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Abstract 

Study Objectives: Wearable devices, monitoring sleep stages and heart rate (HR), bring the potential 

for longitudinal sleep monitoring in patients with neurodegenerative diseases. Sleep quality reduces 

with disease progression in Huntington’s disease (HD). However, the involuntary movements 

characteristic of HD may affect the accuracy of wrist-worn devices. This study compares sleep stage 

and heart rate data from the Fitbit Charge 4 (FB) against polysomnography (PSG) in participants with 

HD.  

Methods: Ten participants with manifest HD wore a FB during overnight hospital-based PSG, and for 

nine of these participants continued to wear the FB for seven nights at home. Sleep stages (30s 

epochs) and minute-by-minute HR were extracted and compared against PSG data. 

Results: FB-estimated total sleep and wake times, and sleep stage times were in good agreement with 

PSG, with intra-class correlations 0.79-0.96. However, poor agreement was observed for Wake After 

Sleep Onset, and the number of awakenings. FB detected wake with 68.6±15.5% sensitivity and 

93.7±2.5% specificity, rapid eye movement (REM) sleep with high sensitivity and specificity 

(78.7±31.9%, 95.6±2.3%), and deep sleep with lower sensitivity but high specificity (56.4±28.8%, 

95.0±4.8%). FB HR was strongly correlated with PSG, and the mean absolute error between FB and 

PSG HR data was 1.16 ± 0.42 bpm. At home, longer sleep and shorter wake times were observed 

compared to hospital data, while percentage sleep stage times were consistent with hospital data. 

Conclusions: Results suggest the potential for long-term monitoring of sleep patterns using wrist-

worn wearable devices as part of symptom management in HD. 

Keywords: Wearable sensor; Home monitoring; PPG; PSG; Neurodegeneration. 
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Brief Summary 

Current Knowledge/Study Rationale: Sleep quality reduces with disease progression in 

Huntington’s disease (HD). Wearable devices enable longitudinal monitoring of sleep staging and 

heart rate (HR), with potential to support disease management following disease-specific validation. 

Study Impact: Sleep stages (wake, REM, light/N1+N2, deep/N3) and HR from Fitbit Charge 4 (FB) 

were compared with polysomnography (PSG) in participants with manifest HD. FB accurately 

estimated overall sleep stage times, with good sensitivity and specificity to REM. Poor detection of 

awakenings, and poor sensitivity to deep/N3 sleep were observed relative to PSG. At home, 

participants slept for longer compared to PSG, while percentage sleep stage times were consistent 

with PSG. Wearable devices, such as FB, have potential to monitor overall sleep metrics in HD. 
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Introduction  

Huntington’s disease (HD) is a rare, autosomal-dominant, neurodegenerative disorder caused by an 

expanded CAG repeat in the Huntingtin gene. As in other neurodegenerative diseases1, sleep 

dysfunction is highly prevalent in HD, with patients experiencing insomnia, increased sleep onset 

latency, decreased total sleep time, frequent awakenings, restlessness and excessive daytime 

sleepiness2–5. Polysomnography (PSG) has also revealed reduced time in deep sleep, more sleep 

spindles and more time in non-rapid eye movement (REM) sleep in HD6,7. These sleep issues arise from 

an early stage in HD, often preceding the onset of motor symptoms 8–10. The severity and frequency of 

sleep disorders have also been associated with clinical and radiological disease progression11, while the 

number of CAG repeats is linked to an early onset of sleep disturbance12. Dspite this evidence and the 

potential of sleep as a modifiable risk factor for neurodegeneration13–15, sleep is not typically monitored 

in HD. 

Overnight PSG in an AASM-accredited 16 sleep lab is the gold standard for sleep monitoring, 

and is necessary to diagnose many sleep disorders and to provide a complete clinical assessment of 

sleep. However, PSG is expensive and often not representative of natural sleep patterns due to multiple 

wired sensors, and bedtimes and wake-up times determined by hospital routines. Wearable sleep 

monitors, particularly recent dual-sensor devices featuring both inertial and photoplethysmography 

(PPG) sensors, offer the potential to monitor sleep stages and heart rate (HR) during sleep in a more 

natural environment, and to examine changes in sleep patterns over time due to disease progression, 

treatments or interventions 16–19. However, the involuntary and nocturnal movements associated with 

HD may lead to reduced performance of wrist-worn devices in this cohort3,20. Therefore, disease-

specific validation against PSG is necessary to establish the accuracy of wrist-worn sleep monitoring 

devices before home-based clinical monitoring is possible.  

