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Abstract— This work is focused on reinforcement learning
(RL)-based navigation for drones, whose localisation is based
on visual odometry (VO). Such drones should avoid flying into
areas with poor visual features, as this can lead to deteriorated
localization or complete loss of tracking. To achieve this, we
propose a hierarchical control scheme, which uses an RL-
trained policy as the high-level controller to generate waypoints
for the next control step and a low-level controller to guide
the drone to reach subsequent waypoints. For the high-level
policy training, unlike other RL-based navigation approaches,
we incorporate awareness of VO performance into our policy
by introducing pose estimation-related punishment. To aid
robots in distinguishing between perception-friendly areas and
unfavoured zones, we instead provide semantic scenes, as input
for decision-making instead of raw images. This approach also
helps minimise the sim-to-real application gap.

I. INTRODUCTION

Reinforcement learning (RL) has been proven effective
in training robots to handle point-goal-reaching navigation
tasks [1]. In point-goal-reaching tasks, robots need to navi-
gate to designated goal positions presented in coordinates. In
such tasks, robots need to calculate the relative goal position
based on the current pose, for decision-making of the next
action. However, most existing RL-based approaches simply
assume robots’ ground truth poses are available, and these
methods optimise the RL policies in terms of the length of
the paths, ignoring the fact that, in real-world applications,
poses need to be estimated by algorithms, such as Visual
Odometry (VO) or Simultaneous Localization and Mapping
(SLAM), based on observations from onboard sensors. For
cameras-equipped drones in GNSS-denied environments, VO
is commonly used for pose estimation.

However, the performance of such approaches heavily
relies on the quality of observations. Observations with
ambiguous or insufficient features along planned trajectories
will lead to failed localisation and feeding robots with wrong
poses can result in catastrophic consequences, especially for
safety-critical tasks. On the other hand, the assumption of the
availability of the ground truth poses will introduce a huge
gap between the simulation and real-world environments for
deployment on the real robot. Fig. 1 illustrates a scenario
where a drone is undertaking a navigation task with VO-
based localisation. The water area should be avoided due to
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Fig. 1: A drone travels from the start to the destination,
crossing a lake. The red trajectory, although shorter, lacks re-
liable visual features for pose tracking. In contrast, the longer
green trajectory enhances visual odometry performance by
maximising feature quality over terrain, houses, etc.

the poor visual features that can lead to deteriorated pose
estimation. Instead, the green path, despite being longer, is
more suitable for enhanced VO-based navigation.

Most current research in path planning focuses solely
on either efficiency, aiming for shorter paths, or safety,
prioritizing collision-free routes. The above issue has been
seldom noticed in previous works. Also, most RL-based
robots are usually trained in simulation environments, where
robot poses are always accessible. As a result, agents after
training with ground truth poses tend to choose shorter paths
(Fig. 1), ignoring the possible failed localisation in the real
world, where ground truth poses are unavailable. On the
other hand, visual observations gathered in simulators present
considerable differences from images collected in the real
world. To mitigate such problems, we propose to utilize
semantically segmented images (Fig. 2a), instead of raw im-
ages (Fig. 2b) as input, to ensure input consistency between
simulation-based training and real-world deployments.

(a) Simulated lake (b) Semantic Mask

Fig. 2: Simulated environments and semantic output

For the control system, we propose a hierarchical frame-
work rather than an end-to-end approach. This involves a
high-level controller generating short-term waypoints, cou-



pled with a traditional low-level controller guiding the drone
to these waypoints. This hybrid approach harnesses neural
networks’ capabilities while ensuring safety through the
reliability of conventional controllers. Although end-to-end
learning has been proven effective for tasks of drone flights,
it poses a limitation in the context of VO-based pose tracking,
particularly with agile motions where significant differences
in observations between consecutive frames occur due to
rapid and erratic movements, which can result in challenges
in VO feature matching. Also, end-to-end policies are trained
for specific robot configurations, hence cannot be deployed
to other robots. The high-level policy of a hierarchical
framework only decides the next waypoint, agnostic from
robot configurations, and the low-level controller, tailored
for individual robots, controls the robot to the next waypoint.
This excludes the need for retraining the RL-based policies.

In this work, we address the above challenges by introduc-
ing a new RL-based navigation framework, named VO-Safe
RL. The contributions of our work are summarised below:

• We propose an RL-based navigation framework to pre-
vent odometry failures during flight.

