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configured to: receive first image data of a passive optical
sensor, the first image data comprising a plurality of pixels
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the passive optical sensor and the active sensor sensing the
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second data including measurement values at returned scan
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second data of the matching cluster. Further relates to a
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ELECTRONIC DEVICE, SYSTEM AND
METHOD FOR AUGMENTING IMAGE DATA
OF A PASSIVE OPTICAL SENSOR

FIELD OF THE DISCLOSURE

The present disclosure is related to an electronic device,
system and method for a vehicle for augmenting image data
of a passive optical sensor.

BACKGROUND OF THE DISCLOSURE

Modern vehicles include object detection algorithms that
are used to enable collision warning or avoidance and other
active safety applications. Such an intelligent vehicle has to
perceive and recognize the scene around it in all kind of
weather. This goal means it needs to detect every obstacle
without suffering from a whole range of environmental
conditions. In order to detect an obstacle, the environment is
perceived through sensors. High scene understanding needs
camera space information to detect obstacles. However,
challenging weather such as rain, fog or snow may deterio-
rate the perceived image.

It has been proposed to use several types of sensors and
mixing active and passive sensors. Introducing an architec-
ture with active sensors (Lidar, Radar . . . ) and passive
sensors (camera, inertial sensor) can improve the perception
of the scene. For example, in the fog, a camera can perceive
close obstacles whereas a Lidar can detect far objects.
Accordingly, perception can be performed by collecting
measurements from sensors and then processing this infor-
mation in order to generate knowledge about both the layout
of the environment and the objects in it.

Passive sensors such as cameras for example, are inex-
pensive and provide dense and rich appearance information.
The image information they provide is however very sen-
sitive to environmental changes and current computer vision
algorithms suffer from performance drops when processing
such image information. Even with a little rain or a sunny
weather these algorithms are challenged to detect obstacles.

Active sensors such as lasers on the other hand, provide
sparser depth and heading measurements. Point clouds gen-
erated by a laser or images recorded by a camera have been
extensively used to detect generic objects in urban environ-
ments.

Generic object detection in lidar and camera data respec-
tively has been proposed by several works, e.g.:

R. Kaestner, J. Maye, Y. Pilat, and R. Siegwart. Genera-
tive object detection and tracking in 3D range data. IEEE
International Conference on Robotics and Automation
(ICRA), pages 3075-3081, may 2012,

X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for
generic object detection. International Conference on Com-
puter Vision (ICCV), 2013.

At a high level, these methods cluster sensor data into
groups that individually correspond to objects in the envi-
ronment. Although these one-sensor-modality-based meth-
ods have in general, a state-of-the-art performance, there are
adverse environmental conditions that limit the usability of
the data provided by the individual sensors they utilize.
Airborne dust for example, can significantly increase the
noise in depth measurements, whereas illumination varia-
tions make some portions of the image too bright or too dark
and therefore unusable.

Multi-sensor data fusion is a promising way for achieving
all-weather-conditions perception. It allows vehicles, i.e.
robotic systems, to compensate for the weaknesses of a
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given sensor modality using the strengths of another
complementary one. Sensor fusion methods can be classified
according to the level of abstraction at which fusion is
performed, described by R. C. Luo, C.-C. Yih, and K. L. Su.
Multisensor fusion and integration: approaches, applica-
tions, and future research directions; IEEE Sensors Journal,
2(2):107-119, 2002.

High level fusion methods perform estimation using each
sensor modality independently and then approach the fusion
of these estimates as a data association problem. These
approaches require independent estimation machinery for
each sensor modality which makes them not only overly
complex but also disregard raw information that could be
valuable for the fusion process.

There is an increasing number of estimation frameworks
that make use of a lower level data representation where raw
measurements from all sensing modalities are consider in
the fusion process, as proposed for instance by V. Romero-
Cano, G. Agamennoni, and J. Nieto. A variational approach
to simultaneous multi-object tracking and classification; the
International Journal of Robotics Research (IJRR), 35(6):
654-671, 2015. In this work it is proposed to perform
multimodal motion detection, semantic segmentation and
sensor calibration respectively, based on per-pixel appear-
ance and geometric features, utilising unified and sound
methods for processing all sensor modalities at once. Such
an approach requires sensor measurements to densely cover
the measured scene. Therefore there is a need of low- or
pixel-level multi-modal fusion methods that transform raw
sensor data into a common and dense representation that can
eventually be processed by a unified recognition method.

