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A B S T R A C T   

Anaerobic digestion is widely employed to process various organic wastes while generating renewable energy 
and nutrient-rich digestate. However, lignocellulosic wastes, especially wood waste, suffer from the recalcitrance 
associated with high lignin content, thereby adversely impacting on biogas production. It remains unclear 
whether wood waste is suitable as a feedstock for anaerobic digestion and to what extent pretreatment tech-
niques could affect its biochemical methane potential. In this paper, 769 datasets on methane production from 
wood waste were collected for meta-analysis. The results showed an average 146 % increase in methane pro-
duction for other organic wastes compared to wood waste when pretreatment techniques were not applied, but 
this gap could be mitigated to 99 % when pretreatment techniques were considered, indicating that pretreatment 
techniques could be more effective for wood waste. A further analysis of different pretreatment techniques 
showed that pretreatment significantly increased the methane production of wood waste by 113 % and that a 
combination of pretreatment techniques was more effective than a single method. Finally, three machine 
learning algorithms were applied to explore the relationship between methane production and selected variables. 
The results showed that the random forest method yielded better predictive performance for methane production 
(R2 = 0.9643) than artificial neural networks and support vector regression. Feature importance analysis found 
that particle size had a higher influence than temperature or feedstock composition. Overall, this study gives 
insight into the potential of utilizing wood waste as a feedstock for anaerobic digestion and the importance of 
employing suitable pretreatment methods. This work also reveals correlations between methane production and 
critical variables, which could serve as a guide for optimizing operational adjustments during anaerobic 
digestion.   

1. Introduction 

The world is currently in transition from a fossil energy economy 
system to an era of renewable and sustainable resource availability [1]. 
Trees, as the most abundant sustainable bioresource, not only serve as a 
versatile building material but also as a source of bioenergy, attracting 
considerable attention in this epochal transformation [2]. The world’s 
total growing stock of trees was about 5.57E11 m3 in 2020, and it is 
estimated that approximately 3.97E09 m3 of wood were harvested in 
2018 [3]. A substantial amount of wood waste is generated from 
different sources throughout the timber supply chain, such as logging 
operations [4], sawmills [5], furniture manufacturers [6], pruning ac-
tivities [7], and construction and demolition [8]. In general, almost 50 
% of a tree can be processed to the saleable product, while the rest is 
retained as wood waste [9]. However, due to a combination of factors 

only a limited amount of wood waste has been available for recycling 
and reuse. 

Wood is often subject to surface treatment prior to use and therefore 
post-consumer wood may contain various impurities and contaminants. 
Such treatments can be environmentally harmful if proper disposal and 
further processing are not carried out. To help ensure proper disposal 
and a sustainable recycling of wood waste, the Wood Recyclers Associ-
ation in UK has divided post-consumer wood into 4 categories [10]: 
Grade A being visibly clean and chemically untreated; Grade B being 
chemically treated but non-hazardous industrial wood waste; Grade C 
being chemically treated but non-hazardous municipal wood waste; 
Grade D being chemically treated and hazardous. Currently, whilst only 
grade A should be recycled and reused, it is commonly recycled together 
with a mixture of B and C [11]. Conventional approaches to dealing with 
wood waste include recycling, sanitary landfill, and incineration. 
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Although these practices have been widely adopted with government 
support (e.g., subsidies and policies), they significantly limit the po-
tential to exploit the resources embedded in wood waste. In addition, 
landfill can cause environmental problems by releasing large amounts of 
greenhouse gases [12,13]. The widescale recycling of wood waste is 
strongly limited in practice by factors such as waste collection and 
transportation, environmental regulations and the development level of 
a particular country [14]. The emission of harmful compounds on the 
combustion of chemically treated wood waste on a large-scale is also 
problematic [15,16]. The combination of all these factors underlines the 
urgent need for alternative waste management strategies that can reduce 
the environmental impact of wood waste and tap into its value as a 
sustainable bioresource. 

