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Abstract
The article considers the multivariate stochastic orders of upper orthants, lower ort-
hants and positive quadrant dependence (PQD) among simple max-stable distributions 
and their exponent measures. It is shown for each order that it holds for the max-stable 
distribution if and only if it holds for the corresponding exponent measure. The find-
ing is non-trivial for upper orthants (and hence PQD order). From dimension d ≥ 3 
these three orders are not equivalent and a variety of phenomena can occur. However, 
every simple max-stable distribution PQD-dominates the corresponding independent 
model and is PQD-dominated by the fully dependent model. Among parametric mod-
els the asymmetric Dirichlet family and the Hüsler-Reiß family turn out to be PQD-
ordered according to the natural order within their parameter spaces. For the Hüsler-
Reiß family this holds true even for the supermodular order.

Keywords Choquet model · Concordance · Exponent measure · Lower orthant · 
Majorisation · Max-stable distribution · Max-zonoid · Multivariate distribution · Positive 
quadrant dependence · Portfolio · Stable tail dependence function · Upper orthant

AMS 2000 Subject Classifications 60G70 · 60E15

1 Introduction

Research on stochastic orderings and inequalities cover several decades, cul-
minating among a vast literature for instance in the two monographs of Shaked 
and Shanthikumar (2007) and Müller and Stoyan (2002), the latter with a view 

Michela Corradini and Kirstin Strokorb contributed equally to this work.

 * Michela Corradini 
 CorradiniM@cardiff.ac.uk

 Kirstin Strokorb 
 StrokorbK@cardiff.ac.uk

1 School of Mathematics, Cardiff University, Abacws, Senghennydd Road, Cathays, Cardiff, 
Wales CF24 4AG, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10687-024-00486-0&domain=pdf


 M. Corradini, K. Strokorb 

1 3

towards applications and stochastic models, which appear in queuing theory, sur-
vival analysis, statistical physics or portfolio optimisation. Li and Li (2013) sum-
marises developments of stochastic orders in reliability and risk management. 
While the scientific activities in finance, insurance, welfare economics or man-
agement science have been a driving force for many advances in the area, appli-
cations of stochastic orders are numerous and not limited to these fields. Impor-
tantly, such orderings will often play a role for robust inference, when only partial 
knowledge about a highly complex stochastic model is available.

Within the Extremes literature, related notions of positive dependence are well-
known. It is a long-standing result that multivariate extreme value distributions 
exhibit positive association (Marshall and Olkin 1983). More generally, max-
infinitely divisible distributions have this property as shown in Resnick (1987), while 
Beirlant et al. (2004) summarise further implications in terms of positive dependence 
notions. Recently, an extremal version of the popular MTP2 property (Fallat et  al. 
2017; Karlin and Rinott 1980) has been studied in the context of multivariate extreme 
value distributions, especially Hüsler-Reiß distributions, and linked to graphical 
modelling, sparsity and implicit regularisation in multivariate extreme value models 
(Röttger et  al. 2023). Without any hope of being exhaustive, further fundamental 
scientific activity of the last decade on comparing stochastic models with a focus on 
multivariate extremes includes for instance an ordering of multivariate risk models 
based on extreme portfolio losses (Mainik and Rüschendorf 2012), inequalities for 
mixtures on risk aggregation (Chen et  al. 2022), a comparison of dependence in 
multivariate extremes via tail orders (Li 2013) or stochastic ordering for conditional 
extreme value modelling (Papastathopoulos and Tawn 2015). Yuen and Stoev (2014) 
use stochastic dominance results from Strokorb and Schlather (2015) in order to 
derive bounds on the maximum portfolio loss and extend their work in Yuen et al. 
(2020) to a distributionally robust inference for extreme Value-at-Risk.

In this article we go back to some fundamental questions concerning stochastic 
orderings among multivariate extreme value distributions. We focus on the order 
of positive quadrant dependence (PQD order, also termed concordance order), 
which is defined via orthant orders. Answers are given to the following questions.

• What is the relation between orders among max-stable distributions and cor-
responding orders among their exponent measures? (Theorem  4.1 and Corol-
lary 4.2)

• Can we find characterisations in terms of other typical dependency descriptors 
(stable tail dependence function, generators, max-zonoids)? (Theorem 4.1)

• What is the role of fully independent and fully dependent model in this frame-
work? (Corollary 4.3)

• What is the role of Choquet/Tawn-Molchanov models in this framework? (Corol-
lary 4.4 and Lemma 4.12)

For lower orthants, the answers are readily deduced from standard knowledge in 
Extremes. It is dealing with the upper orthants that makes this work interest-
ing. The key element in the proof of our most fundamental characterisation result, 
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Theorem  4.1, is based on Proposition  B.9 below, which may be of independent 
interest. Stochastic orders are typically considered for probability distributions only. 
In order to make sense of the first question, we introduce corresponding orders for 
exponent measures, which turn out natural in this context, cf. Definition 3.2.

Second, we draw our attention to two popular parametric families of multivariate 
extreme value distributions that are closed under taking marginal distributions.

• Can we find order relations among the Dirichlet and Hüsler-Reiß parametric 
models? (Theorem 4.5 and Theorem 4.7)

The answers are affirmative. For the Hüsler-Reiß model the result may be even 
strengthened for the supermodular order, which is otherwise beyond the scope 
of this article. To give an impression of the result for the Dirichlet family, Fig. 1 
depicts six angular densities of the trivariate max-stable Dirichlet model. Aulbach 
et al. (2015) showed already that the symmetric models associated with the top row 
densities are decreasing in the lower orthant sense. Our new result covers the asym-
metric case depicted in the bottom row; we show that the associated multivariate 
extreme value distributions are decreasing in the (even stronger) PQD-sense (with a 
more streamlined proof).

Accordingly, our text is structured as follows. Section 2 recalls some basic rep-
resentations of multivariate max-stable distributions and examples of paramet-
ric models that are relevant for subsequent results. In Section  3 we review the  

Fig. 1  Angular densities (heat maps) of the symmetric max-stable Dirichlet model (top) and of the asym-
metric max-stable Dirichlet model (bottom), cf.  (4) for an expression of the density. Larger values are 
represented by brighter colours. The corresponding max-stable distributions are stochastically ordered 
in the PQD sense, increasing from left to right (Theorem 4.5). The black, blue and red boxes encode the 
matching with Figs. 6 and 7
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relevant multivariate stochastic orderings together with important closure proper-
ties. This section contains also our (arguably natural) definition for corresponding 
order notions for exponent measures. All main results are then given in Section 4. 
Proofs and auxiliary results are postponed to Appendices  1 and  2. Appendix  3 
contains background material how we obtained the illustrations (max-zonoid  
envelopes for bivariate Hüsler-Reiß and Dirichlet families) depicted in Figs. 2, 4, 
5 and 8.

2  Prerequisites from multivariate extremes

Our main results concern stochastic orderings among max-stable distributions, 
or, equivalently, orderings among their respective exponent measures, cf. Theo-
rem  4.1 below. Therefore, this section reviews some basic well-known results 
from the theory of multivariate extremes. Second, we will take a closer look at 
three marginally closed parametric families, the Dirichlet family, the Hüsler-Reiß 
family and the Choquet (Tawn-Molchanov) family of max-stable distributions, 
each model offering a different insight into phenomena of orderings among mul-
tivariate extremes.

2.1  Max‑stable random vectors and their exponent measures

In order to clarify our terminology, we recall some definitions and basic facts 
about representations for max-stable distributions, cf.  also Resnick (1987) or 
Beirlant et  al. (2004). Operations and inequalities between vectors are meant 
componentwise. We abbreviate 0 = (0, 0,… , 0)⊤ ∈ ℝ

d . A random vector 
X = (X1,… ,Xd)

⊤ ∈ ℝ
d is called max-stable if for all n ≥ 1 there exist suitable 

norming vectors an > 0 and bn ∈ ℝ
d , such that the distributional equality

holds, where X1,… ,Xn are i.i.d. copies of X . According to the Fisher-Tippet theo-
rem the marginal distributions Gi(x) = ℙ(Xi ≤ x) are univariate max-stable distribu-
tions, that is, either degenerate to a point mass or a generalised extreme value (GEV) 
distribution of the form G�((x − �)∕�) with G�(x) = exp(−(1 + �x)

−1∕�
+ ) if � ≠ 0 and 

G0(x) = exp(−e−x) , where � ∈ ℝ is a shape-parameter, while � ∈ ℝ and 𝜎 > 0 are 
the location and scale parameters, respectively. We write GEV(�, �, �) for short.

A max-stable random vector X = (X1,… ,Xd)
⊤ is called simple max-stable  

if it has standard unit Fréchet marginals, that is, ℙ(Xi ≤ x) = exp(−1∕x) , x > 0 , 
for all i = 1,… , d . Any max-stable random vector X with GEV margins 
Xi ∼ GEV(�i, �i, �i) can be transformed into a simple max-stable random vector 
X
∗ and vice versa via the componentwise order-preserving transformations

max
i=1,…,n

(Xi)
d
= anX + bn

(1)X∗
i
=
(
1 + �i

Xi − �i

�i

)1∕�i
and Xi = �i

(X∗
i
)�i − 1

�i
+ �i, i = 1,… , d
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(with the usual interpretation of (1 + �x)1∕� as ex for � = 0 ). In this sense simple 
max-stable random vectors can be interpreted as a copula-representation for max-
stable random vectors with non-degenerate margins, which encapsulates its depend-
ence structure.

There are different ways to describe the distribution of such simple max-stable 
random vectors. The following will be relevant for us. Note that such vectors take 
values in the open upper orthant (0,∞)d almost surely. Here and hereinafter we 
shall denote the i-th indicator vector by ei (all components of ei are zero except 
for the i-th component, which takes the value one).

Theorem/Definition 2.1 (Representations of simple max-stable distributions). A 
random vector X = (X1,… ,Xd)

⊤ with distribution function G(x) = exp(−V(x)) , 
x ∈ (0,∞]d , is simple max-stable if and only if the exponent function V can be rep-
resented in one of the following equivalent ways: 

 (i) Spectral representation (de  Haan 1984). There exists a finite measure 
space (Ω,A, �) and a measurable function f ∶ Ω → [0,∞)d such that 
∫
Ω
fi(�) �(d�) = 1 for i = 1,… , d , and 

 (ii) Exponent measure (Resnick 1987). There exists a (−1)-homogeneous measure 
Λ on [0,∞)d ⧵ {0} , such that 

for i = 1,… , d , and 

 (iii) Stable tail dependence function (Ressel 2013). There exists a 1-homogeneous 
and max-completely alternating function � ∶ [0,∞)d → [0,∞) , such that 
�(ei) = 1 for i = 1,… , d , and 

(cf. Appendix 2 for the notion of max-complete alternation).

In fact, the spectral representation can be seen as a polar decomposition of 
the exponent measure Λ , cf. e.g. Resnick (1987) or Beirlant et al. (2004). Impor-
tantly, it is not uniquely determined by the law of X . Typical choices for the 
measure space (Ω,A, �) include (i) the unit interval with Lebesgue measure or 

V(x1,… , xd) =
∫Ω

max
i=1,…,d

fi(�)

xi
�(d�).