There are some works in the literature that approach this
lowlevel fusion problem using non-parametric or energy-
based approaches, cf. e.g.:

M. P. Gerardo-Castro, T. Peynot, F. Ramos, and R. Fitch.
Non-Parametric Consistency Test for Multiple-Sensing-Mo-
dality Data Fusion; IEEE International Conference on Infor-
mation Fusion (FUSION), pages 443-451, 2015, and

P. Pinies, L. M. Paz, and P. Newman. Too Much TV is
Bad: Dense Reconstruction from Sparse Laser with Non-
convex Regularisation; IEEE International Conference on
Robotics and Automation (ICRA), 2015.

These approaches however require all sensor modalities
to be similarly dense.

A further system for fusing the outputs from multiple
LiDAR sensors on a vehicle is known from US2013242284
(Al). The system includes cueing the fusion process in
response to an object being detected by a radar sensor and/or
a vision system.

SUMMARY OF THE DISCLOSURE

Currently, it remains desirable to provide an electronic
device, system and method for augmenting image data of a
passive optical sensor with active sensor data, wherein the
sensor data fusion is independent of the scene coverage of
any of the sensors.

Therefore, according to the embodiments of the present
disclosure, it is provided an electronic device (in particular
for a vehicle) for augmenting image data of a passive optical
sensor. The electronic device being configured to:

receive first image data of a passive optical sensor, the

first image data comprising a plurality of pixels in an
image plane,

receive second data of an active sensor, the passive optical

sensor and the active sensor sensing the same scene (in
particular outside the vehicle), the active sensor com-
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prising a plurality of scan areas distributed over the
scene, the second data comprising measurement values
at returned scan areas,

identify at least one cluster based on the distribution of

returned scan areas,

project the cluster onto the image plane, and

identify pixels which match with the projected cluster in

the image plane, and

associate said identified pixels with second data of the

matching cluster.

By providing such an electronic device, low-level multi-
sensor data fusion in the pixel space can be obtained. The
second data desirably comprise measurement values only at
returned scan areas, i.e. at those positions of the scene where
an object has reflected the scan signal sent out by the active
sensor. Such positions may form together a cluster which
desirably represents the object. Consequently, only the
matching pixels (i.e. being within the cluster border) are
desirably associated with second data. In other words, the
other pixels (i.e. not within a cluster border) are desirably
not associated with second data.

A scan area may be restricted as much as possible to a
point, e.g. by using a laser as scan signal. In other words, the
scan area may be a scan point.

Hence, the electronic device is independent of the scene
coverage of any of the sensors. Accordingly, a new image-
like data representation can be achieved where each pixel
contains not only e.g. colour but also other low level features
such as e.g. depth and object IDs.

In order to identify a cluster, scan area returns (i.e.
returned scan areas) may be grouped into coherent segments
that can potentially correspond to an individual cluster
(which may correspond to an detected object in the scene).
This stage can also be called as cluster (object) hypotheses
generation.

The electronic device may further be configured to project
the second data onto the image plane by transforming the
coordinate system of the second data such that it matches
with the coordinate system of the first image data.

Accordingly, the scan areas may be projected onto the
image plane so that depth information (and further informa-
tion contained by the second data) is available for some
pixels in order for the electronic device to perform opti-
mally. For this purpose, the sensors are desirably aligned
properly with the vehicle. For example, if a sensor detects an
object that is actually in the path of the host vehicle but, due
to sensor misalignment, the sensor determines that the object
is slightly to the left of the path of the host vehicle, this can
have significant consequences for the electronic device.
Even if there are multiple forward looking sensors on a
vehicle, it is desirable that they are all aligned properly, so
as to minimize or eliminate conflicting sensor readings. In
other words calibration of the sensors is desired.

The electronic device may further be configured to deter-
mine for each cluster a set of state information based on
measurement values at returned scan areas within the clus-
ter, the set of state information including at least one of the
distance, the size, and/or the velocity of the cluster.

A cluster may be determined by an occupancy grid
mapping algorithm.

Each associated pixel may comprise image information
and state information of the associated cluster, meanwhile
each pixel, which is not associated with a cluster, may only
comprise image information.
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The electronic device may be further configured to:

decompose the first image data into a set of superpixels,
a superpixel comprising a plurality of neighboring
pixels, and

define an object of interest in the image plane by associ-

ating neighboring superpixels with a matching cluster.

