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Abstract—Human-robot collaboration is a vital approach in 
manufacturing, integrating the capabilities of both humans and 
robots effectively. In recent years, the well-being of 
manufacturing workers has received increasing attention with 
the development of manufacturing systems. However, the 
perception of human characteristics, such as physical fatigue, 
and the integration of these characteristics with human-robot 
manufacturing systems, remain relatively limited. The lack of 
awareness regarding human physical fatigue may negatively 
impact workers' health and, in severe cases, lead to 
musculoskeletal disorders. To overcome this bottleneck, this 
paper presents a human digital twin method for real-time 
fatigue estimation in a manufacturing scenario. Firstly, we 
adopt a human muscle force estimation method to simulate the 
upper limb muscle activity of humans during assembly 
activities. Secondly, an IK-BiLSTM-AM based surrogate model 
is used to accelerate the process of estimating the muscle state. 
Lastly, we adopt a muscle force-fatigue model for real-time 
muscle fatigue assessment. This scheme is validated through a 
proof-of-concept experiment in a manufacturing activity 
dataset. The findings highlight the efficiency and resilience of 
the suggested approach. 

Keywords—physical fatigue, digital twin, human-robot 
collaboration 

I. INTRODUCTION  
In manufacturing systems, automation has not yet been 

able to completely replace manual labour due to factors such 
as task diversity, agent capabilities, and costs [1]. As a result, 
human-robot collaboration (HRC) has attracted significant 
attention as a manufacturing paradigm, integrating the 
advantages of human flexibility and the strength and 
repeatability of robots [2]. Under this paradigm, different 
agents work together to complete shared manufacturing tasks 
within a shared space. 

However, research on workers’ fatigue or comfort during 
human-robot collaboration is very limited, let alone 
incorporating it into the HRC system [3]. Although the 
presence of robots has replaced some manual tasks, the lack 
of perception and decision-making regarding human fatigue 
may inevitably lead to worker fatigue. In severe cases, fatigue 
may cause musculoskeletal disorders, affecting an individual's 
well-being. Implementing task planning to alleviate human 
fatigue is highly challenging, primarily due to the lack of a 
real-time, muscle-level method for perceiving human physical 
fatigue [4]. 

Digital twin is an advanced technology considered to be 
one of the enablers of Industry 4.0. Human digital twin models 
represent virtual representations of individuals aimed at 
enhancing productivity, improving skills, and integrating into 
advanced manufacturing systems. Many studies [5] are 

utilizing the digital twin technology in the development of safe 
and seamless human-robot collaborative manufacturing 
systems. 

 

 
Fig. 1. The framework of the human digital twin method for physical 

fatigue estimation 

However, current human digital twin models for human 
physical fatigue have certain limitations in meeting the 
requirements of real-time and muscle-level fatigue 
assessment. For instance, subjective assessment methods, e.g., 
the Borg RPE scale[6], may lead to inaccurate evaluation 
results and disrupt the normal workflow, while ergonomic 
methods, e.g.,  Rapid Upper Limb Assessment [7], are 
challenging in capturing individual variations in human 
physical fatigue. Additionally, there are integration challenges 
with manufacturing systems. Therefore, the development of a 
real-time muscle-level physical fatigue assessment method is 
urgently needed to address the demands of human-robot 
collaborative manufacturing systems. 

Given the limitations of the analysis, this paper introduces 
a muscle-level physical fatigue assessment method for manual 
workers. The framework is illustrated in Fig. 1. This technique 
combines biomechanical analysis and a bidirectional Long 
Short-Term Memory (BiLSTM) network, utilizing inertial 
Measurement Unit (IMU) data as its input. Firstly, we adopt a 
human muscle force estimation method to simulate the upper 
limb muscle activity of humans during assembly activities. 
Secondly, a BiLSTM-based surrogate model is used to 
accelerate the process of estimating the muscle state. Lastly, 
we adopt a muscle force-fatigue model for real-time muscle 
fatigue assessment. A proof-of-concept experiment is 
designed to validate the proposed methods.  

The contribution of this paper is summarized as follows:  

(1) An IK-BiLSTM-AM based human digital twin model 
is built, combining a force-fatigue model, to assess workers' 
physical fatigue during manufacturing activities. 
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(2) The proposed IK-BiLSTM-AM method that estimates 
human muscle force and physical fatigue is validated in a real 
manufacturing experiment.  