Λ
({

y ∈ [0,∞)d ∶ yi > 1
})

= 1

V(x1, x2,… , xd) = Λ
({

y ∈ [0,∞)d ∶ yi > xi for some i ∈ {1,… , d}
})

.

V(x1,… , xd) = �

(
1

x1
,… ,

1

xd

)
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(ii) a sphere Ω = {� ∈ [0,∞)d ∶ ‖�‖ = 1} with respect to some norm ‖ ⋅ ‖ , for 
instance the �p-norm

for some p ≥ 1 . For (i) it is then the spectral map f which contains all dependence 
information. For (ii) one usually considers the component maps fi(�) = �i , so that 
the measure � , then often termed angular measure, absorbs the dependence infor-
mation. For a given spectral representation (Ω,A, �, f ) one may rescale � to a prob-
ability measure and absorb the rescaling constant into the spectral map f. The result-
ing random vector Z = (Z1,… , Zd)

⊤ such that �(Zi) = 1 , i = 1,… , d , and

has been termed generator of X , cf. Falk (2019). A useful observation is the follow-
ing; for a given vector x with values in ℝd and a subset A ⊂ {1,… , d} , let xA be the 
subvector with components in A.

Lemma 2.2 Let Z be a generator for the max-stable law X , then ZA is a generator 
for XA.

The stable tail dependence function � goes back to Huang (1992) and has also 
been called D-norm (Falk et  al. 2004) of X . Since � is 1-homogeneous, it suf-
fices to know its values on the unit simplex △d = {x ∈ [0,∞)d ∶ ‖x‖1 = 1} ; the 
restriction of � to △d is called Pickands dependence function 

There exist further descriptors of the dependence structure, e.g. in terms of Point 
processes or LePage representation, cf. e.g. Resnick (1987) or, in a very general con-
text, Davydov et al. (2008). Copulas of max-stable random vectors on standard uni-
form margins are called extreme value copulas (Gudendorf and Segers 2010).

Let us close with a representation that allows for some interesting geometric 
interpretations. Molchanov (2008) introduced a convex body K ⊂ [0,∞)d , which 
can be interpreted (up to rescaling) as selection expectation of a random cross 
polytope associated with the (normalised) spectral measure � . It turns out that the 
stable tail dependence function is in fact the support function of K

The convex body K is called max-zonoid (or dependency set) of X and it is uniquely 
determined by the law of X . In fact

‖x‖p =
� �

i=1,…,d

�xi�p
�1∕p

V(x1,… , xd) = � max
i=1,…,d

(
Zi

xi

)
,

A(x1,… , xd) = 𝓁(x1,… , xd), (x1,… , xd)
⊤ ∈ △d.

(2)�(x) = sup{⟨x, k⟩ ∶ k ∈ K}.
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In general, it is difficult to translate one representation from Theorem 2.1 into 
another apart from the obvious relations

for x ≥ 0 . For convenience, we have added material in Appendix 3 how to obtain 
the boundary of a max-zonoid K from the stable tail dependence function � in the 
bivariate case, which will help to illustrate some of the results below.

2.2  Parametric models

Several parametric models for max-stable random vectors have been summarised 
for instance in Beirlant et al. (2004). In what follows we draw our attention to two 
of the most popular parametric models, the Dirichlet and Hüsler-Reiß families, 
as well as the Choquet model (Tawn-Molchanov model), which will reveal some 
interesting phenomena and (counter-)examples of stochastic ordering relations.

2.2.1  Dirichlet model

Coles and Tawn (1991) compute densities of angular measures of simple max-stable 
random vectors constructed from non-negative functions on the unit simplex Δd . In 
particular, the following asymmetric Dirichlet model has been introduced. We sum-
marise some equivalent characterisations, each of which may serve as a definition of 
the asymmetric Dirichlet model. This model has gained popularity due to its flex-
ibility and simple structure forming the basis of Dirichlet mixture models (Boldi and 
Davison 2007; Sabourin and Naveau 2014).

Theorem/Definition 2.3 (Multivariate max-stable Dirichlet distribution). A random 
vector X = (X1,… ,Xd)

⊤ is simple max-stable Dirichlet distributed with parameter 
vector � = (𝛼1,… , 𝛼d)

⊤ ∈ (0,∞)d , we write

for short, if and only if one of the following equivalent conditions is satisfied: 

 (i) (Gamma generator) A generator of X is the random vector 

(3)K =
�
k ∈ [0,∞)d ∶ ⟨k, x⟩ ≤ �(x) for all x ∈ [0,∞)d

�
.

�(x) = � max
i=1,…,d

(xiZi) =
∫Ω

max
i=1,…,d

xifi(𝜔) 𝜈(d𝜔)

= Λ
({

y ∈ [0,∞)d ∶ max
i=1,…,d

(xiyi) > 1
})

X = (X1,… ,Xd)
⊤ ∼ MaxDir(𝛼1,… , 𝛼d) = MaxDir(�)

�−1
� = (Γ1∕𝛼1,Γ2∕𝛼2,… ,Γd∕𝛼d)

⊤,
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where � = (Γ1,… ,Γd)
⊤ consists of independent Gamma distributed vari-

ables Γi ∼ Γ(�i) , 𝛼i > 0 , i = 1,… , d . Here, the Gamma distribution Γ(�i) has 
the density 

 (ii) (Dirichlet generator) A generator of X is the random vector 

where D follows a Dirichlet distribution Dir(�1,… , �d) on the unit simplex 
△d with density 

 (iii) (Angular measure) The density of the angular measure of X on △d is given 
by 

To the best of our knowledge the representation through the Gamma generator, 
albeit inspired by Aulbach et al. (2015) from the fully symmetric case, is new in 
this generality. We have added a proof in Appendix 2. An advantage of the repre-
sentation with the Gamma generator is that it reveals immediately the closure of 
the model with respect to taking marginal distributions, cf. Lemma 2.2, a result 
that has been previously obtained in Ballani and Schlather (2011), but with a one-
page proof and some intricate density calculations.

Lemma 2.4 (Closure of Dirichlet model under taking marginals). Let 
X = (X1,… ,Xd)

⊤ ∼ MaxDir(𝛼1,… , 𝛼d) = MaxDir(�) and A ⊂ {1,… , d} , then 
XA ∼ MaxDir(�A).

The angular density representation on the other hand is useful to see that dif-
ferent parameter vectors � ≠ � lead in fact to different multivariate distributions 
MaxDir(�) ≠ MaxDir(�) for d ≥ 2 , so that (0,∞)d is indeed the natural parameter 
space for this model.

2.2.2  Hüsler‑Reiß model

The multivariate Hüsler-Reiß distribution (Hüsler and Reiß 1989) forms the basis 
of the popular Brown-Resnick process (Kabluchko et al. 2009) and has sparked 
significant interest from the perspectives of spatial modelling (Davison et  al. 
2019) and more recently in connection with graphical modelling of extremes 

��i(x) =
x�i−1

Γ(�i)
exp

(
− x

)
.

(�−1‖�‖1)D = (𝛼1 +…+ 𝛼d) ⋅ (D1∕𝛼1,D2∕𝛼2,… ,Dd∕𝛼d)
⊤,

d(𝜔1,… ,𝜔d) = Γ(‖�‖1)
d�
i=1

𝜔
𝛼i−1

i

Γ(𝛼i)
, (𝜔1,… ,𝜔d)

⊤ ∈ △d.

(4)h(𝜔1,… ,𝜔d) =
Γ(‖�‖1 + 1)

‖��‖1
d�
i=1

𝛼
𝛼i
i
𝜔
𝛼i−1

i

Γ(𝛼i)(‖��‖1)𝛼i , (𝜔1,… ,𝜔d)
⊤ ∈ △d.
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(Engelke and Hitz 2020). The natural parameter space for this model is the con-
vex cone of conditionally negative symmetric d × d-matrices, whose diagonal 
entries are zero

It is well-known, cf.  e.g.  Berg et  al. (1984, Ch.  3), that for a given � ∈ Gd , there 
exists a zero mean Gaussian random vector W = (W1,… ,Wd)

⊤ with incremental 
variance

although its distribution is not uniquely specified by this condition. For instance, 
select i ∈ {1,… , d} . Imposing additionally the linear constraint “ Wi = 0 almost 
surely” leads to W ∼ N(0,�i) with

which satisfies (5).

Theorem/Definition 2.5 (Multivariate Hüsler-Reiss distribution, cf.  Kabluchko 
(2011) Theorem  1). Let � ∈ Gd and (5) be valid. Consider the simple max-stable 
random vector X = (X1,… ,Xd)

⊤ defined by the generator Z = (Z1,… ,Zd)
⊤ with

Then the distribution of X depends only on � and not on the specific choice of a zero 
mean Gaussian distribution satisfying (5). We call X simple Hüsler-Reiß distributed 
with parameter matrix � and write for short

We also note that for �1, �2 ∈ Gd , the distributions HR(�1) and HR(�2) coincide 
if and only if �1 = �2 , so that Gd is indeed the natural parameter space for these 
models. This follows directly from the observation that the multivariate Hüsler-Reiß 
model is also closed under taking marginal distributions and the equivalent state-
ment for bivariate Hüsler-Reiß models, which can be seen for instance from (19) 
below. Indeed, we also state the following lemma for clarity. It follows directly from 
the generator representation of HR(�) and Lemma 2.2.

Lemma 2.6 (Closure of Hüsler-Reiß model under taking marginals). Let 
X = (X1,… ,Xd)

⊤ ∼ HR(�) and A ⊂ {1,… , d} , then XA ∼ HR(�A×A) , where �A×A is 
the restriction of � to the components of A in both rows and columns.

Gd =

{
� = (𝛾ij)i,j∈{1,…,d} ∈ ℝ

d×d ∶
𝛾ij = 𝛾ji, 𝛾ii = 0 for all i, j ∈ {1,… , d},

v⊤�v ≤ 0 for all v ∈ ℝ
d such that v1 +…+ vd = 0

}
.

(5)�(Wi −Wj)
2 = �ij, i, j ∈ {1,… , d},

(�i)jk =
1

2

(
�ij + �ik − �jk

)
, j, k ∈ {1,… , d},

Zi = exp

(
Wi −

1

2
Var(Wi)

)
, i = 1,… , d.

X = (X1,… ,Xd)
⊤ ∼ HR(�).
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It is well-known that up to a change of location and scale parameters Hüsler-Reiß 
distributions are the only possible limit laws of maxima of triangular arrays of mul-
tivariate Gaussian distributions, a finding which can be traced back to Hüsler and 
Reiß (1989) and Brown and Resnick (1977). The following version will be conveni-
ent for us.

Theorem  2.7 (Triangular array convergence of maxima of Gaussian vectors, 
cf. Kabluchko (2011) Theorem 2). Let un be a sequence such that 

√
2�une

u2
n
∕2∕n → 1 

as n → ∞ . For each n ∈ ℕ let Y(n)

1
,Y

(n)

2
,… ,Y(n)

n
 be independent copies of a d-variate 

zero mean unit-variance Gaussian random vector with correlation matrix 
(�

(n)

ij
)i,j∈{1,…,d} . Suppose that for all i, j ∈ {1,… , d}

as n → ∞ . Then the matrix � = (�ij)i,j∈{1,…,d} is necessarily and element of Gd . Let 
M

(n) be the componentwise maximum of Y(n)

1
,Y

(n)

2
,… ,Y(n)

n
 . Then the componentwise 

rescaled vector un(M
(n) − un) converges in distribution to the Hüsler-Reiß distribu-

tion HR(�).