Accordingly, locally homogeneous areas in the scene may
be determined by a superpixel segmentation. Furthermore,
an object of interest in the image plane may be defined by
combining neighboring superpixels matching with the same
cluster. Accordingly, a mapping between cluster (object)
hypotheses and super-pixels may be provided. This mapping
may express which pixels in the image space can be asso-
ciated with cluster (object) hypotheses obtained from the
scan areas. An object of interest may be any object recog-
nized in the scene, e.g. another vehicle.

A superpixel may be determined by identifying neighbor-
ing pixels with a similar color distribution and/or by iden-
tifying edges in the first image data, in particular by using a
simple linear iterative clustering (SLIC) algorithm.

Simple Linear Iterative Clustering (SLIC) is a relatively
simple and parallelizable method, based on k-means clus-
tering, for decomposing an image into a regular grid of
visually homogeneous regions or so-called super-pixels, as
further described in R. Achanta, A. Shaji, K. Smith, A.
Lucchi, P. Fua, and S. Stsstrunk. SLIC superpixels com-
pared to state-of-the-art superpixel methods. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
(TPAMI), 34(11):2274-2281, 2012.

As a result, SLIC super-pixels desirably provide a regular
grouping of image pixels according to their distance both
spatially and in the colour space.

The electronic device may be further configured to asso-
ciate a superpixel, in particular each pixel of the super pixel,
with second data of the matching cluster, in particular with
the set of state information of the matching cluster.

Accordingly, a super-pixel-guided extrapolation may be
carried out, in order to assign projected second data, e.g.
depth values (obtained by projecting the clustered scan areas
onto the image) to nearby pixels. These nearby pixels may
be defined by the super-pixel assigned to the projected point.
For example; in a relatively simple inter/extrapolation, the
same depth is assigned to all pixels in a super pixel.

The electronic device may be further configured to create
an object appearance model of the object of interest, the
appearance model representing an estimation for the color
distribution of the object of interest.

Accordingly, in a segmentation initialisation, for each
cluster (object hypothesis), the super-pixels may be assigned
with a depth value. A Gaussian Mixture Model (GMM) for
instance may be created that represents an initial guess for
the overall colour distribution of the cluster (object) hypoth-
esis.

The electronic device may be further configured to create
a background appearance model based on superpixels sur-
rounding the object of interest, the background appearance
model representing an estimation for the color distribution
of a background in the scene.

Accordingly, surrounding super-pixels may also be used
to create a GMM that is used as a background model.

The electronic device may be further configured to rede-
fine the border of the object of interest based on the object
appearance model of the object of interest and/or the back-
ground appearance model, in particular by using an energy
minimisation method, e.g. by using a graph cut algorithm.

Accordingly, in a self-supervised object segmentation
depth densification in the image space may be carried out. In
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order to do so, the initial object and background models may
be used. Further, a graph-cut algorithm may be applied to
them, in order to extend and refine the initial super-pixel-
based segmentation.

The electronic device may be further configured to asso-
ciate each pixel of the redefined object of interest with
second data of the object of interest, in particular with the set
of state information of the object of interest.

Accordingly, a global feature densification may be carried
out. In order to do so, for each cluster (object hypothesis) the
second data (e.g. depth values) from the super-pixel-based
densification may be further expanded to cover the entire
outline provided by the graph-cut segmentation obtained in
the previous step.

The passive optical sensor may be a digital camera.

Camera sensors may detect objects such as pedestrians,
cars, traffic lights, traffic signs, etc. A digital camera may
provide relatively dense data (pixel space), color and appear-
ance of objects. This information is desirable to understand
the scene around the vehicle. However, this sensor is often
dependent on the light so it could suffer from sunny weather
(over exposed pixels), night (under exposed pixels), rain
(rain drop).

The active sensor may be a radar or an active optical
sensor, in particular a laser sensor and/or a LiDAR sensor.

