
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/166963/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Saavedra-Ruiz, Miguel, Pinto-Vargas, Ana Maria and Romero Cano, Victor 2022. Monocular visual
autonomous landing system for quadcopter drones using software in the loop. IEEE Aerospace and

Electronic Systems Magazine 37 (5) , pp. 2-16. 10.1109/MAES.2021.3115208

Publishers page: http://dx.doi.org/10.1109/MAES.2021.3115208

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

1

Monocular visual autonomous landing system

for quadcopter drones using software in the

loop

Miguel Saavedra-Ruiz∗, Ana Maria Pinto-Vargas† ,

Victor Romero-Cano, Member, IEEE ‡

∗Mila - Quebec Institute of Artificial Intelligence, Université de Montréal, Canada

miguel.angel.saavedra.ruiz@umontreal.ca
† Alternova Tech SAS, Medellı́n, Colombia

ana.pinto@alternova.io
‡Robotics and Autonomous Systems Laboratory, Faculty of Engineering,

Universidad Autónoma de Occidente, Cali, Colombia

varomero@uao.edu.co

Abstract

Autonomous landing is a capability that is essential to achieve the full potential of multi-rotor

drones in many social and industrial applications. The implementation and testing of this capability on

physical platforms is risky and resource-intensive; hence, in order to ensure both a sound design process

and a safe deployment, simulations are required before implementing a physical prototype. This paper

presents the development of a monocular visual system, using a software-in-the-loop methodology, that

autonomously and efficiently lands a quadcopter drone on a predefined landing pad, thus reducing the

risks of the physical testing stage. In addition to ensuring that the autonomous landing system as a

whole fulfils the design requirements using a Gazebo-based simulation, our approach provides a tool

for safe parameter tuning and design testing prior to physical implementation. Finally, the proposed

monocular vision-only approach to landing pad tracking made it possible to effectively implement the

This work was funded by Universidad Autónoma de Occidente (UAO), project 17INTER-297. Miguel Saavedra-Ruiz and
Ana Maria Pinto-Vargas undertook this work while they were affiliated to UAO.

2

system in an F450 quadcopter drone with the standard computational capabilities of an Odroid XU4

embedded processor.

Index Terms

Autonomous landing, quadcopter, target tracking, software-in-the-loop, simulation, Sim2Real.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have recently become popular due to their potential in

terms of performing complex tasks such as infrastructure inspection [1], target detection [2], [3],

or search and rescue [4]. The use of these gadgets has led to both substantial improvements in

the efficiency of these processes and a reduction in human casualties while performing hazardous

labours. The deployment of UAVs in such applications requires a complete suite of sensors such

as GPS, laser rangefinders, radar and cameras [5], which can be used to endow the vehicle

with environmental awareness and the capability to perceive events of interest. However, the

use of many peripherals in a UAV requires an extensive amount of on-board computational

resources and power that are not always available owing to the vehicle’s dimensions and the

high implementation costs.

Fig. 1: Autonomous landing system pipeline with image-based visual servoing.

Cameras have been proposed as a feasible alternative to overcome these issues, as they have a

relative low price and enable the estimation of content-rich representations of the environment.

For instance, cameras have been widely employed in various tasks such as mapping [6] and

object tracking [7]. Further research efforts have been conducted to make use of cameras in

3

the development of visual-based autonomous landing systems for UAVs. Autonomous landing

maneuvers remain a crucial task for rotorcraft, and allow the development of complete, end-to-

end autonomous flying vehicles that are capable of performing complex assignments such as

those mentioned above.

Most state-of-the-art visual-based landing systems have shown unprecedented results that are

comparable to the performance of UAVs with a full suite of sensors [10]. The employment of

natural landmarks to land a rotorcraft in unstructured environments is a strategy commonly used

for emergency landing situation [6], [11]. These methods rely on the use of vision-based SLAM

algorithms such as ORB SLAM2 [12] for localization of the vehicle and mapping of appropriate

landing spots in the environment. Nevertheless, these techniques are prone to deliver low spatial

resolution and be computationally expensive, hindering the performance of autonomous landing

applications.

On the other hand, the utilization of artificial landmarks is one of the most traditional tech-

niques used in landings on both static [13] and moving platforms [14]. The extraction of

information from a landmark, such as the relative pose or template coordinates, is broadly used

in the application of image-based visual servoing (IBVS), a technique that performs the majority

of the control calculations in 2D image space [15] and reduces the computational load of a small

rotorcraft while landing.

Visual servoing is commonly used with classical computer vision methods to track features

over several image frames and to create stable control references to land the aircraft on a desired

target. Despite the potential of IBVS in terms of autonomous landing, additional assumptions

are required, for example that the features in the image are static features of the object, or that

the object does not leave the field of view [7]. Furthermore, the implementation of visual-based

autonomous landing systems requires rigorous assessments in simulated environments to identify

possible perils before deploying the whole system in the real world.

Lately, deep learning has been proposed as an alternative to replace feature-based methods

with Convolutional Neural Networks (CNNs) for landmark detection [8]. The use of CNN has

exhibited robustness with diverse lighting conditions, scale variations and rotations. Notwith-

standing the potential of deep learning-based object detectors, these models typically require

extensive amount of human-labeled datasets and vast computational resources that are usually

available only with off-board computing strategies [9].

In this work, we address these problems by proposing a complete monocular visual-based

4

perception and control strategy for the autonomous landing of a UAV in a Gazebo-based sim-

ulated environment. This system aims to mitigate the current limitations on classic computer

vision-based methods created by changes in the appearance in the image by using a Kalman

filter to estimate the position of the template throughout the landing process. Additionally, the

use of only IBVS techniques for the control of the aircraft reduces the computational cost of

the system and eliminates the need for expensive 3D position reconstruction calculations, thus

allowing for real-time control of small UAVs with low-cost computers.