Remark 2.8 In the bivariate case we have �12 = �21 = � ∈ [0,∞) and the bound-
ary case � = 0 leads to a degenerate random vector with fully dependent compo-
nents, whereas � ↑ ∞ leads to a random vector with independent components. More 
generally, one might also admit the value ∞ for �ij in the multivariate case, as long 
as the resulting matrix � is negative definite in the extended sense, cf. Kabluchko 
(2011). This extension corresponds to a partition of X into independent subvectors 
X =

⨆
A XA , where each XA is a Hüsler-Reiß random vector in the usual sense. Here 

�ij = ∞ precisely when i and j are in different subsets of the partition. Theorem 2.7 
extends to this situation as well. In fact, is has been formulated in this generality in 
Kabluchko (2011).

2.2.3  Choquet model / Tawn‑Molchanov model

A popular way to summarise extremal dependence information within a random 
vector is by considering its extremal coefficients, which in the case of a simple 
max-stable random vector X = (X1,X2,… ,Xd)

⊤ may be expressed as

or, equivalently,

where � is the stable tail dependence function, Z a generator, Λ the exponent meas-
ure and (Ω,A, �, f ) a spectral representation for X . Loosely speaking, the coefficient 

4 log(n)(1 − �
(n)

ij
) → �ij ∈ [0,∞)

𝜃(A) = �(eA), eA =
∑
i∈A

ei, A ⊂ {1,… , d}, A ≠ �,

(6)

𝜃(A) = �max
i∈A

Zi =
∫Ω

max
i∈A

fi(𝜔) 𝜈(d𝜔) = Λ
({

y ∈ [0,∞)d ∶ max
i∈A

(yi) > 1
})

,
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�(A) , which takes values in [1,  |A|], can be interpreted as the effective number of 
independent variables among the collection (Xi)i∈A . We have �({i}) = 1 for single-
tons {i} and naturally �(�) = 0.

The following result can be traced back to Schlather and Tawn (2002) and 
Molchanov (2008). Accordingly, the associated max-stable model, which can be 
parametrised by its extremal coefficients, has been introduced as Tawn-Molchanov 
model in Strokorb and Schlather (2015). It is essentially an application of the 
the Choquet theorem (see Molchanov, 2017, Section  1.2 and Berg et  al., 1984, 
Theorem 6.6.19), which also holds for not necessarily finite capacities (see Schneider 
and Weil, 2008, Theorem  2.3.2). Therefore, it has been relabelled Choquet model 
in Molchanov and Strokorb (2016), cf.  Appendix  2 for background on complete 
alternation. We write Pd for the power set of {1,… , d} henceforth.

Theorem 2.9 

(a) Let � ∶ Pd → ℝ . Then � is the extremal coefficient function of a simple max-sta-
ble random vector in (0,∞)d if and only if �(�) = 0 , �({i}) = 1 for all i = 1,… , d 
and � is union-completely alternating.

(b) Let � ∶ Pd → ℝ be an extremal coefficient function. Let 

be the Choquet integral with respect to � . Then �∗ is a valid stable tail depend-
ence function, which retrieves the given extremal coefficients �∗(eA) = �(A) for 
all A ∈ Pd . Its max-zonoid is given by 

(c) Let � be any stable tail dependence function with extremal coefficient function 
� and K its corresponding max-zonoid. Then 

Example 2.10 (Choquet model in the bivariate case). Let � be a bivariate sta-
ble tail dependence function and � = �(1, 1) ∈ [1, 2] the bivariate extremal 
coefficient. Then the associated Choquet model is given by the max-zonoid 
K∗ = {(x1, x2) ∈ [0, 1]2 ∶ x1 + x2 ≤ �} or the stable tail dependence function 
�∗(x1, x2) = max(x1 + (� − 1)x2, (� − 1)x1 + x2) . Figure 2 displays a situation, where 
the original � stems from an asymmetric Dirichlet model.

In geometric terms, for any given max-zonoid K ⊂ [0, 1]d the associated Choquet 
max-zonoid K∗ ⊂ [0, 1]d is bounded by 2d − 1 hyperplanes, one for each direction eA , 
which is the supporting hyperplane of the max-zonoid K in the direction of eA.

�∗(x) =
�

∞

0

�({i ∶ xi ≥ t}) dt, x ∈ [0,∞)d

K∗ =
�
k ∈ [0,∞)d ∶ ⟨k, eA⟩ ≤ �(A) for all A ∈ Pd

�
.

�(x) ≤ �∗(x), x ≥ 0 and K ⊂ K∗.
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The Choquet model is a spectrally discrete max-stable model, whose exponent 
measure has its support contained in the rays through the vectors eA , A ⊂ {1,… , d} , 
A ≠ ∅ . While its natural parameter space is the set of extremal coefficients, we 
can also describe it via the mass that the model puts on those rays. To this end, let 
� ∶ Pd ⧵ {�} → ℝ be given as follows

where we assume a1, a2,… , an to be the distinct elements from A ⊂ {1,… , d} . 
Then the spectral representation (Ω,A, �∗, f ) with Ω = {� ∈ [0,∞)2 ∶ ‖�‖∞ = 1} , 
fi(�) = �i and

corresponds to the stable tail dependence function �∗ from Theorem 2.9. In terms of 
an underlying generator for which (6) holds true, we may express � as

cf. Papastathopoulos and Strokorb (2016) Lemma 3. Moreover, we recover � from � 
via

which makes the analogy between extremal coefficient functions � and capacity 
functionals of random sets even more explicit.

𝜏(A) = −(Δa1
Δa2

…Δan
𝜃)({1,… , d} ⧵ A) =

∑
I⊂A

(−1)|I|+1𝜃(I ∪ ({1,… , d} ⧵ A)),

(7)�∗ =
∑

A∈Pd⧵{�}

�(A) �eA

�(A) = �

(
min
i∈A

Zi − max
i∈{1,…,d}⧵A

Zi

)
+
,

�(A) =
∑

K ∶K∩A≠�

�(K),

Fig. 2  Nested max-zonoids and Pickands dependence functions ranging from full dependence (black), 
an asymmetric Dirichlet model with � = (30, 0.2) (dark grey), its associated Choquet (Tawn-Molchanov) 
model (light grey) to the fully independent model (white)
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However, there are two drawbacks with representing the Choquet model by the 
collection of coefficients �(A) , A ⊂ {1,… , d} , A ≠ ∅ . First, this representation is 
specific to the dimension, in which the model is considered, that is, we cannot sim-
ply turn to a subset of these coefficients when considering marginal distributions. 
Second, one may easily forget that one has in fact not 2d − 1 degrees of freedom 
among these coefficients, but 2d − 1 − d , since �({i}) = 1 for singletons {i} , which 
is only encoded through d linear constraints for � as follows

A third parametrisation of the Choquet model, which has received little attention 
so far, but is very relevant for the ordering results in this article (cf. Lemma 4.12) 
and does not have such drawbacks, is the following. Instead of extremal coefficients, 
let us consider the following tail dependence coefficients for A ⊂ {1,… , d} , A ≠ ∅:

Then it is easily seen that

Since �(�) = 0 , and with a1,… , an being the distinct elements of A, the first identity 
may also be expressed as

In particular �({i}) = �({i}) = 1 for i = 1,… , d , and these operations show explic-
itly, how � and � can be recovered from each other. While � resembles a capacity 
functional, � can be seen as an analog of an inclusion functional, since

whereas

where b1, b2,… , bm are the distinct elements of {1, 2,… , d} ⧵ A.
To sum up, we may consider three different parametrizations for the Choquet 

model: 

 (i) by the 2d − 1 extremal coefficients �(A) , A ∈ Pd , A ≠ ∅,
 (ii) by the 2d − 1 tail dependence coefficients �(A) , A ∈ Pd , A ≠ ∅,
 (iii) by the 2d − 1 mass coefficients �(A) , A ∈ Pd , A ≠ ∅.

(8)
∑

K ∶ i∈K

�(K) = 1, i = 1,… , d.

𝜒(A) = �min
i∈A

Zi =
∫Ω

min
i∈A

fi(𝜔) 𝜈(d𝜔) = Λ
({

y ∈ [0,∞)d ∶ min
i∈A

(yi) > 1
})

.

(9)𝜒(A) =
∑

I⊂A, I≠�

(−1)|I|+1𝜃(I) and 𝜃(A) =
∑

I⊂A, I≠�

(−1)|I|+1𝜒(I).

(10)�(A) = −(Δa1
Δa2

…Δan
�)(�).

(11)𝜒(A) =
∑

K ∶A⊂K

𝜏(K),

𝜏(A) =
∑

K ∶A⊂K

(−1)|K⧵A|𝜒(K) = (Δb1
Δb2

…Δbm
𝜒)(A),
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For (i) and (ii) the constraint for standard unit Fréchet margins is encoded via 
�({i}) = �({i}) = 1 for i = 1,… , d . For (iii) it amounts to the d conditions from (8). 
Only (i) and (ii) do not depend on the dimension, in which the model is considered.

3  Prerequisites from stochastic orderings

A wealth of stochastic orderings and associated inequalities have been summarised 
in Müller and Stoyan (2002) and Shaked and Shanthikumar (2007), the most funda-
mental order being the usual stochastic order

between two univariate distributions F and G, which is defined as F(x) ≥ G(x) for 
all x ∈ ℝ . This means that draws from F are less likely to attain large values than 
draws from G.

For multivariate distributions definitions of orderings are less straightforward and 
there are many more notions of stochastic orderings. We will focus on upper ort-
hants, lower orthants and the PQD order here. A subset U ⊂ ℝ

d is called an upper 
orthant if it is of the form

for some a ∈ ℝ
d . Similarly, a subset L ⊂ ℝ

d is called a lower orthant if it is of the 
form

for some a ∈ ℝ
d.

Definition 3.1 (Multivariate orders LO, UO, PQD, Shaked and Shanthikumar 
(2007), Sections 6.G and 9.A, Müller and Stoyan (2002), Sections 3.3. and 3.8).

Let X,Y ∈ ℝ
d be two random vectors.

• X is said to be smaller than Y in the upper orthant order, denoted X ≤uo Y , if 
ℙ(X ∈ U) ≤ ℙ(Y ∈ U) for all upper orthants U ⊂ ℝ

d.
• X is said to be smaller than Y in the lower orthant order, denoted X ≤lo Y , if 

ℙ(X ∈ L) ≥ ℙ(Y ∈ L) for all lower orthants L ⊂ ℝ
d.

• X is said to be smaller than Y in the positive quadrant order, denoted X ≤PQD Y , 
if we have the relations X ≤uo Y and X ≥lo Y.