LiDAR sensors may detect objects and provide range
measurements to those objects. LiDAR sensors are desirable
because they are able to provide the heading of a tracked
object, which other types of sensors, such as vision systems
and radar sensors, are generally unable to do. For one type
of LiDAR sensors, reflections from an object may be
returned as a scan area as part of a point cluster range map.
A separate scan area may be provided for every 2° across
the field-of-view of the sensor. Therefore, if a target vehicle
is detected in front of the host vehicle, there may be multiple
scan areas that are returned that identify the distance of the
target vehicle from the host vehicle.

The invention further relates to a system (in particular for
a vehicle) for augmenting image data of a passive optical
sensor, comprising:

an electronic device as described above,

a passive optical sensor, and

an active sensor, wherein

the passive optical sensor and the active sensor are

positioned to sense the same scene (in particular out-
side the vehicle).

The invention further relates to a vehicle comprising a
system as described above. However, the invention may also
relate to any robotic system comprising a system as
described above.

Finally, the invention relates also to a method of aug-
menting image data of a passive optical sensor (in particular
of a vehicle). The method comprises the steps of:

receiving first image data of a passive optical sensor, the

first image data comprising a plurality of pixels in an
image plane,

receiving second data of an active sensor, the passive

optical sensor and the active sensor sensing the same
scene (in particular outside the vehicle), the active
sensor comprising a plurality of scan areas distributed
over the scene, the second data comprising measure-
ment values at returned scan areas,

identifying at least one cluster based on the distribution of

returned scan areas,

projecting the cluster onto the image plane,

identifying pixels which match with the projected cluster

in the image plane, and
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6

associating said identified pixels with second data of the

matching cluster.

The method may comprise further method steps which
correspond to the functions of the electronic device as
described above. The further desirable method steps are
described in the following.

The second data may be projected onto the image plane by
transforming the coordinate system of the second data such
that it matches with the coordinate system of the first image
data.

For each cluster a set of state information may be deter-
mined based on measurement values at returned scan areas
within the cluster, the set of state information including at
least one of the distance, the size, and/or the velocity of the
cluster.

A cluster may be determined by an occupancy grid
mapping algorithm.

Each associated pixel may comprise image information
and state information of the associated cluster, meanwhile
each pixel, which is not associated with a cluster, may only
comprise image information.

The first image data may be decomposed into a set of
superpixels, a superpixel comprising a plurality of neigh-
boring pixels.

An object of interest in the image plane may be defined by
associating neighboring superpixels with a matching same
cluster.

A superpixel may be determined by identifying neighbor-
ing pixels with a similar color distribution and/or by iden-
tifying edges in the first image data, in particular by using a
simple linear iterative clustering (SLIC) algorithm.

A superpixel, in particular each pixel of the super pixel,
may be associated with second data of the matching cluster,
in particular with the set of state information of the matching
cluster.

An object appearance model of the object of interest may
be created. The appearance model may represent an estima-
tion for the color distribution of the object of interest.

A background appearance model may be created based on
superpixels surrounding the object of interest. The back-
ground appearance model may represent an estimation for
the color distribution of a background in the scene.

The border of the object of interest may be redefined
based on the object appearance model of the object of
interest and/or the background appearance model, in par-
ticular by using an energy minimisation method, e.g. by
using a graph cut algorithm.

Each pixel of the redefined object of interest may be
associated with second data of the object of interest, in
particular with the set of state information of the object of
interest.

The described electronic device, system and method may
be suitable for any kind of robotic system, not only for
vehicles.

It is intended that combinations of the above-described
elements and those within the specification may be made,
except where otherwise contradictory.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the
disclosure, as claimed.

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate embodi-
ments of the disclosure and together with the description,
and serve to explain the principles thereof.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of a system with an
electronic device according to embodiments of the present
disclosure;

FIG. 2 shows a schematic scene in bird eye sensed by the
system view according to embodiments of the present dis-
closure;

FIG. 3 shows the sensed raw data (first and second data)
of the scene in bird eye of FIG. 2;

FIG. 4 shows a schematic flow chart illustrating an
exemplary method of augmenting image data of a passive
optical sensor according to embodiments of the present
disclosure;

FIG. 5 shows a flow chart schematically illustrating the
exemplary method of FIG. 4 in context of a specific
example;

FIG. 6 shows a further flow chart corresponding to the
exemplary method of FIG. 4.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to exemplary
embodiments of the disclosure, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts.

