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Abstract
Multi-modal depth estimation is one of the key challenges for endowing autonomous machines with robust robotic perception
capabilities. There have been outstanding advances in the development of uni-modal depth estimation techniques based on
either monocular cameras, because of their rich resolution, or LiDAR sensors, due to the precise geometric data they provide.
However, each of these suffers from some inherent drawbacks, such as high sensitivity to changes in illumination conditions
in the case of cameras and limited resolution for the LiDARs. Sensor fusion can be used to combine the merits and compensate
for the downsides of these two kinds of sensors. Nevertheless, current fusion methods work at a high level. They process the
sensor data streams independently and combine the high-level estimates obtained for each sensor. In this paper, we tackle
the problem at a low level, fusing the raw sensor streams, thus obtaining depth estimates which are both dense and precise,
and can be used as a unified multi-modal data source for higher-level estimation problems. This work proposes a conditional
random field model with multiple geometry and appearance potentials. It seamlessly represents the problem of estimating
dense depth maps from camera and LiDAR data. The model can be optimized efficiently using the conjugate gradient squared
algorithm. The proposed method was evaluated and compared with the state of the art using the commonly used KITTI
benchmark dataset.

Keywords Sensor fusion · CRFs · LiDAR · Monocular camera

1 Introduction

Autonomous robots are composed of different modules that
allow them toperceive, learn, decide and actwithin their envi-
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ronment. The perception module processes cues that inform
the robot about the appearance and geometry of the environ-
ment. Particularly when working in outdoor or underground
scenarios, these cues must be robust to unseen phenomenon.
A fully autonomous robot must execute all operations, mon-
itor itself and be able to handle all unprecedented events
and conditions, such as unexpected objects and debris on the
road, unseen environments and adverse weather. Therefore,
reliable and robust perception of the surrounding environ-
ment is one of the key tasks of autonomous robotics.

Among the main inputs for a perception system are the
distances of the robot from multiple points in its environ-
ment. This input can be obtained directly from a sensor or
estimated by a depth estimation module. Depth estimation
can be performed by processing monocular camera images,
stereo vision, radar or LiDAR (Light Detector and Rang-
ing) sensors, among others. Although monocular cameras
can only be used to generate depth information up-to-a-scale,
they are still an important component of a depth estimation
system due to their low price and the rich appearance data
they provide. Although a monocular camera is small, low-
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cost and energy efficient, it is very sensitive to changes in
the illumination. Additionally, the accuracy and reliability
of depth estimation methods based on monocular images is
still far from being practical. For instance, the state-of-the-art
RGB-based depth prediction methods [12, 31, 36] produce
an average error (measured by the root-mean-squared error)
of over 50 cm in indoor scenarios (e.g. on theNYU-Depth-v2
dataset [61]). Such methods perform even worse outdoors,
with at least 4 meters of average error on the Make3D and
KITTI datasets [18, 58]. 3D LiDAR scanners, on the other
hand, can provide accurate geometric information about the
environment even when illumination changes occur. Even
though, due to their active nature, LiDARs are robust to dark
or overexposed scenarios, the generated 3D point cloud is
sparse and non-uniformly distributed, which decreases its
utility for recognition tasks. In general, each type of sensor
has its own weaknesses.

To address the potential fundamental limitations of image-
based depth estimation, this paper considers the use of
sparse depth measurements, along with RGB data, to recon-
struct depth in full resolution. Data fusion techniques have
been extensively employed for robust perception systems,
where fusing and aggregating data from different sensors
is required. Although some approaches to robust perception
resort to statistical methods for dealing with data outliers
[2], the work presented in this paper belongs to the group
that tackles the robust perception problem by leveraging the
complementary nature of passive and active sensor modal-
ities. Multi-sensor approaches to robotic perception can be
categorized according to the level at which the data from
the different sensing modalities is fused in order to obtain
the estimate of interest. According to [7], data fusion can be
made at the level of symbolic estimates (high-level fusion),
at the level of features (medium-level fusion) or at the level
of raw data (low-level fusion).

In this paper, a low-level fusion method is developed.
It explores the complementary relations between the pas-
sive and active sensors at the pixel level [8, 14, 55]. The
approaches in [51, 54, 63] follow this intuition but require
the fused modalities to have similar coverage densities. Our
proposed framework provides a procedure for fusing LiDAR
and image data independently of the LiDAR data’s density.
The main contribution of this paper is a depth regression
model that takes both a sparse set of depth samples and RGB
images as the inputs and predicts a full-resolution depthmap.
This is achieved by modelling the problem of fusing low-
resolution depth images with high-resolution camera images
as a conditional random field (CRF).

The intuitionbehindourCRF formulation is that depthdis-
continuities in a scene often co-occur with changes in colour
or brightness within the associated camera image. Since the
camera image is commonly available at much higher resolu-
tion, this insight can be used to enhance the resolution and

Fig. 1 Input features of our framework.Wedeveloped aCRF regression
model to predict a dense depth image from a single RGB image, and a
set of sparse depth samples: (a), (b) and (c) are the input RGB image,
a set of sparse depth samples projected on the image plane and the
projected surface normals, respectively

accuracy of the depth image. A depth map will be produced
by our approach using three features as illustrated in Fig. 1.
The first one is an RGB colour image from the camera sensor,
top image in Fig. 1 (a). The second one is 2D sparse depth
map captured by a LiDAR sensor, middle image in Fig. 1 (b).
The third feature is a surface-normal map generated from the
sparse depth samples, bottom image in Fig. 1 (c).