• A novel reward space is introduced to encourage VO-
safe behaviours.

• Semantic images are used to bridge the sim-to-real gap.
• Our approach combines learning-based and conven-

tional control in a hierarchical scheme.

II. RELATED WORK

Deep RL (DRL) incorporates deep learning with RL,
allowing agents to make decisions from unstructured high-
dimensional input data without manually engineering the
state space. As such, DRL has been widely applied for
solving complex navigation tasks with high-dimensional state
input.

Tai et al. introduce two prominent works in [1] and
[2], where robots are trained with RL to achieve point
goal-reaching tasks without environment maps based on the
DDPG algorithm with a simple reward space to penalise
collisions and reward actions reducing the relative goal-robot
distance.

Many variants of the above works have been introduced
for further improvement from different perspectives. Various
RL approaches have been employed for specific naviga-
tion tasks, such as duelling double DQN [3] that helps
stabilise training, DDPG [1] with which action space can
be continuous, CPO [4] that considers constraints during
optimisation. Regarding algorithm implementations, efforts
have been paid to improve data efficiency as RL usually
requires huge amounts of training data [4], [5], [6]. Also,
training neural networks with high-dimensional image inputs
could be difficult. For efficient state representations (e.g.
encoded images), training with auxiliary tasks is introduced
in [7], [8], [9], where, in addition to direct task rewards,
agents can collect bonus rewards by predicting task-related
parameters, such as estimating scene depths from images.

From the control system’s perspective, drone-specific RL
methods can be broadly categorised into two groups, namely

low-level and high-level control [10]. For low-level control,
RL policies directly output individual rotor thrust commands
based on observations [11], [12], [13]. This end-to-end
training can empower drones’ manoeuvrability. However, the
policy is specific to certain drones used for training as the
dynamics vary with different drones. Also, it will be difficult
to deploy such policies on real-world drones due to the
considerable differences between simulated aerodynamics
and the real world. For high-level control, trained policies can
produce the collective thrust and bodyrate commands [14],
[15], [16] or linear velocity (x-y-z 3-dimension velocities
and yaw rotation speed) commands [17], [18], [19]. Such
high-level control commands are usually executed by a low-
level controller, which is typically non-learning-based. This
hierarchical control scheme has the advantage of isolating
specific individual drone dynamics from high-level control.
Its platform-agnostic nature allows for easy transfer to real-
world deployment of agents trained in simulation environ-
ments.

In addition, drones performing complex aerobatic motions
usually require external optical motion tracking systems for
obtaining states, rather than estimating states using onboard
sensors as discussed earlier. Excessive camera motion can
lead to VO-based tracking failures, as VO relies on over-
lapping visual features between consecutive frames. We use
a hierarchical scheme that decomposes a long-distance path
into short-term waypoints that can avoid violent behaviours.

Works introduced above always assume the availability
of robot poses throughout the navigation tasks, leaving
the issues introduced by localisation algorithms unsolved,
as illustrated in Section I. Preliminary studies have been
performed by the authors [20][21] in different scenarios
of 2D navigation that is based on a 2D planar Lidar for
localisation and a TurtleBot. Another related work that takes
VO performance into consideration is [22], which scores
environment objects based on VO performance.

III. METHOD

As described, the overall target of the problem is to guide
a drone to the goal within a given time, while also avoiding
VO-unfavoured regions. The problem can be formulated as

min
π(x)

Jo =
∫ T

0

∥p(t)−Goal∥2dt, (1a)

s.t. xt+1 = f(xt, π(xt)), (1b)
x0 ∈ X , (1c)
p(t) ∈ P, ∀t ∈ [0, T ], (1d)

where x represents the drone state and p specifies the drone
position. Eq. 1b represents the drone’s dynamic model and
X is the possible initial state set. P denotes areas with high-
quality visual features suitable for VO-based pose tracking.
π(xt) is the policy to be optimised subject to dynamics
(Eq. 1b) and VO constraints P . We consider collision-free
environments in this work and focus on VO performance.
This assumption is reasonable as collision detection is usu-
ally not required for open-space navigation.