FIG. 1 shows a block diagram of a system 10 with an
electronic device 1 according to embodiments of the present
disclosure. The system may have various functions, e.g. may
be a robotic system. For example it may be moveable, e.g.
has drivable wheels, and it may have means for retrieving an
object, e.g. at least one gripper. It may further be integrated
in or constitute a vehicle 100.

The electronic device 1 carries out a computer vision
algorithm for detecting the presence and location of objects
in a sensed scene. For example, vehicles and other objects
may be detected, and an application software uses the object
detection information to provide warnings or take actions as
appropriate. The electronic device 1 may additionally carry
out further functions in the system 10 and/or the vehicle 100.
For example, the electronic device may also act as the
general purpose ECU (electronic control unit) of the system.
The electronic device 1 may comprise an electronic circuit,
a processor (shared, dedicated, or group), a combinational
logic circuit, a memory that executes one or more software
programs, and/or other suitable components that provide the
described functionality. In other words, device 1 may be a
computer device. The device 1 may be connected to a
memory 2, which may store data, e.g. a computer program
which when executed, carries out the method according to
the present disclosure.

The electronic device 1 is further connected to a passive
optical sensor 3, in particular a digital camera. The digital
camera 3 is configured such that it can record a scene in front
of the vehicle 100, and in particular output digital data
providing appearance (color) information of the scene.

The electronic device 1 is further connected to an active
sensor 4, in particular a LiDAR sensor, a laser sensor, an
ultrasound sensor, or a radar sensor. The active sensor may
be a radar or an active optical sensor, in particular a laser
sensor and/or a LiDAR sensor.

The outputs of the passive sensor 3 and the active sensor
4 are transmitted to the electronic device 1. Desirably, the
outputs are transmitted instantaneously, i.e. in real time or in
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quasi real time. Hence, a sensed object can also be recog-
nized by the electronic device in real time or in quasi real
time.

The system 10 may be additionally connected to an
external server 20, in order to form together a system 30. The
server 20 may be used to provide and eventually update the
algorithms carried out by the electronic device 1. Device 1
may be connectable to the server. For example the electronic
device 1 may be connected to the server 20 via a wireless
connection. Alternatively or additionally the electronic
device 1 may be connectable to the server 20 via a fixed
connection, e.g. via a cable.

FIG. 2 shows a schematic scene in bird eye sensed by the
system view according to embodiments of the present dis-
closure.

The vehicle 100 scans a scene in front of it with the digital
camera 3 having a field of view 13 and with a LiDAR sensor
4 having a field of view 14.

Camera sensors may detect objects such as pedestrians,
cars (as the target vehicle 101), traffic lights, traffic signs,
etc. A digital camera may provide relatively dense data
(pixel space), color and appearance of objects. This infor-
mation is desirable to understand the scene around the
vehicle. However, this sensor is often dependent on the light
so it could suffer from sunny weather (over exposed pixels),
night (under exposed pixels), rain (rain drop).

LiDAR sensors may detect objects and provide range
measurements to those objects. LiDAR sensors are desirable
because they are able to provide the heading of a tracked
object, which other types of sensors, such as vision systems
and radar sensors, are generally unable to do. For one type
of LiDAR sensor, reflections from an object may be returned
as a scan area (or scan point) 24 as part of a point cluster
range map. In the following a scan area 24 is addressed to
a scan point 24. A separate scan point 24 may be provided
for every 14° across the field-of-view of the sensor. A target
vehicle 101 is detected in front of the host vehicle 100. Thus
there are multiple scan points 24 that are returned that
identify the distance of the target vehicle 101 from the host
vehicle 100.

FIG. 3 shows the sensed raw data (first and second data)
of the scene in bird eye of FIG. 2. FIG. 3 shows in A the
actual scene with the host vehicle 100 and a target vehicle
101 (an object to be detected in the scene) in front of it. In
B the pixel space (first data) is shown as generated by the
camera 3 sensing the same scene. The pixel space comprises
a plurality of pixels. In C the LiDAR points or scan points
(second data) is shown as generated by the active sensor 4
sensing the same scene.

FIG. 4 shows a schematic flow chart illustrating an
exemplary method of augmenting image data of a passive
optical sensor according to embodiments of the present
disclosure. FIG. 5 shows a flow chart schematically illus-
trating the exemplary method of FIG. 4 in context of a
specific example.