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work on depth estimation. Section 3
explains how the LiDAR points and the camera images were
registered. In Sect. 4, we first introduce our CRF-Fusion
framework, and then,we provide a detailed explanation of the
proposedmodel: the energy potentials that compose our CRF
model and its inference machine. The experimental valida-
tion, performed on the KITTI dataset, is reported in Sect. 5.
Finally, conclusions and directions for future work are listed
in Sect. 6.

2 Related work

Depth estimation from monocular images is a long-standing
problem in computer vision. Early works on depth estima-
tion usingRGB images usually relied on handcrafted features
and inference on probabilistic graphical models. Classical
methods include shape-from-shading [72] and shape-from-
defocus [62]. Other early methods were based on hand-tuned
models or assumptions about the orientations of the sur-
faces [4]. Newermethods treat depth estimation as amachine
learning problem, most recently using deep artificial neural
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networks [13, 68]. For instance, Saxena et al. [57] estimated
the absolute scales of different image patches and inferred a
depth image using a Markov random field model. Eigen et
al. used a multi-scale convolutional network to regress from
colour images to depths [12, 13]. Laina et al. used a fully
convolutional network architecture based on ResNet [32].
Liu et al. proposed a deep convolutional neural field model
that combines deep networks with Markov random fields
[38]. Roy et al. combined shallow convolutional networks
with regression forests to reduce the need for large training
sets [56]. In [69], the proposed attention model is seamlessly
integrated with a CRF, allowing end-to-end training of the
entire architecture. This approach benefits from a structured
attention model which automatically regulates the amount
of information transferred between corresponding features
at different scales.

The approach of Li et al. [5] combines deep learning fea-
tures on image patches with hierarchical CRFs defined on a
superpixel segmentation of the image. They use pretrained
AlexNet [29] features of image patches to predict depth at
the centre of the superpixels. A hierarchical CRF refines the
depth across individual pixels. Liu et al. [37] also propose
a deep structured learning approach that avoids handcrafted
features. They presented a deep structured learning scheme
which learns the unary and pairwise potentials of a continu-
ous CRF in a unified deep CNN framework. Liu et al. [39]
proposed a discrete-continuous CRF model to take into con-
sideration the relations between adjacent superpixels, e.g.
occlusions.

Recent work has also shown the benefit of adopting multi-
task learning strategies, e.g. for jointly predicting depth and
performing semantic segmentation, ego-motion estimation
or surface-normal computation [50, 76]. Some recent papers
have proposed unsupervised or weakly supervised methods
for reconstructing depth maps [21, 30]. With the rapid devel-
opment of deep neural networks,monocular depth estimation
based on deep learning and computer vision techniques has
been widely studied recently and achieved promising perfor-
mance in terms of accuracy [75]. However, not considering
information from other sensors makes the estimate not so
robust. In the mentioned literature, there are used different
kinds of network frameworks, loss functions and training
strategies with just one sensory modality. The architecture
proposed in this paper uses two sensory modalities.

Fusing data coming from multiple sensors has the poten-
tial to improve the robustness of the depth estimates. Ma et
al. [43] use RGB images together with sparse depth informa-
tion to train a bottleneck network architecture. Compared
to imagery-only methods, their approach generates better
depth estimation results. Others have investigated depth esti-
mation from colour images augmented with sparse sets
of depth measurements using probabilistic graphical mod-
els. The techniques described in [3, 11, 71], and [67] are

able to fuse the information from both sources to signifi-
cantly improve the resolution of low-quality and sparse range
images. Wang et al. proposed a multi-scale feature fusion
method for depth completion [66] using sparse LIDAR data.
Ma et al. proposed two methods: a supervised method for
depth completion using a ResNet-based architecture and a
self-supervised method which uses the sparse LiDAR input
along with pose estimates to add additional training informa-
tion based on depth and photometric losses [42].

Although recentmethodshave achieved impressiveprogress
in terms of evaluation metrics such as the pixel-wise rela-
tive error, most of them neglect the geometric constraints in
3D space. This component is considered in our CRF model,
which makes this approach different from previous fusion
methods.

Providing strong cues from surface information is rel-
evant for improving the accuracy of the depth prediction
[33]. Recently, Zhang et al. [73] proposed predicting sur-
face normals and occlusion boundaries using a deep network
and further used them to help depth completion in indoor
scenes. The works in [53, 70] propose end-to-end deep
learning systems to produce dense depth maps from sparse
LiDAR data and a colour image taken from outdoor on-road
scenes, leveraging surface normals as the intermediate rep-
resentation. Zhang et al. [74] predicted surface normals by
leveraging RGB data, leading to a better prior for depth com-
pletion. They ultimately combined these predictions with
sparse depth input to generate a complete depth map. Our
method takes advantage of the surface normals to improve the
performance of the proposed model. [70], in particular, uses
a diffusion layer to refine the completions. [40] shows that
diffusion models can be interpreted as energy-based models
(EBMs). Now, CRFs can also be interpreted as energy-based
models parametrized as factor graphs. Therefore, there is a
relation between the diffusion and the CRF approach as both
can be interpreted as EBMs, but with different formulations
and assumptions. For the problem of depth estimation, the
CRF approach more naturally captures the prior knowledge
of the geometric constraints inherent in the physics under-
lying the LiDAR data measurements, whereas the diffusion
approach relies on a carefully crafted similaritymetric,which
might make the models unstable and hard to train. In other
words, we expect a CRF approach to require less training
to achieve equivalent performance as the diffusion-based
method.