Anaerobic digestion (AD) is an appealing option that simultaneously 
helps to mitigate pollution caused by improper wood waste treatment 
and generates biogas, a source of renewable energy. AD can be used not 
only to manage wood waste from mushroom cultivation [17], forest 
residues [18], municipal solid waste [19], yard trimmings [20], and 
wood processing [21], but also wood waste treated with chemical pre-
servatives or contaminated with toxic compounds. For example, Ali 
et al. have constructed multiple microbial consortia that can be used to 
enhance the biochemical methane potential (BMP) of creosote-treated 
wood [22,23]; Evandro et al. performed AD using arsenic-rich Pteris 
vittata and found that AD was effective in removing arsenic with 
methane production reduced by only 7 % compared to control group 
[24]. In addition, part of the organic matter from industrial biogas plants 
remains in the solid phase of the digestate, which can then be separated 
out and used as soil conditioner [25] or as pyrolysis feedstock to yield 
gas, bio-oil and biochar [26,27]. However, the high lignin content and 
recalcitrant crystalline cellulose structure of wood waste make efficient 
and timely biogas production difficult, which limits their large-scale 
application in AD [28]. Although many pretreatment techniques to 
enhance the biogas production of wood waste have been developed by 
the reduction of particle size, the improvement of lignocellulose 
biodegradation, or the removal of any inhibitors and toxic compounds 
[29–31] landfill and incineration treatment remain commonplace while 
AD is often overlooked. To the best our knowledge, no systematic 
analysis has been published to discover the potential of wood waste as 
feedstocks in AD. Meta-analysis, a scientific statistical method, is ideally 
suited for bridging the gap between traditional literature review and 
quantitative analysis [32]. By analyzing a large amount of data, more 
dependable conclusions can be drawn [33]. Thus, systematic employ-
ment of meta-analysis allows for the acquisition of reliable conclusions. 
Furthermore, Machine learning (ML) is a tool with the capability of 
developing predictive models by extracting internal information and 
learning patterns from large data sets [34]. There is therefore the po-
tential that a refined ML model can be used to calibrate system param-
eters to optimize biogas output. 

This study employs a hierarchical meta-analysis approach to analyze 
BMP of wood waste, including the comparison between BMP of wood 
waste and other organic wastes and the enhancement of different pre-
treatment techniques on BMP of wood waste. Then, the effects of 
different parameters in AD of wood waste were determined through 
diverse ML algorithms. The chief goals of this research were to (i) 
investigate the BMP of wood waste and other organic wastes; (ii) iden-
tify the pretreatment techniques that significantly improve BMP of wood 
waste; (iii) confirm the main factors affecting methane production and 
optimize the AD conditions; (iv) predict methane production from 
substrate physicochemical characteristics and AD conditions for indus-
trial applications. 

2. Materials and methods 

2.1. Literature search and data selection 

The literature search was conducted by two separate individuals 

according to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines, in the databases Web of Science 
and PubMed that combined keywords related to AD with keywords 
related to wood waste (cutoff date 07 December 2022). The following 
search terms were employed: (anaerobic *digestion OR biogas OR bio-
methane) and (lignocellulos* OR wood* OR forest* OR sawdust*), and 
searches in Web of Science were limited to the topic [title/abstract/ 
keywords] and in PubMed to [title/abstract]. A total of 4441 articles 
(excluding duplicates) were initially obtained, then the title and abstract 
were examined and finally the full manuscripts (Fig. B.1). Publications 
included in this meta-analysis were considered to meet the following 
criteria: (1) investigated wood wastes as feedstocks for AD; (2) studies 
with “treatment” group and “control” group, where other experimental 
conditions were identical; (3) included methane production in a stan-
dard format (L kg− 1 of volatile solid (VS) or L kg− 1 of total solid); and (4) 
measurable data were presented for the determination of mean value 
and uncertainty of methane production, as standard deviation (SD) or 
standard error (SE). Subsequently, 42 publications were retained in the 
meta-analysis containing 259 groups of datasets on different pretreat-
ment methods for wood waste, 22 groups of datasets on anaerobic co- 
digestion of wood waste, and 488 groups of datasets on comparing 
wood waste with other organic wastes in AD (Table A.1-A.2). 