In step S1 the method is started. In step S2 LiDAR data
(second data) are generated by the LiDAR sensor. In step
S10 LiDAR clustering is carried out, in order to identify
clusters 34, 44, as shown in FIG. 5. This step groups lidar
returns into coherent segments that can potentially corre-
spond to individual cluster (objects). This stage can also be
called cluster (object) hypotheses generation. In step S11 a
coordinate transformation is carried out. Accordingly, a scan
point cloud is projected onto the image plane so that depth
information is available for some pixels.

In step S3 camera data (first data) are generated by the
digital sensor. In step S20 local appearance-based image



US 11,774,554 B2

9

segmentation is carried out. Accordingly, the SLIC algo-
rithm may be used for super pixel segmentation, in order to
divide the image into sets of nearby pixels with a similar
colour distribution. By this, super pixels 33, 43, 53, 63 can
be determined, as shown in FIG. 5.

In step S30 lidar cluster—super-pixel association is car-
ried out. In this step a mapping is established between
lidar-based cluster (object) hypotheses 34, 44 and super-
pixels 33, 43, 53, 63, as shown in FIG. 5. This mapping
informs which pixels in the image space can be associated
with cluster (object) hypotheses obtained from the lidar (or
any other active sensor), e.g. cluster 44 with superpixel 63
in FIG. 5.

In step S40 depth densification via super-pixel-guided
inter/extrapolation is carried out. Accordingly, the mapping
from the previous step is used, and projected depth values
(i.e. second data) are assigned to nearby pixels, as shown in
FIG. 5 in context of superpixel 63. The projected depth
values may be obtained by projecting the clustered scan
points onto the image. These nearby pixels are defined by the
super-pixel assigned to the projected point. Inter/extrapola-
tion may be carried out by assigning the same depth to all
pixels in a super pixel.

In step S41 it is determined for each pixel, whether it is
associated with second data, i.e. whether it contains lidar
returns. In the example of FIG. 5 this is true for all pixels
contained by superpixels 33, 43, 53 and 63. This determi-
nation may be done for each cluster (object) hypothesis and
for each super-pixel within a given cluster (object) hypoth-
esis.

In step S42 segmentation initialization is carried out.
Accordingly, for each cluster (object) hypothesis, this mod-
ule takes the super-pixels with a depth value assigned to
them (in FIG. 5 superpixels 33, 43, 53 and 63) and creates
a Gaussian Mixture Model (GMM) that represents an initial
guess for the overall colour distribution of the cluster
(object) hypothesis. Surrounding super-pixels are also used
to create a GMM that is used as a background model.

In step S50 self-supervised object segmentation is carried
out, in order to obtain depth densification in the image space.
This step takes the initial models provided by the previous
step and using the graph-cuts algorithm, extends and refines
the initial super-pixel-based segmentation. In the example of
FIG. 5, the border (i.e. outline) of a vehicle corresponding to
the super pixels 33, 43, 53 is e.g. recognized in this step.
Furthermore, the border of a vehicle corresponding to the
super pixel 63 is recognized. These vehicles constitute
objects of interest in the scene.

In step S60 global feature densification is carried out. In
this step, for each cluster (object) hypothesis the depth
values from the super-pixel-based densification are further
expanded to cover the entire outline provided by the graph-
cut segmentation obtained in the previous step. In the
example of FIG. 5, all pixels of a detected vehicle in the
scene are thus associated with the depth values (second
data).

FIG. 6 shows a further flow chart corresponding to the
exemplary method of FIG. 4. Corresponding steps are
consequently indicated by similar reference numbers,
wherein these steps are not again explained in detail. How-
ever, some aspects of the present disclosure are further
explained in context of FIG. 6.

In step S20 range measurements are first projected on the
image space. These sparse depth measurements are locally
extended using Simple Linear Iterative Clustering. Simple
Linear Iterative Clustering (SLIC) is a relatively simple and
parallelizable method, based on k-means clustering, for
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decomposing an image into a regular grid of visually homo-
geneous regions or so-called super-pixels. As a result, SLIC
super-pixels desirably provide a regular grouping of image
pixels according to their distance both spatially and in the
colour space.

This super-pixel segmentation is used for two comple-
mentary tasks. First, the super-pixels are used in steps S30,
S40 to assign depth values to all of the pixels within
super-pixels with at least one range measurement. The
super-pixel segmentation along with the object hypotheses
explained in the following section, are then used for com-
puting an accurate initialisation of object-wise appearance
models that will guide a final extrapolation/segmentation
stage which is explained in context of steps S50, S60.