The problem of fusing LiDAR and image data can be
approached as a camera pose estimation problem, where
the relation between the 3D LIDAR coordinates and the 2D
image coordinates is characterized by camera parameters,
such as the position, orientation and focal length. In [47],
there was proposed an information-theoretic similarity mea-
sure to automatically register 2D-Optical imagery with 3D
LiDAR scans by searching for a suitable camera transforma-
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tion matrix. The fusion of 3D LiDAR data with stereoscopic
images is addressed in [23, 44, 48, 49]. The advantage of
stereoscopic depth estimation is its ability to produce dense
depth maps of the surroundings by using stereo matching
techniques. In [49], for example, there was proposed a two-
stage cascade deep architecture that first fuses stereo and
LiDAR disparity maps and then refines the estimated dis-
parity maps by introducing colour features. In contrast, our
method does not rely on a stereo matching algorithm, some-
thing which tends to be computationally costly.

3 Image and LIDAR point cloud registration

This section gives a brief introduction to the process of align-
ing an image and a LIDAR point cloud, which allows the
projection of LiDAR points onto the image plane. As pre-
sented in [19], in a robotic platform equipped with both a
LiDAR and a camera, these two sensors are synchronized so
simultaneous scans from both sensor are collected. The cam-
era and LiDAR are cross-calibrated so that the point cloud
can be projected onto the image plane [19]. Once projected,
the LiDAR points are associated with either pixels or groups
of pixel, also called superpixels. This section also briefly
describes the Simple Linear Iterative Clustering (SLIC) algo-
rithm, by which these superpixels are obtained.

3.1 Point cloud projection

In order to fuse the image and LiDAR data, it is imperative
to find mathematical models that represent the spatial corre-
spondence of pixels and 3D points. These models allow us
to project the LiDAR point cloud onto the image plane. The
projection y of a 3D point x = (x, y, z, 1)T in rectified and
rotated camera coordinates to a point y = (u, v, 1)T in the
i ′th camera image is given by

y = P(i)
rectx

with

P(i)
rect =

⎛
⎜⎝

f (i)
u 0 c(i)

u − f (i)
u b(i)

x

0 f (i)
v c(i)

v 0
0 0 1 0

⎞
⎟⎠

being the i th projection matrix. Here, b(i)
x denotes the base-

line with respect to a reference camera. Note that in order to
project the 3D point x, in the camera reference coordinates,
to a point y on the i th image plane, the rectifying rotation
matrix of the reference camera R(0)

rect must be considered as
well.

y = P(i)
rectR

(0)
rectx

Here, R(0)
rect has been expanded into a 4 × 4 matrix

by appending a fourth zero-row and column, and setting
R(0)
rect (4, 4) = 1. We also need to register the laser scan-

ner with respect to the camera’s coordinate system. The
rigid-body transformation from LiDAR coordinates to cam-
era coordinates is given by

Tcam
velo =

(
Rcam

velo tcamvelo
0 1

)

Finally, a 3D point x in the LiDAR coordinate system gets
projected to a point y in the i th camera image:

y = P(i)
rectR

(0)
rectT

cam
velox

Subsequently, as a preprocessing step, points with a neg-
ative value of z are removed. Then, the remaining points can
be projected onto the image plane using the projectionmatrix

[
x ′y′z′

]T = y
[
xp yp z p 1

]T

The projected pixel coordinates of the LIDAR points can
be obtained by

[x, y] =
[
x ′

z′
,
y′

z′

]

Figure 2 portrays the projection of a point cloud projection
onto the image plane.

3.2 Superpixel segmentation using Simple Linear
Iterative Clustering (SLIC)

Considering superpixels rather than individual pixels greatly
reduces the complexity of the subsequent image processing
tasks. In order to harness the full potential of the use of super-
pixels, their calculationmust be fast, easy to use, and produce
high-quality segmentations. Superpixel segmentation algo-
rithms provide an effective way to extract information about
local image features. Our framework uses an implementation
of the SLIC algorithm to group sparse depth measurements
which have been previously projected onto the image plane.
SLIC is a simple and parallelizable pixel clustering method,
based on the k-means algorithm, which is used for decom-
posing an image into a regular grid of visually homogeneous
regions or so-called superpixels [1]. As a result, SLIC super-
pixels provide a regular grouping of image pixels according
to their distance both spatially and in the colour space. We
use this superpixel segmentation method to assign depth val-
ues from a sparse point cloud to all of the pixels within the
superpixels. Applying SLIC to the original image provides
a segmentation with as many segments as the number of
superpixels set as a hyperparameter. Each segment is identi-
fied by an ID that allows individual pixels to be assigned to
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Fig. 2 Given an (a) input image and its corresponding depth, where
dark blue indicates closer distances, our work is focused on densifying
the input sparse depth. We combine the (b) superpixel segmentation
with the sparse input depth to obtain our initial superpixel depth. We
use a CRF to enhance the resolution and accuracy of the depth image
considering information from the 4 neighbours for each superpixel. In
(d), we can see how we achieve significant improvements with regard
to the sparse input depth. Each pixel inside the superpixels has the same
depth value

superpixel segments.Additionally, the coordinates of the seg-
ment’s centroid and those of its neighbours are also output by
a super-segmentation step. Thanks to the superpixel segmen-
tation, each node in our proposedCRFwill be associatedwith
a small number of segments, rather than have the extremely
large quantity of individual pixels usually present in high
definition images. As provided by the super-segmentation
step, the number of neighbours around a segment may vary,
depending on the spatial homogeneity of the colour in the
image and the expected number of segments. After segmen-
tation, the grid-like structure of the original images is lost.
The grid structure of a CRF requires that each node, and
therefore each segment, be associated with only four neigh-
bours. Thus, it is necessary to find the four nearest neighbours
corresponding to each segment, since the grid-like structure
is not well defined.

