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aDepartment of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; 
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ABSTRACT 
Human-Robot Collaboration (HRC) is key to achieving the flexible automation required by the 
mass personalization trend, especially towards human-centric intelligent manufacturing. 
Nevertheless, existing HRC systems suffer from poor task understanding and poor ergonomic satis
faction, which impede empathetic teamwork skills in task execution. To overcome the bottleneck, 
a Mixed Reality (MR) and visual reasoning-based method is proposed in this research, providing 
mutual-cognitive task assignment for human and robotic agents’ operations. Firstly, an MR- 
enabled mutual-cognitive HRC architecture is proposed, with the characteristic of monitoring 
Digital Twins states, reasoning co-working strategies, and providing cognitive services. Secondly, a 
visual reasoning approach is introduced, which learns scene interpretation from the visual percep
tion of each agent’s actions and environmental changes to make task planning strategies satisfy
ing human–robot operation needs. Lastly, a safe, ergonomic, and proactive robot motion planning 
algorithm is proposed to let a robot execute generated co-working strategies, while a human 
operator is supported with intuitive task operation guidance in the MR environment, achieving 
empathetic collaboration. Through a demonstration of a disassembly task of aging Electric Vehicle 
Batteries, the experimental result facilitates cognitive intelligence in Proactive HRC for flexible 
automation.
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1. Introduction

The primary goal of Industry 5.0 is to create sustainable, 
human-centric, and resilient manufacturing systems (Xu 
et al., 2021). Towards human-centric smart manufacturing, 
enterprises are struggling for existence, due to the following 
challenges:

1. Transformable production required by mass personaliza
tion, such as tight changeover time when new products with 
variability are introduced to the market (Zhang et al., 2022)

2. Large scale production of complicated and fine-fabri
cated mechanical components, such as assembly of a 
multistage car body (Wang et al., 2021)

3. Occupational risk factors, such as musculoskeletal disorders 
among employees caused by awkward posture excessive 
effort, and repetitive movements (Carnahan et al., 2001).

To tackle the strict requirements in manufacturing, 
Human–Robot Collaboration (HRC) provides a prevailing 
solution, which combines human cognitive flexibility and 
adaptability and robots’ high accuracy, strength, and 

repeatability (Wang, Liu, Liu, and Wang, 2020). Inside a 
shared workspace, Proactive HRC systems allow human and 
robot participators to carry out manufacturing tasks quali
fied for their capabilities based on a holistic understanding 
of human–robot–workspace relations and task procedural 
knowledge, improving overall production efficiency (Li, 
Wang, Zheng, and Wang, 2021). Characterized by flexible 
automation, HRC is burrowing deep into today’s production 
architecture.

The successful application of HRC systems relies on its 
context awareness capability (Wang et al., 2022), which 
allows humans and robots to understand the surrounding 
environment and task operation goals. To date, emerging 
technologies, such as Mixed Reality (MR), Augmented 
Reality (AR), and computer vision, provide solutions for the 
perception of symbiotic relationships of the two participa
tors. To eliminate safety risks, Hietanen et al. (2020) devel
oped an interactive AR system, from which the human 
operator could obtain dynamic robot status and safety zone 
changes in the workspace. For precise robot control and 
handover, Amorim et al. (2021) fused 3D vision sensors and 
inertial measurement units (IMUs) to realize robust human 
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position tracking in millimeter precision. Along the task 
process, multimodal communication is essential for on- 
demand adjustment of task policy in collaboration, which 
can be achieved by haptic feedback (Tannous et al., 2020), 
gestures command (Mazhar et al., 2019), and an intuitive 
interface (Eseng€un et al., 2023).

Despite the above research efforts, the context awareness in 
HRC scenarios is limited to a non-semantic perception level, 
which fails to provide mutual-cognitive intelligence and 
knowledge of proactive collaboration desired by humans and 
robots. In detail, nowadays HRC applications fall into a stiff 
master–slave mode, in which either a robot or human agent 
needs to follow pre-defined instructions with task progression. 
To bridge the gap of cognitive co-working decisions, some 
previous works attempted to distill manufacturing knowledge 
(Zheng et al., 2022) for dynamic task fulfillment strategy gen
eration (Li et al., 2022). Nevertheless, how to transmit the 
generated task planning strategies to humans and robots in a 
natural manner and what components should be included in a 
complete HRC system deserve more exploration. In addition, 
human operators in today’s HRC systems lack a perception 
capability to know what is unknown now and what may hap
pen in the future, such as a robot’s next motions. Lastly, the 
previous study fails to consider ergonomics concerns, which 
are key elements to understanding human physical states. 
Robot cognitive intelligence remains unattained without 
assurance of safe, ergonomic, and proactive co-working with 
humans. The lack of either enhanced human perception or 
robot cognition makes it difficult to achieve empathetic team
work skills in HRC systems, which impedes operation com
fortability and adaptability along the overall manufacturing 
process.