Furthermore in steps S4 and S10, in order to generate
object hypothesis from the active sensor, the occupancy grid
may be utilized, e.g. provided by the Hybrid Sampling
Bayesian Occupancy Filter (HSBOF), cf. A. Negre, L.
Rummelhard, and C. Laugier. Hybrid Sampling Bayesian
Occupancy Filter. IEEE Intelligent Vehicles Symposium,
Proceedings, pages 1307-1312, 2014.

The occupancy grid may be thresholded and connected
components analysis may be then used to get the final object
hypotheses. These hypotheses may be defined on the
ground/grid space, thus they are desirably 2D and do not
convey object-height information. Interactive image seg-
mentation is desirably used, in order to add a third—
height—dimension to the object hypotheses as shown in
context of steps S50, S60. It should be noted that objects are
considered in the disclosure as clusters of data rather than
high-level abstractions with a semantic description. An
object hypothesis could encompass not only moving objects
such as cars and pedestrians but also static ones, including
trees, walls or green areas.

In steps S50, S60 a graph cut guided densification is
carried out. However, also any other energy minimisation
method may be used. Due to the sparse nature of range
measurements, the superpixel guided depth densification
described in context of steps S20 and S30, S40 may in cases
not be enough. In particular, lidar returns tend to be con-
centrated at the bottom of objects in the environment. As a
result of this and the fact that objects have heterogeneous
appearances, super-pixels with range measurements do not
always cover entire objects. In order to further extend depth
measurements so that depth estimates are available for entire
object hypotheses, it is proposed a self-supervised segmen-
tation procedure based on the graph-cuts algorithm for
interactive foreground/background segmentation, as further
described e.g. by C. Rother, V. Kolmogorov, Y. Boykov, and
A. Blake. Interactive Foreground Extraction using graph cut.
Technical report, Microsoft, 2011.

This Section starts with a summary of the graph Cut
model applied to image segmentation, as described e.g. by
A. Blake, P. Kohli, and C. Rother. Markov Random Fields
for Vision and Image Processing. The MIT Press Cam-
bridge, 2011.

It then explains how this model was extended to perform
interactive foreground extraction by Rother et. al., and how
it may be used as a self-supervised method for performing
lidar-aided object segmentation.

In interactive segmentation it is aimed at segmenting out
the foreground from the background based on foreground
and background appearance models that are known a-priori.
These models can be assembled from user input or as in our
methodology from an initial lidar-based segmentation TF. It
may be started by formulating an energy function that
encodes the trade-off between a good pixel-wise segmenta-
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tion and spatial coherence. A good segmentation will follow
the distributions provided by an initial segmentation but it
will also enforce spatial smoothness. This trade-off can be
captured by an energy function of the form:

E(x,w,z)=Ux,wz)+V(x,2), (€8]

where x is an element of {0, 1} and represents the
segmentation output, ®={h(z,); hy (z,)} corresponds to the
colour distributions for background and foreground param-
etrised via Gaussian Mixture Models (GMMs). The term U
measures the fit of the segmentation x to the data z, given the
model w. It is proposed to initialise the parameter w based
on the initial segmentation provided by our super-pixel
guided depth extrapolation module as described in context
of steps S20, S30, S40 above. Finally, V is a smoothness
term that encourages nearby pixels to have the same label.
The optimal segmentation is obtained by jointly optimising
o and x as follows:

@

i= argrriinmvgnE(x, W, 2)

Optimisation is performed by iteratively updating the
segmentation x using graph cuts and the parameters o using
the Expectation Maximisation (EM) algorithm, as described
in A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society. Series B: Statistical
Methodology (JRSS), 39(1):1-38, 1977.

Throughout the description, including the claims, the term
“comprising a” should be understood as being synonymous
with “comprising at least one” unless otherwise stated. In
addition, any range set forth in the description, including the
claims should be understood as including its end value(s)
unless otherwise stated. Specific values for described ele-
ments should be understood to be within accepted manu-
facturing or industry tolerances known to one of skill in the
art, and any use of the terms “substantially” and/or “approxi-
mately” and/or “generally” should be understood to mean
falling within such accepted tolerances.