Note that the PQD order (also termed concordance order) is a dependence order. 
If X ≤PQD Y holds, it implies that X and Y have identical univariate marginals. Sev-
eral equivalent characterizations of these orders are summarised in the respective 
sections of Müller and Stoyan (2002) and Shaked and Shanthikumar (2007). In rela-
tion to portfolio properties, it is interesting to note that for non-negative random vec-
tors X,Y ∈ [0,∞)d

F ≤st G

U = Ua = {x ∈ ℝ
d ∶ x1 > a1,… , xd > ad}

L = La = {x ∈ ℝ
d ∶ x1 ≤ a1,… , xd ≤ ad}
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In addition, if X,Y ∈ [0,∞)d and X ≤lo Y , then

for all a ∈ [0,∞)d and all Bernstein functions g, provided that the expectation exists, 
cf. Shaked and Shanthikumar (2007) 6.G.14 and 5.A.4 for this fact and Appendix 2 
for a definition of Bernstein functions. In particular, such functions are non-negative,  
monotonously increasing and concave and therefore form a natural class of util-
ity functions, see e.g. Brockett and Golden (1987) and Caballé and Pomansky 
(1996). Important examples of Bernstein functions include the identity function, 
g(x) = log(1 + x) or g(x) = (1 + x)� − 1 for � ∈ (0, 1).

The multivariate orders from Definition 3.1 have several useful closure prop-
erties. We refer to Müller and Stoyan (2002) Theorem 3.3.19 and Theorem 3.8.7 
for a systematic collection, including

• independent or identical concatenation,
• marginalisation,
• distributional convergence,
• applying increasing transformations to the components,
• taking mixtures.

In what follows, we will need a corresponding notion of multivariate orders 
not only for probability measures on ℝd , but also for exponent measures as intro-
duced in Section 2. While the support of an exponent measure Λ is contained in 
[0,∞)d ⧵ {0} , its total mass is infinite. We only know for sure that Λ(B) is finite 
for Borel sets B ⊂ ℝ

d bounded away from the origin in the sense that there exists 
𝜀 > 0 , such that B ∩ L�e = � (recall L�e = {x ∈ ℝ

d ∶ x1 ≤ �,… , xd ≤ �} ). This 
means that we need to assume a different view on lower orthants and work with 
their complements instead, a subtlety, which did not matter previously when 
defining such notions for probability measures only. The following notion seems 
natural in view of Definition  3.1 and the results of Section  4. Figure  3 illus-
trates the restriction to fewer admissible test sets for these orders for exponent 
measures.

Definition 3.2 (Multivariate orders for exponent measures). Let Λ, Λ̃ be two infinite 
measures on ℝd with mass contained in [0,∞)d ⧵ {0} and taking finite values on 
Borel sets bounded away from the origin.

(12)X ≤uo Y ⟺ min
i=1,…,d

(aiXi) ≤st min
i=1,…,d

(aiYi) for all a ∈ (0,∞)d;

(13)X ≤lo Y ⟺ max
i=1,…,d

(aiXi) ≤st max
i=1,…,d

(aiYi) for all a ∈ (0,∞)d.

� g

( d∑
i=1

aiXi

)
≤ � g

( d∑
i=1

aiYi

)
,
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• Λ is said to be smaller than Λ̃ in the upper orthant order, denoted Λ ≤uo Λ̃ , 
if Λ(U) ≤ Λ̃(U) for each upper orthant U ⊂ ℝ

d that is bounded away from the 
origin.

• Λ is said to be smaller than Λ̃ in the lower orthant order, denoted Λ ≤lo Λ̃ , 
if Λ(ℝd ⧵ L) ≤ Λ̃(ℝd ⧵ L) for all lower orthants L ⊂ ℝ

d such that ℝd ⧵ L is 
bounded away from the origin.

• Λ is said to be smaller than Λ̃ in the positive quadrant order, denoted 
Λ ≤PQD Λ̃ , if we have the relations Λ ≤uo Λ̃ and Λ ≥lo Λ̃.

Remark 3.3 Exponent measures Λ and Λ̃ are Radon measures on [0,∞]d ⧵ {0} (the 
one-point uncompactification of [0,∞]d ). Any Borel set B ⊂ [0,∞]d ⧵ {0} bounded 
away from the origin is relatively compact in this space, hence Λ(B) and Λ̃(B) , 
including Λ(U) , Λ̃(U) , Λ(ℝd ⧵ L) and Λ̃(ℝd ⧵ L) as above, are all finite.

4  Main results

First we present some fundamental characterisations of LO, UO and PQD order 
among simple max-stable distributions and their exponent measures, then we 
study these orders among the introduced parametric families. While we focus 
on simple max-stable distributions in what follows, we would like to stress that 
applying componentwise identical isotonic transformations to random vectors 
preserves orthant and concordance orders; in this sense the following proper-
ties can be seen as statements about the respective copulas. In particular, among 
max-stable random vectors, it suffices to establish these orders among simple 
max-stable random vectors and they translate immediately to all counterparts 
with different marginal distributions, cf. (1).

Fig. 3  Illustration of test sets for multivariate orders for exponent measures in dimension d = 2 , cf. Defi-
nition 3.2. Left: Λ is locally finite on the (closed) grey area for all 𝜀 > 0 , its total (infinite) mass is con-
tained in the union of such sets; middle: admissible complement of a lower orthant ℝ2 ⧵ L

a
 (blue area) 

for testing lower orthant order for Λ ; right: admissible upper orthants U
a
 , U

b
 , U

c
 (three red areas) for test-

ing upper orthant order for Λ
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4.1  Fundamental results

We start by assembling the most fundamental relations for multivariate orders 
among simple max-stable random vectors. While the statements about lower ort-
hant orders are almost immediate from existing theory and definitions, the rela-
tions for upper orthants are a bit more intricate and non-standard in the area. In 
particular, showing that “ Λ ≤uo Λ̃ implies G ≤uo G̃ ” turns out to be non-trivial. 
The key ingredient in the proof of the following theorem (cf.  Appendix  1) is 
Proposition B.9 for part b).

Theorem  4.1 (Orthant orders characterisations). Let G and G̃ be d-variate simple 
max-stable distributions with exponent measures Λ and Λ̃ , generators Z and Z̃ , sta-
ble tail dependence functions � and �̃  and max-zonoids K and K̃ , respectively. 

(a) The following statements are equivalent. 

(i) G ≤lo G̃;
(ii) Λ ≤lo Λ̃;
(iii) �(maxi=1,…,d(aiZi)) ≤ �(maxi=1,…,d(aiZ̃i)) for all a ∈ (0,∞)d;
(iv) � ≤ �̃ ;
(v) K ⊂ �K.

(b) The following statements are equivalent. 
 (i) G ≤uo G̃;
 (ii) Λ ≤uo Λ̃;
 (iii) �(mini∈A(aiZi)) ≤ �(mini∈A(aiZ̃i)) for all a ∈ (0,∞)d and A ⊂ {1,… , d} , 

A ≠ ∅.

(c) If d = 2 , the following statements are equivalent. 
 (i) G ≤PQD G̃;
 (ii) G ≤uo G̃;
 (iii) G ≥lo G̃.

The assumption d = 2 is important in part c); these equivalences are no longer 
true in higher dimensions, cf. Example 4.13 below. Theorem 4.1 implies further 
that the orthant ordering of two generators Z and Z̃ implies the respective order-
ing of the corresponding distributions G and G̃ and exponent measures Λ and Λ̃ . 
However, the converse is false and most generators will not satisfy orthant order-
ings, even when the corresponding distributions do. An interesting case for this 
phenomenon is the Hüsler-Reiß family, cf.  Example  4.11 below. The following 
corollary is another immediate consequence of Theorem 4.1.

Corollary 4.2 (PQD/concordance order characterisation). Let G and G̃ be d-variate 
simple max-stable distributions with exponent measures Λ and Λ̃ , then
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It is well-known that for any stable tail dependence function � of a simple max-
stable random vector

where �dep represents the degenerate max-stable random vector, whose components 
are fully dependent, and �indep corresponds to the max-stable random vector with 
completely independent components. From the perspective of stochastic orderings 
this means that every max-stable random vector is dominated by the fully independ-
ent model, while it dominates the fully dependent model with respect to the lower 
orthant order. It seems less well-known that the converse ordering holds true for 
upper orthants, so that we arrive at the following corollary.

Corollary 4.3 (PQD/concordance for independent and fully dependent model). Let 
Gindep , Gdep and G be d-dimensional simple max-stable distributions, where Gindep 
represents the model with fully independent components, and Gdep represents the 
model with fully dependent components. Then

Similarly Theorem 2.9 can be strengthened as follows. Whilst previously only the 
lower orthant order was known, we have in fact PQD/concordance ordering.

Corollary 4.4 (PQD/concordance for the associated Choquet model). Let X be a 
simple max-stable random vector with extremal coefficients (�(A)) , A ⊂ {1,… , d} , 
A ≠ ∅ and X∗ the Choquet (Tawn-Molchanov) random vector with identical extre-
mal coefficients. Then

4.2  Parametric models

In general, parametric families of multivariate distributions do not necessar-
ily exhibit stochastic orderings. One of the few more interesting known examples 
among multivariate max-stable distributions is the Dirichlet family, for which it has 
been shown that it is ordered in the symmetric case (Aulbach et al., 2015, Proposi-
tion 4.4), that is, for � ≤ � we have

Figure 4 illustrates (15) in the bivariate situation and shows a bivariate example that 
these distributions are otherwise not necessarily ordered in the asymmetric case.

Here, we extend (15) in several ways: (i) going beyond the symmetric situation 
considering the fully asymmetric model, (ii) considering PQD/concordance order, 
(iii) shortening the proof by exploiting a connection to the theory of majorisation, 

G ≤PQD G̃ ⟺ Λ ≤PQD Λ̃.

(14)�dep(x) = ‖x‖∞ ≤ �(x) ≤ ‖x‖1 = �indep(x), x ≥ 0,

Gindep ≤PQD G ≤PQD Gdep.

X∗
≤PQD X.

(15)MaxDir((�, �,… , �)) ≥lo MaxDir((�, �,… , �)).
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cf. Appendix 2. Figure 5 provides an illustration of the stochastic ordering for the 
asymmetric Dirichlet family in the bivariate case. In Fig. 1 we see how the mass 
of the angular measure of the symmetric and asymmetric Dirichlet model is more 
concentrated from left plot to right plot. This also corresponds to their stochastic 
ordering, with the right one being the most dominant model in terms of PQD 
order.

Theorem 4.5 (PQD/concordance order of Dirichlet family). Consider the max-stable 
Dirichlet family from Theorem/Definition 2.3. If �i ≤ �i , i = 1,… , d , then

MaxDir(�1, �2,… , �d) ≤PQD MaxDir(�1, �2,… , �d).

