering matrix

To build a scattering matrix, let us rearrange Eqs. (A19)
and (A20) in the following way:

Cn + Bn +
∑

m

ω2χ (ω)

ikn
Vn−mBm

= An + Dn −
∑

m

ω2χ (ω)

ikn
Vn−mAm, (A21)

Cn − Bn = An − Dn. (A22)
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FIG. 8. As Fig. 7 but for  = −2 + 1.667 (G1 = 1.667), illus-
trating attenuation of near-field and transmission amplitudes.

Thus, in terms of 2 × 2 matrices of Bragg-order blocks,
Eqs. (A21) and (A22) can be written as[

I I + 2U
I −I

][
C
B

]
=

[
I I − 2U

−I I

][
D
A

]
, (A23)

where vectors A, B, C, and D have components An, Bn, Cn,
and Dn, respectively, matrix U has the matrix elements

Unm = ω2χ (ω)

2ikn
Vn−m, (A24)

and I is the identity matrix.
The scattering matrix, relating the amplitudes of incoming

and outgoing waves, is then given by

S =
[

I I + 2U
I −I

]−1[
I I − 2U

−I I

]
. (A25)

To further simplify it, we can write the inverse of the square
matrix in Eq. (A25) in terms of its blocks:

S = 1

2

[
W−1 W−1(I + 2U)
W−1 −W−1

][
I I − 2U

−I I

]
, (A26)

FIG. 9. As Fig. 7 but for  = 0 (G1 = 2), illustrating the ampli-
fication of the near-field and transmission amplitudes.

where W = I + U. Finally, performing the matrix multiplica-
tion, we obtain

S =
[−W−1U W−1

W−1 −W−1U

]
. (A27)

3. TM polarization

We note that TM polarization can be treated in exactly the
same manner as the TE polarization solved above, leading to
the same form as Eq. (A27) for the scattering matrix, provided
that the matrix U is replaced with UTM having the matrix
elements

U TM
nm = − 1

2 iknχ (ω)Vn−m. (A28)

Also, in TM polarization, the vectors A, B, C, and D have
the same meaning as the expansion coefficients in Eq. (A14),
but for Hy(x, z) instead, which in this case is the only nonzero
component of the magnetic field.
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FIG. 10. Transmission spectra for turbostratic (N = 10)
graphene, for the [(a), (b)] minus-first diffraction order, [(c), (d)]
zeroth diffraction order, and [(e), (f)] first diffraction order for
detuning  = −1 (G1 = 1). Panels (b) and (d) zoom in the spectral
features near 
 = G1 in (a) and (c), respectively, for Q = 0.
Similarly, panel (f) is a zoom in of panel (e) at Q close to but not
zero. Gray regions and curves indicate forbidden frequency regions.
(g) Absorption spectrum obtained using Eq. (B1), with waterfall
increment of 0.2.

APPENDIX B: TRANSMISSION AND
ABSORPTION SPECTRA

Here we present the transmission spectra, calculated using
Eq. (13), for grating with the filling factor b/d = 0.3 for Q ∈
[0, G1/2] and for different grating periods such that  = −1,
−2 + 1.667, and 0. We also show the absorption defined as

A(
) = 1 −
∑

n∈{
>|Q+Gn|}
[Tn(
) + Rn(
)], (B1)

where

Rn(
) =
∣∣∣∣kn

k0
B2

n

∣∣∣∣ (B2)

FIG. 11. As Fig. 10 but for  = −2 + 1.667 (G1 = 1.667).

is the reflection coefficient of the nth diffraction order. Note
that the summation in Eq. (B1) is performed over open diffrac-
tion channels only, satisfying the condition in Eq. (15), as
indicated in the formula.

1. Single-layer case

Figures 7–9 show transmission and absorption spectra for
single-layer (N = 1) graphene grating for  = −1, −2 +
1.667, and 0, respectively, corresponding to G1 = 1, 1.667,
and 2.