Aiming to fill this research gap, an MR-enabled visual 
reasoning-based method is proposed to realize mutual-cog
nition intelligence for Proactive HRC. The mutual-cognitive 
strategy is derived from real-time scene graphs of human– 
robot operational sequences and then transmitted to the MR 
execution loop, where the robot catches on and plans for 
human needed manipulation, while the human operator is 
supported with intuitive guidance of manual operations 
from the MR interface. Meanwhile, the robot manipulation 
meets ergonomic human posture needs and human common 
task goals, which reflects empathic teamwork skills. The 
remainder of this article is organized as follows. Section 2
reviews recent related works for HRC implementation, espe
cially for core techniques. The mutual-cognitive HRC frame
work, comprising its visual reasoning model, safe and 
ergonomic robot motion planning, and MR execution loop, 
is proposed in Section 3. Section 4 evaluates the significant 
performance of our HRC system in terms of a typical disas
sembly task of aging Electric Vehicle Batteries (EVBs). 
Section 5 discuss the achievements of the research. Finally, 
conclusions and future works are given in Section 6.

2. Related work

In this section, the Proactive HRC paradigm is elicited for 
true complementarity of human and robot skills in 

manufacturing. Then, cutting-edge technologies including 
MR-assisted robot skills and visual reasoning-based cognitive 
computing are reviewed, to discover the research gap and 
promote Proactive HRC evolvement towards mutual-cogni
tive intelligence.

2.1. Proactive HRC

Instead of non-configurable large-scale automation, HRC 
plays a crucial role in flexible manufacturing for improved 
overall productivity (Keung et al., 2022). In this context, 
Proactive HRC towards smart, cognitive and more adaptable 
systems was proposed to promote the evolution of the next 
waves of manufacturing systems (Li, Zheng, Liu, Wang, 
Wang, Zheng, and Wang, 2023). Mutual-cognition is one 
critical concern in the Proactive HRC system. In mutual- 
cognition HRC, a human operator can on-demand, intui
tively interact with a mobile robot. Meanwhile, the robot 
can proactively plan motions with safety (Pecora et al., 
2019) and ergonomics concerns.

For Proactive HRC implementation, numerous efforts 
have been explored to improve human–robot co–working 
satisfaction when manipulating complex workpieces. For 
example, Ajoudani et al. (2018) summarized advanced robot 
control modalities for physical and bidirectional human– 
robot interaction. Millot and Pacaux-Lemoine (2013) intro
duced a situation awareness ability into the human–machine 
system to cope with unknown situations. Rahman (2019) 
proposed a mutual trust model, which could control robot 
motions and simulate human actions. Vernon et al. (2016) 
discussed cognition in HRC from four perspectives, i.e., 
attention, action, goals, and intentions. Then, Khatib et al. 
(2021) estimated the uncertainty of the operator’s motion to 
allow the robot’s end-effector to follow a position and orien
tation desired by the human, achieving optimal robot 
motion for fluent collaboration while avoiding collisions.

2.2. MR-based communication and robot control

MR in manufacturing encapsulates Digital Twin (DT) mod
els and an AR environment together. Beyond AR, which 
focuses on displaying objects via visual-physical fusion, the 
MR can analyze system physical states, simulate the system’s 
condition in the future via the DT models, and further pre
sent the simulation information via an AR manner. 
Therefore, advanced MR technologies find widespread appli
cations in HRC (Wang, 2022). Hietanen et al. (2020) devel
oped an HRC system on a projector and wearable MR 
glasses, respectively. With the MR interface, the human 
operator obtained real-time robot states and safety zone 
changes in the shared workspace. For example, the MR- 
based execution loop provided human operators with online 
support (Kousi et al., 2019). The human user naturally com
municated assembly status information to the robot, without 
needing any expertise in robotics. Hence, the MR-based 
communication can allow seamless information exchange 
between the two participants and intuitive domain know
ledge support for operator assistance.
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On the other hand, the MR-based robot programming 
approach frees HRC from predefined motion and allows for 
dynamic robot path adjustment, achieving accurate robot 
control (Wang, Wang, Lei, and Zhao, 2020). Yuan et al. 
(2020) developed a portable Virtual Reality (VR) system, 
where human operators could modify 3D points and guided 
the paths of robots for surface taping tasks. Bottani and 
Vignali (2019) utilized MR techniques to let humans directly 
guide or teach manipulation to the robots. Users can define 
3D points and plan the robot path with an MR interface 
(Ong et al., 2020). Besides, Hern�andez et al. (2020) exploited 
robotic motion planning to deal with users’ high-level 
requests for robot manipulation, rather than low-level spe
cific movements. The MR-based robot programming meth
ods open the door to Proactive HRC systems which can 
dynamically plan proactive robot motions.

2.3. Visual reasoning for cognitive collaboration

The visual reasoning approach (Cooray et al., 2020) aims to 
learn the relationships of perceived objects, which facilitates 
HRC scene parsing from a perception level to a cognitive 
level. Tang et al. (2019) composed dynamic tree structures 
to capture task-specific contexts for visual relationship cog
nition and the answering of questions. To reason about a 
visual question, Kim and Lee (2019) proposed a model of 
dynamics attention for focus transition, which obeyed the 
human prior towards shorter reasoning paths and produced 
more interpretable attention maps. Furthermore, the scene 
graph was introduced to learn structured knowledge 
between objects and their relationships (Shi et al., 2019). 
These visual reasoning methods facilitate explainable seman
tic understanding of different scenarios, which builds a 
bridge for mutual-cognition generation in HRC tasks.