Few previous studies have examined sleep using single-sensor Fitbit devices, detecting sleep 

based on movement, in HD21,22. However, several studies have validated dual-sensor Fitbit devices 

against PSG in healthy adults 23–25. Fitbit Charge 2 has been compared to PSG in healthy adults, with a 

significant overestimation of total sleep time (TST), and limitations in detection of deep sleep reported, 
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while no difference relative to PSG was reported for REM sleep time23. Fitbit Charge 3 was previously 

validated against PSG in healthy adolescents and adolescents with insomnia24, with epoch-by-epoch 

analysis revealing sensitivities to sleep stages ranging from 59% for deep sleep to 78% for light sleep 

detection. Fitbit Charge 2 and Fitbit Alta HR were compared to PSG in adults with obstructive sleep 

pane, with both Fitbit models providing significantly different values for all sleep metrics with the 

exception of REM sleep time 25. Older single-sensor Fitbit models, not featuring an optical HR sensor 

(Fitbit One, Fitbit Flex, Fitbit Charge), have also been validated against PSG in healthy adults 26–28 and 

in HD21, however sleep stages estimated using these devices were less accurate than the more recent 

dual-sensor models. Sleep metrics from Fitbit One were compared with PSG in 7 patients with HD, 

three with manifested motor symptoms, with a >60-minute overestimation of total sleep time (TST) 

reported21, however that study concluded that the device may still be sufficient to examine overall sleep-

wake patterns in HD21. Another study used Fitbit One to monitor at-home sleep in a group of 42 HD 

gene carriers (20 with manifest HD), and reported an association between increased time in bed and 

reduced cognitive functioning in HD22. However, four-stage (wake, REM, light and deep) sleep staging 

or HR monitoring using wearable sensors, including any Fitbit device, have not previously been 

validated against PSG or examined in the home with participants with HD.  

Heart rate, a vital sign, can be used to monitor overall health and to alert clinicians to values 

outside the expected range. The accuracy of heart rate data estimated using PPG sensors on the wrist 

may by affected by movement artifacts in the PPG signal due to involuntary movements, or chorea, 

associated with Huntington’s disease.  Signal artifacts due to involuntary movements may also influence 

the accuracy of sleep stage estimates, also derived from the PPG signal. Previous studies have compared 

HR estimated using Fitbit devices with ECG in healthy adults, showing good performance for the Fitbit 

Charge 4 during rest and physical activity29, and for the Fitbit ChargeHr during wake, REM and non-

REM sleep30, and under free-living conditions31. However, minute-by-minute HR estimated by any 

Fitbit model has not previously been validated in HD or in any pathological cohort.  

The aim of this study was to establish the accuracy of sleep stage and HR data provided by 

Fitbit Charge 4 compared to PSG in participants with manifest HD. Home-monitoring was also 

conducted to examine natural sleep patterns in this cohort.  
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Methods  

Participants and protocol 

Ten participants (5 female) with a genetically confirmed diagnosis of Huntington’s disease (HD) 

participated in this study. All participants had motor manifestations of the disease, with Unified HD 

Rating Scale total motor scores (UHDRS-TMS) in the range 5-51 points (/124), were self-ambulatory, 

home-dwelling and required no specialized care at the time of the study. Approval was obtained from 

the Ethics Committee of the Canton of Zurich (Kantonale Ethikkommission Zürich). Each participant 

wore a Fitbit Charge 4 (FB) on their non-dominant wrist during overnight PSG (Embla N7000, 

RemLogic v3.2, ResMed, Australia) in a hospital-based sleep laboratory. Nine of the ten participants 

continued to wear the FB in free-living conditions for a further seven days and nights.  

 

Polysomnography data 

Overnight PSG (Embla N7000, RemLogic v3.2, ResMed, Australia) was performed in a hospital-based 

sleep laboratory. PSG recordings commenced at “Lights Out” and ended at “Lights On” in the sleep 

laboratory.  