The SPP modes manifest themselves as peaks in the
transmission spectra in Figs. 7(a), 7(c), and 7(e) (and corre-
sponding panels in Figs. 8 and 9), and as dips in Figs. 7(g),
8(g), and 9(g), all moving almost linearly with Q. The ab-
sorption A in Figs. 7(g), 8(g), and 9(g) is zero for 
 < 2
and is about 10−2 otherwise, which correlates with the inter-
band absorption having a sharp frequency cutoff at 
 = 2 for
zero temperature. In the zeroth order transmission 1 − T0, the
TE SPP mode peaks are lost due to the stronger interband
absorption for frequencies above 
 > 2, instead appearing
as dips in the absorption spectrum A, for such frequencies.
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FIG. 12. As Fig. 10 but for  = 0 (G1 = 2).

Since the mode features are sharp in frequency, we show a
zoom-in of the TE mode transmission at Q = 0 for minus-first
[Figs. 7(b), 8(b), and 9(b)] and zeroth [Figs. 7(d), 8(d), and
9(d)] diffraction orders. First order transmission for small but
finite Q is shown in Figs. 7(f), 8(f), and 9(f).

For  = −1 (Fig. 7), the TE mode dip (not peak) for
Q = 0 appears at a frequency very close to G1 [see Fig. 7(b)].
When Q is slightly increased [Fig. 7(f)], the TE mode dip
moves away from G1 increasing in frequency within the open
diffraction channel region (not gray).

For  = −2 + 1.667 (Fig. 8), the TE mode peak can be
also seen moving to higher frequencies for Q slightly in-
creasing from Q = 0 [Fig. 8(b)] to Q �= 0 [Fig. 8(f)]. The
peak width is very small, about 10−10 in this case due to
the vanishing graphene conductivity near this frequency of

 ≈ 1.667 [2].

For  = 0 (Fig. 9), the TE mode peak is clearly enhanced
due to the dip in the imaginary part of the conductivity. The
TE SPP peak in the coefficient of the evanescent near field
(gray area) moves to lower frequencies for increasing Q from

FIG. 13. As Fig. 10 but for  = 0.5 (G1 = 2.5).

Fig. 9(b) to Fig. 9(f), in agreement with the observations in
Fig. 4(a).

2. Turbostratic case

Figures 10–13 show transmission and absorption spec-
tra for turbostratic (N = 10) graphene grating for  = −1,
−2 + 1.667, 0, and 0.5, respectively, corresponding to G1 =
1, 1.667, 2, and 2.5. Features related to the mode peaks and
interband peaks are qualitatively the same here as in the
single-layer case in Appendix B 1 which can be seen by com-
paring frequencies of peaks (or dips) in panels (a),(c),(e),(g)
of Figs. 7–9, to those of same panels of Figs. 10–12, with
matching .

The factor of N = 10 multiplying the conductivity in-
creases the absorption by the same factor to the order of 10−1.
The zoom in Figs. 10(b), 10(d), and 10(f) (and corresponding
panels in Figs. 11–13) show effects of this factor in amplitude
of peaks and the frequency of peaks and dips moving further
away from G1 by a factor of about 102, compared to the single-
layer case. Importantly, the zoom in frequency near 
 = 2 in
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Figs. 12(b), 12(d), and 12(f) shows evidence of amplification
in first and minus-first diffraction orders and attenuation of the

transmission in the zeroth diffraction order, compared to that
in the single-layer case.
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Zhang, Infrared topological plasmons in graphene, Phys. Rev.
Lett. 118, 245301 (2017).

[12] T. M. Slipchenko, J.-M. Poumirol, A. B. Kuzmenko, A. Y.
Nikitin, and L. Martín-Moreno, Interband plasmon polaritons
in magnetized charge-neutral graphene, Commun. Phys. 4, 110
(2021).

[13] M. Taillefumier, V. K. Dugaev, B. Canals, C. Lacroix, and P.
Bruno, Graphene in a periodically alternating magnetic field:
An unusual quantization of the anomalous Hall effect, Phys.
Rev. B 84, 085427 (2011).