For cognitive HRC, Ahn et al. (2018) leveraged a 
Text2Pickup network to allow robots to generate proactive 
decisions based on visual observations of picking objects. 
When confusing which objects were desired by the human, 
the robot generated interactive questions to the human for 
further communication. Besides, with visual and language 
cues, Venkatesh et al. (2020) proposed a neural network to 
allow the robot to reason about object coordinates in pick
ing and placing tasks. In these systems, the robot can infer 
human intentions and target objects for mutual-cognitive 
co-working.

From the literature, one can find that mutual-cognitive 
intelligence allows HRC systems to distill production know
ledge for bidirectional desired collaboration, which is critical 
to the evolution of an HRC. Our previous works have 
explored the scene graph (Li et al., 2022) and knowledge 
graph (Zheng et al., 2022) methods to make task-planning 
decisions in HRC systems. However, these previous studies 
focus on the task allocation part, while seldom considering 
human-centric needs in the execution process. Firstly, a 
human cannot perceive a robot’s next operation goal and 
obtain on-demand knowledge support in an intuitive man
ner. Then, a robot fails to adjust operation postures for easy 
and comfortable human interaction, lacking ergonomic 

concerns. Motivated by this situation, this work demon
strates a mutual-cognitive HRC system that integrates intui
tive human assistance, proactive robot motion, and 
ergonomic interaction, by integrating perception, decision- 
making, and control modules.

3. Methodology

This section depicts an architecture of MR-enabled mutual- 
cognitive HRC, followed by a visual reasoning approach for 
cognitive co-working strategy generation, and robot motion 
planning.

3.1. MR-enabled mutual-cognitive HRC architecture

The system architecture of MR-enabled mutual-cognitive 
HRC is presented in Figure 1, which consists of ergonomic 
collaboration in physical spaces, visual reasoning modules 
and virtual replicas in cyber spaces, and cognitive services in 
MR spaces. The combination of physical and cyber spaces is 
the HRC DT, which updates physical system changes, pre
views digital states, and makes co-working decisions. The 
HRC DT is embedded into the MR space for virtual-physical 
tracking and registration. Meanwhile, the MR system trans
lates co-working decisions that are the response to human– 
robot mutual operation needs and task properties into cog
nitive services. These cognitive services enhance human 
flexibility (e.g., intuitive suggestions) and ensure proactive 
robot manipulation (e.g., robot trajectory preview). The pro
posed architecture allows empathetic HRC, whose connota
tion is represented by mutual-needed operation support (Li, 
Zheng, Pang, Wang, and Wang, 2023), ergonomic inter
action, and an immersive teamwork environment between a 
human and a robot. In this context, the mutual-cognitive 
HRC can maximize human wellbeing and sustain produc
tion excellence in manufacturing tasks.

In the physical space, a sensing and monitoring system is 
developed to perceive human–robot states and surrounding 
environment changes. In detail, human skeleton joints, 
industrial parts, and geometric point clouds are detected by 
Resnet 50 (Li et al., 2020), OpenPose (Li, Fan, Zheng, and 
Wang, 2021), and OctoMap (Duberg and Jensfelt, 2020), 
respectively, based on the output of a visual sensor. ROS 
(Robot Operating System) is deployed in an edge server to 
collect robot status and feedback control commands on-site.

The cyber space updates physical HRC settings to virtual 
replicas for visualization and preview in the MR environ
ment. For instance, dynamic changes of human actions, 
robot operations, and task stages are transmitted to digital 
HRC models. In turn, proactive robot path planning can be 
verified in digital models, then translated into physical exe
cution. At the same time, a visual reasoning module is uti
lized to construct relations between humans, robots, 
environment, and task structures. Co-working decisions can 
be inferred from the mutual-cognitive understanding of 
HRC relations in task processes. Thus, the decisions meet 
bidirectional human–robot operation needs and dynamically 
assign human and robot roles in HRC tasks.
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Based on physical-virtual tracking and registration, MR- 
based cognitive services are provided for HRC systems, 
which consist of intuitive information support for human 
operators and proactive task execution for robots. In detail, 
procedural guidance including text, videos, and visualized 
operation sequences can be delivered to humans based on 
Vuforia Toolbox. By continuously calculating the minimum 
distance between human and robot ontology, the safety zone 
for human operation is visualized in the MR environment. 
For robot control, the open motion planning library in ROS 
can proactively plan robot motions for different task execu
tion, while the kinematics and dynamics library can achieve 
robot trajectory preview by a physical-virtual fusion manner 
in the MR space. With online human position tracking in 
OpenPose, the system can analyze ergonomics risks of 
human skeleton poses and plan ergonomic robot operations 
for easy interaction. These cognitive services are on-demand 
delivered to human and robotic agents based on co-working 
decisions, for human–robot empathetic teamwork.

3.2. Visual reasoning for mutual-cognition generation

To enable empathic understanding of the teamwork required 
between humans and robots, a scene graph-based visual rea
soning module is utilized to infer their operation needs along 
task fulfillment and generates mutual-cognitive co-working 
strategies. As shown in Figure 2, the visual reasoning module 
contains four parts, (i) scenario perception, (ii) temporal node 
updating, (iii) dynamic graph construction, and (iv) cognitive 
strategy mapping. The scenario perception part consists of 
object detection and human body skeleton estimation, which 
are leveraged to locate industrial parts among the workspace 

and track the motion of the joints in the human skeleton. With 
the perceptual results, nodes of working-in-progress objects are 
activated and their attributes are updated. Then, scene graphs 
are dynamically constructed by connecting perceived objects 
(nodes) with corresponding relations (edges). Lastly, different 
scene graphs are mapped to mutual-cognitive co-working strat
egies by learned graph embeddings, which represent an inter
pretation of current human–robot operations. In terms of this 
workflow, the stepwise procedures to achieve the visual reason
ing approach are depicted in the figure.