Sleep stages were scored in 30 s epochs by an expert sleep physiologist following the criteria 

set by AASM16. For comparison with the wearable device, stage N1 and N2 were merged and referred 

to as light sleep, and stage N3 was referred to as deep sleep.  

HR data reported by the PSG software based on three lead electrocardiography (ECG recorded 

at 512 Hz), were extracted at 5 Hz, and down-sampled to 1 sample per 60 s for comparison with FB 

data.  

The prevalence of sleep disorders or events associated with nocturnal movements or arousals 

were documented for the PSG night. Daytime sleepiness was examined using the Epworth Sleepiness 

Scale (ESS, scored out of 24 points), and periodic limb movement (PLMS, events/hr) and apnea 

hypopnea index (AHI, events/hr) were assessed using PSG data.  

 

Wearable device data 
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Participants downloaded the FB mobile app to their personal phone and were assigned a FB account 

linked to their study identifier. Fitbit sensitivity was set to “normal”, the default setting in the Fitbit 

mobile app. Participants synchronised their FB mobile app before the overnight PSG study, and also 

after each sleep.  

A bespoke platform (AthenaCX, AthenaCX.com, In the Wild Research Ltd., Dublin, Ireland) 

was used to integrate FB data for all participants. A custom python script was used to extract FB sleep 

stage (30 s epochs) and HR (60 s epochs) data from this platform as .json files. It is not possible to 

access raw FB data, and this was the maximum resolution for FB sleep stage and HR data. 

As FB sleep stage data began automatically when FB detected sleep onset, wake epochs were 

added to FB sleep stage data for the time after PSG “lights off” and prior to the first sleep epoch detected 

by FB, similar to previous studies16. FB HR data corresponding to each FB-detected sleep, and 

overlapping with PSG HR, were compared with PSG. Extracted sleep stage and HR data were then 

analysed using Matlab (Mathworks, Natick, MA, USA). 

 

Sleep metrics 

For each sleep, for PSG and FB, the following sleep metrics were estimated: TST (mins): total sleep 

time; TWT (mins): total wake time; REM (% of TST): total REM sleep time; light sleep (% of TST): 

total stage N1 and N2 sleep time for PSG, total light sleep time for FB; deep sleep (% of TST): total 

stage N3 sleep time for PSG, total deep sleep time for FB; WASO (mins): total wake after sleep onset; 

awakenings (/hr): average number of awakenings per hour.  

 

Statistical analysis 

Validation against PSG: 

To assess the agreement between sleep metrics and HR reported by FB and PSG, Bland Altman analysis 

was performed and the intra-class correlation, ICC(2,1), was calculated32. The Wilcoxon rank sum test 

was performed to compare the PSG and FB estimates for each sleep metric.  

Epoch-by-epoch detection of wake, REM, light and deep sleep by FB were individually 

assessed using the area under the receiver operating characteristic (AUC ROC), sensitivity and 
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specificity for each PSG night. Sensitivity, or the true positive rate, was calculated as the number of 

epochs correctly classified (true positives) as a particular class (wake, REM, light or deep) as a 

percentage of the total number of epochs classified as that class (true positives plus false negatives). 

Specificity, or one minus the false positive rate, was calculated as the number of true negatives as a 

percentage of the total number of epochs not classified as that class (true negatives plus false positives). 

The four-stage agreement between PSG and FB sleep staging data was assessed using the overall 

accuracy and Cohen’s Kappa. 

Minute-by-minute HR data estimated by FB were compared with PSG by calculating the bias 

and mean absolute error (MAE) for each night, for wake epochs only and for each sleep stage (REM, 

light and deep sleep). To evaluate the ability of FB to capture HR trends during each sleep stage, FB 

and PSG HR signals were compared using Pearson’s correlation coefficient (r).  

 

Relationship between sleep and motor impairment in HD: 

Pearson partial correlation coefficients (r) were calculated to examine the strength of the linear 

relationships between the UHDRS-total motor score and each sleep metric, estimated using FB and 

PSG in the sleep lab, and using FB during the subsequent home data. Partial correlation analyses were 

performed to control for the effect of age. 

 

Effect of setting and device on sleep metrics:  

The effects of setting (home or sleep lab) and device (FB or PSG) on each sleep metric were examined 

using a linear mixed model.  