[14] P. A. D. Gonçalves, E. J. C. Dias, Y. V. Bludov, and N. M. R.
Peres, Modeling the excitation of graphene plasmons in peri-
odic grids of graphene ribbons: An analytical approach, Phys.
Rev. B 94, 195421 (2016).

[15] L. Cui, J. Wang, and M. Sun, Graphene plasmon for optoelec-
tronics, Rev. Phys. 6, 100054 (2021).

[16] M. B. Rhouma, B. Guizal, P. Bonnet, F. Paladian, and K. Edee,
Semi-analytical model for the analysis of a magnetically biased
1D subwavelength graphene-strip-grating, Opt. Continuum 1,
1144 (2022).

[17] L. Xiong, C. Forsythe, M. Jung, A. S. McLeod, S. S. Sunku,
Y. M. Shao, G. X. Ni, A. J. Sternbach, S. Liu, J. H. Edgar,

E. J. Mele, M. M. Fogler, G. Shvets, C. R. Dean, and D. N.
Basov, Photonic crystal for graphene plasmons, Nat. Commun.
10, 4780 (2019).

[18] N. K. Emani, D. Wang, T.-F. Chung, L. J. Prokopeva, A. V.
Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva,
Plasmon resonance in multilayer graphene nanoribbons, Laser
Photonics Rev. 9, 650 (2015).

[19] G. Li, V. Semenenko, V. Perebeinos, and P. Q. Liu, Multilayer
graphene terahertz plasmonic structures for enhanced frequency
tuning range, ACS Photonics 6, 3180 (2019).

[20] D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and
H. Altug, Double-layer graphene for enhanced tunable infrared
plasmonics, Light Sci. Appl. 6, e16277 (2017).

[21] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag,
W. Zhu, P. Avouris, and F. Xia, Tunable infrared plasmonic
devices using graphene/insulator stacks, Nat. Nanotechnol. 7,
330 (2012).

[22] M.-D. He, G. Zhang, J.-Q. Liu, J.-B. Li, X.-J. Wang, Z.-R.
Huang, L. Wang, and X. Chen, Plasmon resonances in a stacked
pair of graphene ribbon arrays with a lateral displacement, Opt.
Express 22, 6680 (2014).

[23] S. Gong, L. Wang, Y. Zhang, Z. Yang, X. Li, Q. Wen, Z. He, S.
Liang, L. Yuan, C. Yu, Z. Feng, Z. Yang, and X. Zhang, Ultra-
extraordinary optical transmission induced by cascade coupling
of surface plasmon polaritons in composite graphene–dielectric
stack, Opt. Express 28, 30502 (2020).

[24] I. Haddouche and L. Cherbi, Comparison of finite element and
transfer matrix methods for numerical investigation of surface
plasmon waveguides, Opt. Commun. 382, 132 (2017).

[25] M. Maier, D. Margetis, and M. Luskin, Dipole excitation
of surface plasmon on a conducting sheet: Finite ele-
ment approximation and validation, J. Comput. Phys. 339,
126 (2017).

[26] J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, Theoretical
analysis of square surface plasmon-polariton waveguides for
long-range polarization-independent waveguiding, Phys. Rev. B
76, 035434 (2007).

[27] J. Shibayama, J. Yamauchi, and H. Nakano, Frequency-
dependent FDTD analyses of terahertz plasmonic devices, in
2020 International Symposium on Antennas and Propagation
(ISAP) (IEEE, Piscataway, NJ, 2021), pp. 457–458.

[28] T. Zang, H. Zang, Z. Xi, J. Du, H. Wang, Y. Lu, and P. Wang,
Asymmetric excitation of surface plasmon polaritons via paired
slot antennas for angstrom displacement sensing, Phys. Rev.
Lett. 124, 243901 (2020).

[29] M. Rana, B. Hossain, R. Islam, and Y. G. Guo, Surface plas-
mon polariton propagation modeling for graphene parallel pair
sheets using FDTD, in 2015 IEEE International Conference
on Applied Superconductivity and Electromagnetic Devices
(ASEMD) (IEEE, Piscataway, NJ, 2015), pp. 179–180.