3.2.1. Scenario perception for temporal node updating
Scenario perception is the prerequisite of semantic knowledge 
inference. As presented in the left corner of Figure 2, Resnet 
50 is utilized to detect objects in HRC scenarios, including 
various industrial parts and the motion of robots. The Resnet 
model predicts spatial locations and categories of different 
objects in input images. The output of the object detector is 
denoted by a bounding box vi ¼ ½xi, yi, wi, hi� and a label ci 2

f1, :::, kg, where k is the number of object categories. 
Meanwhile, OpenPose is introduced to track the human skel
eton from images, where the output of human hands is simi
larly formulated to location v and categories c. These temporal 
perceptual results are fed into the subsequent procedure and 
activated as nodes V in scene graphs. The attributes of nodes 
are updated by the matrices v 2 Rn�4 and c 2 Rn�k, with dif
ferent objects perceiving along the time.

3.2.2. Link prediction for dynamic graph construction
The link prediction is proposed to connect perceived objects 
with the most related relation, i.e., node pairs. The relation 

Figure 1. The architecture of MR-enabled mutual-cognitive HRC systems.
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is an edge between a subject and an object of a pair of 
nodes. The process of link prediction contains relation link
ing and relation classification, as shown in the left bottom 
corner of Figure 2. The scene graph is dynamically con
structed by linking edges between nodes. In this context, a 
two-layer perceptron is introduced to prune superfluous 
node pairs. The relatedness rij of n� ðn − 1Þ node pairs 
fxi, xjji 6¼ jg is defined as following,

rij ¼ f ðxi, xjÞ ¼ h/ðxiÞ, wðxjÞi, i 6¼ j (1) 

where the relatedness function f ð�, �Þ is computed by a 
matrix multiplication of /ð�Þ and wð�Þ: A two-layer percep
tron is utilized for the projection process of x and output 
/ð�Þ and wð�Þ, respectively. The vector x includes catego
ries c and location v of an object. Then, a sigmoid func
tion is applied on the rij to generate the relatedness score 
from zero to one. The top K node pairs are obtained by 
ranking the relatedness scores in descending order. Among 
these candidates, nodes that half overlap other nodes in 
spatial regions are filtered out. The followed by connecting 
the remaining node pairs with correct relation types in a 
scene graph.

A three-layer attentional Graph Convolutional Network 
(GCN) is proposed to extract contextual information 
between node pairs and predict the type of edges in scene 
graphs, as presented in the middle bottom corner (i.e., rela
tion classification) of Figure 2. Firstly, a linear transform
ation w is used to extract features of neighboring nodes xj 
for a target node xi: These features are adjusted via weights 
a and added together, then are activated by a non-linear 
function r, i.e., ReLU. The propagation of feature represen
tations across layers of GCN is denoted as follows, 

xðlþ1Þ
i ¼ r xðlÞi þ

X

j
aijwxðlÞj

 !

(2) 

where a adjusts the attention to node features, which allow the 
capture of information key node pairs, such as the robot node 
and a grasped object. The attention between a target node xi 
and its source neighboring node xj can be calculated by,

uij ¼ wT
h rðWa xi, xj½ �Þ

aij ¼ SoftmaxðuijÞ
(3) 

where wh and Wa are parameters of a two-layer perceptron, 
respectively. With the obtained node pairs and their relation 
types, a scene graph is dynamically constructed by linking 
edges E to nodes V, as part of the HRC task graph shown in 
the right upper corner of Figure 2.

3.2.3. Graph embedding for cognitive strategy mapping
With a scene graph dynamically constructed from perceived 
objects, the next step is to learn the graph embedding and 
map it to human reminders and robot commands as 
mutual-cognitive task strategies. The graph embedding mod
ule involves a relation classification network and a graph 
mapping part, as presented in the right bottom corner of 
Figure 2. As mentioned above, some node pairs in scene 
graphs integrate implicit interpretations of human–robot 
teamwork. For example, the pair of a human node and a 
manipulated industrial part contains human operation inten
tions, whereas contact hazard may be reflected in a pair of a 
human node and a robot node. In this context, skip-connect 
edges are also added among all nodes, which are utilized to 
directly extract information between nodes. Therefore, the 
scene graph consists of three different kinds of connections, 
namely, from subject to relation, from relation to object, and 
from object to object. The three-layer attentional GCN is 
leveraged to extract feature representations across these vari
ous connections. With the neighboring nodes xj represented 
by a matrix X 2 Rd�Tn , (2) can be re-formulated to xðlþ1Þ

i ¼

rðWXðlÞaiÞ, where d and Tn are the dimension and the 
amount of xj, respectively. Following this notation, the fea
ture transformation of nodes among GCN layers is defined 
as,

Xo
i ¼ rðWskipXoaskip

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
Other nodes

þWsrXraðsrÞ þWorXraðorÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Neighboring Relations

Þ (4) 

where s¼subject, r¼relation, and o¼object. The first part in 
(4) concerns the features of the skip-connect nodes, whereas 

Figure 2. The workflow of visual reasoning-based mutual-cognitive strategy generation.
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the other one is for neighboring relations. Similarly, the rep
resentations of relations are propagated as,

Xr
i ¼ rðXr

i þWrsXoaðrsÞ þWroXoaðroÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Neighboring nodes

Þ (5) 

The last procedure is graph mapping, as shown in the 
right bottom corner of Figure 2. A Fully Connected (FC) 
layer is stacked on the three-layer attentional GCN, to linear 
transform the extracted feature representations. Lastly, a 
Softmax function is connected to the FC layers to learn the 
graph embedding and map it corresponding human prompts 
and robot commands, respectively.