Fig. 1 illustrates the general workflow of the proposed method. Initially, the system computes

the homography matrix between the current image frame and the predefined template, using a

feature-based detector. Next, the homography matrix is used to compute the corners and the

centroid of the object in the current image frame. These points are then passed to a Kalman

filter estimation module. Finally, the Kalman filter estimations are used to track the template in

the image frame, and as a process variable for a set of three PID-based controllers that perform

the safe landing of the vehicle.

The full system was developed and assessed in a Gazebo-based simulated environment in

order to bridge the gap between real-world deployment and theory, and to reduce the number of

risks while the vehicle is tested. All the parameters for the vision and control systems employed

in the Gazebo-based simulation were directly transferred to the real-world quad-rotor in a zero-

shot† sim2real (simulation to reality) fashion in order to validate that these simple approaches

can be effectively transferred to the vehicle without additional tuning [16]. Overall, the principal

contributions of this work can be summarized as follows:

1) A complete, flexible, Gazebo-based simulation of a visual-based landing system for low-

cost UAVs;

2) The implementation of a Kalman-filter-based methodology for landing platform tracking

using monocular vision in both a simulated and a physical drone;

3) A control strategy for quadcopter landing that is seamlessly implemented using the pop-

ular PX4 software-in-the-loop (SITL) Gazebo interface, which facilitates its transfer to a

physical drone.

This paper consists of five sections, as follows: Section II presents related work. In Section

III, the feature-based detector and Kalman filter are explained. Section IV describes the proposed

†It refers to when parameters are learned or set in a source domain (simulation) and tested without fine-tuning in a target
domain (real-world).

5

control strategy for the landing maneuver, while Sections V and VI contain the simulated and

experimental results, respectively. Finally, Section VII presents the conclusion.

II. RELATED WORK

Autonomous landing for multi-rotor aircraft is a problem that has been extensively studied.

Various approaches have relied on the use of vision-based techniques to identify the salient

features in an image and to land the vehicle on both static [18]–[20] and moving platforms [10],

[14], [15]. Classic computer vision methods, such as feature-based extraction and description or

homography-based approaches [21], [22], are commonly used to estimate the relative pose of

the vehicle with respect to a landing platform at a relative low computational cost.

Spatial information can be extracted from natural and artificial landmarks. In [6], the authors

proposed the use of natural landmarks for the detection and reconstruction of landing sites

based on the texture of the ground. Visual-based SLAM techniques are also exploited to assemble

world’s representations and find feasible landing spots for the rotor-craft in unstructured environ-

ments as shown in [11]. Similarly, the use of artificial landmarks can alleviate the autonomous

landing task by providing references with known dimensions for detection and tracking over

several image frames [23].

The use of markers has been exploited to provide a traceable reference for landing control

systems and to enhance the position estimation of aerial vehicles through visual inertial odometry

(VIO). In [7], the authors estimated the relative pose of the aircraft with respect to a spherical

target and used an extended Kalman filter to fuse these measurements with IMU data to accurately

locate the vehicle within the space.

Kalman filters are not exclusively employed to fuse information from multiple sensor sources

but also to estimate the states of a system from a unique noisy source [24], [25]. These estimations

are used in IBVS, with linear control strategies such as nested PIDs [6], [18] and nonlinear ones

like sliding mode controllers [15], to accurately land an aerial vehicle. The utilization of Gaussian

estimators for IBVS provides numerically stable and continuous references for controllers, even

when the object of interest is outside the field of view of the camera.

Further research efforts have concentrated on the use of deep learning methods to detect and

track landmarks in images using CNN-based architectures [9], [26], [27] or to automate the

complete landing task with deep reinforcement learning (DRL) agents [28]. However, the use

of artificial neural networks requires substantial computational resources for real-time inference

6

and thousand of human-labeled images based on the task at hand [9]. Likewise, visual-based

3D reconstruction techniques tend to be computationally expensive for on-board computers in

small UAVs [11], and need to satisfy various assumptions to achieve accurate pose estimations.

We aim to reduce the computational load when performing IBVS with the use of a vision-

based tracking system, and to produce a stable reference for a set of nested PID-based controllers

similar to those in [6]. The idea behind the detection and tracking system is to produce a 2D

image-based reference for the controller, thus avoiding expensive 3D pose reconstructions as in

[15]. In this work, the use of the Kalman filter is restricted to filtering 2D estimations of the

landing pad from noisy observations, unlike the application of VIO in most other related work.

Contrary to commonly used simulation tools like RotorS [17], which provide Gazebo-based

simulation environments for multi-rotor drones with no interface with a real flight controller, our

implementation utilises the SITL provided by PX4, which runs the Pixhawk flight stack, and

therefore provides direct support to the physical robot deployment process.

III. VISION SYSTEM

This section describes our detection and tracking system for the autonomous landing of a UAV,

which is an extension of our previous work in [21], [33]. We first explain how the feature-based

object detector detects the landing platform when comparing the platform’s template with the

input image. Next, we describe how the system translates the corners and the centroid of the

detected platform from the homography matrix to a vector that contains the system observations.

Finally, we explain how a tailored Kalman filter is used to estimate the pose of the landing

platform, even when no detection has been obtained.

A. Feature-based object detection

Object detection is a crucial task in robotic perception. Feature-based detectors and descriptors

are widely used, due to their speed in computing the salient features of images. For increased

robustness in object detection, these features should be invariant to rotation, scale and affine

transformations over several frames [29]. To find correspondences between two images, we

consider a set of features in the template image FT ∈ Rn and the current frame FS ∈ Rm,

where n,m ∈ Z represent the number of features in each image. Each feature in the template

and scene frames is associated with a descriptor DT ∈ Rn×k,DS ∈ Rm×k, where k is the

dimension of the descriptor for each feature.