Fig. 4  Top: Nested max-zonoids (left) and ordered (hypographs of) Pickands dependence functions 
(right) from the fully symmetric Dirichlet family for � ∈ {0.0625, 0.25, 1, 4} . Smaller values of � corre-
spond to larger sets and larger Pickands dependence functions and are closer to the independence model 
represented by the box [0, 1]2 or the constant function, which is identically 1. The fully dependent model 
is represented in black. Bottom: Non-nested max-zonoids and non-ordered Pickands dependence func-
tion from the asymmetric Dirichlet family for (�1, �2) ∈ {(0.15, 12), (4, 0.2)}
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Example 4.6 In order to draw attention to some further consequences of Theo-
rem 4.5, let X ∼ MaxDir(�) and Y ∼ MaxDir(�) where �i ≤ �i , i = 1,… , d , so that 
X ≤PQD Y , hence X ≤uo Y and X ≥lo Y , which implies

cf. (12), (13) and Lemma 2.4. Exemplarily, we consider a range of trivariate sym-
metric and asymmetric max-stable Dirichlet distributions MaxDir(�1, �2, �3) with 
parameters (�1, �2, �3) given in Fig. 1. The colouring is chosen such that red models 
PQD-dominate blue models, which PQD-dominate black models.

In addition, we consider the portfolio with equal weights (1, 1, 1) and the result-
ing min-projections min(X1,X2,X3) and max-projections max(X1,X2,X3) , where 
(X1,X2,X3) ∼ MaxDir(�1, �2, �3) . Figures  6 and 7 display their distribution func-
tions on the Gumbel scale. As commonly of interest for extreme value distributions, 
instead of the quantile function Q, we show the equivalent return level plot, which 
displays the return levels Q(1 − p) for the return period of 1/p observations. The 
plots of these functions are based on empirical estimates from one million simulated 
observations from the respective models, and their orderings are as expected from 
the theory, i.e. quantile functions increase as the dominance of the model grows, 
while distribution functions decrease.

Another prominent family of multivariate max-stable distributions that turns 
out to be stochastically ordered in the PQD/concordance order is the Hüsler-Reiß 
family. It can be shown using the limit result from Theorem  2.7 together with 
Slepian’s normal comparison lemma and some closure properties of the PQD/

min
i=1,…,d

(aiXi) ≤st min
i=1,…,d

(aiYi) for all a ∈ (0,∞]d.

max
i=1,…,d

(aiXi) ≥st max
i=1,…,d

(aiYi) for all a ∈ [0,∞)d,

Fig. 5  Nested max-zonoids and ordered Pickands dependence functions of the asymmetric max-stable 
Dirichlet family for (�

1
, �

2
) ∈ {(0.25, 0.25), (1, 0.25), (1, 1), (1, 4), (4, 4)} . Componentwise smaller values 

of (�
1
, �

2
) correspond to larger sets and larger Pickands dependence functions and are closer to the inde-

pendence model
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concordance order. Figure  8 provides an illustration in terms of nested max-
zonoids and ordered Pickands dependence functions in the bivariate case. How-
ever, while these models are ordered, we would like to point out that none of the 
typically chosen families of log-Gaussian generators satisfy any of the orthant 
orders, cf. Example 4.11.

Theorem  4.7 (PQD/concordance order of Hüsler-Reiß family). Consider the 
max-stable Hüsler-Reiß family from Theorem/Definition  2.5. If �i,j ≤ �̃i,j for all 
i, j ∈ {1,… , d} , then

Remark 4.8 With almost identical proof, cf. Appendix 2, we may even deduce

HR(�) ≥PQD HR(�̃).

Fig. 6  Distribution functions (left) and return levels (right) for return periods 10 to 100 (on logarith-
mic scale) of min(X1,X2,X3) , where (X1,X2,X3) ∼ MaxDir(�1, �2, �3) on standard Gumbel scale with 
� = (�1, �2, �3) as chosen in Fig.  1. Top: symmetric case; bottom: asymmetric case. Black, blue and 
red colouring encodes the matching with Fig. 1. The grey areas represent the range between the fully 
dependent (dashed line) and fully independent (dotted line) cases



 M. Corradini, K. Strokorb 

1 3

where ≥sm denotes the supermodular order, cf. Müller and Stoyan (2002) Section 3.9 
or Shaked and Shanthikumar (2007) Section 9.A.4. We have therefore included the 
respective arguments in the proof, too, although considering the supermodular order 
is otherwise beyond the scope of this article.

Remark 4.9 Theorem  4.7 includes the assumption that both parameter matrices � 
and �̃ constitute a valid set of parameters for the Hüsler-Reiß model, i.e. they need 
to be elements of Gd . In dimensions d ≥ 3 it is possible that increasing (or decreas-
ing) any of the parameters of a given valid � will result in a set of parameters that is 
not valid for the Hüsler-Reiß model.

HR(�) ≥sm HR(�̃),

Fig. 7  Distribution functions (left) and return levels (right) for return periods 10 to 100 (on logarith-
mic scale) of max(X1,X2,X3) , where (X1,X2,X3) ∼ MaxDir(�1, �2, �3) on standard Gumbel scale with 
� = (�1, �2, �3) as chosen in Fig.  1. Top: symmetric case; bottom: asymmetric case. Black, blue and 
red colouring encodes the matching with Fig. 1. The grey areas represent the range between the fully 
dependent (dashed line) and fully independent (dotted line) cases
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Remark 4.10 Since the orthant orders are closed under independent conjunction, 
Theorem  4.7 extends to the generalised Hüsler-Reiß model, where we can allow 
some parameter values of � to assume the value ∞ , as long as � remains negative 
definite in the extended sense (see Remark 2.8).

Example 4.11 (Ordering of G/G̃ does not imply generator ordering for Z/Z̃ – the 
case of Hüsler-Reiß log-Gaussian generators). Consider the non-degenarate 
bivariate Hüsler-Reiß model with �12 = �21 = � ∈ (0,∞) and let addition-
ally a ∈ [0, 1] . Then the zero mean bivariate Gaussian model (W1,W2)

⊤ with 
�(W1) = �a2 , �(W2) = �(1 − a)2 , Cov(W1,W2) = 0.5� ⋅ (a2 + (1 − a)2 − 1) satis-
fies �(W1 −W2)

2 = � , hence leads to a generator for the bivariate Hüsler-Reiß 
distribution in the sense of Theorem/Definition  2.5. WLOG a ∈ (0, 1] (otherwise 
consider 1 − a instead of a). Then log(Z1) follows a non-degenerate univariate 
Gaussian distribution with mean −0.5�a2 and variance �a2 . The family of such dis-
tributions is not ordered in 𝛾 > 0 (cf. e.g. Shaked and Shanthikumar (2007) Exam-
ple 1.A.26 or Müller and Stoyan (2002) Theorem 3.3.13). Hence, the bivariate fam-
ily (log(Z1), log(Z2))⊤ can also not be ordered according to orthant order, nor can 
any multivariate family, for which this constitutes a marginal family. Accordingly, 
the corresponding log-Gaussian generators Z of the Hüsler-Reiß model will not 
be ordered, even when the resulting max-stable model and exponent measures are 
ordered as seen in Theorem 4.7.

While Dirichlet and Hüsler-Reiß families are ordered in the PQD/concord-
ance sense according to the natural ordering of their parameter spaces, we would 
like to provide some examples that show that UO and LO ordering among simple 
max-stable distributions are in fact not equivalent.

Fig. 8  Nested max-zonoids and ordered Pickands dependence functions from the bivariate Hüsler-Reiß 
family for 

√
� ∈ {0.5, 1, 2, 4} . Larger values of � correspond to larger sets and larger Pickands depend-

ence functions and are closer to the independence model
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To this end, we revisit the Choquet max-stable model from Section 2.2.3. We 
write ChoquetEC(�) for the simple max-stable Choquet distribution if it is param-
eterised by its extremal coefficients �(A) , A ⊂ {1,… , d} , A ≠ ∅ and ChoquetTD(�) 
if it is parameterised by its tail dependence coefficients �(A) , A ⊂ {1,… , d} , 
A ≠ ∅.

Lemma 4.12 (LO and UO order of Choquet family/Tawn-Molchanov model). Con-
sider the family of max-stable Choquet models from Section  2.2.3. Then the LO 
order is characterised by the ordering of extremal coefficients, we have

and the UO order is characterised by the ordering of tail dependence coefficients, 
that is

As we know already from Theorem 4.1 part c), in dimension d = 2 , it is easily 
seen that � ≤ �̃  is equivalent to � ≥ �̃  , alternatively recall �12 + �12 = 2 . Starting 
from dimension d = 3 , this is no longer the case and one can easily construct exam-
ples, where only LO or UO ordering holds.

Example 4.13 Table 1 lists valid parameter sets for four different trivariate Choquet 
models. Among these, we can easily read off that

• B ≤uo D , but there is no order between B and D according to lower orthants;
• C ≤lo B , but there is no order between B and C according to upper orthants.

Of course, it is still possible that Choquet models are ordered according to PQD 
order, e.g.

• A ≤PQD B.

It is also possible to have both LO and UO order in the same direction, e.g.

• A ≤uo C and A ≤lo C.

� ≤ �̃ ⟺ ChoquetEC(�) ≤lo ChoquetEC(�̃);

� ≤ �̃ ⟺ ChoquetTD(�) ≤uo ChoquetTD(�̃).

Table 1  Valid parameter sets of trivariate Choquet models, cf. Section 2.2.3, that are exchangeable so 
that parameters �

A
 , �

A
 , �

A
 depend on sets A only through their cardinality. Since �

1
= �

1
= 1 these param-

eters need not be listed. We have �
1
+ 2�

12
+ �

123
= 1 , �

123
= �

123
 , �

12
= �

123
+ �

12
 , �

12
= 1 + �

1
+ �

12
 

and �
123

= �
12
+ �

1

�
1

�
12

�
123

�
12

�
123

�
12

�
123

A 0.3 0.2 0.3 0.5 0.3 1.5 1.8
B 0.1 0.3 0.3 0.6 0.3 1.4 1.5
C 0.4 0.1 0.4 0.5 0.4 1.5 1.9
D 0.3 0.0 0.7 0.7 0.7 1.3 1.6
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However, note that such an order can only arise if the bivariate marginal distribu-
tions all agree.

Appendix 1 Proofs

Proofs concerning fundamental order relations

Proof of Theorem 4.1 In what follows, let X ∼ G and X̃ ∼ G̃ . 

(a) Because of (13), it suffices to compare G(x) and G̃(x) for x ∈ (0,∞)d only. The 
same is true for � and �̃  as they are continuous on [0,∞)d . At the same time 
the test sets for the relation Λ ≤lo Λ̃ in Definition 3.2 are precisely of the form 
ℝ

d ⧵ Lx , where x ∈ (0,∞)d . So the equivalence of (i), (ii), (iii) and (iv) follows 
directly from the relations 

with 

 and the respective tilde-counterparts. Likewise, the equivalence of (iv) and (v) 
is immediate from (3) and (2).