II. LITERATURE REVIEW 

A. DT Modeling Techniques for HRC 
Digital Twin, a critical technology for realizing Industry 

4.0 and intelligent manufacturing, is garnering growing 
interest from both academic and industrial sectors [8]. The 
modelling technology of digital twins is of paramount 
importance in their development and applications [9]. This 
section briefly reviews the modelling techniques of human-
robot collaboration based on digital twins. 

Depending on the target objects, modelling techniques of 
human-robot collaboration based on digital twins can be 
classified into three categories: objects, robots, and humans. 
Object-based modelling includes techniques for modelling 
objects in the manufacturing environment, such as product 
parts and tools. Object modelling typically involves modelling 
the geometric, physical, and behavioural properties of 
physical objects in a virtual space to define the object's shape, 
materials, and physical reactions during operation. Commonly 
used modelling software includes SolidWorks, Blender, and 
Unity. To achieve dynamic mapping between physical objects 
and virtual replicas, object recognition and tracking based on 
machine vision have received a great deal of research [10]. 
Robot simulation environments provide a basis for digital twin 
modelling of robots, such as ROS/Gazebo, MATLAB 
Simulink, etc. Based on this, many digital twin-based robot 
modelling techniques have been developed, such as adaptive 
control techniques for robots under human-robot collaborative 
environments [11]; fast programming techniques through 
demonstration learning [12]; and autonomous learning based 
on reinforcement learning [13]. The human digital twin model 
mainly includes predictive and cognitive models, which are 
used to simulate and predict human thought processes and 
reactions under various situations, such as action recognition 
under specific manufacturing tasks [14] and intent recognition 
of human operators [15], thereby developing safe and efficient 
human-robot collaborative systems. 

In the field of biomechanics, biomechanical analysis 
techniques based on muscle-skeleton models have been 
widely used in the medical, sports, and human engineering 
fields. To our knowledge, few studies have introduced them 
to human-robot collaborative tasks in the manufacturing 
environment [16]. Analyzing biomechanical aspects, like the 
muscle forces of operators, is crucial for comprehending their 
activities and performance [17]. It has the potential to enhance 
the user experience of operators in human-robot collaboration 
tasks under manufacturing and the decision-making process of 
robots. Therefore, as a pilot study, the focus of this article is 
to develop a human digital twin model based on the muscle-
skeleton model and its application in task planning in human-
robot collaboration to alleviate human fatigue [18]. 

B. Human physical fatigue assessment methods 
 High physical-demand manual workers are at an elevated 

risk of musculoskeletal disorders, particularly those working 
on assembly lines or in the construction industry[19]. The 
primary cause is prolonged repetitive work, especially 
involving the same hand or arm actions. Effective fatigue 
management is a useful method that can be applied in the 
workplace to reduce such risks. Numerous methods have been 

proposed for physical fatigue measurement, including 
subjective reports and objective measurements. However, 
these methods do not fulfil the requirements for continuous, 
automatic, and accurate physical fatigue assessment. 

Subjective methods involve workers reporting their 
physical fatigue levels based on their feelings while working. 
Examples include the Borg RPE scale and the Borg CR10 
scale[6]. However, these methods have drawbacks: (1) the 
assessment results may be inaccurate, and (2) the assessment 
may interrupt normal work. Objective methods are 
categorized as physiological indicators, ergonomic methods, 
and biomechanical methods. Human physical activity is a 
physiological process; thus, human fatigue can be assessed by 
physiological signals, such as heart rate [20] and sEMG [21]. 
However, these physical fatigue assessment methods usually 
require specific sensors attached to the human body. 

Ergonomic methods aim to assess worker fatigue, 
allowing users to engage in repetitive motions comfortably 
and reducing the risk of injury. Examples include the Rapid 
Upper Limb Assessment and Rapid Entire Body 
Assessment[7]. The main limitation of ergonomic methods is 
the inaccuracy in assessing human body fatigue. These models 
do not consider human anthropometry, which can affect 
assessment results' accuracy. Furthermore, these methods rely 
on simplified anatomy in fatigue assessment, which may not 
model the complexity and variability of human behaviour 
[22]. Consequently, the assessment results from different 
methods may be inconsistent. 