The scene graph construction and embedding process are 
learned with three stepwise supervision training procedures. 
For the relation linking, a binary cross entropy loss is 
deployed during the training process. For the relation classi
fication, a multi-class cross entropy loss is used. For the 
graph mapping, two other multi-class entropy losses are 
developed for the mapping of human prompting and robot 
commands, respectively.

3.3. Safe, ergonomic, and proactive robot motion 
planning

With task planning strategies inferred from the visual-rea
soning module, a robot can perform operations desired by 
humans in a shared workspace. As presented in Figure 3, to 
improve human wellbeing and ensure mutual-cognitive 
capabilities among the co-working agents, a robot executes 
manipulation following safe, ergonomic, and proactive 
standards, which are achieved by the fusion of three mod
ules, (i) real-time collision avoidance, (ii) ergonomic inter
active actions, and (iii) proactive trajectory generation. 
Firstly, a real-time collision space is obtained from RGBD 
(i.e., color images and depth information) data of on-site 

workspaces. The collision space provides constraints when 
generating robot action trajectories. Then, interactive actions 
between human and robotic agents (e.g., handover) are 
designed within ergonomic requirements to alleviate a work
er’s fatigue. With these concerns and assigned robot tasks, a 
rapid robust motion planning algorithm is adapted to pro
actively generate robot trajectories. The detailed methodolo
gies of robot control are depicted as follows.

3.3.1. Collision avoidance based on real-time obstacle 
space

To ensure the safety of both humans and robots, it’s neces
sary to determine contact hazard regions to which a robot 
cannot move, i.e., an obstacle space. An obstacle space indi
cates potential collisions between a robot and static obstacles 
(e.g., tables) and dynamic obstacles (e.g., human body). In a 
motion planning process, a real-time obstacle space is nor
mally built following three steps. Firstly, a 3D occupancy 
grid mapping approach, OctoMap, is utilized to realize the 
representation of an obstacle space in HRC systems. With 
RGBD data of the on-site workspace, the OctoMap algo
rithm updates a real-time 3D map of static and dynamic 
obstacle spaces. Then, the manipulated object is eliminated 
from the obstacle space to allow the robot to manipulate the 
target object. The step is achieved by removing surrounding 
areas of manipulated objects in the obstacle space, based on 
the position and size of the manipulated object perceived by 
the object detector. Finally, the kinematic information of 
robots is obtained from ROS and then visualized on the 3D 
map. The map indicates collision regions to be avoided for 
robot motion planning.

3.3.2. Ergonomic interactive action design
The ergonomic interactive action design aims to improve 
teamwork comfort and eliminate occupational health risks 

Figure 3. The procedural process of robot motion planning.
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for human operators in HRC systems. The interactive 
actions contain direct contact between human–robotic 
agents and the handover of manipulated objects, which are 
essential operations in HRC tasks. To achieve ergonomic 
interaction, an upper limb assessment method RULA 
(McAtamney and Corlett, 1993) is leveraged to design the 
interactive space of the robot, such as the position and 
orientation of a handover point. The interactive space can 
be reached by human hands easily and comfortably, whose 
setting meets the following rules: (i) the range of movement 
of the upper arm is from 20� extension to 20� of flexion; (ii) 
the range of the lower arm is in 60-100� flexion; and (iii) 
the wrist is in a neutral position.

Following these requirements, a 5-DOF kinematic model 
of the human arm is introduced to obtain the robot’s inter
active space, as presented in Figure 4. In detail, the shoulder 
joint has three degrees of freedom, respectively represented 
by shoulder adduction RA, shoulder flexion RF , and shoul
der rotation RR: The elbow is defined as a joint RE with one 
degree of freedom. The wrist is denoted as a joint RW : The 
coordinate of one above joint i is denotes as pi, whereas the 
angle is represents as hi: The upper arm, the lower arm and 
the hand are represented by linkages. Then, a three-dimen
sional cartesian coordinate system is built, with the human 
neck point n as its origin. The body’s relative direction is 
used as the axis direction of the coordinate system. 
Forwards of the human is the Y-axis direction, right is the 
X-axis direction and up is the Z-axis direction. Based on the 
forward kinematic of linkage, the coordinate of the palm, 
which is the human–robot interactive space, can be obtained 
through the following equation:

ph ¼ dn þ AaAf Arðdh þ Aeðdf þ AwdwÞÞ (6) 

where dn is the distance between neck and shoulder, 
whereas dw is the distance from wrist to palm. dh and df are 

the length of the upper arm and the lower arm, respectively. 
Ai denotes the rotation matrix of joint i.