(b) We start by showing the equivalence between (ii) and (iii). The test sets for the 
relation Λ ≤uo Λ̃ in Definition 3.2 are precisely the upper orthants Ux , where at 
least one component of x is larger than zero. Let a ∈ (0,∞)d and A ⊂ {1,… , d} , 
A ≠ ∅ . Define x ∈ ℝ

d by setting xi = 1∕ai if i ∈ A and xi = −1 else. Then Ux is 
an admissible test set and 

Likewise, Λ̃(Ux) = �(mini∈A(aiZ̃i)) and we may deduce the implication 
(ii)⇒(iii). Conversely, assume (iii) and note that the same argument implies 
Λ(Ux) ≤ Λ̃(Ux) for any x , which has at least one positive component, whilst all 
other components of x are negative. What remains to be seen is the same rela-
tion for upper orthants Ux , for which at least one component of x is positive, but 
where among the non-positive components, there may be zeroes. Let x ∈ ℝ

d 
be such a vector. For n ∈ ℕ let xn ∈ ℝ

d be an identical vector, but with zero 
entries replaced by 1/n. Then Λ(Uxn

) ≤ Λ̃(Uxn
) for all n ∈ ℕ by the previous 

argument, whilst Uxn
↑ Ux , such that Λ(Uxn

) → Λ(Ux) and Λ̃(Uxn
) → Λ̃(Ux) as 

n → ∞ . This shows (iii)⇒(ii).
  Next, we establish (i)⇒(iii). Assume (i). Since the order UO is closed 

under marginalisation, it suffices to consider A = {1,… , d} in (iii), see also 
Lemma 2.2. Set xi = 1∕ai , i = 1,… , d , such that (16) holds (as well as the tilde-
version) and note that the closure of Ux in [0,∞]d ⧵ {0} is a continuity set for 

G(x) = ℙ(X ∈ Lx) = exp(−Λ([0,∞]d ⧵ Lx)) = exp(−Λ(ℝd ⧵ Lx))

Λ(ℝd ⧵ Lx) = �(1∕x1,… , 1∕xd) = 𝔼(max(Z1∕x1,… , Zd∕xd)),

(16)Λ(Ux) = Λ

({
y ∈ [0,∞)d ⧵ {0} ∶ min

i∈A
(aiyi) > 1

})
= �

(
min
i∈A

(aiZi)
)
.
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each of the (−1)-homogeneous measures Λ and Λ̃ . Hence, since each max-stable 
vector satisfies its own Domain-of-attraction conditions (cf. e.g. Resnick (1987) 
Section 5.4.2), we have 

and the analog for Λ̃ and X̃ . The implication (i)⇒(iii) follows.
  Lastly, let us establish (iii)⇒(i). Suppose (iii) holds. We abbreviate 

� (a)(A) = �(mini∈A(aiZi)) and analogously �̃ (a)(A) = �(mini∈A(aiZ̃i)) , such that 
(iii) translates into 

for all a ∈ (0,∞)d and A ⊂ {1,… , d} , A ≠ ∅ . With �(a)(A) = �(maxi∈A(aiZi)) 
we find that 

(similarly to (9) and analogously for the tilde-version), where �(a) can be inter-
preted as directional extremal coefficient function. It is easily seen that �(a) 
with �(a)(�) = 0 is union-completely alternating, cf. Lemma B.3.

  Because of (12), in order to arrive at (i), it suffices to establish 

for all a ∈ (0,∞)d . In the notation of Lemma B.3 and with g(x) = 1 − exp(−x) , 
the left-hand side can be rewritten as 

(and analogously for the tilde-version). The assertion follows then directly from 
Proposition B.9, since g is a Bernstein function.

(c) The statement follows from the relation 

as both sides are equal to a1 + a2 .   ◻

Λ(Ux) = lim
n→∞

nℙ(X ∈ nUx) = lim
n→∞

nℙ(X ∈ Unx)

� (a)(A) ≤ �̃ (a)(A)

𝜒 (a)(A) =
∑

I⊂A, I≠�

(−1)|I|+1𝜃(a)(I) and 𝜃(a)(A) =
∑

I⊂A, I≠�

(−1)|I|+1𝜒 (a)(I)

ℙ

(
min

i=1,…,d
(aiXi) > 1

)
≤ ℙ

(
min

i=1,…,d
(ai�Xi) > 1

)

ℙ

(
min

i=1,…,d
(aiXi) > 1

)
= 1 −

∑
I⊂{1,…,d}, I≠�

(−1)|I|+1ℙ
(
max
i∈I

(aiXi) ≤ 1
)

= −
∑

I⊂{1,…,d}

(−1)|I|+1 exp
(
− �(aI)

)

=
∑

I⊂{1,…,d}

(−1)|I|+1 −
∑

I⊂{1,…,d}

(−1)|I|+1 exp
(
− 𝜃(a)(I)

)

=
∑

I⊂{1,…,d}

(−1)|I|+1g
(
𝜃(a)(I)

)

�(min(a1Z1, a2Z2)) + �(max(a1Z1, a2Z2)) = �(min(a1Z̃1, a2Z̃2)) + �(max(a1Z̃1, a2Z̃2)),
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Proof of Corollary 4.3 In view of (14) and Theorem 4.1 b), if suffices to investigate 
the upper and lower bounds of �(mini∈A(aiZi)) for a ∈ (0,∞)d and A ⊂ {1,… , d} , 
A ≠ ∅ , where Z is a generator for G. We have

and the upper and lower bounds are attained by generators of the fully dependent 
model ( Z being almost surely e = (1, 1,… , 1)⊤ ) and the independent model ( Z being 
uniformly distributed among the set {de1, de2,… , ded} ), respectively, which implies 
the assertion.   ◻

Proof of Corollary  4.4 The lower orthant order X∗
≥lo X is known from Theo-

rem 2.9. Let Z and Z∗ be generators of the respective models. Since they share iden-
tical extremal coefficients, they also share identical tail dependence coefficients 
�(A) = �(mini∈A Zi) = �(mini∈A Z

∗
i
) , A ⊂ {1,… , d} , A ≠ ∅ , which can be retrieved 

from � via (9). In general, we have for A ⊂ {1,… , d} , A ≠ ∅ , a ∈ (0,∞)d

The Choquet model attains the lower bound, since with (7) and (11)

So by Theorem 4.1 we also have X∗
≤uo X , hence the assertion.   ◻

Proof of Lemma 4.12 The LO part is immediate from � ≤ �̃  implying the inclusion 
of associated max-zonoids K∗ ⊂ �K∗ or Choquet integrals �∗ ≤ �̃∗ (cf. Theorem 2.9) 
and then follows directly from Theorem 4.1 part a). For the UO part, note from the 
Proof of Corollary 4.4 that for A ⊂ {1,… , d} , A ≠ ∅ , a ∈ (0,∞)d

if Z and Z̃ are generators of the respective models, hence the assertion with Theo-
rem 4.1 part b).   ◻

Proofs concerning the Dirichlet and Hüsler‑Reiß models

Proof of Theorem  2.3 The equivalence of (ii) and (iii) has been verified in Coles 
and Tawn (1991). The equivalence of (i) and (ii) follows similarly to Aulbach 
et al. (2015) (3) from the fact that D is distributed like �∕‖�‖1 and the independ-
ence of �∕‖�‖1 and ‖�‖1 . More precisely, let �1 and �2 be the stable tail dependence 

�
(
min
i∈A

(aiZi)
)
≤ min

i∈A
(�(aiZi)) = min

i∈A
(ai) and �

(
min
i∈A

(aiZi)
)
≥

{
aj if A = {j},

0 else,

�
(
min
i∈A

(aiZi)
)
≥ min

i∈A
(ai)�

(
min
i∈A

(Zi)
)
= min

i∈A
(ai) ⋅ �(A).

�
(
min
i∈A

(aiZ
∗
i
)
)
=

∑
L⊂{1,…,d},L≠{�}

𝜏(L)min
i∈A

(ai(eL)i)

=
∑

L⊂{1,…,d},A⊂L

𝜏(L)min
i∈A

(ai) = min
i∈A

(ai) ⋅ 𝜒(A).

�
(
min
i∈A

(aiZ
∗
i
)
)
= min

i∈A
(ai) ⋅ �(A) and �

(
min
i∈A

(aiZ̃
∗
i
)
)
= min

i∈A
(ai) ⋅ �̃(A)
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functions that arise from the generators (i) and (ii), respectively. Then �1 and �2 can 
be expressed as follows for any x ∈ [0,∞)d

If suffices to note �‖�‖1 = ‖�‖1 in order to conclude �1 = �2 .   ◻

In order to prove Theorem 4.5 we will use a simple inequality that follows from the 
theory of majorisation (Marshall et al. 2011).

Proposition A.1 (Marshall and Proschan (1965) Corollary 3, Marshall et al. (2011) 
Proposition B.2.b.) Let g ∶ ℝ → ℝ be continuous and convex and let X1,X2,… be a 
sequence of independent and identically distributed random variables, then

is nonincreasing in n = 1, 2,….

Corollary A.2 Let g ∶ ℝ → ℝ be continuous and convex and, let Z(�) ∼ Γ(�) follow a 
univariate Gamma distribution with shape parameter 𝛼 > 0 , then

is nonincreasing in � ∈ (0,∞).

Proof We consider first the case that � = (k∕n) ⋅ � for some natural numbers 
1 ≤ k < n . Then consider independent and identically distributed random variables 
Γ1,Γ2,… following a Γ(�∕n) distribution. Then Proposition A.1 gives

By the convolution stability of the Gamma distribution

Hence, the assertion is shown for � and � that differ by a rational multiplier.
If we only know 𝛼 < 𝛽 , consider a decreasing sequence �n ↓ � , such that � and 

�n differ by a rational multiplier. This gives �g(Z(�)∕�) ≥ lim supn→∞ �g(Z(�n)∕�n) 

𝓁1(x) = � max
i=1,…,d

xiΓi

�i
= �‖�‖1 ⋅ � max

i=1,…,d

xiΓi∕‖�‖1
�i

,

𝓁2(x) = � max
i=1,…,d

xi‖�‖1Di

�i
= ‖�‖1 ⋅ � max

i=1,…,d

xiDi

�i
.

� g

( n∑
i=1

Xi

n

)

� g

(
Z(�)

�

)

� g

�∑k

i=1
Γi

�

�
= � g

�
n

�
⋅

k�
i=1

Γi

k

�
≥ � g

�
n

�
⋅

n�
i=1

Γi

n

�
= � g

�∑n

i=1
Γi

�

�
.

k∑
i=1

Γi ∼ Γ(�) and

n∑
i=1

Γi ∼ Γ(�).
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by the above argument. On the other hand, Fatou’s lemma gives 
�g(Z(�)∕�) ≤ lim infn→∞ �g(Z(�n)∕�n) . This finishes the proof.   ◻

Proof of Theorem 4.5 If � = � , the statement is clear. Else, because the parameter 
space of the Dirichlet model is (0,∞)d , we can find a chain of parameter vectors 
� = �(0) ≤ �(1) ≤ ⋯ ≤ �(m) = � , such that for each i = 0,… ,m − 1 , the vectors 
�(i) and �(i+1) differ only by one component. Hence it suffices to consider the case, 
where � and � differ only in one component. Without loss of generality, let this be 
the first component.