Musculoskeletal models are digital twins of human bodies, 
consisting of computational models of the body and its 
functions [23]. Musculoskeletal modelling is a prevailing 
method for biomechanical fatigue assessment by simulating 
bones, joints, and muscles during physical activities. These 
simulations provide insight into the physical strains 
experienced, contributing to physical fatigue 
development[24]. The complexity of musculoskeletal models 
typically requires multiple data sources, including human 
body movement and contact forces, resulting in lengthy 
preparation times, even for domain experts. Additionally, the 
analysis of musculoskeletal models demands high 
computational resources [25]. These factors limit the 
applicability of musculoskeletal models for real-time physical 
fatigue assessment in various scenarios. Lowering the barriers 
to adopting this technology in HRC and enhancing the 
practicality of the method are of paramount importance, and 
they are the focal points of this study. 

III. METHODOLOGY 
This paper aims to propose a real-time continuous physical 

fatigue assessment method, which can be used in the decision-
making of HRC in the industry. The pipeline of the proposed 
method is shown in Fig 1. Firstly, a DT human model is 
initialized by scaling the musculoskeletal model, driven by 
movement data captured by IMU sensors. Secondly, an IK-
BiLSTM-AM network, which integrates the biomechanical 
analysis and deep neural network, is used to estimate human 
muscle forces as a surrogate model of static optimization 
based on the musculoskeletal model and the IMU data. Lastly, 
muscle-level fatigue can be estimated based on a muscle 
force-fatigue development model. 



A. Musculoskeletal DT modelling 
Computational musculoskeletal simulations are 

extensively employed to assess the contribution of muscles in 
human motion. To realize muscle level fatigue analysis, we 
used this method to estimate the contribution of muscle force 
to the movement of humans. Because manual work mainly 
requires the movement of the upper limb, this paper focuses 
on the movement of the upper limb of humans. We adopt a 
muscle skeleton model, namely, the bimanual upper arm 
model [26] to meet the requirements of movement analysis. 
Based on that, we can simulate bonds, joints, and muscles of 
human motion, with the input of human motion data and 
external force.  

The kinematic foundation for the dynamic model included 
the glenohumeral joint, elbow, forearm, wrist, thumb, and 
index finger, positioning the hand in a grip posture and fixing 
the degrees of freedom at the index finger and thumb. The 
model has 28 degrees of freedom in total and is symmetric. 
The dimensions of each joint of the bimanual upper arm model 
are scaled to match the dimensions of subjects by 
anthropometry for manual measurement. 

To accurately capture the movement of human upper 
limbs, we use inertial measurement units (IMUs) to measure 
human movement data. For each experimental subject, nine 
IMUs are pasted on the chest, scapula, upper arm, forearm, 
and hand of the human body, as shown in Fig 2. Each IMU is 
mapped to a human body segment.  

 
Fig. 2.  Upper Limb Musculoskeletal Model; Participants were equipped 

with Xsens IMUs sensors for the demonstration. 

B.  Muscle activation/force estimation 
Through biomechanical analysis, we can effectively 

estimate the force exerted by human muscles. However, the 
computational complexity of this method results in a time-
consuming process, making it unsuitable for real-time 
applications. To address this, advanced deep learning 
techniques have been employed as an alternative, standing in 
for traditional biomechanical computations. Traditional 
LSTM networks are designed for processing sequential 
historical data, but they perform less satisfactorily when it 
comes to capturing future contextual information. This limits 
their capacity to extract specific features within the movement 
data. Furthermore, the features of motion data are interrelated, 
and their significance levels vary. LSTMs struggle to extract 
this nuanced information, compromising the accuracy of the 
predicted muscle forces. This paper integrates inverse 
kinematics analysis (IK), BiLSTM, and Attention Mechanism 
(AM), introducing a new network structure, named IK-
BiLSTM-AM, to overcome the aforementioned limitations. 

Within this framework, IK is utilized to translate sensor 
signals into joint rotation and translation data of the human 
body. The BiLSTM focuses on analyzing the contextual 
information in human motion data to extract movement 
features, while the AM gauges the significance of these 
movement features, enhancing the mapping between 
movement characteristics and muscle forces. 

 
Fig. 3. The structure of the proposed IK-BiLSTM-AM method 

(1) Inverse kinematics 

To minimize noise errors produced during the wearing 
process of IMU, an IK method is applied in the surrogate 
method, which is called the IK strategy. To best match the 
muscle skeleton model and human posture, an inverse 
kinematic method is applied by minimizing the sum of 
weighted squared errors of orientations at each time step t. 

