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Synopsis
Patient motion affects the specific absorption rate (SAR), a safety parameter in MRI. SAR is
often calculated using so-called Q-matrices. We used conditional generative adversarial networks
(cGANs) to estimate the effect of motion on magnitude from Q-matrices, which were extracted
from body models simulated in a parallel-transmit (pTx) coil tuned to operate at 7T. Networks
trained on Q-matrices from two positions were extrapolated to nine others. Network-predicted
Q-matrices corresponded well with simulated ground truth motion-affected Q-matrices.
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Introduction
Parallel transmit arrays (pTx) can alleviate wavelength-related flip-angle inhomogeneities at
ultrahigh field (UHF) MRI. The potential for locally-increased power absorption has led to local
specific absorption rate (SAR) becoming a pulse design constraint. The literature shows that
participant movement may exacerbate SAR concerns1,2.

A recent study used deep learning (DL) to estimate the effect of displacement on pTx B1+

distributions to decrease head motion-related error3. Here, we adapted that approach to safety,
and used cGANs4 to predict the effect of head motion on SAR changes. The proposed approach,
which is currently in development, is demonstrated on simulated Q-matrices.

Methods
Ella, Fats, Glenn, Billie, and Duke of the Virtual Population5 were simulated within a generic
8-channel pTx head coil tuned to 295MHz in Sim4Life (Zurich MedTech, Zurich, CH), similar
to Ref.1. Fats and Duke were scaled by 90% to fit inside the coil (array radius: 115 mm). The
simulated positions included combinations of 0/5/10/20mm right and 0/5/10mm posterior
displacements. Fields were extracted from 50 slices per model.

Q-matrices6,7 were 10-gram averaged over cubical volumes. Because mutual interactions
between two channels (i.e., Qij and Qji where i, j are channels) are conjugates, 28 entries of the
8x8 Q-matrix are non-unique for each voxel. To prevent overfitting, these 28 entries were
discarded (Figure 1b).

Figure 1a outlines the network architecture. Ella, Fats and Glenn were used for training, Billie
for validation, and Duke for testing. Rightward (R) and posterior (P) motion were investigated
for 5mm displacements. For each motion type, networks were trained using all combinations that
yielded the same relative motion displacement (i.e., R5 vs R0 for reference, R10 vs R5 for
reference), yielding 1,836 and 1,530 training datasets for R5 and P5 networks, respectively.
Training each network took ~14h using a DGX-1 NVIDIA GPU. Off-axis displacements like



R20, P10mm were evaluated by cascading R5 and P5 networks fourfold and twofold,
respectively. To cascade, successive generators used the outputs of preceding ones as input until
the target position was evaluated (Figure 1b). Finally, predicted images were smoothed with a
Gaussian filter (standard deviation: 3 pixels) to mitigate high frequency artifacts from the
networks.

Motion-induced error (center vs. off-center) in Q-matrices was compared with prediction error
(off-center predicted vs. off-center ground truth (GT)). Comparisons provided here focus on the
magnitude of Q-matrices, i.e., |Qij|. Comparisons include:

- Slice-by-slice: For each |Qij|, the normalized root-mean-squared-error (nRMSE,
L2-norm) in |Qij| within the slice (along superior-inferior) was normalized with the
within-slice mean of |Qij|.

- Channel-by-channel: The mean-magnitude-error (mmE, L1-norm) in the
three-dimensional |Qij| was normalized with the overall mean of |Qij| (across three
dimensions and all i,j).

Results and Discussion
The networks reduced motion-induced error in Q-matrix magnitudes across movement types and
channels. Magnitude Q-matrix displacements were predicted in ~0.5 seconds by the evaluation
network.

Figure 2 shows the simulated and estimated self-interactions of coil channel 2(Q22) for
5/10/20mm rightward displacements. The motion-induced and predicted error maps show that
error is considerably reduced, especially in high-intensity regions near the coil. Predictions
yielded lower error compared to motion for both trained and cascaded displacements. Cascading
allows networks to be used for displacements outside the training dataset, and reduces the
number of networks to train.