In order to determine which superpixels are the four clos-
est neighbours, the angles between the centroid of each
segment and its neighbours are calculated. We select as
neighbours the four segments whose angles have the least
difference from 0, 90, 180 and 270 degrees, respectively.
For two examples of nodes, depicted as red points, Fig. 3

Fig. 3 Two examples of superpixels and their neighbours. The red dots
in A and B are nodes assigned to two different superpixels, while the
green lines represent their corresponding nearest neighbours. Note that
the super-segmentation used allows a superpixel node to havemore than
four neighbours

Fig. 4 Selected 4 nearest neighbours for superpixel nodes (red dots) in
Fig. 3. Dark green lines connect nodes with their selected neighbours

illustrates their closest neighbours, whose centroids are rep-
resented by yellow dots.

Figure 4 shows the 4 closest neighbours selected. These
neighbours are represented by dark green lines and dark yel-
low dots. Note that for the superpixels located at the corners,
respectively, on the edges, only the 2, respectively, 3, closest
neighbours need to be found.

4 CRF-based camera–LIDAR fusion for depth
estimation

In this paper, depth estimation is formulated as a superpixel-
level inference task on a modified conditional random field
(CRF). Our proposed model is a multi-sensor extension of
the classical pairwise CRF. In this section, we first briefly
introduce the CRF model. Then, we show how to fuse the
information of an image and a sparse LIDAR point cloud
with our novel CRF framework.

4.1 Overview

The conditional random field (CRF) is a type of undirected
probabilistic graphical model which is widely used for solv-
ing labelling problems. Formally, letX = {X1, X2, . . . , XN }
be a set of discrete random variables to be inferred from an
observation or input tensor Y, which in turn is composed
of the observation variables ci and yi , where i is an index
over superpixels. For each superpixel i , the variable ci cor-
responds to an observed three-dimensional colour value and
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yi is an observed range measurement. The goal of our frame-
work is to infer the depth of each pixel in a single image
depicting general scenes. Following the work of [11, 45], we
make the common assumption that an image is composed
of small homogeneous regions (superpixels) and consider a
graphical model composed of nodes defined on superpixels.
Note that our framework is flexible and can estimate depth
values on either pixels or superpixels. The remaining ques-
tion is how to parametrize this undirected graph. Because
the interaction between adjacent nodes in the graph is not
directed, there is no reason to use a standard conditional
probability distribution (CPD), in which one represents the
distribution over one node given the others. Rather, we need
a more symmetric parametrization. Intuitively, we want our
model to capture the affinities between the depth estimates
of the superpixels in a given neighbourhood. These affinities
can be captured as follows: Let P̃(X ,Y ) be an unnormalized
Gibbs joint distribution parametrized as a product of factors
�, where

� = {φ1 (D1) , . . . , φk (Dk)} ,

and

P̃(X ,Y ) =
m∏
i=1

φi (Di ) .

We can then write a conditional probability distribution
of the depth estimates X given the observations Y using the
previously introduced Gibbs distribution, as follows:

Pr(X |Y ) = P(X ,Y )

Z(Y )

where

Z(Y ) =
∑
X

P̃(X ,Y ).

Here, Z(Y ), also known as ‘the partition function’,
works as a normalizing factor which marginalizes X from
P̃(X ,Y ), allowing the calculation of the probability distri-
bution P(X |Y ):

P(X |Y ) = 1∑
X P̃(X ,Y )

P̃(X ,Y ).

Therefore, similar to conventional CRFs, we model the
conditional probability distribution of the data with the fol-
lowing density function:

P(X|y) = 1

Z(Y)
exp(−E(X,Y))

where E is the energy function and Z is the partition function
defined by

Z(Y) =
∫
Y
exp{−E(X,Y)}dY.

Since Z is continuous, this integral equation can be ana-
lytically solved. This is different from the discrete case, in
which approximation methods need to be applied. To predict
the depths of a new image, we solve the following maximum
a posteriori (MAP) inference problem:

x� = argmax
x

P(X|Y).

To simplify the solution for the energy function, one can
take the negative logarithm of the left-hand side and right-
hand side of the equation of the probability distribution
Pr(X |Y ): then, the problem of maximizing the condi-
tional probability becomes an energy minimization problem.
Therefore, maximizing the probability distribution Pr(X|Y)

is equivalent to minimizing the corresponding energy func-
tion:

x� = argmin
x

E(X,Y).

We formulate the energy function as a typical combination
of unary potentials U and pairwise potentials V over the
nodes (superpixels) N and edges S of the image x :

E(X,Y) =
∑
p∈N

U
(
xp, y

) +
∑

(p,q)∈S
V

(
xp, xq , y

)

The unary term U aims to regress the depth value from
a single superpixel. The pairwise term V encourages neigh-
bouring superpixels with similar appearances to take similar
depths [11, 23].