 𝑚𝑖𝑛∑ 𝜔!!∈#$%! θ!& (1) 

where 𝑤!  denotes the weight corresponding to each IMU 
orientation, and 𝜃! are the angle components of the orientation 
errors.  

(2) BiLSTM with attention mechanisms 

Static optimization is a widely used approach to estimate 
individual muscle forces in biomechanical and human motion 
analysis. Static optimization is a technique for calculating 
muscle force or activation at each moment based on known 
human motion by solving the motion equations for the known 
motion and minimizing the sum of muscle activations. The 
corresponding equations are as follows: 

 

 𝑚𝑖𝑛∑ (𝑎')()
'*+  (2) 

 𝑠. 𝑡.		 ∑ (𝑎'𝐹',)𝑟',.)
'*+  (3) 

where  𝑛  represents the total number of muscles; 𝑎' 
denotes the activation level of muscle m at a specific time step; 
𝐹', is the maximum isometric force of that muscle; 𝑟',. is its 
moment arm related to the 𝑗/0 joint axis. 

However, static optimization requires high computation, 
so it cannot meet the requirements of real-time applications. 
In this paper, we build a surrogate model, which approximates 
the function of static optimization with a nearly real-time 
processing capability.  



We adopt an IK-BiLSTM-AM network to model the 
relationship between human motion data and muscle force. 
BiLSTM, a type of recurrent neural network, is designed to 
learn bidirectional long-term relationships across time steps in 
time series data. Muscle force estimation often requires the 
understanding of both past and future motion data to predict 
the forces accurately. BiLSTM processes the input sequence 
both forwards and backwards, enhancing the comprehension 
of temporal context and potentially yielding more precise 
force predictions. Besides, the relationships between motion 
data and muscle forces can span across multiple time steps. 
BiLSTM can capture these long-range dependencies more 
effectively than traditional RNNs or unidirectional LSTM, 
which can improve the force estimation performance. 

BiLSTM has one forward and backward LSTM layer, 
which has forgotten gate 𝑓/, input gate 𝑖/ and output gate 𝑜/.  

 5
𝑓/ = 𝜎8𝑤1𝑥/ +𝑈1ℎ/2+ + 𝑏1>
𝑖/ = 𝜎(𝑤!𝑥/ +𝑈!ℎ/2+ + 𝑏!)
𝑜/ = 𝜎(𝑤3𝑥/ +𝑈3ℎ/2+ + 𝑏3)

 (4) 

where  ℎ/2+ denotes the information from the previous time 
series; 𝑥/ is the input at the current time; 𝑤,𝑈 and 𝑏 are the 
network parameters to be learned; 𝜎  denotes the activation 
function. Then the long-term memory 𝑐/  and short-term ℎ/ 
then formulated as follows: 

 A𝑐/ = 𝑓/ ⊗𝑐/2+⊕ 𝑖/ ⊗8𝑡𝑎𝑛ℎ(𝑤4𝑥/ +𝑈4ℎ/2+ + 𝑏4)>
ℎ/ = 𝑜/ ⊗ 𝑡𝑎ℎ𝑛(𝑐/)

 (5) 

where ℎ/  is the concatenated vector of the outputs of the 
forward and backward process of BiLSTM. It represents the 
hidden elements of the human motion information and is 
written as follows: 

 ℎ/ = ℎ/DDD⃗ 	⨁	ℎ/D⃖DD (6) 

The attention mechanism assesses the importance of 
features output by BiLSTM, allowing the network to focus on 
crucial movement features rather than secondary ones. At its 
core, the attention mechanism consists of a fully connected 
layer and a softmax layer, represented as follows: 

 𝑒/ = 𝑤5tanh	(𝑊𝑥/ + 𝑏) (7) 

 𝛼/ =
678	(;")

∑ 678	(;#)$
#%&

 (8) 

 𝜊 = ∑ 𝛼/𝑥/5
/*+  (9) 

where 𝑊  and 𝑏  denote weights and biases respectively, 𝛼/ 
indicates the importance, and 𝜊 is the output of the attention 
layer. 

The output from the Attention Mechanism (AM) layer is 
subsequently fed into a fully connected (FC) layer. This FC 
layer functions to transform the output of the AM cells into 
the prediction space. It consists of a linear transformation of 
the AM output with the optional application of a non-linear 
activation function. Here, the FC layer takes the output from 
the AM layer and transforms it into the output size, which is 
the number of muscles. 