The value of the dn, dh, df , and dw are obtained through 
real-time estimation of human skeleton joints. The rotation 
angle of the upper arm is denoted as h ¼

arccosðcosha cos hf Þ, as the two joints ha and hf are perpen
dicular to each other. The rotation range of the lower arm is 
denoted as he, while the range of the wrist is hw: In add
ition, to meet the requirement of RULA, the rotation range 
of human arm joints is suggested to be set as:

0 � h � 20�

60� � he � 100�

hw � 180�
(7) 

By the calculation of the forward kinematic equation, the 
human-robot interactive space can be obtained. Then, the robot 
moves the end-effector to the interactive space, where the 
human can operate handover actions with the robot satisfying 
ergonomic requirements.

3.3.3. Motion planning for proactive trajectory generation
Robots are controlled by the motion planning algorithm to 
proactively conduct the operations of the co-working strat
egy generated by the visual reasoning module, such as pick
ing-and-placing objects or handover. A motion planning 
algorithm, Rapidly-exploring Random Tree (RRT) (LaValle 
et al., 1998), is utilized to find continuous robot trajectories 
that move from an origin to a terminus. With concerns 
about avoiding the collision space, the RRT algorithm grows 
a tree from starting points to the ergonomic interactive 
points by using random samples from the configuration 
space. As each sample is found, a connection is attempted 
between it and the nearest points on the existing tree. The 
points will be added to the tree if the connection does not 
obey any constraints. Finally, a path from the start points to 

Figure 4. 5-DOF kinematic model of a human arm.
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the ergonomic interactive destination can be dynamically 
generated for proactive robot task execution without 
collision.

4. Case study and experimental results

In this section, a prototype system of mutual-cognitive HRC 
is implemented on the disassembly task of EVBs. Then, the 
generation of cognitive task planning strategies is evaluated 
with the visual reasoning module. Finally, the mutual-cogni
tive intelligence in Proactive HRC is tested based on experi
mental results of intuitive human support and robot safe, 
ergonomic, and proactive manipulation.

4.1. Mutual-cognitive HRC for disassembly of EVBs

The disassembly task of EVBs remains a challenging prob
lem that needs to be addressed due to the emergence of 
electric vehicles. In the lab environment, the task mainly 
consists of 11 substages, from delivering tools, unscrewing 
screws, opening cover, handover cover, testing electric 
power, cutting wires, removing glues, recycling PCB mod
ules, recycling Thermo sensors, recycling Ion cells, and dis
posing of the bottom cover.

HRC provides an efficient solution for the disassembly of 
EVBs, as a human can complete some agile operations, 
whereas a robot can conduct dangerous operations. The sys
tem setting of mutual-cognitive HRC is presented in 
Figure 5. The on-site setup, edge server, cloud server, ROS 
platform, and robot controller are encapsulated in an MR 
execution loop. The MR glasses are HoloLens 2 produced by 

Microsoft, Washington. The mobile robot in the HRC sys
tem contains UR5 (Universal Robots, Odense) and MiR100 
base (Mobile Industrial Robots, Odense). Among the loop, 
Azure Kinect (T€olgyessy et al., 2021) is used to capture on- 
site images as the 11 substages progress. Human skeleton 
joints, industrial parts, and cloud points of the workspace in 
each disassembly stage are estimated in the edge server. The 
perceptual results are dynamically constructed to a scene 
graph via the visual reasoning module in the cloud server. 
An HRC task graph contains procedural knowledge of all 
these 11 substages, whereas the scene graph dynamically 
connects humans, robots, and their operation knowledge for 
each stage. The linked knowledge contains video guidance 
of human operations and robot path planning. The video 
guidance is transmitted to the MR glasses for human oper
ation reminders, which give suggestions on how to uninstall 
components of EVBs step by step. The path planning com
mands are delivered to the ROS and a robot controller. 
Thus, the mobile robot can proactively conduct interactive 
actions with the human or take over dangerous subtasks, 
such as picking and placing battery cells. With the on- 
demand reminder support and proactive robot command, 
human and robotic agents complete the disassembly process 
of EVBs in a mutual-cognitive manner.

4.2. Visual reasoning for co-working strategy generation

The visual reasoning module is utilized to generate task 
planning strategies during the 11 disassembly stages of the 
EVBs. To evaluate the visual reasoning performance, a data
set is developed covering the 11 subtasks of the overall 

Figure 5. Prototype system setup for EVBs disassembly task.
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disassembly procedure, which contains 779 RGB images and 
their depth information. Along with a human operator, 13 
different industrial parts are included in the dataset, namely, 
Toolbox, Screwdriver, Ammeter, Plier, Scissor, Hammer, 
Recycle bin, Top cover, Bottom cover, PCB module, Thermo 
sensor, Ion cell, and Robot arm. For the annotation of the 
dataset, these industrial parts are labeled with a classified 
category and four coordinates of a bounding box. The rela
tions between industrial parts in each image are annotated 
in the dataset. For these 11 disassembly stages, the dataset 
contains 11 kinds of video guidance and 10 different robot 
path plans as operation knowledge for various scenarios. 
The visual reasoning approach learns knowledge of oper
ation intentions of human–robot teams and links suitable 
human reminders and robot commands for their cognitive 
disassembly co-working.