7

Fig. 2: Feature matching between the features of the template FT and the features of the scene
image FS

With a set of descriptors, it is possible to compute matches between image pairs by performing

distance calculations, such as the Euclidean distance between the descriptors of the template and

the scene, as shown in (1). Two features are matched when the closest descriptors between two

images in the descriptor space have been found. As a result, similar features in the template

image (xi, yi) are matched with the similar pair (x′i, y
′
i) in the current image frame, as illustrated

in Fig. 2.

di = min(
n∑

i=1

m∑
j=1

√
(DT

(i,k))2 − (DS
(j,k))2) (1)

1) Homography Matrix: Finding correspondences between image pairs allows us to compute

the homography matrix H ∈ R3×3. This matrix is a transform that maps points from one image

frame (template) to the corresponding points in the other image frame (scene). To compute the

homography, at least four matches are needed. Then, knowing the homography between two

images and the dimensions of the template T = [wT , hT]T , it is possible to apply a perspective

transform that maps the template position from the template image to the scene image using (2).
x
′

y
′

1

 = H


x

y

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1

 (2)

In (2), [x, y, 1]T are the coordinates of points (e.g. corners) in the template image and [x′, y′, 1]T

are the same points mapped in the scene image, where H : R3 → R3. Object detection with

feature-based methods and homography calculations tends to speed up the process and can

provide a reliable estimation of the location of the object of interest in the current image frame.

8

B. System observations

Using the homography matrix, the corners and centroid of the template detected in the current

image frame can be computed. Pct ∈ R5×2 is defined as a vector of coordinates, where each

row corresponds to a x, y point at time index t.

These points are used to determine the observations that will be fed into the Kalman filter.

The vector of observations at time t is defined as Zt = [Pc
(i=5)
t , Ow, Oh, θ], where Pc

(i=5)
t are

the x, y centroid coordinates of the landing pad; Ow, Oh are the width and height of the template,

respectively; and θ represents the angle of the template with respect to the x axis of the image,

as shown in Fig. 3.

Fig. 3: System’s observations and coordinate system. The vector Zt is created at each
time-step based on the width and height (Ow, Oh), the orientation θ and the position of the

centroid (x, y) of the template in the current image frame.

C. Kalman filter

The Kalman filter is an estimator that infers hidden states from indirect, inaccurate and

uncertain observations. It is possible to use the Filter to handle noisy observations from the

detection module and produce a continuous estimate of the template position at each time step

t [6].

We assume that we have a Linear Dynamic System (LDS) for a landing platform such as in

(3), where xt is the x coordinate of a pixel at time index t and ∆t is the time between two

consecutive image frames. Similarly, in (4), ẋt corresponds to the x velocity component of a

pixel in the image.

xt = xt−1 + ∆tẋt−1 (3)

9

ẋt = ẋt−1 (4)

The set of states X ∈ R10 is given by (5), with xc, yc as the position of the centroid of the

template in the image frame. The filter states are the same as the vector of observations plus

their first-order derivatives.

X = [xc, yc, Ow, Oh, θ, ẋc, ẏc, Ȯw, Ȯh, θ̇]
T (5)

Knowing the transition dynamics and states of the filter, the motion model of the system is

then given by (6). The matrix A ∈ R10×10, shown in (7), is the state transition matrix of the

system and w is a white noise random vector such that w ∼ N (0,Q). Q ∈ R10×10 is defined

as the covariance matrix of the process noise [31]. For the sake of notation, I represents the

identity matrix.

X t = At−1X t−1 + wt−1 (6)

A =

I5×5 ∆tI5×5

05×5 I5×5


10×10

(7)

Likewise, the measurement model of the filter is given in (8). H = I5×10 is defined as the

observation matrix and v is a white noise random vector such that v ∼ N (0,R). As for Q,

here R ∈ R5×5 is the covariance matrix of the observation noise.

Y t = H tX t + vt (8)

With the motion and measurement models defined, it is possible to formulate the pose es-

timation process of the platform by giving the Kalman filter equations (9)-(15). In this set of

equations, P is defined as the covariance matrix of the posterior estimate, Y is the innovation

vector, K is the Kalman gain and S is the covariance matrix of the innovation. Additionally,

X̌ represents the predicted states and X̂ the corrected states after a measurement update.

The first two equations (9)-(10) are used in the prediction step, and give an estimate of the

states X at each time step regardless of whether an observation was obtained.

10

X̌ t = AtX t−1 (9)

P t = AtP t−1A
T
t + Qt (10)

When an observation is obtained by the detection module, the correction phase (11)-(15)

is computed immediately after the prediction step. This step aims to correct the error in the

estimations using an observation of the template in the current image frame at time t.

Y t = Zt −H tX̌ t (11)

St = H tP tH
T
t + Rt (12)

Kt = P tH
T
t S
−1
t (13)

X̂ t = X̌ t + KtY t (14)

P t = (I10x10 −KtH t)P t (15)

The set of states produced by the Kalman filter can be applied in an IBVS module to control

the landing procedure and to obtain the position of the landing platform in the current image

frame, as shown in Fig. 4. These states are computed in the 2D image frame to reduce the

computation carried out by the on-board computer of the UAV. Furthermore, since we are not

estimating the relative pose between the vehicle and the landing platform, we are not feeding

IMU data to the tracking module; this allows for the use of a linear Kalman filter and avoids

the calculation of Jacobians at each time-step. Pseudo-code for the vision-based detection and

tracking system is given in Algorithm 1.