Figure 3 shows the nRMSE in the magnitude of the Q-matrix entries across all slices and
channels for each displacement. The worst-case motion-induced nRMSE was 247.6%, while
prediction peaked at 101.3%, with the mean errors yielding 49.80% ± 27.6% and 28.5% ±10.6%,
respectively. nRMSE reduced in 76.16% of evaluations. Error values (motion-induced and
predicted) are slightly scaled-up as they were normalized with the within-slice mean of the |Qij|
entries.

Figure 4 shows that prediction mmE averaged across slices and channels (i.e., |Qij| of Duke) is
considerably lower than that of motion-induced error (max motion-induced: 176.77%; max
predicted: 57.98%; mean motion-induced: 27.95%  ± 8.19%, mean predicted: 15.78% ±3.86%).

Figure 5 shows the mean error across |Qij| with respect to Euclidean displacement from the
center.  The lowest correlation between predicted and GT images was observed in R20, P10 with
r(214)=0.32, p<0.00001. In this position, the correlation between the input and GT image was
r(214)=0.00, p=1. Though an off-axis quadrupled rightward (4xR5) cascade combined with a
doubled posterior cascade (2xP5) yielded the lowest correlation between prediction and GT, it



was nevertheless moderate and outperformed the nonexistent correlation between
motion-induced and GT matrices.

Accounting for motion-induced variations in SAR may be combined with recent work which
developed subject-specific models for single-position personalized SAR predictions8. Moreover,
predicting changes in positionally-varying SAR could alleviate UHF pTx acquisition from overly
conservative SAR limits while maintaining patient safety.

Current evaluations focus on magnitude of |Qij|. Future work will focus on incorporating phase
estimations by optimizing the present pipeline to cope with the multiple phase wrap boundaries
caused by multi-channel interactions.

Conclusion
We demonstrated a preliminary method to predict movement-induced changes in magnitude from
Q-matrices of 8-channel pTx coils at 7T.
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Figs (these are just screenshots but the actual images are .svg…and will be .png coz thanks
ismrm)

Fig.1 Adapted from Ref.3 a) cGAN architecture: Generators are U-Nets with 8 convolution and
deconvolution layers, while discriminators contain 5 convolution layers. Each layer contains a
rectified linear unit (ReLU) activation. Matrix size and filter quantity are below the layers. b)
Testing workflow. Q-matrices are extracted from body models and duplicate entries are
eliminated. Matrices from center position are input to the first trained generator. Generators were
only trained for R5 and P5 but can be run sequentially until a target shifted position is reached
(cascaded).



Fig.2 Slice from Q-matrix entry of channel 9 (Q_2,2) at an R-5mm displacement cascaded
fourfold through R-10mm to R-20mm. The input, ground truth (GT), and prediction are shown
per displacement in columns, followed by motion induced (MI) error (GT - Input) and prediction
error (Pred - GT). Error maps are intensified for clarity and shown in the same range of values
(colors flipped). This range is fifthed for R-5mm, thirded for R-10mm and halved for R-20mm.



Fig.3 SAR Q-Matrix nRMSE for all evaluations (axial slices, channels) with the Duke model for
all 11 displacements. Motion-related error slices are shown in purple and predicted error slices
are in yellow. nRMSE values are relative to the mean magnitude of the Q-matrix for each slice
and channel. Networks were cascaded multiple times to estimate the displacement (red:
posterior, blue: rightward). Vertical axis limits change between figures to focus on the effect of
the networks on error.



Fig.4 L1 norm of predicted displacement plotted against L1 norm of centered displacement
across slices and channels. Different colored dots represent different motion types. Shaded
region represents where motion error exceeds prediction error.



Fig.5 nRMSE and correlation coefficient (ρ), averaged over the Duke body model’s channels and
slices for each position. Motion-induced and predicted mean errors are plotted against the
magnitudes of their respective position shifts. Motion-induced error is denoted by purple markers
and network-predicted error is in yellow. The shaded regions indicate standard deviation.