Moreover, publications included in the machine learning analysis 
were considered to meet the following criteria: (1) investigated wood 
wastes as the feedstocks for AD; (2) included methane production in a 
standard format (L kg− 1 of VS); (3) presented measurable data for the 
determination of mean value and uncertainty of BMP, as standard de-
viation (SD) or standard error (SE); (4) detailed lignocellulosic compo-
nent of wood wastes; and (5) presented details on inoculum, volume, 
temperature and the ratio of inoculum to substrate in AD. To form a 
qualified dataset, nine input variables including wood types, inoculum 
types, volume (ml), temperature (℃), particle size (mm), ratio of inoc-
ulum to substrate (based on VS), cellulose content (%), hemicellulose 
content (%), lignin content (%), and digestion time (d) were chosen, in 
which wood types and inoculum types were represented as categorical 
objects. The accumulated methane production (L kg− 1 of VS) during AD 
was selected as the output variable. To avoid bias introduced by impu-
tation, publications lacking any of the above information were not 
considered. Under these criteria, 1179 groups of datasets were collected 
from 19 publications for this machine learning analysis (Table A.3). The 
values of numerical objects were extracted manually using the Web-
PlotDigitizer (https://automeris.io/WebPlotDigitizer/, Version 4.6). 

2.2. Meta-analysis 

Three essential parameters for the methane production were 
extracted from the screened papers, including the mean, standard de-
viation (SD), and the number of replicates (n). If standard errors (SE) 
was provided, the SD can be calculated using formula SD = SE * sqrt (n). 
For the meta-analysis, a natural log-transformed response ratio is used as 
a metric to estimate the magnitude of the treatment effect, with the 
detailed methodology described in previous publications [35,36]. 

A subgroup meta-analysis was conducted to compare the BMP of 
wood waste with other organic wastes and to explore the impact of 
different pretreatment methods on BMP of wood waste. The types of 
wood waste were classified into hardwood and softwood; the pretreat-
ment methods included biological techniques, chemical techniques, 
physical techniques, anaerobic co-digestion techniques, and combina-
tion of multiple methods; other organic wastes included crop straw, 
municipal solid waste, wild plant, and yard waste. Meta-analysis was 
conducted using the “metafor” package and “forestplot” package, 
implemented in R version 4.1.3 (https://www.r-project.org/). This 
study used and modified the codes from Zhang et al. [36], and detailed 
description of the codes are available in the repository: https://github. 
com/pablogalaviz/Micro-Plastics-Meta-Analysis.git. 
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2.3. Implementation of ML models 

Three types of supervised ML models, namely support vector 
regression (SVR) [37], random forest (RF) [38,39], and artificial neural 
networks (ANN) [40], were selected to simulate the complex effects of 
AD parameters on BMP of wood waste, as all three have been found to be 
accurate in predicting methane production [41]. In the process of con-
structing reliable models, 80 % of datasets were used for training and 20 
% reserved for testing. Prior to model training, the data was normalized 
to eliminate issues associated with dimensions and units [42]. 

In the SVR modelling, kernel functions remap the constrained 
dimensional space into a more expansive one. The SVR problem is 
resolved by minimizing the values of the loss function and simulta-
neously maximizing the margin [43]. To optimize the preliminary 
trained model, a cross-validation based grid search was employed on 
hyperparameters, followed by the function selection. 

The RF model is an ensemble modelling algorithm developed based 
on decision tree algorithms. The incorporation of random sampling and 
ensemble strategies in RF facilitates precise predictions and assists in 
circumventing overfitting. It is imperative to consider hyperparameter 
tuning when designing an optimal tree structure, with the principal 
parameters being adjusted based on cross-validation. 

ANNs are mathematical frameworks designed to replicate the neural 
systems of the human brain, processing information through a weighted 
sum of inputs. The back-propagation neural network was utilized in this 
paper; the network error is transferred from the output layer to the input 
layer to adjust the network’s weights and biases. In the pursuit of an 

efficient neural network, a selection of activation functions and the 
number of hidden nodes were explored. 