Fig. 3: Overall System Framework

A. Overall System

An RL-based hierarchical control scheme is proposed in
this work. The proposed framework and the key modules are
shown in Fig. 3. A drone equipped with an RGB camera
is used for VO-based navigation. Firstly, raw images are
processed by the VO module to perform pose estimation,
calculating the relative goal positions. This is part of the
RL agent observations. The raw images are also fed into
a classifier to produce semantic images, which form the
other part of the observations. Based on the observation, the
RL agent will make a decision to select one action among
eight possible moving directions. At the low level control, a
classical controller then calculates individual rotor thrusts in
order to guide the drone along the selected directions for a
designed fixed distance. The procedure will repeat until the
goal position is reached successfully.

B. Reinforcement Learning based High-Level Controller

The high-level controller is based on the Proximal Policy
Optimisation (PPO) algorithm. This subsection briefly intro-
duces the basic concepts of RL and the PPO algorithm, fol-
lowed by the implementation details of our specific method.

Basic Concepts. RL algorithms solve problems under the
Markov Decision Process (MDP) framework. In MDP, a
physical process is described by a state transition model
p(st+1|st, at) where states s fall in a state space S and ac-
tions are in an action space A. A reward function Rt(st, at):
S × A → R is needed to justify the actions at taken at
state st according to specific tasks. Strategies for solving the
tasks can be obtained by maximising the overall discounted
rewards, formulated as R(τ) =

∑∞
k=0 γ

kRt received during
the whole process. State-action value functions Qπ(st,at) =
Eτ∼π[R(τ)|st, at] and/or state value function V π(st) =
Eτ ∼ π[R(τ)|st] are usually defined to reshape the objective
function, where π: a ∼ π(·|s, θ) established by parameters θ
represents the policy to be learned. Also, advantage function
Aπ(s, a) = Qπ(s, a)−V π(s) is used to describe how much
better on average an action is than others.

PPO. We use the PPO algorithm considering its reli-
able performance, ease of implementation, and flexibility
to handle both discrete and continuous action spaces. The
PPO is a policy gradient algorithm, which trains the policy
πθ directly. The reliability is ensured by limiting updates
between consecutive network training steps to prevent large
deviations that can cause training issues. This constraint

can be applied through methods like penalising significant
differences using KL-divergence (PPO-Penalty) or by setting
a maximum update range (PPO-Clip) [23].

We adopt PPO-clip in the work. The updating process of
PPO-clip is as follows:

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)] (2)

where L is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))

)
(3)

in which ϵ is a small hyperparameter and g(ϵ, A) ={
(1 + ϵ)A A ≥ 0
(1− ϵ)A A < 0.
The intuition behind this is to increase the possibility of

actions (πθ(a|s)) that are better than others, evaluated by
the advantage Aπ(s, a) and lower the probabilities of worse
actions. The clipping constrains how far the update can be
made between the new and old policies to avoid divergence.

VO-safe RL Implementations. The following describes
the details of our VO-safe RL. The state s is constructed
by the estimate relative goal position pg and the observed
images Oimg: s = [pg, Oimg]. For the action space A, we
propose to use 8 discrete actions, which represent moving
along 8 possible directions for 1 meter. The discretised action
space will help accelerate the training process.

To design the reward function, as the drone relies on VO-
based odometry for pose estimation, the agent should not
only optimise the path length, but also needs to avoid actions
leading to VO failures. Thus, unlike most previous research
works, we introduce an extra punishment based on the VO
status. The reward space is given as follows:

Rt = Rs(p(t)) +RG(p(t)) +RV O (4)

Rs(p(t)) is the progress reward designed to encourage the
agent to reduce the distance from the robot to the goal:

Rs(p(t)) = α(dt−1 − dt) (5)

where dt is the distance from the robot to the goal at time
step t and α is the distance weight. The goal reaching reward
RG(p(t)) is:

RG(p(t)) =

{
10 dt ≤ dg

0 otherwise
(6)



Fig. 4: High-level policy network

A positive reward is provided when the distance to the goal
is within a threshold dg . The last term RV O is the VO-related
reward for penalising actions leading to the deterioration
of VO-based tracking. Tracking is considered lost or failed
when consecutive frames are not consistent with each other.
RV O is defined as:

RV O =

{
−10 if visual odometry failed
0 otherwise

(7)

C. Low-Level Controller

The low-level controller uses a classic PID controller to
compute control signals (u) for motor controllers. This en-
ables the drone to move toward the next waypoint determined
by the high-level policy. The low-level controller follows a
cascaded control structure, comprising a position controller
followed by an attitude controller, as depicted in Fig. 5.