[30] J. Olkkonen, FDTD scattered field formulation for scatterers in
stratified dispersive media, Opt. Express 18, 4380 (2010).

[31] T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H.
Giessen, Derivation of plasmonic resonances in the Fourier

023185-13

https://doi.org/10.1103/PhysRevLett.99.016803
https://doi.org/10.1103/PhysRevB.104.085426
https://doi.org/10.1038/nmat3433
https://doi.org/10.1002/adma.201200011
https://doi.org/10.1063/5.0006459
https://doi.org/10.1038/nphoton.2011.102
https://doi.org/10.1364/OSAC.1.000392
https://doi.org/10.1063/1.5132926
https://doi.org/10.1088/0957-4484/24/34/345203
https://doi.org/10.1515/nanoph-2017-0095
https://doi.org/10.1103/PhysRevLett.118.245301
https://doi.org/10.1038/s42005-021-00607-2
https://doi.org/10.1103/PhysRevB.84.085427
https://doi.org/10.1103/PhysRevB.94.195421
https://doi.org/10.1016/j.revip.2021.100054
https://doi.org/10.1364/OPTCON.446632
https://doi.org/10.1038/s41467-019-12778-2
https://doi.org/10.1002/lpor.201500058
https://doi.org/10.1021/acsphotonics.9b01597
https://doi.org/10.1038/lsa.2016.277
https://doi.org/10.1038/nnano.2012.59
https://doi.org/10.1364/OE.22.006680
https://doi.org/10.1364/OE.404639
https://doi.org/10.1016/j.optcom.2016.07.068
https://doi.org/10.1016/j.jcp.2017.03.014
https://doi.org/10.1103/PhysRevB.76.035434
https://doi.org/10.1103/PhysRevLett.124.243901
https://doi.org/10.1364/OE.18.004380


AHMAD, OH, AND MULJAROV PHYSICAL REVIEW RESEARCH 6, 023185 (2024)

modal method with adaptive spatial resolution and matched
coordinates, J. Opt. Soc. Am. A 28, 238 (2011).

[32] N. Anttu and H. Q. Xu, Scattering matrix method for optical
excitation of surface plasmons in metal films with periodic
arrays of subwavelength holes, Phys. Rev. B 83, 165431 (2011).

[33] G. M. Maksimova, E. S. Azarova, A. V. Telezhnikov, and
V. A. Burdov, Graphene superlattice with periodically modu-
lated Dirac gap, Phys. Rev. B 86, 205422 (2012).

[34] A. Y. Nikitin, F. Guinea, and L. Martin-Moreno, Resonant plas-
monic effects in periodic graphene antidot arrays, Appl. Phys.
Lett. 101, 151119 (2012).

[35] C. Wei, R. Negishi, Y. Ogawa, M. Akabori, Y. Taniyasu, and Y.
Kobayashi, Turbostratic multilayer graphene synthesis on CVD
graphene template toward improving electrical performance,
Jpn. J. Appl. Phys. 58, SIIB04 (2019).

[36] I. H. Baek, J. M. Hamm, K. J. Ahn, B. J. Kang, S. S. Oh, S.
Bae, S. Y. Choi, B. H. Hong, D.-I. Yeom, B. Min, O. Hess, Y. U.
Jeong, and F. Rotermund, Boosting the terahertz nonlinearity of
graphene by orientation disorder, 2D Mater. 4, 025035 (2017).

[37] R. A. Watts, T. W. Preist, and J. R. Sambles, Sharp surface-
plasmon resonances on deep diffraction gratings, Phys. Rev.
Lett. 79, 3978 (1997).

[38] Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, Polarization-
independent extraordinary optical transmission in
one-dimensional metallic gratings with broad slits, Appl.
Phys. Lett. 93, 061102 (2008).

[39] E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, Ex-
traordinary optical transmission without plasmons: The s-
polarization case, J. Opt. A: Pure Appl. Opt. 8, S94 (2006).