3. Results and discussion 

3.1. Overview of studies of impact of AD on wood waste 

Initially, 42 research articles were identified from the literature 
search results which experimentally investigated BMP of wood waste. 
The number of publications referencing AD has increased annually, with 
significant growth since 2006. Although AD has received increasing 
interest, there are few publications exploring AD of wood waste, with 
the number basically stable at four per year since the first publication in 
2010 (Fig. 1a). The search results about AD were divided into two cat-
egories. The first is ethanol fermentation, where the main feedstocks 
investigated are crop straws (agricultural wastes); the other part is 
where the main feedstocks are manure, food waste, and sludge (Fig. 1b). 
Whilst AD requires microorganisms to metabolise organic matter into 
useful products the complex structure of lignocellulosic wastes contains 
bonds and functional groups that make their degradation very difficult 
[28]. In contrast, the organic matters of manure, food waste, and sludge 
are more amenable to AD as subsequently have become a greater focus 
of research [44,45]. 

From the selected 42 studies, a total of 769 datasets were identified 
and were mainly classified by comparing different pretreatment 
methods and different organic wastes. Fig. 1c shows the respective 
proportion of each research content, where other organic wastes include 

Fig. 1. General trends in experimental research about the anaerobic digestion of wood waste. (a) Number of publications before 07 December 2022 that experi-
mentally examined the anaerobic digestion of wood waste. (b) Keywords co-occurrence analysis, plotted by VOSviewer 1.6.18 software. (c) Respective proportion of 
research content (n = 769), including pretreatment techniques (n = 281) and the type of other organic waste (n = 488). MSW: Municipal solid waste. 
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wild plant (42.73 %), crop straw (24.45 %), yard waste (19.38 %), and 
municipal solid waste (13.44 %). 22 groups of datasets concerned the 
anaerobic co-digestion of wood waste with other wastes, such as 
manure, food waste, crop straw, showing that anaerobic co-digestion 
can increase BMP by 199.23 % (Table A.2). Furthermore, the 
maximum increase occurred when woodchips and food waste were 
anaerobic co-digested in a 1:1 wt ratio [46]. Fig. B.2 shows wood waste 
had the lowest BMP compared to other organic wastes, which could be 
explained by the high lignin content in the wood waste [28]. Yard waste 
consisted mainly of leaves, grass clippings, flowers, twigs, and branches, 
and twigs and branches account for a large part [47]. Therefore, the 
BMP of yard waste was close to wood waste. Moreover, BMP also 
differed considerably between softwoods and hardwoods, with hard-
woods being more productive. In the subsequent meta-analysis, hard-
woods and softwoods are considered separately. 

3.2. BMP comparison for different organic wastes 

For studies considering AD of different organic wastes, the feedstocks 
involved mainly lignocellulosic wastes, which were classified according 
to source and variety as wood waste, crop straw, wild plant, yard waste, 
and the organic fraction of municipal solid waste (Table A.2). Of these, 
the first four (wood waste, crop straw, wild plant, and yard waste) are all 
considered lignocellulosic wastes, while municipal solid waste are 
highly nonhomogeneous mixture generated from residential, commer-
cial, and industrial sectors [48]. Wild plant refers to the natural herba-
ceous phytomass that grows in the wild without any human intervention 
[49]. These wastes could partly overlap because of their complexity, for 
example, municipal solid waste consists of yard trimmings (garden 
cuttings), which is also divided into yard waste [47,50]. In Fig. 2, the 