For the experiment setup, the dataset is divided into a 
training part (467 images) and a testing one (312 images). 
OpenPose is leveraged to estimate coordinates of 18 body 
skeleton joints from images. The number of categories k in 
Resnet 50 is set to 13. In this way, human hands and 13 dif
ferent industrial parts can be firstly detected in the scenario 
perception part. For the link prediction algorithm, the par
ameter of node pairs with the most relatedness K is set to 
128. The SGD (Stochastic Gradient Descent) optimizer is 
used to train the algorithm, with a learning rate of 0.001. 
For the graph embedding, the FC layer extracts features 
from the 14 graph nodes, i.e., one human node and 13 
industrial part nodes. The graph embedding is trained with 
an SGD optimizer and a learning rate of 0.01. From scenario 
perception to scene graph embedding, the training processes 
are deployed on a Tesla V100 GPU (16G). For the testing, 
the trained model perceives various objects along different 
disassembly stages, dynamically connects relations of these 
objects as a scene graph, and triggers video guidance as 
human reminders and path planning as robot commands.

For the demonstration of the visual reasoning module, 
Figure 6 presents two examples of co-working strategy gen
eration among stages of the testing of electric power and 
recycling PCB modules. As presented in the left part of 
Figure 6, the scene graph algorithm first identifies an electric 
power testing stage for the given HRC settings, then maps a 
human reminder and a robot command to this scene. The 

human worker tests the electric power of three ion cells fol
lowing video guidance, while the robot holds suitable tools 
to the human in close proximity. In the next stages, when 
the human holds a plier, the visual reasoning algorithm can 
infer human–robot operation intentions of loosening a PCB 
module. As presented in the right part of Figure 6, the video 
guidance on removing glue from the PCB module is deliv
ered to the human operator. Meanwhile, the robot puts 
down the toolbox on a storage table, followed by recycling 
the PCB module. In this way, human and robotic agents 
learn about teammate operation goals and proactively con
duct actions desired by each other in the EVBs disassembly 
task. In addition, the performance of the visual reasoning 
module for these 11 disassembly substages is shown in 
Table 1. For the SGGenþmetric (Yang et al., 2018) in the 
second row, X=Y evaluates the graph construction accuracy, 
where X is the predicted result out of Y numbers of nodes, 
edges, and triplets in a scene graph. In the EVBs disassem
bly task, the nodes represent different industrial parts, while 
the edges represent the types of relationships between these 
nodes. Two nodes and their relation compose a triplet. The 
last row in Table 1 assesses the accuracy of the mapping 
between graph embedding to human reminders and robot 
commands through the visual reasoning module. This accur
acy is calculated as the ratio of the correct predictions of the 
co-working strategy to the total number of predicted values.

4.3. MR-based operator assistance and robot control

In the disassembly process of EVBs, the generated co-work
ing strategy is assigned to human-robot teams via the MR 
glasses. The human can obtain intuitive information support 
in the MR environment, as presented in Figure 7. Based on 
the co-working strategy, the MR glasses provides human 
operators with procedural guidance with virtual-physical 
fused visualization, such as video guidance of a manual 
operation. Meanwhile, safe zones of different levels are 
visualized in real-time to prompt human operators on safety 
concerns. The MR glasses also presents the robot trajectory 
preview before its execution, so that human operators can 
intuitively learn about the robot’s next intended motion. In 
this context, the human operator is equipped with enhanced 
flexibility and cognition to make decisions on further 

Figure 6. Examples of co-working strategy generation via visual reasoning.
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disassembly operations based on the suggestions from the 
MR environment.

On the other hand, the MR environment can simulate 
robot motions included in the co-working strategy by the 
HRC DT in advance. Then the motion planning commands 
can be transmitted to a robot for proactive task execution. 
In detail, the performance of robot task execution is eval
uated from three aspects, i.e., the feasibility, safety, and ergo
nomics. The feasibility analysis focus on the validation of set 
functions that the system is capable of carrying out, such as 
whether the robot can generate a path to operate an 
assigned task or not. The safety analysis assesses the robust
ness of obstacle detection and collision avoidance of the sys
tem. The ergonomic analysis aims to assess whether the 
interactive points figured out by the system can be comfort
ably reached by human hand. The three considerations are 
given attention when the robot performs collaborative oper
ations for the disassembly of EVBs. A physical-simulated 
platform, gazebo, is used as HRC DT to visualize the robot 
motion planning process in the three concerns.

Feasibility test. Receiving a command from the visual 
reasoning module, the HRC system generates corresponding 
trajectories, which are then executed by the robot actuators 
for human required operation. A widespread subtask of the 
robot which grasps, moves, and delivers toolbox to a pos
ition where human partners can take tools conveniently and 
comfortably, is used for demonstration. Figure 8(a) shows 
an execution stage of the subtask, whereas the entire gener
ated trajectory is visualized in Figure 8(b).

Safety test. Collision avoidance is a prerequisite for HRC 
systems. With the same robot subtask, the planning module 
can generate a safe trajectory to avoid any collision and 
ensure the safety of human and robotic agents. As shown in 
Figure 8(c), an obstacle is perceived and added to the work
space between two agents, and blocks the movement of the 
robot arm. With the obstacle space dynamically updating 
based on perceptual results, the robot can circumvent these 
obstacles for a safe trajectory generation (see Figure 8(d)).