Let Z be a Gamma generator for MaxDir(�) and Z̃ be a Gamma generator for 
for MaxDir(�) in the sense of Theorem/Definition 2.3. Then we may assume that 
Zi = Z̃i for i = 2,… , d , whereas �1Z1 ∼ Γ(�1) and �1Z̃1 ∼ Γ(�1) are independent 
from (Z2,… , Zd)

⊤ , and 𝛼1 < 𝛽1 by assumption. We will need to show (cf.  Theo-
rem 4.1) that for fixed a ∈ (0,∞)d and A ⊂ {1,… , d} , A ≠ ∅

Due to the setting above, it suffices to consider only subsets A with 1 ∈ A , and due 
to the marginal standardisation �(Z1) = 1 , it suffices to restrict our attention to 
A ⧵ {1} ≠ � . Setting VA = mini∈A⧵{1} (aiZi) and W = maxi=2,…,d (aiZi) this means the 
assertion will follow from

Indeed, this is implied by Corollary A.2, when considering the continuous convex 
functions gc(x) = −min(a1x, c) or gc(x) = max(a1x, c) for a constant c ∈ ℝ.   ◻ 

Proof of Theorem 4.7 Set

for i, j ∈ {1,… , d} , n ∈ ℕ , so that �, �̃ ∈ Gd ensures that the resulting matrices are 
correlation matrices, cf.  e.g.  Berg et  al. (1984) Theorem  3.2.2. By construction, 
�
(n)

ij
≥ �̃

(n)

ij
 for all i,  j, n. And so the normal comparison lemma (Slepian 1962), cf. 

also Tong (1980) Section 2.1. or Müller and Stoyan (2002) Example 3.8.6, implies 
that Y ≥PQD Ỹ if Y and Ỹ are zero mean unit-variance Gaussian random vectors with 
correlations � and �̃ , respectively. In fact, even Y ≥sm Ỹ holds for the supermodular 
order (Müller and Stoyan, 2002, Theorem 3.13.5).

Consider the triangular arrays with independent Y(n)

i
∼ Y , i = 1,… , n and 

Ỹ
(n)

i
∼ Ỹ , i = 1,… , n . Since t(1 − exp(−a∕t)) → a as t → ∞ , Theorem 2.7 gives that

converges in distribution to HR(�) and the corresponding tilde- 
version, while the closure under independent conjunction (Shaked and 

�min
i∈A

(
aiZi

)
≤ �min

i∈A

(
aiZ̃i

)
and � max

i=1,…,d

(
aiZi

)
≥ � max

i=1,…,d

(
aiZ̃i

)
.

�min
(
a1Z1,VA

)
≤ �min

(
a1Z̃1,VA

)
and �max

(
a1Z1,W

)
≥ �max

(
a1Z̃1,W

)
.

�
(n)

ij
= exp(−�ij∕(4 log(n)) and �̃

(n)

ij
= exp(−�̃ij∕(4 log(n))

un(M
(n) − un) = un ⋅

(
max

i=1,…,n
(Y

(n)

i
)1 − un,… , max

i=1,…,n
(Y

(n)

i
)d − un

)⊤
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Shanthikumar, 2007, Theorem 9.A.5) together with Shaked and Shanthikumar (2007)  
Theorem 9.A.4 implies un(M

(n) − un) ≥PQD un(M̃
(n)

− un) for all n ∈ ℕ . In fact, even 

un(M
(n) − un) ≥sm un(M̃

(n)
− un) for all n ∈ ℕ as the supermodular order is also 

closed under independent conjuction (Müller and Stoyan, 2002,  Theorem  3.9.14) 
and note Shaked and Shanthikumar (2007) Theorem 9.A.12. The assertion follows  
now from the closure of the PQD-order under distributional limits (Shaked and  
Shanthikumar (2007) Theorem  9.A.5). We even have HR(�) ≥sm HR(�̃) , as the 
supermodular order satisfies the same closure property with respect to distributional 
limits (Müller and Stoyan, 2002, Theorem 3.9.12).   ◻ 

Appendix 2 Complete alternation and Bernstein functions

We recall some elementary definitions and facts from Berg et  al. (1984), cf.  also 
Molchanov (2017). Let (S, ◦, e) be an abelian semigroup, that is, a non-empty set S 
with a composition ◦ that is associative and commutative and has a neutral element 
e. Three examples are of interest to us: 

 (i) S = [0,∞) with + and neutral element 0,
 (ii) S = Pd , the power set of {1,… , d} , with the union operation ∪ and neutral 

element ∅,
 (iii) S = [0,∞)d with the componentwise maximum operation ∨ and neutral ele-

ment 0.

Examples (ii) and (iii) are even idempotent semigroups, as s◦s = s for these opera-
tions. We use the standard notation

Definition B.1 A function f ∶ S → ℝ is called completely alternating if for all n ≥ 1 , 
{s1,… , sn} ⊂ S and s ∈ S

For idempotent semigroups (examples (ii) and (iii) above), the complete alterna-
tion property coincides with negative definiteness, cf. Berg et al. (1984) 4.4.16 and 
4.6.8.

Definition B.2 A function f ∶ S → ℝ is called negative definite if for all n ≥ 2 , 
{s1,… , sn} ⊂ S , {a1,… , an} ⊂ ℝ with a1 +⋯ + an = 0

(Δbf )(a) = f (a) − f (a ◦ b).

(Δs1
Δs2

…Δsn
f )(s) =

∑
I⊂{1,…,n}

(−1)|I|f (s ◦ ○i∈I si) ≤ 0.

n∑
j=1

n∑
k=1

ajakf (sj ◦ sk) ≤ 0.
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In the context of multivariate extremes, max-complete alternation of the stable 
tail dependence function implies union-complete alternation of the extremal coef-
ficient function. In fact, the following directional version holds true irrespective of 
whether we take homogeneity or marginal standardisation into account or not.

Lemma B.3 Let � ∶ [0,∞)d → [0,∞) be max-completely alternating. Let 
x ∈ [0,∞)d . Let �(x) ∶ Pd → [0,∞) be defined as �(x)(A) = �(xA) , where 
xA = x ⋅ eA ∈ [0,∞)d is the vector with xi as i-th coordinate if i ∈ A and zero else. 
Then �(x) is union-completely alternating.

Proof The result follows from the observation that xA∪B = xA ∨ xB for A,B ∈ Pd . 
Therefore,

for A,A1,… ,An ∈ Pd , where n ≥ 1.   ◻ 

Lemma B.4 (Independent concatenation). Let �1 ∶ P(M) → [0,∞) and 
�2 ∶ P(N) → [0,∞) be union-completely alternating, where P(M) and P(N) are the 
power sets of finite sets M and N, respectively, such that �1(�) = �2(�) = 0 . Then 
� ∶ P(M ∪ N) → [0,∞) with �(A) = �1(A ∩M) + �2(A ∩ N) is union-completely 
alternating and �(�) = 0.

Proof By the Choquet theorem (Schneider and Weil, 2008, Theorem 2.3.2) we may 
express

for non-negative coefficients aK , K ⊂ M , K ≠ ∅ and bL , L ⊂ N , L ≠ ∅ . Define for 
A ⊂ M , B ⊂ N

Then it is easily seen that �(A ∪ B) = �1(A) + �2(B) , hence the assertion.   ◻ 

Corollary B.5 Let � ∶ Pd → [0,∞) be union-completely alternating with �(�) = 0 . 
Then �� ∶ Pd+1 → [0,∞) , ��(A) = �(A ∩ {1,… , d}) + c1d+1∈A is union-completely 
alternating with ��(�) = 0 for any c ≥ 0.

There are various equivalent definitions for Bernstein functions. For us it will 
be sufficient to consider the following. The equivalence of (i) and (ii) in the fol-
lowing theorem is a consequence from the 2-divisibility of ([0,∞),+, 0) , cf. Berg 
et al. (1984) 4.6.8.

(ΔA1
…ΔAn

�(x))(A) = (ΔxA1
…ΔxAn

�)(xA) ≤ 0

�1(A) =
∑

K∈P(M)∶K∩A≠�

aK and �2(B) =
∑

L∈P(N)∶L∩B≠�

bL

�(A ∪ B) =
�

(K,L)∈P(M)×P(N)∶(K∪L)∩(A∪B)≠�

cK∪L, where cK∪L =

⎧
⎪⎨⎪⎩

aK if K ≠ �,L = �,

bL if K = �, L ≠ �,

0 if K ≠ �,L ≠ �.
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Theorem/Definition B.6 A function g ∶ [0,∞) → ℝ is called a Bernstein function if 
one of the following equivalent conditions is satisfied: 

 (i) g ≥ 0 , g is continuous, and g is negative definite with respect to addition.
 (ii) g ≥ 0 , g is continuous, and g is completely alternating with respect to addition.
 (iii) g can be expressed as 

where a, b ≥ 0 and � is a non-negative Radon measure on (0,∞) satisfying 
the integrability condition ∫ ∞

0
min(t, 1)𝜈(dt) < ∞.

An important property of Berstein functions is that they act on negative defi-
nite kernels with non-negative diagonal, cf. Berg et al. (1984) 4.4.3.

Corollary B.7 Let S be an idempotent semigroup and f ∶ S → [0,∞) be completely 
alternating and g a Bernstein function. Then the composition map g◦f ∶ S → [0,∞) 
is completely alternating.

Corollary B.8 Let � ∶ Pd → [0,∞) be union-completely alternating with �(�) = 0 
and g be a Bernstein function. Let A∗ ⊂ {1,… , d} and c > 0 . Then

Proof By Corollary B.5, the function �� ∶ Pd+1 → [0,∞) , ��(A) = �(A ∩ {1,… , d})+

c1
d+1∈A is union-completely alternating with ��(�) = 0 . Hence, Corollary  B.7 

implies that g◦�′ is again union-completely alternating. Hence, by Definition  B.1 
and since {1,… , d, d + 1} ⧵ A∗ is not empty (it contains at least the element d + 1)

Now each J′ above is either a subset J of {1,… , d} ⧵ A∗ or it is of the form 
J ∪ {d + 1} , where J is a subset of {1,… , d} ⧵ A∗ . Separating the summands accord-
ingly gives the assertion.   ◻ 

The following proposition is the key argument to establish the implication 
Λ ≤uo Λ̃ ⇒ G ≤uo G̃ in Theorem 4.1.  

Proposition B.9 Let � ∶ Pd → [0,∞) and �̃ ∶ Pd → [0,∞) be union-completely 
alternating with �(�) = �̃(�) = 0 . For A ⊂ {1,… , d} , A ≠ ∅ set

g(r) = a + br +
�

∞

0

(1 − e−tr)�(dt), r ≥ 0,

∑
J⊂{1,…,d}⧵A∗

(−1)|J|g
(
𝜃(A∗ ∪ J)

)
≤

∑
J⊂{1,…,d}⧵A∗

(−1)|J|g
(
𝜃(A∗ ∪ J) + c

)
.

∑
J�⊂{1,…,d,d+1}⧵A∗

(−1)|J�|g
(
𝜃�(A∗ ∪ J�)

)
≤ 0.
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Suppose

Let g ∶ [0,∞) → [0,∞) be a Bernstein function. Then

Remark B.10 Under the assumptions of Proposition B.9 we have also

for any non-empty subset A of {1,… , d} . This follows directly from the proposition 
as we may restrict � and �̃  to the respective subset A and all assumptions that were 
previously made for {1,… , d} will be valid for the restrictions to A, too.