response ratio of other organic wastes compared to wood waste is pre-
sented. Summarizing across the organic waste types, wood waste had 
the lowest BMP. In particular, crop straw BMP was 132 % higher than 
wood waste, wild plant BMP was 181 % higher, yard waste BMP was 89 
% higher, and municipal solid waste BMP was 134 % higher. The 
summary effect size for other organic wastes in comparison to wood 
waste was 2.22 [95 % CI: 1.82, 2.72] (p < 0.001). This means that on 
average the BMP of other organic wastes was 112 % higher than that of 
wood waste. These results were primarily due to the chemical compo-
sition of the organic wastes. The cellulose, hemicellulose, and lignin 
content of crop straw was 40.67 %, 16.87 % and 21.76 % respectively, in 
addition to 3.12 % water soluble carbohydrate and 4.65 % crude protein 
[51]; The chemical composition of wild plant in terms of cellulose, 
hemicellulose and lignin was 45.37 %, 34.33 % and 15.11 % respec-
tively [49]; The cellulose, hemicellulose, and lignin content of yard 
waste was 39.65 %, 29.35 % and 23.91 % respectively [52]; In munic-
ipal solid waste, kitchen waste contained 6–16 % degradable hol-
ocellulose, 31–41 % sugars, 17–22 % protein, and 14–25 % fat, and the 
degradable paper had 72–94 % degradable holocellulose [53]. However, 
wood waste consisted of 31.07 % cellulose, 17.12 % hemicellulose, and a 
high lignin content (28.82 %) [28]. Lignin is the major component of the 
recalcitrant fraction of lignocellulosic waste and an important factor 
limiting their BMP [54,55]. The overall improvement in BMP of hard-
wood waste was 83 % compared to softwood waste with summary effect 
size of 1.83 [0.96, 3.49] (p = 0.0669) (Fig. 2). Furthermore, a similar 
trend was observed when other wastes compared to hardwood and 
softwood respectively. This could be explained by the high content of 
polysaccharides in hardwood and the lower lignin content [56]. On the 
other hand, the hardwood xylan had a higher degree of deacetylation, 
making them more susceptible to degradation [57]. 

Fig. 2. The response ratio of methane production from other organic wastes compared to wood waste. The blue square symbols show mean effect size with error bars 
representing 95 % confidence interval, and the red diamond represents the summary effect. A ratio > 1 indicates that the methane production from the treatment is 
higher than that from the control group, and specifically, a response ratio of 2.22 indicates that the treatment group produces 122 % higher methane compared to the 
control group. n refers to sample size, and p means the p-value of the Q test with p < 0.05 indicating a significant difference. HW: Hardwood; SW: Softwood; CS: crop 
straw; WP: wild plant; YW: yard waste; MSW: municipal solid waste. 
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To investigate the impact pretreatment has on BMP, the dataset was 
divided into two parts, with and without pretreatment, for analysis. In 
the absence of pretreatment for substrates, the overall BMP of other 
organic wastes was 146 % higher than wood waste with summary effect 
size of 2.46 [1.89, 3.19] (p < 0.001). However, this gap was reduced to 
99 % with summary effect size of 1.99 [1.59, 2.48] (p < 0.001) under the 
application of pretreatment techniques (Fig. 3). The results showed that 
wood waste specifically had better pretreatment potential — pretreat-
ment increased its BMP by a greater amount — than for other organic 
wastes. Pretreatment techniques can change the chemical structure of 
lignin, making it more accessible to microorganisms, which greatly 
increased the BMP of wood waste [58]. Additionally, the BMP of 
municipal solid waste fluctuated considerably (Fig. 3c and 3d), as the 
composition of municipal solid waste varied significantly among 
different geographical areas. For example, the municipal solid waste 
investigated by Krause et al. consisted of mainly paper and paperboard 
[19], yet Pastor-Poquet et al. focused on MSW consisting of household 
waste, restaurant waste, and spent coffee [59]. 

3.3. Response of BMP to pretreatment techniques on wood waste 

A number of studies have shown that pretreatment techniques can 
enhance BMP of lignocellulosic wastes by increasing the surface area of 
feedstock (size reduction and the wetting of biomass) and biomass 
decrystallization, resulting in an increase in the accessibility and 
biodegradability of microorganisms to the organic matter [23,60,61]. 
However, it is still not fully clear to what extent pretreatment techniques 
contribute to the BMP of wood waste and how to choose the optimal 
pretreatment technique for different sources and components of wood 
waste. The cumulative methane production of wood waste after 
different pretreatment techniques is shown in Fig. B.3. According to the 