11

Algorithm 1 Landing platform detector and tracker
1: Inputs:

H ∈ R3×3 Homography matrix
T ∈ R2 Dimensions of the template

2: Initialization of the Kalman Filter:
A ∈ R10×10, R ∈ R5×5, P ∈ R10×10, Q ∈ R10×10, K ∈ R5×5,
S ∈ R10×10, H ∈ R5×10, Y ∈ R5, X ∈ R10

3: Outputs:
X ∈ R10 State vector

4: Variables:
Pc ∈ R5 Corners and centroid of the template
Z ∈ R5 Observations of the template
Ow Width of the template in the image frame
Oh Height of the template in the image frame
θ Estimated angle w.r.t X axis

5: for each frame do
6: for 1, . . . , 5 do
7: Pct ← computePoint(H ,T , point = i)
8: end for
9: Pct ← sortCorners(Pct)

10: Ow, Oh ← computeObjectDims(Pct)
11: θ ← computeAngle(Pct)
12: if θ > 90 deg then
13: θnew ← θ/90
14: θ ← θ − θnew × 90
15: end if
16: Z ← {Pc(i=5)

t , Ow, Oh, θ}
17: // KF Prediction step
18: X̌ t ← At ×X t−1
19: P t ← At × P t−1 ×AT

t + Qt

20: if detection is valid then
21: // KF Correction step
22: Y t ← Zt −H t × X̌ t

23: St ←H t × P t ×HT
t + Rt

24: Kt ← P t ×HT
t × S−1t

25: X̂ t ← X̌ t + Kt × Y t

26: P t ← (I10x10 −Kt ×H t)× P t

27: end if
28: X t ← X̂ t

29: return X t

30: end for

12

Fig. 4: Estimation of the platform position using the Kalman Filter vector of states X

IV. CONTROL SYSTEM

This section describes the PID-based controller used to autonomously land our rotorcraft. The

IBVS controller uses the 2D output of the estimation module as a reference to compute position-

velocity control signals to land the vehicle. These signals are sent to the native position-velocity

loops implemented in the PX4 flight-stack, which transforms the positions into speeds and then

converts them into thrust commands for the vehicle’s engines, to guarantee correct control of

the aircraft.

A. PID-based controller

In order to ensure that the aircraft moves towards the landing platform and lands on it, a

control strategy is required. Autonomous landing of the vehicle is accomplished by feeding the

position estimates of the template from the Kalman filter to a set of three PID-based controllers.

The IBVS PIDs will perform all the calculations in the current image frame. Setting a

2D image-based reference for the controller, and thus avoiding the need for expensive 3D

reconstructions, increases the computational speed in on-board computers, allowing for real-time

control over the approaches of the vehicle to the landing pad [15]. High-rate controllers tend to

be robust against sudden image changes, and with the Kalman filter output as the reference for

control, the system is capable of tracking the landing platform even if it is abruptly moved out

of the camera’s field of view.

Our approach uses a set of three PID-based controllers attached in a cascade in an outer loop,

with the two native controllers already implemented in the Pixhawk flight stack. The controllers

13

of the flight stack have a standard cascaded position-velocity loop, in which the outer position

loop transforms the position inputs to velocity outputs and the velocity outputs are converted in

the inner loop into thrust commands for the vehicle’s propellers. The idea is to transform pixel

coordinate errors into velocity commands and to let the inner controllers of the Flight Controller

Unit (FCU) handle the thrust.

We use a reference vector for the controllers Sp = [Iw
2
, Ih

2
, 0]T , where Iw

2
, Ih

2
represent the

center of the current image frame and zero corresponds to the desired angle between the aircraft

and template measured with respect to the x axis of the image. These controllers command

the x, y velocities of the rotorcraft, denoted as ẋa, ẏa, to center the vehicle with respect to the

template detected in the current image frame. The third controller modifies the yaw rate ψ̇ of

the aircraft in order to align it with the landing pad in the x axis. The error vector et ∈ R3 of

the controllers at time t is given by (16).

et = Spt −X
(i=1:3)
t (16)

Fig. 5 is a simplified representation of the three PID-based controllers and an altitude controller

with an ON/OFF strategy to control the descent of the UAV. The error vector e is used to feed

the first three controllers and to produce a control effort U t ∈ R3, which is delivered to the

cascade controllers of the FCU. The output of the three PID controllers is provided by the vector

in (17). Each PID controller was discretized using trapezoidal integration and derivation.

U t = [ẋa, ẏa, ψ̇]T (17)

Fig. 5: The proposed control strategy attached to the native FCU controllers. The PID
controllers block outputs the control signal U t with ẋa, ẏa, ψ̇, whereas the altitude controller

outputs uzt to control the descent of the vehicle.

The ON/OFF altitude controller in Fig. 5 starts to land the aircraft whenever the difference

between the height and width of the template estimates X(i=4:5)
t tends to zero (18). uzt represents

14

the output of the altitude controller, Zp is the current height in meters of the vehicle and Zf

is a descent constant. This descent condition guarantees that the aircraft will land only if the

template dimensions form a square, which is the actual shape of the landing platform.

uzt =

Zp − Zf , if |Ow −Oh| < 5

Zp, otherwise
(18)

Acquiring feedback from the vision-based module closes the visual servoing control loop and

allows for the implementation of an on-board end-to-end control strategy for a UAV. Algorithm

2 shows pseudo-code for the controller pipeline for the rotorcraft.

V. SIMULATION RESULTS

This section describes the experiments carried out to assess the different modules of the

autonomous landing system using a Gazebo-based simulation. We provide an open-source im-

plementation of our system in Github∗.

The system was simulated using the SITL provided by PX4, which runs the Pixhawk flight

stack in a Gazebo-based environment. Our implementation relies on the SITL simulation en-

vironment presented in [32], where the PX4 on SITL is connected via UDP with an offboard

API (ROS), ground station and the gazebo simulator. To obtain accurate results, a custom model

of a DJI F450 quad-rotor was implemented to mimic the dynamics and physics involved in a

real-world model, as shown in Fig. 6 (a). All the perception and control pipelines of the system,

shown in Fig. 1, were implemented in the Robot Operating System (ROS). In addition, a custom

Gazebo-world with a landing platform was used to rigorously assess the performance of both

the vision and control module.