Ergonomic test. This test is designed to validate the 
comfortability of interactive actions in human–robot teams. 
When a human is working with different postures, the robot 
figures out a handover position that the human can reach 

easily. As shown in Figure 8(e), the HRC system learns 
about how the human unfolds the top cover of EVBs and 
needs an Ammeter to test the electric power of Ion cells. 
Thus, the robot calculates an ergonomic space position and 
delivers the Ammeter to the human, with assigned com
mands. Figure 8(f) shows the position for the handover of 
an Ammeter from the robot to the worker. The handover 
points are obtained based on the forward kinematic equa
tion. Specifically, the parameters ha¼5� , hf¼5� , hr¼0� , 
he¼80� , and hw¼180� :

Ten participants, consisting of six males and four females 
aged between 23 and 30, with an average height of around 
169 cm and an average weight of approximately 60 kg, were 
invited to take part in the test. Each participant was asked 
to complete the disassembly task of EVBs three times, for a 
total of 30 iterations. Each disassembly experiment consists 
of 11 substages. When the robot arm reaches the handover 
position, the participants can pick up objects delivered by 
the robot using various postures. Among the process, the 
skeleton joints of participants, including the movement of 
the upper arm, lower arm, and wrists, are obtained by the 
OpenPose tool. Followed by evaluation of human–robot 
handover gestures, 80% of participants’ skeleton postures 
across all substages of the disassembly task fall within the 
suggested rotation ranges of the RULA rules in (7). The 
results suggest that the robot motion planning can robustly 
calculate an interactive position for human–robot handover 
aligning with the ergonomic requirement.

5. Discussions

The mutual-cognitive intelligence in Proactive HRC systems 
stands for empathic understanding between human–robot 
teams. For task cognition, the visual reasoning approach 
infers the required bi-directional operations by reasoning 
knowledge interpretation of human–robot–object relation
ships among current co-working scenarios from the explain
able scene graph base. For enhanced human cognition, the 
MR execution loop allows for proactive communication 
among HRC systems, where essential suggestions and sup
ports are transmitted to the human for the worker’s 

Table 1. Accuracy of scene graph (SG) construction and co-working strategy generation.

HRC SG SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 SG9 SG10 SG11

SGGenþ 13/14 14/14 21/21 20/21 34/34 32/34 34/34 33/34 34/34 33/34 32/34
Precision 91.67 95.00 96.36 91.67 94.44 95.74 96.30 92.86 96.00 93.75 92.31

Figure 7. System demonstration of MR-based information support and trajectory preview.
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improved decision making. For robot cognition, the robot 
conducts interactions with humans following ergonomics 
rules, such as handover position and orientation desired by 
the worker, which improves human wellbeing.

The MR-enabled visual reasoning-based method paves 
the way to the mutual-cognitive HRC systems, which 
prompt the next waves of human-centric intelligent manu
facturing. Apart from the above advantages, the precision of 
co-working strategy generation can be improved with fur
ther experimental tests, for example, by eliminating the sam
ple imbalance problem via data-augmented techniques. For 
the ergonomic test, there are two reasons why a few human 
skeleton models fail to meet RULA rules. One part is visual 
estimation errors of human skeleton points in OpenPose, 
whereas the other one is human movement uncertainty 
when moving towards a position. Lastly, the feasibility of 
the prototype system of mutual-cognitive HRC should be 
evaluated with other industrial cases, such as the assembly 
of complicated mechanical engines.

6. Conclusions

The notable shift to human-centric intelligent manufacturing 
elicits much interest in mutual-cognitive capability for 
Proactive HRC systems, which can help achieve trustworthy 
teamwork for flexible manufacturing automation. An MR- 
enabled visual reasoning-based architecture is explored to 
facilitate mutual-cognitive HRC evolution. In this context, the 
visual reasoning module stepwise perceives the on-site work
space, constructs a scene graph from the perceptual results, 
and maps task planning strategies by learning the graph 
embedding. Then, in the MR environment, the human oper
ator receives suggestions and support from the co-working 
strategy for further suitable operations; meanwhile, the robot 

obtains interpretation of current scenarios and conducts ergo
nomic, proactive operations. To summarize, the main scien
tific contributions achieved in this article are listed as follows:

1. A visual reasoning approach is proposed in the HRC 
system to advance its intelligence from perception base 
to mutual-cognition level. The reasoning module learns 
knowledge of human–robot relations in co-working 
processes by contextual scene graph, and infers task 
planning strategies addressing cooperation needs.

2. Safety, preview, and ergonomics rules of robot motions 
are established which bridge the gap for empathetic 
robot skills. The robot’s control and manipulation 
enhance human context-awareness ability and response 
to human-centric needs through the visualization of 
safety rules, trajectory preview in the MR environment, 
and planning interactive positions that are feasible for 
human reach.

Except for these mentioned achievements, several research 
efforts should be further taken, which are highlighted here, 
including (i) mutual-cognitive capability when facing a new, 
but similar, HRC task, such as the intervention of new or dif
ferent nodes in a scene graph; (ii) establishment of HRC 
knowledge base from multi-layers, e.g., task layer, mechanical 
component layer, and operation process layer; and (iii) pre
dictable HRC task fulfillment with cognitive knowledge sup
port even facing human motion uncertainty.
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