meta-analysis depicted in Fig. 4, the employment of pretreatment stra-
tegies significantly improved the BMP of wood waste by 113 % (n =
250), with an overall effect size of 2.13 [1.68, 2.70] (p < 0.001). 
Furthermore, the combination of multiple pretreatment techniques was 
more effective than a single approach, except for the combination of 
biological and chemical strategies (86 %, n = 39) which was slightly less 
effective than physical strategy (99 %, n = 43). Many studies have 
demonstrated that a combination of two pretreatments, like biological 
with chemical or physical strategies, was more useful compared to a 
strategy alone [62]. An appropriate combined strategy would not only 
improve the decomposition of lignocellulosic feedstocks, but also opti-
mize the utilization of their constituent components, all while keeping 
operating costs relatively low and optimising the product quality [63]. 
The synergistic impact of combining physical pretreatment with either 
chemical or biological pretreatments was observed to markedly enhance 
the BMP, with effect size of 4.76 [1.98, 11.44] (p < 0.001) or 4.67 [2.10, 
10.39] (p < 0.001) respectively (Fig. 4). These findings imply that 
physical pretreatment plays a pivotal role in facilitating successful AD of 
wood waste, underscoring the necessity of employing multiple pre-
treatment strategies to maximize the BMP of woody biomass. The 
summary effect size of hardwood and softwood were 1.85 [1.49, 2.29] 
(p < 0.001) and 2.55 [1.60, 4.04] (p < 0.001), and akin to the outcomes 
on all wood waste, physical pretreatment and multiple pretreatment 
strategies were exceedingly advantageous in advancing the BMP 
(Fig. B.4). It is noted that in some specific cases that combine pretreat-
ment did not result in higher BMP values in comparison to single 
pretreatment. 

The largest increase in the methane yield for wood waste was 
observed after the combination of biological and physical pretreatments 
(Table 1). Hydrothermal treatment together with cellulolytic enzyme 
was the method with highest increased BMP (3074.2 %) when compared 

Fig. 3. The cumulative methane production of different organic wastes (a) without pretreatment and (c) with pretreatment techniques. The response ratio of 
methane production from other organic wastes compared to wood waste (b) without pretreatment and (d) with pretreatment techniques. WW: wood waste; CS: crop 
straw; WP: wild plant; YW: yard waste; MSW: municipal solid waste. For (b) and (d), the plot shows the mean effect size (black squares and blue diamond) with error 
bars representing 95 % confidence interval. A ratio > 1 indicates that the methane production from other wastes is higher than wood waste, and specifically, a 
response ratio of 2.22 indicates that other wastes produce 122 % higher methane compared to wood waste. n refers to sample size and p means the p-value of the Q 
test, with (*) p < 0.05; (**) p < 0.01; (***) p < 0.001. 
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to untreated wood waste [18]. The process of hydrothermal treatment 
has been shown to be an effective means of augmenting the solubility of 
biomass, thereby creating a more conducive environment for enzymatic 
activity [64]. Additionally, an important factor contributing to the sig-
nificant improvements in BMP observed in these studies was the 
markedly low levels of methane production from untreated wood, close 
to 5 mL/g of VS [18]. Despite the considerable gains in BMP that can be 
achieved with these pretreatment strategies, it is imperative that a 
thorough investigation is carried out into the energy consumption and 
materials associated with these techniques, in order to surpass the cost- 
benefit threshold in practical applications. Physical techniques tend to 
be energy intensive, whereas chemical techniques could result in the 
production of environmentally hazardous substances, and have their 
own environmental footprints [65]. By contrast, biological techniques, 
while being a comparatively slower process, are typically economical 
approaches that require minimal energy input and are largely devoid of 
hazardous chemicals [28]. Indeed, among individual pretreatment 
techniques, biological pretreatment exhibited the most substantial in-
crease in BMP relative to physical and chemical pretreatment, regis-
tering an impressive 713 % growth (Table 1). Yet, when it comes to 
wood waste, the research on biological pretreatment and the identifi-
cation of microbial consortium involved in wood degradation is still in 
its infancy. 