A. Vision module

The assessment of the detection and tracking system was carried out using three different

detector-descriptor algorithms, which are efficient to compute and, orientation and scale invariant

[30]: ORB, SIFT and SURF. After extracting landing pad detections from the captured aerial

images as explained in Section III-A, the Kalman filter was used to estimate the state of the

landing pad. Our evaluation procedure demonstrates the improvements obtained by our tracking

∗https://github.com/MikeS96/autonomous landing uav

15

Algorithm 2 Landing controller
1: Inputs:

X ∈ R10 State vector
Iw image Width
Ih image Height

2: Initialization:
PIDxa ∈ R3 PID parameters for ẋa
PIDya ∈ R3 PID parameters for ẏa
PIDψ ∈ R3 PID parameters for ψ̇
Sp ∈ R3 x, y, and θ setpoints
Zp initial height of the vehicle
Zf descent factor

3: Outputs:
U ∈ R3 PID control efforts
uz ON/OFF altitude controller output

4: for each state vector X do
5: et ← Spt −X

(i=1:3)
t

6: errorSize← abs(X
(i=4)
t −X

(i=5)
t)

7: // Update Z position
8: if errorSize < 5 and Zp > 0.2 then
9: uzt ← Zp − Zf

10: else
11: uzt ← Zp

12: end if
13: // Land if the vehicle is at 0.2 meters from the ground
14: if uzt <= 0.2 and (e

(i=1)
t , e

(i=2)
t) < 20 then

15: land()
16: uzt ← 0
17: end if
18: Zp ← uzt
19: for i = 1, . . . , 3 do
20: U (i) ← computePID(Sp

(i)
t , e

(i),X(i))
21: end for
22: return U t, uzt
23: end for

module compared with plain detection. All the detector-descriptors were tested with the aircraft

hovering at a height of 3.5 meters above the landing pad.

The RANSAC algorithm was used to compute the homography matrix H . Both SIFT and

SURF used the Manhattan distance to compute the matches between descriptors, whereas ORB

employed the Hamming distance. Figure 7 illustrates the results of the three algorithms. The

violin plots show the error between the observations Z and the ground truth of the platform.

These plots show the distribution of the error for the five observed states, with the median error

16

(a) (b)

Fig. 6: DJI F450 quad-rotor in the landing pad: (a) Dron in the Gazebo-based simulation; (b)
Customized dron with a Pixhawk FCU and Odroid XU4 in field trial.

represented as a white dot, the interquartile range as a broad black bar in the center of the violin,

and the lower/upper adjacent values as a thin line.

It can be seen from Fig. 7 (a) and (b) that the centroid coordinates x, y of the landing platform

show similar behavior for the ORB and SIFT detectors, with a median value close to zero. In

contrast, SURF has more dispersion in its error distribution and a median of above 200 pixels.

The best detector for the centroid coordinates is SIFT, as it gives a more uniform distribution

compared with ORB and SURF, and most of the error values are clustered close to zero.

Figure 7(c) presents the error in the angle θ, and it can be observed that the SIFT detector

gives better performance than the other two detectors. The errors in the width Ow and height

Oh can be seen in Fig. 7(d) and (e), respectively. From this figure, it can be seen that the three

detectors have very similar behavior for both variables, although SIFT outperforms ORB and

SURF with an error distribution close to zero and few outliers.

The SIFT detector-descriptor is better than the other detectors for all observations Z. Although

ORB shows similar behavior to SIFT for the first three states, it has a large set of outliers for

17

Fig. 7: Estimation errors for the different descriptor-detector algorithms used for generating state
observations (Z): ORB to the left, SIFT in the middle and SURF to the right, of each sub-figure
respectively. (a) centroid’s X error; (b) centroid’s Y error; (c) Orientation θ error; (d) width Ow

error; (e) height Oh error.

the last two states, while SURF gives the worst performance throughout the observation space.

TABLE I
Comparison between plain SIFT detector and SIFT detector with Kalman filter

States Using SIFT only SIFT with Kalman Filter

Average Standard
deviation Average Standard

deviation

Centroid X [px] 41.93 105.12 2.74 4.71
Centroid Y [px] 30.16 78.55 1.12 2.91
Angle [deg] 1.81 2.69 1.31 2.02
Width [px] 15.98 22.40 7.00 9.71
Height [px] 18.08 20.43 9.36 6.20

Finally, Table I shows the average and standard deviation in the errors in pixels between the

SIFT detector and the Kalman filter attached to the SIFT detector. The results demonstrate that

all of the observations are substantially improved with the Kalman filter, reducing the average

error to almost zero and decreasing the standard deviation of each state. This analysis leads to

the conclusion that the detection and tracking pipeline can accurately track the landing platform

18

Fig. 8: Output of the P, PD and PID controllers for each state in X
(i=1:5)
t : (a) X coordinate of

the centroid; (b) Y coordinate of the centroid; (c) width of the platform Ow; (d) height of the
platform Oh; (e) heading θ.

Fig. 9: Error in the P, PD and PID controllers for X
(i=1:3)
t : (a) X error for the centroid; (b) Y

error for the centroid; (c) error in the heading θ.

with a SIFT detector and a linear Kalman filter to facilitate the computations in the on-board

computers of a small UAV.

B. Controller

To assess the performance of the IBVS control system, three PID-based strategies were

implemented. Various tests were carried out with P, PD and PID controllers to determine which

19

TABLE II
Controller errors in the landing process

Controller Centroid X
[px]

Centroid Y
[px]

Angle
[deg]

P RMSE 30.3725 34.0250 6.7023
Standard deviation 28.9982 32.9310 6.1946

PD RMSE 41.8702 40.2214 11.3106
Standard deviation 41.5917 37.2056 9.4058

PID RMSE 31.8581 29.0585 7.7358
Standard deviation 31.6203 29.0283 6.9005

was optimal for the landing procedure. For each control strategy, the gains were tweaked in a

gazebo-based simulation until the most stable parameters were found for each controller. Using

the best gains, five landing trials were conducted in a custom Gazebo environment, and the results

were averaged. The image size was set to 640 × 320 pixels, and the SIFT detector-descriptor

was employed.

Fig. 8 presents the output of the three controllers for each state X
(i=1:5)
t . The first two figures

(Fig. 8(a) and (b)) correspond to the x, y centroid of the landing platform. It can be seen that

the three controllers were capable of tracking the 2D reference provided by the vision module

and to center the vehicle on the pad. However, the P strategy (blue) operated more slowly than

the PD (orange) and PID (green) strategies, which tended to land the aircraft faster.