4.2 Potential functions

The proposed multi-modal depth estimation model is com-
posed of unary and pairwise potentials. For an input image,
which has been over-segmented into n superpixels, we define
a unary potential for each superpixel. The pairwise poten-
tials are defined over the four-neighbour vicinity of each
superpixel. The unary potentials are built by aggregating
all LiDAR observations inside each superpixel. The pair-
wise part is composed of similarity vectors, each with K
components, that measure the agreement between differ-
ent features of neighbouring superpixel pairs. Therefore, we
explicitly model the relations between neighbouring super-
pixels through pairwise potentials. In the following, we
describe the details of the potentials involved in our energy
function.
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Fig. 5 Illustration of the proposed model. On the top left is a fused
view of the image and LIDAR point cloud on superpixels. On the top
right are the normal surface map and RGB inputs used in the pairwise
potentials. On the top middle is the graph structure of the CRF: The
yellow nodes represent the centroids of the image superpixels, and the

green branches the connections between them. The outputs of the unary
part and the pairwise part are then fed to the CRF structured loss layer,
whichminimizes the corresponding energy function. On the bottom left
is the probabilistic output, a dense depthmap and uncertainty estimation
map (see text for details)

4.2.1 Unary potential

The unary potential is constructed from the LiDAR sensor
measurements by considering the least square loss between
the estimated xi and observed yi depth values:

�(x, y) =
∑
i∈L

σi (xi − yi )
2

�(x, y) = ‖W(x − y)‖2

where L is the set of indices for which a depth measure-
ment is available, and σi is a constant weight placed on the
depth measurements. This potential measures the quadratic
distance between the estimated range X and the measured
range Y , where available. Finally, in order to write the unary
potential in a more efficient matrix form, we define the diag-
onal matrix W with entries

Wi,i =
{

σi if i ∈ L
0 otherwise

4.2.2 Colour pairwise potential

We construct a pairwise potential from K types of simi-
larity observations, each of which enforces smoothness by
exploiting colour consistency features of the neighbouring

superpixels. This pairwise potential can be written as

�c(x, I) =
∑
i

∑
j∈N (i)

ei, j
(
xi − x j

)2

�c(x, I) = ‖Sx‖2

where I is an RGB image,N (i) is the set of horizontal and
vertical neighbours of i , and each row of S represents the
weighting factors for pairs of adjacent range nodes. As the
edge strength between nodes, we use an exponentiated L2

norm of the difference in pixel appearance.

ei, j = exp−
∥∥ci − c j

∥∥2
σ 2
d

where ci is the RGB colour vector of pixel i and σd is a tuning
parameter. A small value of σd increases the sensitivity to
changes in the image. Thanks to this potential, the lack of
content or features in the RGB image is considered by our
model as indicative of a homogeneous depth distribution, in
other words, a planar surface.

4.2.3 Surface-normal pairwise potential

The mathematical formulation of this potential is similar to
the previous colour potential. However, the surface-normal
potential considers surface-normal similarities instead of
colour. The weighting factors nri, j for this case are formu-
lated using the cosine similarity, which is a measure of the
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similarity between two nonzero vectors of an inner product
space that employs the cosine of the angle between them.
The cosine of 0 is 1, and it is less than 1 for any angle in the
interval [0, π ] radians. It is thus ameasurement of orientation
instead ofmagnitude [60]. The cosine of two nonzero vectors
can be found by using the Euclidean dot product formula:

A · B = ‖A‖‖B‖ cos θ

Therefore, the cosine similarity can be expressed by

cos(θ) = A · B
‖A‖‖B‖ =

∑n
t=1 Ai Bi√∑n

t=1 A
2
i

√∑n
t=1 B

2
i

where Ai and Bi are the components of vectors A and B,
respectively. Finally, we define our surface-normal potential
by the following equations.

�n(x, In) =
∑
i

∑
j∈N (i)

nri, j
(
xi − x j

)2

�n(x, In) = ‖Px‖2

nri, j =
∑n

t=1 I ni I n j√∑n
t=1 I n

2
i

√∑n
t=1 I n

2
j

4.2.4 Depth pairwise potential

This pairwise potential encodes a smoothness prior over
depth estimates which encourages neighbouring superpix-
els in the image to have similar depths. Usually, pairwise
potentials are only related to the colour difference between
pairs of superpixels. However, depth smoothness is a valid
hypothesis which can potentially enhance depth inference.
To enforce depth smoothness, a distance-aware Potts model
was adopted. Neighbouring points with smaller distances are
considered to be more likely to have the same depth. The
mathematical formulation of this potential is similar to the
colour pairwise potential, as it follows the Potts model:

�d(x,D) =
∑
i

∑
j∈N (i)

ei, j
(
xi − x j

)2

and the weighting factor dpi, j for this case is formulated as

dpi, j = exp−
∥∥pi − p j

∥∥2
σ 2
p

where pi is the 3D location vector of the LiDAR point i and
σp is a parameter controlling the strength of enforcing close
points to have similar depth values.

4.2.5 Uncertainty potential:

Depth uncertainty estimation is important for refining depth
estimation [16, 65], and in safety critical systems [28]. It
allows an agent to identify unknowns in an environment in
order to reach optimal decisions. Ourmethod provides uncer-
tainties for the estimates of the pixel-wise depths by taking
into account the number of LiDAR points present for each
superpixel. The uncertainty potential is similar to the unary
potential. It is constructed from the number of LiDAR points
projected onto a superpixel and employs the following least
square loss:

Uc(x, y) =
∑
i∈L

σi (xi − unci )
2

Uc(x, y) = ‖W(x − unc)‖2

where unc is defined as follows:

unci,i =
⎧⎨
⎩

σi if P projected on SPx is 0
ψi if P projected on SPx is >0 and <2
mean otherwise

where P is a 3D point and SPx is a superpixel. In locations
with accurate and sufficientlymanyLiDARpoints, themodel
will produce depth predictions with a high confidence. This
uncertainty estimation provides a measure of how confident
the model is about the depth estimation. This results in an
overall better performance, since uncertain estimates with
high uncertainty can be neglected by higher-level tasks that
use the estimated depth maps as an input.

4.3 Optimization

With the unary and the pairwise potentials defined, we can
now write the energy function as

E(X,Y) = (α) �(x, y) + (β)�c(x, I) . . .