Although the present disclosure herein has been described
with reference to particular embodiments, it is to be under-
stood that these embodiments are merely illustrative of the
principles and applications of the present disclosure.

It is intended that the specification and examples be
considered as exemplary only, with a true scope of the
disclosure being indicated by the following claims.

The invention claimed is:
1. An electronic device for augmenting image data of a
passive optical sensor, the electronic device comprising:
a processor configured to:
receive first image data of a passive optical sensor, the
first image data comprising a plurality of pixels in an
image plane;
receive second data of an active sensor, the passive
optical sensor and the active sensor sensing the same
scene, the active sensor comprising a plurality of
scan areas distributed over the scene, the second data
comprising measurement values at returned scan
areas;
identify at least one cluster based on a distribution of
returned scan areas;
project the cluster onto the image plane;
identify pixels which match with the projected cluster
in the image plane; and

20

30

40

45

50

65

12

augmenting the first image data of the passive optical
sensor with the second data of the active sensor by
associating the identified pixels with second data of
the matching cluster, thereby obtaining a new multi-
modal image-like representation,

wherein each identified pixel comprises measurement
values from the second data.

2. The electronic device according to claim 1, wherein

the processor being further configured to:

project the second data onto the image plane by trans-

forming the coordinate system of the second data such
that it matches with the coordinate system of the first
image data.

3. The electronic device according to claim 1, wherein the
processor is configured to:

determine for each cluster a set of state information based

on measurement values at returned scan areas within
the cluster, the set of state information including at least
one of the distance, the size, and the velocity of the
cluster.

4. The electronic device according to claim 1, wherein a
cluster is determined by an occupancy grid mapping algo-
rithm.

5. The electronic device according to claim 1, wherein
each associated pixel comprises image information and state
information of the associated cluster, meanwhile each pixel,
which is not associated with a cluster, only comprises image
information.

6. The electronic device according to claim 1, the pro-
cessor being further configured to:

decompose the first image data into a set of superpixels,

a superpixel comprising a plurality of neighboring
pixels, and

define an object of interest in the image plane by associ-

ating neighboring superpixels with a matching cluster.

7. The electronic device according to claim 1, wherein a
superpixel is determined by identifying at least one of: (i)
neighboring pixels with a similar color distribution: and (ii)
edges in the first image data.

8. The electronic device according to claim 1, the pro-
cessor being further configured to:

associate a superpixel with second data of the matching

cluster.

9. The electronic device according to claim 1, the pro-
cessor being further configured to:

create an object appearance model of an object of interest,

the object appearance model representing an estimation
for a color distribution of the object of interest.

10. The electronic device according to claim 9, the
processor being further configured to:

create a background appearance model based on super-

pixels surrounding an object of interest, the background
appearance model representing an estimation for the
color distribution of a background in the scene.

11. The electronic device according to claim 10, the
processor being further configured to:

redefine a border of the object of interest based on at least

one of the object appearance model of the object of
interest and the background appearance model.

12. The electronic device according to claim 11, the
processor being further configured to:

associate each pixel of the redefined object of interest

with second data of the object of interest.

13. The electronic device according to claim 1, wherein
the passive optical sensor is a digital camera.

14. The electronic device according to claim 13, wherein

the active sensor is a radar or an active optical sensor.
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15. A system for augmenting image data of a passive
optical sensor, comprising:

the electronic device according to claim 1,

a passive optical sensor, and

an active sensor, wherein 5

the passive optical sensor and the active sensor are
positioned to sense the same scene.

16. A vehicle comprising:

a system according to claim 15.

17. A method of augmenting image data of a passive 10

optical sensor, the method comprising:

receiving first image data of a passive optical sensor, the
first image data comprising a plurality of pixels in an
image plane;

receiving second data of an active sensor, the passive 15
optical sensor and the active sensor sensing the same
scene, the active sensor comprising a plurality of scan
areas distributed over the scene, the second data com-
prising measurement values at returned scan areas;

identifying at least one cluster based on a distribution of 20
returned scan areas, projecting the cluster onto the
image plane;

identifying pixels which match with the projected cluster
in the image plane; and

augmenting the first image data of the passive optical 25
sensor with the second data of the active sensor by
associating the identified pixels with second data of the
matching cluster, thereby obtaining a new multi-modal
image-like representation,

wherein each identified pixel comprises measurement 30
values from the second data.
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