In a similar fashion, all of the controllers were shown to be capable of aligning the heading

of the vehicle with the landing platform, as shown in Fig. 8(e). The estimated width Ow and

height Oh of the landing pad, as illustrated in Fig. 8(c) and (d), have a tendency to increase

as the altitude controller starts the vehicle’s descent. This effect is due to the landing platform

becoming bigger in the current image frame as the height of the aircraft decreases.

Although all of the controllers were capable of landing the aircraft, in order to perform a

thorough assessment we present, the error for each controller for the states X
(i=1:3)
t in Table II.

From this table, it can be seen that the RMSE and standard deviation (in pixels) for each controller

are strikingly similar for the three states under consideration. The P and PID controllers gave

better numerical results than the PD controller. However, this behavior was due to the landing

speed of the PD controller; since it is capable of landing more quickly, there are fewer samples to

compute the RMSE. The PD controller landed in approximately 36 seconds, around 25 seconds

20

Fig. 10: Odometry of the vehicle during the landing process: (a) height of the vehicle Zp; (b)
X velocity Ẋa; (c) Y velocity Ẏa, (d) yaw rate ψ̇.

faster than the PID controller.

Fig. 9 complements the information in Table II by presenting the dynamic behavior of the error

in the first three states X
(i=1:3)
t for each controller while the aircraft is landing. As mentioned

above, the P controller is slower than the other two controllers. PD tends to be a faster strategy

and has fewer overshoots in its dynamic behavior. The performance of PID seems to be between

those of the other two controllers.

The odometry of the vehicle is presented in Fig. 10 for four different variables for each

controller. The first plot in Fig. 10(a), shows how the altitude of the vehicle is reduced to zero

for each controller. Both of the linear velocities of the aircraft ẋa, ẏa undergo substantial variation

at the beginning of the tests, as shown in Fig. 10(b) and (c), but when the vehicle is centered

with respect to the landing platform, the linear speeds tend to zero. Likewise, the yaw rate ψ̇

shown in Fig. 10(e) behaves as expected for the three controllers: its magnitude reduced to zero,

which means that the vehicle is correctly aligned with the landing platform.

The position and heading errors between the landing platform and the aircraft were computed

for the different trials, and are shown in Table III. It can be seen from the table that the average

error in the x, y coordinates is less than 3.0 centimeters for all the control strategies. Similarly,

the error in the angle θ between the vehicle and the platform is less than 1.2 degrees. This

21

TABLE III
Errors in the landing simulation

Controller Centroid X
[m]

Centroid Y
[m]

Angle
[deg]

P Average 0.0244 0.0294 0.6531
Standard deviation 0.0079 0.0178 0.3770

PD Average 0.0178 0.0274 0.7563
Standard deviation 0.0194 0.0155 0.8444

PID Average 0.0288 0.0232 1.1115
Standard deviation 0.0261 0.0253 0.5323

demonstrates that all of the controllers are capable of achieving a precision landing of the aircraft

with small errors over different trials, confirming the efficiency of the vision-based system with

various control strategies.

Although all of the controllers were capable of accurately landing the vehicle on the landing

platform, the best performance was shown by the PD and PID controllers, as these had more

stable responses and lower variations in the different attempts. Although the PD strategy is less

accurate than the PID controller, it is the preferred option due to its speed in landing the aircraft.

To assess the robustness of the PD controller under low light conditions and different wind

disturbance, Fig. 11 presents the errors obtained over different trials while the aircraft is landing.

The error in X illustrated in Fig. 11(a) shows how the aircraft is capable to minimize it towards

zero with different wind conditions. Similarly, the error in Y presented in 11(b) demonstrates a

similar behavior as 11(a) where the error is minimized, nevertheless, with bigger wind distur-

bances the aircraft is prone to experience an overdamped response rather than underdamped as

Fig. 9 demonstrated. Finally, the angle θ is considerably affected by the wind disturbances in

11(c) as the vehicle is not capable to align itself with respect to the landing platform. However,

the vehicle was capable to land in all tests, validating the effectiveness of our method while

landing with unideal conditions.

VI. EXPERIMENTAL RESULTS

This section presents the results obtained in real-world tests using a DJI F450 in an autonomous

landing sequence.

22

Fig. 11: Error in the PD controller for X
(i=1:3)
t with low illumination and different wind

disturbances: (a) X error for the centroid; (b) Y error for the centroid; (c) error in the heading
θ.

To thoroughly assess the performance of the autonomous landing system, a custom DJI F450

with an Odroid XU4 on-board computer and Pixhawk 1, as shown in Fig. 6 (b), was used to

test the developed framework. Due to the limited computational resources of the Odroid, the PD

controller was employed, as this was the fastest method of landing the vehicle, and the result of

three landing trials were averaged to evaluate the system. The size of the image was also reduced

to 320 x 240 pixels to obtain a frame rate of 15 FPS and to ensure system convergence. The

SIFT feature detector-descriptor was used (based on the simulation results) to carry out these

tests.

To bridge the algorithms developed during the simulation phase with the real-world, it was

necessary to unplug the SITL component. This was achieved by connecting the Pixhawk FCU to

the on-board computer and launching all the nodes developed in ROS. This process guaranteed

that the system was connected with the physical FCU, bypassing the need for the SITL compo-

nent. The detection and control pipeline will therefore operate directly in the custom rotor-craft,

enabling it to carry out autonomous landing maneuvers. All the parameters used during the

simulation where transferred to the aircraft without finetuning to demonstrate that the use of

simple vision and control models allow for zero-shot domain transfer.