Proof The inverse linear operation to recover � from � is given by

(and likewise for �̃  and �̃  ), so that both quantities contain the same information. If 
� = �̃  and hence � = �̃  , the statement is trivially true. Otherwise, we will show the 
proposition in two steps. First, we will establish its validity in the situation when 
𝜒(A) < �𝜒(A) only for one A∗ ⊂ {1,… , d} , A∗ ≠ � and �(A) = �̃(A) for all other 
A ⊂ {1,… , d} , A ≠ ∅ . Second, we will show how this allows us to derive the propo-
sition using convexity and continuity arguments.

Step 1: Let 𝜒(A) < �𝜒(A) only for one A∗ ⊂ {1,… , d} , A∗ ≠ � and �(A) = �̃(A) 
for all other A ⊂ {1,… , d} , A ≠ ∅ . Then c = �𝜒(A∗) − 𝜒(A∗) > 0 and

if |A∗| is odd, and

if |A∗| is even, and in both situations it suffices to show that

which is equivalent to

𝜒(A) =
∑

I⊂A, I≠�

(−1)|I|+1𝜃(I) and �𝜒(A) =
∑

I⊂A, I≠�

(−1)|I|+1�𝜃(I).

𝜒(A) ≤ �𝜒(A) for all A ⊂ {1,… , d}, A ≠ �.

∑
I⊂{1,…,d}

(−1)|I|+1g
(
𝜃(I)

)
≤

∑
I⊂{1,…,d}

(−1)|I|+1g
(
�𝜃(I)

)
.

∑
I⊂A

(−1)|I|+1g
(
𝜃(I)

)
≤

∑
I⊂A

(−1)|I|+1g
(
�𝜃(I)

)

𝜃(A) =
∑

I⊂A, I≠�

(−1)|I|+1𝜒(I)

�𝜃(A) =

{
𝜃(A) + c if A∗ ⊂ A,

𝜃(A) else

𝜃(A) =

{
�𝜃(A) + c if A∗ ⊂ A,
�𝜃(A) else

∑
I⊂{1,…,d}∶A∗⊂I

(−1)|I|+1g
(
𝜃(I)

)
≤

∑
I⊂{1,…,d}∶A∗⊂I

(−1)|I|+1g
(
�𝜃(I)

)
,
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Hence, if |A∗| is odd, we need to establish

and, if |A∗| is even, we need to establish

Both inequalities now follow directly from Corollary B.8.
Step 2: Let Cd be the set of points x = (xA)A∈Pd⧵{�}

 in ℝPd⧵{�} such that the map-
ping A ↦ xA becomes union-completely alternating when setting x� = 0 . Then Cd is 
a convex cone with non-empty interior and Cd ⊂ [0,∞)Pd⧵{�} with (0, 0,… , 0) ∈ Cd . 
Let T ∶ ℝ

Pd⧵{�} → ℝ
Pd⧵{�} be the linear map, such that

Then T◦T  is the identity mapping, hence T is invertible. In particu-
lar Dd = {Tx ∶ x ∈ Cd} is also a convex cone with non-empty interior and 
Cd = {Tx ∶ x ∈ Dd} . We also note that Dd ⊂ [0,∞)Pd⧵{�} , cf.  (10) and that 
(0, 0,… , 0) ∈ Dd . Within the setting of the proposition, we have �, �̃ ∈ Cd and 
� , �̃ ∈ Dd with � = T(�) , �̃ = T(�̃) and � = T(�) , �̃ = T(�̃).

If both � and �̃  are points in the interior of Cd , then � and �̃  are in the inte-
rior of Dd . Therefore, there exists 𝜀 > 0 such that the Minkowski sum of 
the line segment between � and �̃  and an (e.g. Euclidean) �-ball centered at 
(0, 0,… , 0) ∈ ℝ

Pd⧵{�} is completely contained in Dd . Within this set we can find a 
chain � = � (0) ≤ � (1) ≤ � (2) ≤ ⋯ ≤ � (n) = �̃  , such that for each i = 0,… , n − 1 we 
have that � (i) and � (i+1) differ only in one component. By construction, we also have 
that �(i) = T(� (i)) ∈ Cd and �(i+1) = T(� (i+1)) ∈ Cd , so that we are in the situation of 
Step 1 and we may conclude that

for all i = 0,… , n − 1 , hence the assertion (which does not depend on the choice of 
� or the choice of the chain). In other words, we have established the assertion of the 
proposition if both � and �̃  are points in the interior of Cd.

To complete the argument, note that the mapping f ∶ Cd → ℝ with

is continuous. Let v ∈ Cd be a vector in the interior of Cd . Then, for any 𝛿 > 0 
both � + �v and �̃ + �v are in the interior of Cd , whereas � + �T(v) = T(� + �v) 

∑
J⊂{1,…,d}⧵A∗

(−1)|J|+|A∗|+1g
(
𝜃(A∗ ∪ J)

)
≤

∑
J⊂{1,…,d}⧵A∗

(−1)|J|+|A∗|+1g
(
�𝜃(A∗ ∪ J)

)
.

∑
J⊂{1,…,d}⧵A∗

(−1)|J|g
(
𝜃(A∗ ∪ J)

)
≤

∑
J⊂{1,…,d}⧵A∗

(−1)|J|g
(
𝜃(A∗ ∪ J) + c

)
,

∑
J⊂{1,…,d}⧵A∗

(−1)|J|g
(
�𝜃(A∗ ∪ J)

)
≤

∑
J⊂{1,…,d}⧵A∗

(−1)|J|g
(
�𝜃(A∗ ∪ J) + c

)
.

(Tx)A =
∑

I⊂A, I≠�

(−1)|I|+1xI .

∑
I⊂{1,…,d}

(−1)|I|+1g
(
𝜃(i)(I)

)
≤

∑
I⊂{1,…,d}

(−1)|I|+1g
(
𝜃(i+1)(I)

)

f (x) = g(0) +
∑

I⊂{1,…,d},I≠�

(−1)|I|+1g
(
xI
)
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and �̃ + �T(v) = T(�̃ + �v) are in the interior of Dd and still satisfy 
� + �T(v) ≤ �̃ + �T(v) . Therefore, f (� + �v) ≤ f (�̃ + �v) . Finally, since f is con-
tinuous, we can find for given 𝜀 > 0 a corresponding 𝛿 > 0 , such that f (� + �v) is 
�-close to f (�) , while f (�̃ + �v) is �-close to f (�̃) . The assertion of the proposition 
f (�) ≤ f (�̃) follows as we may choose � arbitrarily close to zero.   ◻ 

Appendix 3 Calculation of the max‑zonoid envelope

Let K be the max-zonoid (or dependency set) associated with a stable tail depend-
ence function � of a simple max-stable random vector, that is,

and, conversely,

cf. Molchanov (2008). Here, �(d−1)
+ = {u ∈ [0,∞)d ∶ ‖u‖2 = 1} denotes the (d − 1)

-dimensional Euclidean unit sphere in ℝd restricted to the upper orthant [0,∞)d . It is 
well-known that

where the cross-polytope Δd = {x ∈ [0,∞)d ∶ ⟨x, 1⟩ ≤ 1} corresponds to perfect 
dependence, whereas the cube [0, 1]d corresponds to independence. In particular, in 
the direction along the i-th axis the set K contains precisely the set {tei ∶ t ∈ [0, 1]}.

For illustrative purposes we restrict our attention to d = 2 , where we seek to 
calculate a parametrisation of the boundary curve of a general dependency set K. 
To this end, we parametrise the upper unit circle via u = (cos(�), sin(�))T ∈ �

1
+
 

for � ∈ [0,�∕2] and we assume that � is differentiable. For � ∈ (0,�∕2) a point 
(x1, x2) on the desired envelope curve will then satisfy the two conditions

which can be seen by a standard calculus of variations argument (European Math-
ematical Society, 2020). Let �1� and �2� denote the partial derivatives of � with 
respect to first and second component. The two conditions can be then be expressed 
as

K =
�
k ∈ [0,∞)d ∶ ⟨k, u⟩ ≤ �(u) for all u ∈ �

(d−1)
+

�
,

�(x) = sup{⟨x, k⟩ ∶ k ∈ K}, x ∈ [0,∞)d,

Δd ⊂ K ⊂ [0, 1]d,

⟨(
cos(�)

sin(�)

)
,

(
x1
x2

)⟩
− �

(
cos(�)

sin(�)

)
= 0,

�

��

[⟨(
cos(�)

sin(�)

)
,

(
x1
x2

)⟩
− �

(
cos(�)

sin(�)

)]
= 0,

x1 cos(�) + x2 sin(�) = �(cos(�), sin(�))

−x1 sin(�) + x2 cos(�) = − sin(�)�1�(cos(�), sin(�)) + cos(�)�2�(cos(�), sin(�)).
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Solving the system for x1 and x2 (while taking into account sin2(�) + cos2(�) = 1 ) 
gives

where

The parametrisation of the boundary curve of K as given by (17) and (18) is the 
basis for all our plots in this text.

Example C.1 (Hüsler-Reiß distribution). For the bivariate Hüsler-Reiß family with 
stable tail dependence function

where �2 = �12 , straightforward calculations show that

with

In other situations the spectral density h of � may be known, such that

Example C.2 (Dirichlet model). The spectral density of the bivariate Dirichlet model 
with parameter vector (�1, �2) ∈ (0,∞)2 is given by

Let us abbreviate

Taking into account the identities H(1) = 2 and H̃(1) = 1 (due to marginal stand-
ardisation) straightforward calculations yield

(17)x1 = cos(�)L(�) + sin2(�)L1(�) − sin(�) cos(�)L2(�),

(18)x2 = sin(�)L(�) − sin(�) cos(�)L1(�) + cos2(�)L2(�),

L(�) = �(cos(�), sin(�)) and Li(�) = �i�(cos(�), sin(�)), i = 1, 2.

(19)�(x1, x2) = x1Φ

(
�

2
+

log(x1∕x2)

�

)
+ x2Φ

(
�

2
+

log(x2∕x1)

�

)
,

L1(�) = L̃(cot(�)) and L2(�) = L̃(tan(�)),

L̃(t) = Φ

(
�

2
+

log (t)

�

)
+

1

�
�

(
�

2
+

log (t)

�

)
−

1

�t
�

(
�

2
−

log (t)

�

)
.

�(x1, x2) =
∫

1

0

max(�x1, (1 − �)x2)h(�)d�.

h(�) =
Γ(�1 + �2 + 1)

(�1� + �2(1 − �))(�1+�2+1)

�
�1
1

Γ(�1)

�
�2
2

Γ(�2)
��1−1(1 − �)�2−1.

H(t) =
∫

t

0

h(�)d� and H̃(t) =
∫

t

0

�h(�)d�.
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Hence,
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�(x1, x2) = x1 − (x1 + x2)H̃

(
x2

x1 + x2

)
+ x2H

(
x2

x1 + x2

)
,

�1�(x1, x2) = 1 − H̃

(
x2

x1 + x2

)
,

�2�(x1, x2) = H

(
x2

x1 + x2

)
− H̃

(
x2

x1 + x2

)
.

L(�) = cos(�) − (sin(�) + cos(�))H̃

(
1

1 + cot(�)

)
+ sin(�)H

(
1

1 + cot(�)

)
,

L1(�) = 1 − H̃

(
1

1 + cot(�)

)
,

L2(�) = H

(
1

1 + cot(�)

)
− H̃

(
1

1 + cot(�)

)
.
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