C.  Human movement fatigue model 
In this section, we commence by examining 

methodologies for estimating the degree of muscle fatigue, 
relying on the specific muscular strength and corresponding 
historical data. We adopt a fatigue model underpinned by first-
order kinetics, expressible as a first-order differential equation 
[27]. This model is bifurcated into two key components: 
firstly, when the muscle force surpasses a given threshold, 
there is an augmentation in the fatigue level, with the 
increment positively correlated with the muscle strength; 
secondly, when the muscle force is beneath this threshold, the 
fatigue index diminishes in tandem with physical 
recuperation. The representation of the equation is as follows: 

 >?'(/)
>/

= 5
81 − 𝑣'(𝑡)>

1'(/)
4'

					𝑖𝑓	𝑓'(𝑡) ≥ 𝑓/0

−𝑣'(𝑡)
@
4'
					𝑖𝑓	𝑓'(𝑡) < 𝑓/0

 (10) 

Here, 𝑣'(𝑡) signifies the degree of fatigue in the human 
muscle 𝑚 , its value lies between zero and one; 𝑓'(𝑡) 
symbolizes the instantaneous muscular force of human muscle 
𝑚; 𝑅 denotes the recovery coefficient, having a value of 0.5; 
𝑓/0 represents the threshold of muscular force about muscle 
𝑚 ; 𝑐'  stands for the capability coefficient associated with 
muscle 𝑚, representing muscle fatigue resistance capability 
among the different parts of the human body.  

 𝐶' = − A()*∙5)+,
CDE	(+2,.GGH)

 (11) 

The term 𝐺I;1 is referring to the reference force, while 𝑇 
stands for the endurance time. The literature[28], emphasizing 
that time is joint-specific, introduces a power model that 
describes the relationship between the endurance rest time and 
muscle force across various joints, which is as follows. 

𝑇 = 𝑏,𝐺J& 

We selected values from states of 20% and 50% muscle 
activation to compute 𝐶K. Consequently, we have achieved a 
quantitative representation of the degree of muscle fatigue. 

IV. EXPERIMENT 
This section introduces the experimental setup, evaluation 

criteria, and results for the validation of the proposed 
framework. Firstly, we validate the accuracy of the presented 
method in estimating muscle forces of human activities. We 
collect real human motion data for the training of the IK-
BiLSTM-AM network model in a real-world scenario. The 
model's accuracy is subsequently benchmarked against both 
traditional and cutting-edge methodologies in the domain. 
Additionally, we examine the accumulation of fatigue in 
different muscles throughout "pick and place" tasks by 
assessing muscle forces during human activities. 

A.  Experimental Setup 
This study selects a typical "pick and place" action in the 

assembly task to validate the proposed method. Such pick-
and-place tasks are commonly required in assembly scenarios. 

We initially have 10 volunteers, who perform operations 
while wearing IMU sensors. IMU sensors belong to the Xsens 
system, and data is collected at a frequency of 40 Hz. Each 
volunteer conducts 24 pick-and-place operations, yielding a 
dataset consisting of 240 operation actions. To train the 



surrogate model for muscle force estimation, muscle force 
data is needed. The collected data is then input into OpenSim 
4.4 for simulation, where estimated muscle forces are obtained 
using a static optimization approach. 

    
Fig. 4. The simulation process of pick and place of participants. 

The simulation process is shown in Fig. 4. The dataset is 
randomly split into 80% for training and 20% for validation. 

B. Evaluation criteria and baseline 
To assess the efficacy of the proposed model, the root 

mean square error (RMSE), is employed to quantify the 
performance of the method. Specifically, RMSE is defined as: 

 𝑅𝑀𝑆𝐸 = \+
5
∑ (𝑦/L − �̂�/L)&5M
/L*+  (12) 

where 𝑦/L  and �̂�/L  denote the ground truth and the 
corresponding predicted value, respectively.  

In this paper, representative algorithms from the field are 
selected as the baseline methods for comparison with the 
proposed method. Previous research [29], [30] has shown the 
efficacy of DNN, LSTM, and BiLSTM methods in predicting 
muscle force of biomechanical analysis, thus these methods 
were chosen for comparison. The AC-BiLSTM [31] and 
Transformer [32] methods have demonstrated their 
effectiveness in handling sequential data tasks, such as text 
classification, making them suitable comparators as well. To 
ensure a fair comparison, methods integrated with the IK 
strategy were also included as benchmark techniques, 
designated with an "IK" prefix, e.g., IK-DNN. For data 
preprocessing during the training of all methods, the 
StandardScaler method from sklearn was employed for 
standardization. Throughout the training process, each method 
was subjected to 1,000 epochs of iteration. All computations 
were executed on an NVIDIA GeForce RTX 3060 GPU. 