Fig. 12 presents the results obtained with the PD controller for each state X(i=1:5)
t . As expected,

the system is capable of landing the rotor-craft on the landing platform within approximately 35

seconds. The real-world system displays more spiky behavior than the simulated vehicle (Fig. 8

23

Fig. 12: Output of the PD controller for each state in X
(i=1:5)
t , as tested with a DJI F450: (a)

X-coordinate of the centroid; (b) Y-coordinate of the centroid; (c) width of the platform Ow; (d)
height of the platform Oh; (e) heading θ.

TABLE IV
Controller errors in experimental landing process

Controller Centroid X
[px]

Centroid Y
[px]

Angle
[deg]

PD RMSE 39.7460 36.4111 8.7761
Standard deviation 39.7583 31.5632 8.7724

(orange)); however, as the test advances, the response of the controller stabilizes, guaranteeing

the appropriate landing of the UAV.

Comparably, the RMSE of the controller during the landing procedure was also assessed and

presented in Table IV. This error was computed over the three landing trials conducted with the

real-world rotor-craft while the vehicle was trying landing. Altogether, it is possible to appraise

that the vehicle maintains strikingly similar values of RMSE for the variables X, Y, θ when

compared with the RMSE presented for the simulation in Table II. In fact, the RMSE is slightly

reduced within the real-world landing trials. The plots of these errors are unshown as their

dynamic behavior is similar as the ones presented in Fig. 9 (orange).

Finally, to complete the assessment process, Table V [33] presents the position error between

24

TABLE V
Experimental landing errors measured from the center of the pad to the center of the vehicle

Controller Centroid X
[m]

Centroid Y
[m]

PD Average 0.1314 0.1592
Standard deviation 0.1041 0.1344

the vehicle and the landing platform. This error was computed as the distance from the center

of the pad to the center of the rotor-craft once it had landed. It can be seen that the average

value is less than 16 centimeters. Compared to the results in Table III, the error in the real-world

implementation of the PD controller is around five times that of the simulation. Although these

results seem undesirable, the rotor-craft is capable of precisely landing on the desired platform

and accomplishing the autonomous landing task, as expected from the simulation results.

VII. CONCLUSION

This paper presents a SITL approach to developing a monocular image-based autonomous

landing system for quadcopter drones. The proposed method and system, which integrates ROS,

Gazebo and PX4’s SITL tools, enables users to not only endow quadcopters with low-cost vision-

based autonomous landing capabilities, but also to fine-tune all the parameters of a potentially

dangerous device in a safe simulated environment. With minimal modifications, both the vision

and control modules developed in our simulated environment, were successfully validated in a

physical DJI F450 with an Odroid XU4 on-board computer and a Pixhawk 1 flight controller.

ACKNOWLEDGMENT

The authors would like to thank the Robotics and Autonomous Systems (RAS) research

incubator and UAO’s Vicerrectorı́a de Investigaciones, Innovación y Emprendimiento for their

support.

REFERENCES

[1] S. Bayraktar and E. Feron, “Experiments with Small Unmanned Helicopter Nose-Up Landings,” Journal of Guidance,

Control, and Dynamics, vol. 32, no. 1, pp. 332–337, 2009, doi: 10.2514/1.36470.

[2] D. H. Ye, J. Li, Q. Chen, J. Wachs, and C. Bouman, “Deep Learning for Moving Object Detection and Tracking from a

Single Camera in Unmanned Aerial Vehicles (UAVs),” Electronic Imaging, vol. 2018, no. 10, 2018, doi: 10.2352/ISSN.2470-

1173.2018.10.IMAWM-466.

25

[3] R. Jin, H. M. Owais, D. Lin, T. Song, and Y. Yuan, “Ellipse proposal and convolutional neural network discriminant for

autonomous landing marker detection,” Journal of Field Robotics, vol. 36, no. 1, pp. 6–16, 2018, doi: 10.1002/rob.21814.

[4] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward

a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue,” IEEE Robotics &

Automation Magazine, vol. 19, no. 3, pp. 46–56, 2012, doi: 10.1109/MRA.2012.2206473.

[5] A. Gautam, P. B. Sujit and S. Saripalli, ”A survey of autonomous landing techniques for UAVs,” 2014 International Con-

ference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, 2014, pp. 1210-1218, doi: 10.1109/ICUAS.2014.6842377.

[6] S. Yang, S. A. Scherer, K. Schauwecker, and A. Zell, “Autonomous Landing of MAVs on an Arbitrarily Textured Landing

Site Using Onboard Monocular Vision,” Journal of Intelligent & Robotic Systems, vol. 74, no. 1-2, pp. 27–43, 2013, doi:

10.1007/s10846-013-9906-7.

[7] J. Thomas, J. Welde, G. Loianno, K. Daniilidis and V. Kumar, ”Autonomous Flight for Detection, Localization, and Tracking

of Moving Targets With a Small Quadrotor,” in IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1762-1769, July

2017, doi: 10.1109/LRA.2017.2702198.

[8] Yu L, Luo C, Yu X, et al. Deep learning for vision-based micro aerial vehicle autonomous landing. International Journal

of Micro Air Vehicles. June 2018:171-185. doi:10.1177/1756829318757470

[9] Mittal, Payal et al. Deep learning-based object detection in low-altitude UAV datasets: A survey. Image Vis. Comput. 104

(2020): 104046.

[10] O. Araar, N. Aouf, and I. Vitanov, “Vision Based Autonomous Landing of Multirotor UAV on Moving Platform,” Journal

of Intelligent &; Robotic Systems, vol. 85, no. 2, pp. 369–384, 2016, doi: 10.1007/s10846-016-0399-z.

[11] Yang, T.; Li, P.; Zhang, H.; Li, J.; Li, Z. Monocular Vision SLAM-Based UAV Autonomous Landing in Emergencies and

Unknown Environments. Electronics 2018, 7, 73.

[12] R. Mur-Artal and J. D. Tardós, ”ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D

Cameras,” in IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, Oct. 2017, doi: 10.1109/TRO.2017.2705103.

[13] A. Cesetti, E. Frontoni, A. Mancini, P. Zingaretti and S. Longhi, ”A single-camera feature-based vision system for helicopter

autonomous landing,” 2009 International Conference on Advanced Robotics, Munich, 2009, pp. 1-6.