 

Correction for multiple comparisons  

The threshold for significance was initially defined as p = 0.05. To avoid family wise Type I errors due 

to multiple comparisons, a Bonferroni correction was applied by dividing the threshold for significance 

by the number of comparisons. FB and PSG data were compared for seven sleep metrics (TST, TWT, 

REM, light, deep, WASO, awakenings). Five sleep metrics (TST, TWT, REM, light, deep) estimated 

by FB were found to have good agreement between PSG, with the effect of UHDRS-TMS and the effect 
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of setting (home or sleep lab) examined for these metrics. Additionally the effect of UHDRS-TMS on 

participant age was examined. In total, 18 comparisons were conducted, resulting in a corrected 

significance threshold of p = 0.0028. 

 

Results  

A summary of demographics and clinical data for the study participants are presented in Table I. One 

participant was deemed to have REM behavioural disorder, five participants had PLMS >15 /hour, and 

2 participants had mild obstructive sleep apnea (AHIs 16.6 and 16.7 15 events/hr). One participant did 

not take part in the 7-day home study, see Table I.  

 

Validation against PSG 

PSG and FB hypnograms and HR traces for two representative participants with HD are presented in 

Figure 1. Figure 1a and 1b illustrate overnight data for a participant for whom a poor fit was observed 

between FB and PSG sleep staging, with a 4-stage Cohen’s Kappa of 0.4, with low correlation 

between FB and PSG heart rate traces also observed for that participant, r = 0.49. In contrast, Figure 

1c and 1d illustrate data for a participant for whom a good fit was observed between FB and PSG 

sleep staging data, with a Cohen’s Kappa of 0.71, and highly correlated FB and PSG heart rate traces, 

r = 0.9. 

The agreement between a range of sleep and HR metrics estimated by FB and PSG is presented 

in Figure 2, with intra class correlation (ICC(2,1)), biases and MAE presented for each sleep metric. 

FB-estimated TST and TWT were in excellent agreement with PSG (ICC > 0.9), with narrow limits of 

agreement. Good agreement (ICC 0.79-0.85) was observed for light, REM and deep sleep times 

estimated by FB and PSG, however wide limits of agreement were observed for these metrics. Poor 

agreement was observed for WASO and awakenings (/hr). When compared using the Wilcoxon rank 

sum test, no significant differences were observed between PSG and FB for any of the sleep metrics.  

The agreement between FB epoch-by-epoch sleep stage data and PSG is presented in Figure 

3, including sensitivity, specificity and accuracy for detection of each sleep stage. The overall four-

stage Cohen’s Kappa was 0.59 ± 0.10 across all participants. The area under the ROC was 0.81 ± 0.08 
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for detection of wake, 0.86 ± 0.16 for REM sleep, 0.76 ± 0.06 for light sleep and 0.76 ± 0.14 for deep 

sleep.  

Compared to PSG, FB minute-by-minute HR was underestimated by 0.11 ± 0.40 bpm during 

overall sleep (including wake), by 0.03 ± 0.66 bpm during wake, by 0.13 ± 0.20 bpm during REM sleep, 

underestimated by 0.13 ± 0.23 bpm during light sleep, and by 0.47 ± 0.61 bpm during deep sleep. 

Across all participants, the MAE in FB HR data compared to PSG was 1.16 ± 0.42 bpm for each 

overall sleep (including wake), 1.37 ± 0.53 bpm during wake, 1.29 ± 0.81 bpm during REM sleep, 

1.07 ± 0.46 bpm during light sleep and 1.15 ± 0.54 bpm during deep sleep.  

Pearson’s linear correlation (r) between FB and PSG HR traces was 0.78 ± 0.16 for all data 

from “lights out” to “lights on”, 0.77 ± 0.13 during wake, 0.68 ± 0.29 during REM, 0.79 ± 0.19 during 

light, and 0.72 ± 0.25 during deep sleep. All correlations were significant (p < 0.001). 

 

Relationship between sleep and motor impairment in HD: 

Older age was significantly associated with increased UHDRS-TMS (r = 0.86, p < 0.001), or more 

severe motor impairment. Based on both home and sleep lab recordings from FB and PSG, light sleep 

time (%) significantly increased and deep sleep time (%) significantly decreased with increasing motor 

impairment (UHDRS-TMS), see Figure 4. WASO and awakenings were not included in this analysis 

due to poor agreement between FB and PSG.  