+ . . . (γ )�n(x, In) + (δ)�d(x, In) (1)

The scalars α, β, γ , δ ∈ [0,1] are weightings for the four
terms. We may further expand the unary and pairwise poten-
tials to

�(x, y) = α(xTWTWx − 2zTWTWx + zTWTWz) (2)

�c(x, In) = β(xTSTSX) (3)

�n(x, In) = γ (xTPTPX) (4)

�d(x, In) = δ(xTDTDX) (5)

123



Probabilistic multi-modal depth estimation … Page 9 of 16 79

We shall pose the problem as one of finding the optimal
range vector x∗ such that:

x∗ = argmin
x

{E(X,Y)}

Substituting equations 2, 3, 4 and 5 into 1 and solving for
x reduces the problem to: Ax = b where

A = α(WTW) + β(STS) + γ (PTP) + δ(DTD)

b = α(WTWz)

All we need to do to perform the optimization is to solve
a large sparse linear system. The methods for solving sparse
systems are divided into two categories: direct and itera-
tive. Direct methods are robust but require large amounts
of memory as the size of the problem grows. On the other
hand, iterative methods provide better performance but may
exhibit numerical problems [10, 20]. In the present paper,
the fast algorithm conjugate gradient squared proposed by
Hestenes and Stiefel [25, 64] is employed to solve the energy
minimization problem.

4.4 Pseudo-code

Algorithm 1 provides the complete pseudo-code for our pro-
posed framework, which is previously illustrated in Fig. 5.
In this algorithm, lines 1 to 5 perform the preprocessing,
which includes gathering the multi-modal raw data, building
a connection graph between pairs of adjacent superpixels
and projecting the clustered LiDAR points onto the image
space. Lines 6 to 11 constitute the core of the approach. They
include constructing the cost function using different poten-
tials (unary and pairwise) to obtain the complete CRF for the
depth estimation. Theobjective of the pairwise potentials is to
smooth the depth regressed from the unary part based on the
neighbouring superpixels. The pairwise potential functions
are based on standard CRF vertex and edge feature functions
studied extensively in [52] and other papers. Our model uses
both the content information of the superpixels and relation
information between them to infer the depth.

5 Results and discussion

We evaluate our approach on the raw sequences of the KITTI
benchmark, which is a popular dataset for single image
depth map prediction. The sequences contain stereo imagery
taken from a car driving in an urban scenario. The dataset
also provides 3D laser measurements from a Velodyne laser
scanner, which we use as ground truth measurements (pro-
jected into the stereo images using the given intrinsics and
extrinsics in KITTI). This dataset has been used to train and

Algorithm 1: UAOFusion Network: A multi-modal
CRF-based method for Camera–LiDAR depth estima-
tion
Input: RGB Image and Sparse 3D Point Cloud
Output: Dense Point Cloud

1 Compute point cloud normal vectors
2 Perform superpixel segmentation
3 Build a set of edges and nodes considering the definition of the
4-neighbourhood.

4 z← Project clustered PCL onto image plane
5 Initialize uncertainty depth map for the whole image
6 for each superpixel (node) do
7 Calculate unary potential
8 Calculate Colour pairwise potential
9 Calculate Surface-normal pairwise potential

10 Calculate Depth pairwise potential
11 Calculate Uncertainty potential

12 Infer 2D dense depth map

evaluate the state-of-the-art methods and allows quantitative
comparisons. First, we evaluate the prediction accuracy of
our proposed method with different potentials in Sect. 5.2.
Second, in Sect. 5.3 we explore the impact on the depth esti-
mation of the number of sparse depth samples and the number
of superpixels. Third, Sect. 5.5 compares our approach to
state-of-the-art methods on the KITTI dataset. Lastly, in
Sects. 5.6 and 5.7, we demonstrate two use cases of our pro-
posed algorithm, one for creating LiDAR super-resolution
from sensor data provided by the KITTI dataset and another
one for a dataset collected in the context of this work.

5.1 Evaluationmetrics

We evaluate the accuracy of our method in depth prediction
using the 3D laser ground truth on the test images. We use
the following depth evaluation metrics: root-mean-squared
error (RMSE), mean absolute error (MAE) and mean abso-
lute relative error (REL), among which RMSE is the most
important indicator and chosen to rank submissions on the
leader-board since it measures error directly on depth and
penalizes on further distance where depth measurement is
more challenging. These metrics were used by [13, 17, 30,
53] to estimate the accuracy of monocular depth prediction.

RMSE =
√

1

|T |
∑
d∈T

‖d̂ − d‖2

MAE = 1

T

∑
d∈T

‖d̂ − d‖2

REL = 1

T

∑
d∈T

⎛
⎝

∣∣∣d̂ − d
∣∣∣

d̂

⎞
⎠
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Table 1 Depth completion errors [mm] after adding pairwise potentials
(lower is better)

Algorithm Potential functions RMSE

Ours I 865.31

Ours II 854.24

Ours III 849.39

Table 2 Depth completion errors [mm] for different number of super-
pixels (lower is better)

Algorithm #Superpixels RMSE

Ours 1200 1370.27

Ours 2400 1050.55

Ours 5500 849.39

Here, d is the ground truth depth, d̂ is the estimated depth,
and T denotes the set of all points in the test set images. In
order to compare our results with those of Eigen et al. [13]
and Godard et al. [21], we crop our image to the evaluation
crop applied by Eigen et al. We also use the same resolution
of the ground truth depth image and cap the predicted depth
at 80 m [21].