The position PID controller receives position commands
pd = [px, py, pz]d, which outputs the desired attitude Θd for
the attitude controller and also the collective thrust:

Θhd = −g−1A−1
ψ (−KhD(ṗh)−KhP (ph − phd)),

f = m(g +KzD(ṗz − ˙pzd) +KzP (pz − pzd)),

Θd = [Θhd, ψd],

(8)

where the control of horizontal position ph = [px, py]
and altitude pz are decoupled. The attitude control Θ =
[ψ, θ, ϕ] is also separated into two parts: Θh = [θ, ϕ] and
yaw ψ. The desired yaw ψd is provided by the task and

Aψ =

[
sinψ cosψ

− cosψ sinψ

]
. m and g are the drone mass

and gravity respectively. KhD, KhP , KzD and KzP are the
corresponding derivative and proportional weights.

The attitude PID controller calculates the desired moment
τd such that the drone can fly in desired attitudes:

ωd = −KΘ(Θ−Θd),

eω = ω − ωd,

τd = −KωP eω −KωI

∫
eω −KωD ėω,

(9)

KΘ is designed to control the drone attitude to converge
to desired attitude following an expected trajectory, and
KωP , KωI , KωD denote the coefficients for the proportional,
integral, and derivative terms respectively. u = [τd, f ] can
then be used to calculate individual motor control signals
[f1, f2, f3, f4].

Position controller

Attitude Controller

Motor Controller Drone

Fig. 5: Low level controller

IV. EVALUATION

A. Experiments Setup

We test our algorithm by deploying a simulated drone
equipped with a monocular camera in the Flightmare [24]
simulator. The VO used is ORB-SLAM2 [25] and the policy
network is shown in Fig. 4.

Hierarchical RL Agent (Ours). To train the PPO agent,
in each episode, the robot is spawned at a random position
at an altitude of 15m. The goal position is also randomly
assigned. At each time step, the drone flies along the RL-
decided direction for 1 meter. Each episode is terminated
and restarted when any of the following cases occurs: 1)
the drone reaches the goal; 2) VO reports failures; or 3)
maximum time steps are reached.

End-to-end State-based RL Agent. We also train an end-
to-end state-based agent from previous research [10], as the
baseline for comparison. Ground truth state information s =
[pg,Θ, ω]gt is provided instead of images and VO inputs. In
this case, the agent decides individual motor control signals
[f1, f2, f3, f4] directly.

B. PPO Training Results

Fig. 6 shows the average rewards during the training of
the policy. The state-based agent has access to ground-truth
state information from the simulator. For convenience, we
name it GT-state-based here. As expected, this agent obtains
the highest average reward after training. This can be viewed
as a benchmarking reference to evaluate the performance of
our vision-based agent. We can see that the performance of
our visual agent is comparable to the GT-State-based agent
in terms of the total rewards received.

The test success rates can be seen in Table I. During the
test, our algorithm achieved a success rate of 0.78. For the
GT-state-based agent fed with ground truth poses for training,
it can always reach the goal as the ground truth poses are



Fig. 6: Average rewards

provided during testing too. However, if we feed the state-
based agent with VO-estimated poses (named VO-State-
based), the success rate drops significantly to 0.56. The main
failure reasons include the drone flying over VO-unfavoured
regions, such as water, and occurrences of excessive flying
velocities ṗ or attitudes Θ.

TABLE I: Success rates and VO performance

Metrics Ours GT-State-based VO-State-based

Success Rate 0.78 1.0 0.56

RMSE (m) 0.38± 0.31 N/A 1.10± 0.5

Fig. 7a shows trajectories of different agents, where the
red circles represent the goals. It is clear that the state-based
agent chooses to fly directly towards the goal as it does not
consider visual information for localization, while the agent
trained with our algorithm chose the path avoiding dangerous
regions such as water or trees which present ambiguous
and less distinct features. Fig. 7b shows the trajectories
in more photo-realistic environments, which have not been
seen during training. Our agent still can accomplish tasks
successfully, despite the new environments. Retraining is not
required, as the agent uses semantic images as the input.