[14] B. Herissé, T. Hamel, R. Mahony and F. Russotto, ”Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using

Optical Flow,” in IEEE Transactions on Robotics, vol. 28, no. 1, pp. 77-89, Feb. 2012, doi: 10.1109/TRO.2011.2163435.

[15] D. Lee, T. Ryan and H. J. Kim, ”Autonomous landing of a VTOL UAV on a moving platform using image-based visual

servoing,” 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, 2012, pp. 971-976, doi:

10.1109/ICRA.2012.6224828.

[16] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization fortransferring deep

neural networks from simulation to the real world. InIntelligent Robots andSystems (IROS), 2017 IEEE/RSJ International

Conference on. IEEE, 2017.

[17] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, ”RotorS; A Modular Gazebo MAV Simulator Framework”, ”Robot

Operating System (ROS): The Complete Reference (Volume 1)”, pp. 595-625”, 2016, isbn: ”978-3-319-26054-9”,

doi=”10.1007/978-3-319-26054-9. Furrer, M. Burri, M. Achtelik, and R. Siegwart, ”RotorS; A Modular Gazebo MAV

Simulator Framework”, ”Robot Operating System (ROS): The Complete Reference (Volume 1)”, pp. 595-625”, 2016, isbn:

”978-3-319-26054-9”, doi=”10.1007/978-3-319-26054-9 23”, url=”http://dx.doi.org/10.1007/978-3-319-26054-9 23”

[18] C. Patruno, M. Nitti, A. Petitti, E. Stella, and T. D’Orazio, “A Vision-Based Approach for Unmanned Aerial Vehicle

Landing,” Journal of Intelligent &; Robotic Systems, vol. 95, no. 2, pp. 645–664, 2018, doi: 10.1007/s10846-018-0933-2.

[19] M. F. Sani and G. Karimian, ”Automatic navigation and landing of an indoor AR. drone quadrotor using ArUco marker

26

and inertial sensors,” 2017 International Conference on Computer and Drone Applications (IConDA), Kuching, 2017, pp.

102-107, doi: 10.1109/ICONDA.2017.8270408.

[20] J. Hermansson, A. Gising, M. Skoglund and T. B. Schön, ”Autonomous Landing of an Unmanned Aerial Vehicle,” 2010

Reglermöte (Swedish Control Conference), Lund, Sweden, June 2010.[Online]. Available: https://www.researchgate.net/

publication/229027579 Autonomous Landing of an Unmanned Aerial Vehicle

[21] M. S. Ruiz, A. M. P. Vargas and V. Romero-Cano, ”Detection and tracking of a landing platform for aerial robotics

applications,” 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), Barranquilla, 2018, pp. 1-6,

doi: 10.1109/CCRA.2018.8588112.

[22] A. Chavez, D. L’heureux, N. Prabhakar, M. Clark, W.-L. Law, and R. J. Prazenica, “Homography-Based State Estimation

for Autonomous UAV Landing,” AIAA Information Systems-AIAA Infotech @ Aerospace, 2017, doi: 10.2514/6.2017-0673.

[23] V. Sudevan, A. Shukla and H. Karki, ”Vision based autonomous landing of an Unmanned Aerial Vehicle on a stationary

target,” 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, 2017, pp. 362-367, doi:

10.23919/ICCAS.2017.8204466.

[24] M. Bloesch, S. Omari, M. Hutter and R. Siegwart, ”Robust visual inertial odometry using a direct EKF-based approach,”

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, 2015, pp. 298-304, doi:

10.1109/IROS.2015.7353389.

[25] F. Mercado-Rivera, A. Rojas-Arciniegas and V. Romero-Cano, ”Probabilistic Motion Inference for Fused Filament

Fabrication,” 2020 Printing for Fabrication: materials, applications, and processes, 2020, pp. 85-91, doi: 10.2352/ISSN.2169-

4451.2020.36.85.

[26] O. L. Rojas-Perez, R. Munguia-Silva, and J. Martinez-Carranza, “Real-time landing zone detection for uavs using single

aerial images,” 10th international micro air vehicle competition and conference, Melbourne, Australia, 2018, p. 243–248.

[Online]. Available: http://www.imavs.org/papers/2018/IMAV 2018 paper 45.pdf

[27] Y. Yang, H. Gong, X. Wang, and P. Sun ”Aerial Target Tracking Algorithm Based on Faster R-CNN Combined with Frame

Differencing,” Aerospace, vol. 4, no. 2, p. 32, 2017, doi: 10.3390/aerospace4020032.

[28] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, P. D. L. Puente, and P. Campoy, “A Deep Reinforcement Learning Strategy

for UAV Autonomous Landing on a Moving Platform,” Journal of Intelligent & Robotic Systems, vol. 93, no. 1-2, pp.

351–366, 2018, doi: 10.1007/s10846-018-0891-8.

[29] Y. Uchida, ”Local feature detectors descriptors and image representations: A survey”, 2016, arXiv:1607.08368.

[30] J. Perafan-Villota, F. Leno-da-Silva, R. de-Souza-Jacomini, and A. Reali-Costa, “Pairwise registration in indoor environ-

ments using adaptive combination of 2D and 3D cues,” Image and Vision Computing, vol. 69, pp. 113-124, 2018, doi:

10.1016/j.imavis.2017.08.008.

[31] T. D. Barfoot, ”State Estimation for Robotics”, 2019, Cambridge University Press, Toronto.

[32] Simulation, PX4 User Guide, PX4, 2021. [Online]. Available: https://docs.px4.io/master/en/simulation/.

[33] M. Saavedra Ruiz and A. Pinto Vargas, ”Desarrollo de un sistema de aterrizaje autónomo para un vehı́culo aéreo no

tripulado sobre un vehı́culo terrestre”, Red.uao.edu.co, 2019. [Online]. Available: http://hdl.handle.net/10614/10754