 

Effect of setting on sleep metrics: 

TST at home, estimated using FB, was significantly longer than TST estimated using PSG and FB in 

the sleep lab (PSG: 289.90 ± 88.58 min, FB during PSG: 283.05 ± 117.76 min, FB at home: 316.88 ± 

163.10 min, p<0.001). Additionally, TWT estimated using FB at home was significantly shorter than 

TWT estimated using FB or PSG in the sleep lab (PSG: 133.85 ± 89.05 min, FB during PSG: 140.75 ± 

120.12 min, FB at home: 66.60 ± 63.68 min, p<0.001).  

When sleep staging was examined, no significant differences were observed between home data (FB) 

and sleep lab data (FB and PSG) for percentage REM sleep (PSG: 14.35 ± 7.29 %, FB during PSG: 
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16.69 ± 7.05 %, FB at home: 20.83 ± 6.67 %, p = 0.06), percentage light sleep (PSG: 67.35 ± 12.09 %, 

FB during PSG: 66.61 ± 12.39 %, FB at home: 64.15 ± 11.73 %, p = 0.29) or for percentage deep sleep 

(PSG: 18.30 ± 10.20 %, FB during PSG: 19.09 ± 5.18 %, FB at home: 16.13 ± 5.98 %, p = 0.43). 

 

Discussion 

Dual sensor wearable devices, which monitor movement using inertial sensors and heart rate using PPG, 

may offer a low-cost method to monitor sleep and heart rate activity at home in HD, and to track changes 

over time. In this study, sleep stages and HR data obtained from one such device, the Fitbit Charge 4, 

were compared against PSG in participants with manifest HD. To examine sleep under more natural 

conditions, a home-based study was also conducted.  

Fitbit Charge 4 accurately estimated total sleep time and time in each sleep stage, compared 

with PSG in ten participants with manifest HD, with a wide range of motor impairment (UHDRS-TMS 

5-51). One previous study has validated a Fitbit device (Fitbit One) against PSG in participants with 

HD, in a cohort of 7 participants (3 with manifest HD). That earlier device, which did not feature a PPG 

sensor, and did not report sleep staging or HR, overestimated TST by 88 minutes and underestimated 

WASO by 39 minutes21. In healthy participants, previous studies have also reported superior 

performance for sleep metrics provided by dual-sensor Fitbit devices23,24, compared with older devices 

which do not monitor HR26. A previous study 23 in 44 healthy adults, 9 with period limb movement of 

sleep, reported that Fitbit Charge 2 overestimated TST by 9 min, light sleep by 34 min, and deep sleep 

by 24 min, with no difference observed between PSG and FB for WASO and REM. In the current study, 

no significant differences between Fitbit Charge 4 and PSG were observed for any sleep metric (Figure 

2). That previous study also performed an epoch-by-epoch analysis and reported that Fitbit Charge 2 

had a sensitivity of 96% for sleep detection, 61% for wake, 74% for REM sleep, 81% for light sleep 

and 49% for deep sleep compared with PSG23. These results in healthy individuals are consistent with 

the sleep stage sensitivities observed in this study for Fitbit Charge 4 compared to PSG in participants 

with HD (Figure 3). The findings of the current study are encouraging for FB estimation of TST, TWT, 
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and overall time in each sleep stage, however estimations of awakening frequency and WASO were 

less accurate, related to error in sleep onset detection by FB (Figure 1).  

The current study also evaluated heart rate estimated by the Fitbit Charge 4 in individuals with 

HD, and observed a low bias of -0.11 ± 0.40 bpm and strong correlation between FB and PSG heart 

rate trends (r = 0.78 ± 0.16), consistent with previous findings in healthy participants. The accuracy of 

HR estimated by Fitbit Charge 2 was previously examined during exercise, with higher biases reported 

compared with ECG in 15 healthy adults during cycling33. A study comparing HR from Fitbit Charge 

2 and an ambulatory ECG over 24 hours in one healthy participant, reported 91% agreement assessed 

using concordance class correlation34. Another study validated HR from Fitbit Charge HR against 

portable PSG in 25 healthy adults30, reporting generally accurate minute-by-minute HR estimates, with 

a bias of -0.66 bpm, and Pearson’s correlation coefficient of 0.84 ± 0.11.  