C. Experiment Result of Surrogate Model 
As depicted in Table 1, the comparison results of estimated 

muscle force from the proposed methods and baseline 
methods are shown in terms of overall performance and 
specific muscle evaluation. The experimental results are 
evaluated in terms of classification accuracy. The best results 
and name of our method are shown in boldface. In total, there 
are 12 methods shown in the Table 1. 

The proposed IK-BiLSTM-AM model, employing the IK 
strategy, outperforms the other models in terms of overall 
prediction results. The evaluation results for the representative 
muscles are mostly superior to the majority of other models, 
meaning BiLSTM with attention mechanism is capable of 
capturing the bidirectional temporal characteristics of input 
action sequences for better muscle force prediction. The 
proposed model achieves 1.131 N in overall performance. 
This suggests that, although the model's accuracy is somewhat 
reduced compared to the simulation approach, it remains 

within an acceptable range. The proposed surrogate model can 
meet the requirements for accuracy and real-time assessment 
of muscle forces in human-robot collaboration. In particular, 
all methods using the IK strategy show better predictive 
performance than equivalent methods without the IK strategy. 
This suggests that the IK strategy can effectively combat the 
noise error produced during the wearing process of inertial 
measurement units. 

TABLE I.  RMSE EVALUATION RESULTS FOR THE PROPOSED 
METHOD AND BASELINES ON OVERALL AND REPRESENTATIVE MUSCLES 

Method Overall  Del1 Bic2 Tri3 Pec1 

DNN 1.376  1.711  3.010  0.333  1.474  

IK-DNN 1.368  1.499  3.164  0.301  1.364  

LSTM 1.557  1.940  3.678  0.285  1.168  

IK-LSTM 1.340  1.533  3.326  0.272  1.282  

BiLSTM 1.398  1.594  3.075  0.237  0.981  

IK-BiLSTM 1.232  1.590  3.161  0.232  1.072  

AC-BiLSTM 1.547 1.644  3.217  0.235  1.165  

IK-AC-BiLSTM 1.428 1.203  2.749  0.222  1.388  

Transformer 1.924  1.709  3.934  0.288  1.412  

IK-Transformer 1.872  1.820  3.633  0.291  1.384  

BiLSTM-AM 1.212  1.909  2.704  0.220  1.071  

IK-BiLSTM-AM 1.131  1.282  2.651  0.205  0.915  
a. Del1 denotes Deltoidc Anterior; Bic2 denotes Biceps short; Tri3 denotes Triceps medial; Pec1 

denotes Pectoralis major Clavicular. 

D. Fatigue model  
In this section, we employ the force fatigue model to 

investigate the accumulation of physical fatigue in workers 
during the pick-and-place task. Within this model, 𝑓/0 is set to 
2% of the maximum muscle force. We collect data from  

 

  
Fig. 5. Selected muscle force and fatigue accumulation in pick and place  

a sequence of "pick and place" motions, calculating the 
associated muscle forces and fatigue accumulation. The force 
and fatigue levels of selected muscles are shown in Figure 5. 
The Biceps Long accumulated around 1.75% fatigue. In 
contrast, the force exerted by the Triceps Long remained 
consistently below 𝑓/0 , resulting in zero accumulated fatigue. 



These results suggest that the fatigue model can serve as 
an indicator of fatigue during human-robot collaboration. In 
future work, we will conduct more human-robot collaboration 
experiments to further validate the model's effectiveness and 
accuracy. 

V. 5. CONCLUSION 
Human physical fatigue is a key factor of HRC 

manufacturing, which may influence the well-being of 
workers. To address this, the paper proposes the IK-BiLSTM-
AM-based digital twin approach to estimate muscle fatigue 
during human-robot collaboration. This method is well 
validated in a real manufacturing experiment in terms of 
accuracy by comparing it with baseline methods. The results 
underscore the promising application potential of the 
proposed framework in human-robot collaboration scenarios, 
suggesting that the fatigue model can serve as an indicator of 
fatigue during human movement activity. In the future, we 
plan to set up a human-robot collaboration experiment to 
further verify this method. 
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