C. Hierarchical Architecture

In this section, we justify the use of hierarchical archi-
tecture by analysing the impact of drone dynamics on VO
performance. As shown in Table I, poses estimated by VO are
considerably more accurate, with the trajectories generated
by our hierarchical method, compared to the VO-State-based
approach. This is mainly attributed to the short-term goals
generated by the high-level policy, preventing the drone
from acting violently. In comparison, the end-to-end VO-
State-based approach tends to produce excessive motions
to achieve high speed, causing large discrepancies between
consecutive images, hence inaccurate localisation. This is
further depicted visually in Fig. 8.

To verify the impact of excessive motions on VO perfor-
mance, we further show two examples. The drone is tasked
to reach four goals located at the corners of a square in a
simulation environment (Fig. 9a and Fig.9b). Our method

(a) Our agents can navigate successfully while the
VO-State-based fails due to VO being lost over trees.

(b) In a photo-realistic environment. VO-State-based
fails above the water region, while ours succeeds
without retraining as with GT-State-based.

Fig. 7: Trajectories in different environments with three
agents. (Red circles: the goals).

Fig. 8: Ours has a smaller relative position error (rpe).

decomposes each task into a list of short segments, with
each 1m long. The VO estimation errors are projected on the
drone’s trajectory. However, for the end-to-end agent (VO-
state-based), the drone directly moves to the next target, with
each waypoint 5m away. The drone acts rapidly and violently
to reach every next target. The accuracy of localisation with
VO drops, as shown in Fig. 9b. VO even lost its track during
the last segment and was unable to navigate to target 4.

Excessive attitude change and high velocity negatively
impact VO performance and even result in VO failures.
Fig. 10 shows the attitude response to different distance
commands. Thus, we deploy the hierarchical architecture for
enhanced VO performance and reduced VO failure rates,
through decomposing long-distance paths into short-range
goals (1m in this work).

D. Real-World Experiments

We also carried out real-world experiments to verify
the proposed method. The drone configuration is shown in
Fig. 11a. A down-looking camera RealSense D435 is used



(a) localisation error (Ours)

(b) localisation error (VO-State-based)

Fig. 9: VO Performances (Ours vs VO-State-based)

Fig. 10: Drone attitude responses to navigation with different
goal distances.

for drone perception and VO. An onboard computer (Intel
NUC 11 pro) is used for image segmentation, high-level
policy calculation and VO computation. No ground station
computers were required.

The test scenario is shown in Fig. 11b. A region of the
floor covered by white paper is used as the featureless region.
The starting point (black) and the goal (red) are on two sides
of the white paper region. The floor has rich visual textures
suitable for VO tracking, while the white paper region lacks
textures. The drone should avoid entering the featureless area
to prevent VO failures. The policy is not retrained to adapt
to real-world experiments because the hierarchical scheme
and semantic inputs are used.

As shown in Fig. 12a, the drone does not follow a
straight line towards the goal, and instead it follows a longer

(a) Drone configuration (b) Test scenario

Fig. 11: Real world implementation

trajectory bypassing the paper. The plotted trajectory is the
VO-estimated result that is continuous without failures. Even
though the trajectory initially crossed the white region’s edge,
the drone can still capture the textured floor within its field
of view at an altitude of 0.7m.

(a) Real-world experiment result.

(b) Odometry drifted while the
drone is stationary with poor
visual features.

Fig. 12: Real-world implementation results

Last, we demonstrate the failed VO behaviour when en-
tering entirely the white paper region (see the area with red
diagonal lines in Fig. 12a, where no floor textures can be
observed). The drone was holding still initially. However,
due to the lost track of VO, the drone started to rely on the
IMU integration for pose estimation, which caused drifted
pose estimation. This explains the drifting motion along the
diagonal line.

V. CONCLUSION

In this work, we proposed a RL-based method for drone
navigation with visual odometry deployed for localisation,
instead of being provided with the ground truth poses, as
with most RL-based methods. The desired behaviour of VO-
enabled drones should consider the quality of the visual
features, i.e., feature-poor regions should be avoided. As
such, we introduced a novel reward space to handle such
problems. Furthermore, to alleviate problems for sim-to-
real transfer, semantic images, instead of raw RGB images,
are proposed as inputs. For control, we propose to use
a hierarchical control framework. The high-level policy is
trained based on the PPO algorithm, while the low-level
controller is a classical method, with guaranteed safety in
theory for reliable motion control. Evaluation results in both
simulation and real-world environments demonstrate that our
method outperforms baselines as hypothesised.
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