A significant negative linear correlation was observed between UHDRS-TMS and percentage 

REM sleep in the present study (Figure 4), consistent with a previous PSG study in 30 adults with HD2 

which also found that increased motor impairment was associated with a lower percentage of REM 

sleep. In that study 2, no other sleep metrics were significantly correlated with UHDRS-TMS. However, 

a significant positive linear correlation between motor impairment (UHDRS-TMS) and percentage light 

sleep was additionally observed in the current study (Figure 4). As expected, age was significantly 

correlated with UHDRS-TMS, and all correlations were estimated using a partial correlation analysis 

to control for the effect of age on each relationship.  

At home, participants experienced longer total sleep times, and shorter total wake times, 

compared to the sleep lab. These differences may be due to sleep lab protocols, where “lights off” and 

“lights on” times are guided by hospital routines rather than natural sleep patterns, discomfort due to 

PSG sensors, or a first-night effect35 causing reduced sleep in the sleep lab. Previously, home and sleep 

lab data for an alternative wearable device were compared in healthy adults, with no significant 

differences in TST or WASO between home and lab observed17. Reduced sleep quality in Huntington’s 

disease, or the behavioural and cognitive changes which occur in HD, may explain this contrasting 

finding in healthy adults. In this study, percentage times in each sleep stage were consistent between 

home and sleep lab recordings. These results indicate that home monitoring using dual-sensor wearable 
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devices may provide clinically meaningful sleep pattern data which could support symptom 

management. While not providing PSG-quality clinical sleep data, and not a replacement for PSG for 

many application, these devices perform well in sleep stage classification and bring the possibility of 

monitoring natural sleep patterns at home over multiple nights.  

 

Conclusion 

The results suggest that a dual-sensor wrist-worn device, such as Fitbit Charge 4, could be used to 

accurately monitor HR and overall sleep patterns at home in individuals with manifest HD (UHDRS-

TMS 5-51). In this cohort, Fitbit Charge 4 provided accurate estimates of total sleep times and time in 

each sleep stage, with sensitive and specific detection of REM sleep compared to the gold standard 

PSG. Detection of deep sleep was less sensitive, but highly specific, compared to PSG. However, FB 

did not perform well in the detection of awakenings, or WASO estimation. When sleep at home was 

compared to sleep during hospital-based PSG, longer sleep times were observed, while percentage time 

in each sleep stage was consistent across setting. To further investigate the effect of motor symptoms 

on device accuracy, future research should include larger cohort sizes, and a wider range of motor 

impairment.  
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Abbreviations 

AASM: American Academy of Sleep Medicine. 

AHI: Apnea Hypopnea Index. 

AUC ROC: Area Under the Curve of the Receiver Operating Characteristic 

BMI: Body Mass Index. 

CAG: Cytosine-Adenine-Guanine trinucleotide. 

DBS: Disease Burden Score 36 = Age*(CAG-35.5);   

ECG: Electrocardiography. 

ESS: Epsworth Sleepiness Scale (scored out of 24 points). 

FB: Fitbit Charge 4. 

HD: Huntington’s Disease. 

HR: Heart Rate. 

ICC: Intra-Class Correlation. 

MAE: Mean Absolute Error. 

PLMS: Periodic Limb Movement of Sleep. 

PPG: Photoplethysmography. 

PSG: Polysomnography. 

REM: Rapid Eye Movement sleep 

SD: Standard Deviation. 

Sens = Sensitivity. 

Spec = Specificity. 

TST = Total Sleep Time. 

TWT = Total Wake Time. 

UHDRS-TMS = Unified Huntington’s Disease Rater Scale Total Motor Score. 

WASO = Wake After Sleep Onset. 
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Figure Titles and Captions 

 

Figure 1.  

Title: Hypnograms and corresponding HR traces for two sample participants with HD. 

Caption: Hypnograms and corresponding HR traces for two sample participants with HD. PSG data 

are shown in dark grey, while FB data (for epochs where sleep staging disagreed with PSG) are 

shown in red. (a,b) Participant 1; Age =56 years, UHDRS-TMS = 51, DBS = 532, Kappa (4 stage 

classification) = 0.40, r (HR) = 0.49. (c,d); Participant 2: Age = 38, UHDRS-TMS = 5, DBS = 247, 

Kappa (4 stage classification) = 0.71, r (HR) = 0.90.  
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Figure 2.  