5.2 Architecture evaluation

This section presents an empirical study of the impact on
the accuracy of the depth prediction of different choices
for the potential functions and hyperparameters. In the first
experiment, we compare the impact of sequentially adding
our proposed pairwise potentials. We first evaluate a model
with only unary and colour pairwise potentials. Then, we
added the surface-normal pairwise potential, and finally, the
depth pairwise potential is included. As shown in Table 1,
the RMSE is improved after adding each pairwise potential.

5.3 The number of superpixels

In this section, we explore the relation between the prediction
accuracy and the number of available depth samples and the
number of superpixels.

As displayed in Fig. 5, a greater number of superpixels
yields better results in error measurements. Although a larger
number of sparse depth observations improves the quality of
the depth map, the performance converges when the number
of superpixels is more than 5000, which is about 1.5% of the
total number of pixels.We ran an exhaustive evaluation of our
method for a different amount of superpixels. Figure 8 clearly
shows that our method’s error decreases with an increased
number of superpixels.

Fig. 6 Qualitative evaluation of the impact of the pairwise potentials
defined as CRF terms. In row order: 1st: pairwise potential I, penalizes
dissimilar depth estimates of neighbouring pixels which have similar
colours in the RGB image, 2nd: pairwise potential II, penalizes the
depth differences between neighbouring superpixels whose normal sur-
face vectors have large cosine similarities, and 3rd: pairwise potential
III, penalizes neighbouring superpixels with large observed depth dif-
ferences

Fig. 7 Visual comparison of dense depth maps produced by the CRF
frameworkwhenvarying the size of the superpixels. From top to bottom,
1200, 2400 and 5500 superpixels
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Fig. 8 Convergence for different number of superpixels

Fig. 9 Convergence for different number of 3D depth points projected
into 2DRGB images. The amount of 3Ddepth points used is represented
as a percentage (%). 100% means we are using all the 3D depth points
projected into the 2D image

5.4 Sub-sampling 3D depth points

We performed a quantitative analysis of the impact of
observed 3D point sparsity on the error of our proposed
method, by decreasing the amount of 3D points considered
during inference. As it is shown in Fig. 9, our method’s
error decreases with an increased number of 3D depth points,
enabling a better dense depth map estimation. From Fig. 9,
we can argue that the amount of 3D depth points is really
important for an accurate depthmap estimation. Even though
our estimation error increases with the sparsity of the depth
observations, ourmethodmanages to provide state-of-the-art
performances even when the depth observations are sampled
down to 40%.

5.5 Algorithm evaluation for depth completion

This is a more challenging dataset than other datasets for
depth estimation: the distances in theKITTI dataset are larger
than in other datasets, e.g. NYU-Depth-V2 dataset. Hence,
theKITTI odometry dataset ismore challenging for the depth
estimation task. The performance of our method and those

Table 3 Depth completion errors [mm] by different methods on the test
set of KITTI depth completion benchmark (lower is better)

Algorithm RMSE MAE

Semantically guided

depth upsampling [59] 2312.57 605.47

Convolutional spatial

propagation network (CSPN) [9] 1019.64 279.46

Hierarchical multi-scale

sparsity-invariant network (HMS-Net) [27] 841.77 253.47

End-to-end sparse-to-dense

network (S2DNet) [22] 830.57 247.85

Self-supervised

sparse-to-dense network [42] 814.73 249.95

Ours 849.39 263.31

of other existing methods on the KITTI dataset are shown
in Table 3. Table 3 shows that the proposed method out-
performs other depth map estimation approaches which are
well accepted in the robotics community. Our model relies
on the number of superpixels and the resolution of input
data sources. This means that the model’s performance will
increase if we increase the number of superpixels, the image
resolution and the density of the LiDAR data.

5.6 Algorithm evaluation for LiDAR super-resolution

We present another demonstration of our method in super-
resolution of LiDAR measurements. 3D LiDARs have a low
vertical angular resolution and thus generate a vertically
sparse point cloud. We use all measurements in the sparse
depth image and RGB images as input to our framework. An
example is shown in Fig. 4. The cars are much more recog-
nizable in the prediction than in the raw scans.

On the other hand, starting fromaLiDARsuper-resolution
map we can generate a 3D reconstruction of the scene. The
reconstruction of three-dimensional (3D) scenes has many
important applications, such as autonomous navigation [24],
environmental monitoring [46] and other computer vision
tasks [26]. Therefore, a dense and accuratemodel of the envi-
ronment is crucial for autonomousvehicles. In fact, imprecise
representations of the vehicle’s surrounding may lead to
unexpected situations that could endanger the passengers.
In this paper, the 3D modelling is generated using a combi-
nation of image and range data are a sensor fusion approach
that takes the strengths of each in order to overcome their lim-
itations. Images normally have higher resolution and more
visual information than range data, and range data are noisy,
sparse, and have less visual information, but already con-
tain 3D information. The qualitative and quantitative results
presented here suggest that our system provides 3D recon-
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Fig. 10 Depth completion and uncertainty estimates of our approach
on the KITTI raw test set. From top to bottom: RGB and raw depth
projected onto the image; high-resolution depth map; raw uncertainty;
and estimated uncertainty map

Table 4 Depth estimation errors [m] by different methods on the test
set of KITTI depth estimation benchmark (lower is better)

Algorithm RMSE[m] REL Log10

Multi-modal Auto-Encoders [6] 7.14 0.179 –

Residual of residual network [34] 4.51 0.113 0.049

Residual Up-Projection [15] 3.67 0.072 –

Sparse-to-dense [43] 3.37 0.073 –

CSPN [9] 3.24 0.059 –

S2DNet [22] 3.11 0.069 0.038

Ours 3.59 0.072 0.041

structions of reasonable quality. Following [43], we use a
random subset of 2000 images from the test sequences for
evaluation. We take the bottom part 912 × 228 due to there
beingnodepth at the top area andonly evaluate the pixelswith
ground truth. The performance of our approach and state-of-
the-art depth completion methods is presented in Table 4.