[40] S. Maier, Plasmonics: Fundamentals and Applications
(Springer, Berlin, 2007).

[41] L. A. Falkovsky, Optical properties of graphene, J. Phys.: Conf.
Ser. 129, 012004 (2008).

[42] D. M. Whittaker and I. S. Culshaw, Scattering-matrix treatment
of patterned multilayer photonic structures, Phys. Rev. B 60,
2610 (1999).

[43] S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A.
Gippius, and T. Ishihara, Quasiguided modes and optical prop-
erties of photonic crystal slabs, Phys. Rev. B 66, 045102
(2002).

[44] D. A. Bykov and L. L. Doskolovich, Numerical methods for
calculating poles of the scattering matrix with applications in
grating theory, J. Lightwave Technol. 31, 793 (2013).

[45] A. B. Akimov, A. S. Vengurlekar, T. Weiss, N. A.
Gippius, and S. G. Tikhodeev, Surface plasmon polaritons in
metallo-dielectric meander-type gratings, JETP Lett. 90, 355
(2009).

[46] H. Min and A. H. MacDonald, Electronic structure of multilayer
graphene, Prog. Theor. Phys. Suppl. 176, 227 (2008).

[47] J. A. Garlow, L. K. Barrett, L. Wu, K. Kisslinger, Y. Zhu,
and J. F. Pulecio, Large-area growth of turbostratic graphene
on Ni(111) via physical vapor deposition, Sci. Rep. 6, 19804
(2016).

[48] R. Negishi, K. Yamamoto, H. Kitakawa, M. Fukumori, H.
Tanaka, T. Ogawa, and Y. Kobayashi, Synthesis of very nar-
row multilayer graphene nanoribbon with turbostratic stacking,
Appl. Phys. Lett. 110, 201901 (2017).

[49] B. Bolotovskii and A. Lebedev, On threshold phenomena in
classical electrodynamics, Zh. Eksp. Teor. Fiz. 53, 784 (1967)
[Sov. Phys. JETP 26, 784 (1968)].

[50] C. C. Wojcik, H. Wang, M. Orenstein, and S. Fan, Universal
behavior of the scattering matrix near thresholds in photonics,
Phys. Rev. Lett. 127, 277401 (2021).

[51] T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, Tunable polariton
absorption of distributed feedback microcavities at room tem-
perature, Phys. Rev. B 57, 12428 (1998).

[52] A. Yablonskii, E. Muljarov, N. Gippius, S. Tikhodeev, T. Fujita,
and T. Ishihara, Polariton effect in distributed feedback micro-
cavities, J. Phys. Soc. Jpn. 70, 1137 (2001).

[53] Z. Ahmad, S. S. Oh, and E. Muljarov, Transmission spectra data
of periodically modulated graphene structure, Cardiff Univer-
sity (2024), http://doi.org/10.17035/d.2024.0310746010.

023185-14

https://doi.org/10.1364/JOSAA.28.000238
https://doi.org/10.1103/PhysRevB.83.165431
https://doi.org/10.1103/PhysRevB.86.205422
https://doi.org/10.1063/1.4760230
https://doi.org/10.7567/1347-4065/ab0c7b
https://doi.org/10.1088/2053-1583/aa5c64
https://doi.org/10.1103/PhysRevLett.79.3978
https://doi.org/10.1063/1.2970959
https://doi.org/10.1088/1464-4258/8/4/S07
https://doi.org/10.1088/1742-6596/129/1/012004
https://doi.org/10.1103/PhysRevB.60.2610
https://doi.org/10.1103/PhysRevB.66.045102
https://doi.org/10.1109/JLT.2012.2234723
https://doi.org/10.1134/S0021364009170093
https://doi.org/10.1143/PTPS.176.227
https://doi.org/10.1038/srep19804
https://doi.org/10.1063/1.4983349
https://doi.org/10.1103/PhysRevLett.127.277401
https://doi.org/10.1103/PhysRevB.57.12428
https://doi.org/10.1143/JPSJ.70.1137
http://doi.org/10.17035/d.2024.0310746010