Title: Agreement between PSG and Fitbit for each sleep metric. 

Caption: Bland Altman plots, and scatter plots, illustrating the agreement between PSG and Fitbit for 

each sleep metric (TST = total sleep time; TWT = total wake time; Awakenings = average number of 

awakenings per hour; WASO = wake after sleep onset; REM = rapid eye movement sleep stage; Light 

= light sleep, or stage N1 and N2 sleep; Deep = deep sleep or slow wave sleep stage) . For Bland 

Altman plots, intraclass correlation coefficients, ICC(2,1), are presented with the lower and upper 

limits of the 95% confidence interval. The grey horizontal line indicates the bias, with a negative bias 

indicating that FB underestimated a particular sleep metric relative to PSG, and a positive bias 

indicating an overestimation by FB for that metric. On each scatter plot, the bias and MAE are 

presented in text and the grey diagonal line represents the ideal fit if FB estimated each point with no 

error relative to PSG. The size of each data point is scaled by the UHDRS-TMS for each participant 

(Table I), with larger markers indicating higher UHDRS-TMS (increased motor impairment).  
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Figure 3.  

Title: Confusion matrix for sleep stage detection. 

Caption: Confusion matrix for sleep stages for all epochs for all participants during PSG recordings. 

Rows correspond to FB sleep stages and columns correspond to the PSG sleep stages. Each cell 

contains the number of epochs classified as each sleep stage, as a percentage of the reference (PSG) 

number of epochs of that sleep stage. The mean ± standard deviation across all participants is 

presented. The diagonal cells correspond to epochs that are correctly classified, with the values on the 

diagonal equal to the accuracy for each metric. The values in the off-diagonal cells correspond to 

incorrectly classified epochs. The specificity (Spec) is shown on the far right of the plot for each sleep 

stage, and the row at the bottom shows the sensitivity (Sens), or true positive rate, for each sleep 

stage. The overall classification accuracy is included at the bottom right. 

 



22 
 

 

Figure 4.  

Title: The relationship between UHDRS total motor score and time in each sleep stage. 

Caption: The relationship between UHDRS total motor score (UHDRS-TMS) and (a) total sleep time 

(TST), (b) total wake time (TWT), (c) REM, (d) light and (e) deep sleep times for PSG and FB sleep 

lab data, and home FB data.   
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Tables 

Table I. Demographic and clinical information for participants in the PSG study, and the subset who 

participated in the home study. 

 Sleep lab (PSG + FB) Home (FB) 

N 10 9 

Male:Female 5:5 5:4 

 Mean ± SD Range Mean ± SD Range 

Age (years) 46.3 ± 13.6 25-64 48.7 ± 12.0 25-64 

BMI (Kg/m2) 25.9 ± 5.4 20.9-37.5 26.2 ± 5.6 20.9-37.5 

     

CAG Repeats 44.3 ± 3.7 41-54 43.2 ± 1.4 41-45 

UHDRS-TMS (score out of 124) 24.2 ± 16.5 5-51 24.6 ± 17.5 5-51 

Disease Burden Score36 382.3 ± 102.6 202.5-532  373.3 ± 104.6 202.5-532  

     

ESS (score out of 24) 8.5 ± 5.6 2-18 8.2 ± 5.8 2-18 

PLMS (events/hr) 25.7 ± 44.3 0-144.2 27.8 ± 46.5 0-144.2 

AHI (events/hr) 5.7 ± 7.2 0.2-16.7 6.3 ± 7.4 0.2-16.7 

SD = standard deviation;  BMI = body mass index;  CAG = Cytosine-Adenine-Guanine trinucleotide;  

UHDRS-TMS = Unified Huntington’s Disease Rater Scale Total Motor Score (score out of 124 point, 

higher value indicated increased motor symptoms);  Disease Burden Score 36 = Age*(CAG-35.5);  

ESS = Epsworth Sleepiness Scale (scored out of 24 points);  PLMS = Periodic Limb Movement of 

Sleep;  AHI = Apnea Hypopnea Index.  

 