In Table 4, the RMSE value of sparse-to-dense, CSPN
and S2DNet methods is slightly better (lower) than our
approach. All these three methods solve the depth estimation

Fig. 11 LiDAR super-resolution. Creating dense point clouds from
sparse raw measurements. From top to bottom: RGB image, raw depth
map, predicted depth and ground truth depth map. Distant cars are
almost invisible in the raw depth map, but are easily recognizable in
the predicted depth map

task through deep learning algorithms which require large
amounts of data, which can be very costly in practice, and
additional techniques like data augmentation to improve their
performance. For example, S2DNet uses a dataset composed
of 1,070,568 images, while our approach only used 42% of
that amount of data plus the LiDAR information. Addition-
ally, these deep learning methods make use of advanced
computing resources which limit their use in real-world
applications.Ourmethod is very competitivewith deep learn-
ing models as shown in Table 4, without demanding a large
amount of data or additionally strategies.Moreover, we high-
light the fact that our method’s evaluation does not consider
the full image data. As displayed in Fig. 8, our method con-
verges to a better solution when we use 6000 superpixels
instead of 5500.We do not evaluate further because the trend
is clear, as much superpixels we use, a better dense depth
map is predicted.

5.7 Depth estimation with very sparse LiDAR data:
The UAO LiDAR-RGB Dataset

Thus far, we have sampled the depth from high-quality
LiDAR depth maps, but in practice, sparse depth inputs
may come from less reliable sources. Therefore, we provide
a qualitative evaluation of this model on our own well-
calibrated LiDAR and RGB dataset. We use a 16-beam
LiDAR along with a Stereo Labs Zed Mini camera with
1280 × 720 resolution. This dataset enables us to demon-
strate the stability and robustness of the proposed model in
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Fig. 12 Indoor LiDAR super-resolution. Creating dense point clouds
from sparse raw measurements and colour. From top to bottom: RGB
image, raw depth map and predicted depth

particularly challenging scenarios. The scenes were recorded
with a low resolution of the camera and the LiDAR sensor
in comparison with the KITTI benchmark. Notably, the pro-
posed algorithm is able to estimate a dense depth map of
indoor and outdoor environments using colour and sparse
depth data. The experimental results are shown in Fig. 12,
Fig. 13 and Fig. 14. Dark red indicates farther distances, and
dark blue indicates closer distances.

Despite the lower number of LiDAR channels, the pro-
posed method has provided accurate depth information even
under challenging outdoor conditions, as shown in Fig. 14.
In this scene, there is lot of variability in terms of the light
and shadows generated by the environment and the weather
itself. After a close look at Fig. 12, Fig. 13 and Fig. 14,
it is noticeable that no depth observations from the LiDAR
are available at the top and bottom locations of the colour
image. After inference, the depth estimates, shown in the
bottom images, at the above locations are consistent with the
information provided by the image.We can conclude that the
framework proposed here works reliably for the depth pre-
diction task. Additionally, it also solves the depth completion
problem, as it is able to deal with highly sparse input point
clouds projected onto the image space.

Fig. 13 Outdoor LiDAR super-resolution. Creating dense point clouds
from sparse raw measurements and colour. From top to bottom: RGB
image, raw depth map and predicted depth

Fig. 14 Outdoors LiDAR super-resolution. Creating dense point clouds
from sparse raw measurements and colour. From top to bottom: RGB
image, raw depth map and predicted depth
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6 Conclusions and future work

In this paper, we described an innovative approach to fuse
information from different sensor modalities, e.g. cameras
and LiDAR, in order to probabilistically estimate a dense
point cloud. Our approach achieves good performance in
single image depth map prediction on the popular KITTI
dataset. It is able to predict detailed depth maps on thin and
distant objects. It also reasonably estimates the depth in parts
of the image in which there is no ground truth available for
supervised learning. The qualitative and quantitative results
presented here suggest that our system provides 2D depth
maps of reasonable quality, which depends on the density
of the laser measurements and the number of superpixels
selected. We believe that this method opens up an important
avenue for research into multi-sensor fusion and the more
general 3D perception problems, which might benefit sub-
stantially from sparse depth samples.

There are various variants of CRFs, each with its own
pros and cons. A higher-order CRF, for example, considers
interactions between more than two variables at a time. This
can lead to more accurate predictions. A dynamic CRF is
another type of CRF that is designed to work with sequences
of data, such as time series or videos. This can be useful
for depth estimation using Camera–LiDAR fusion, as it can
take into account temporal information in the data. How-
ever, both higher-order and dynamic CRFs require more
computational resources and are more difficult to train than
pairwise, also known as Markov CRFs, which only con-
sider interactions between adjacent variables. Since our work
focuses on robotics applications, inwhich computational per-
formance is a hard constraint, instead of trying to capture
long-term dependencies in the data, we leverage the poten-
tial of modelling both appearance and geometric constraints
from multi-modal sensor observations. A promising future
research direction may tackle the challenges of developing
efficient and real-time inference solutions for higher-order
CRFs in the context of multi-modal depth estimation solu-
tions. Another promising research venue is the parallel
implementation of our method, which will bring benefits
when deploying it in real robotic platforms. Additionally,
the inclusion of other sensor modalities, such as radar [35,
41], could be explored as a way of improving our system’s
robustness to challenging environmental conditions.
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