3.4. BMP of wood waste predicted by ML models 

3.4.1. Description of the collected datasets for ML 
The characteristics of all the variables used for ML are shown in 

Table A.3. For pretreated wood materials, the properties of materials 

after pretreatment were provided for analysis. The inoculum could be 
divided into sewage sludge and effluent from anaerobic digestion of 
manure, both of which were common types of high-nitrogen inocula 
(high nitrogen) to balance the typically high carbon to nitrogen ratio of 
feedstock and enhance the digestion performance [78]; Wood types 
were divided into hardwood and softwood according to the previous 
meta-analysis results. Although the data collected primarily employed 
the mesophilic conditions (30–40 ℃), the reaction progressed more 
rapidly under thermophilic conditions, resulting in higher biogas pro-
duction rates [79]. The AD of wood waste lacked data on thermophilic 
conditions. Meanwhile, the data on digestion volumes was also incom-
plete, as the volumes in the dataset were obtained from lab-scale. 

To further reveal insights into the collected datasets, linear correla-
tions between pairwise variables were analysed using Pearson correla-
tion coefficient. As shown in Fig. 5, there was a weak positive correlation 
between inoculum types and lignin content with methane production. 
Many parameters, like temperature and I/S ratio, did not present a linear 
correlation with methane production, while these parameters have been 
proved to influence the methane production of AD [80,81]. Therefore, 
further internal relationships between these variables should be 
discovered based on big data and non-linear methods. 

3.4.2. Methane production predicted by ML algorithms 
The collected data (except for the methane production data) were 

processed as input variables for the ML models and the methane pro-
duction values were considered as output variables. After the parameter 
optimization process (Fig. B.5 and B.6; Table B.1 and B.2), all three 
models showed good fitting results, where RF (R2 = 0.9643, RMSE =
15.52) was followed by ANN (R2 = 0.9640, RMSE = 16.30) and SVR (R2 

Fig. 4. The effects of different pretreatment techniques on methane production from wood waste. The blue square symbols show mean effect size with error bars 
representing 95 % confidence interval, and the red diamond represents the summary effect. A ratio > 1 indicates that the methane production from the treatment is 
higher than that from the control group, and specifically, a response ratio of 2.13 indicates that the treatment group produces 113 % higher methane compared to the 
control group. n refers to sample size, and p means the p-value of the Q test with p < 0.05 indicating a significant difference. MC: Microbial consortium; AAS: Aqueous 
ammonia soaking; NMMO: N-methylmorpholine-N-oxide; CA: Chemical antidote. 
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Table 1 
Performance of the pretreatment techniques for wood waste and maximum methane yield increase under specific pretreatment configuration.  

Pretreatment Average methane production (L/kg 
of VS) 

Maximum increase in methane production 

XControl XTreated XIncrease (%) Specific pretreatment configuration Maximum increase 
(%) 

Biological      
Enzyme 56.1 66.2 51.7 (n=9) 30 FPU/g cellulolytic enzyme at 50 ◦C for 12 h [18] 185.4 
Fungal 108.0 178.0 178.7 

(n=12) 
Ceriporiopsis subvermispora at 28 ◦C for 7 days [66] 265.5 

MC 44.7 81.1 286.7 (n=3) Aerobic sludge pretreatment at 37 ◦C and 90 rpm for 10 d [30] 713.0 
Chemical      
Acid 26.4 27.6 6.5 (n=6) 85% phosphoric acid at 60 ◦C for 45 min [67] 39.8 
Alkali 80.5 153.1 101.9 

(n=36) 
NaOH at -15 ◦C for 16 h [68] 556.8 

AAS 30.8 76.9 150.5 (n=3) AAS at 22 ◦C for 3 d [69] 176.9 
Iron-based 237.5 297.9 27.3 (n=13) 0.5 mM Fe(II) and H₂O₂ [70] 49.0 
NMMO 45.2 85.8 90.1 (n=20) 75% NMMO for 15 h [71] 298.2 
Organosolv 54.9 78.4 65.6 (n=18) Ethanol extractives [72] 319.6 
Physical      
Autoclave 79.4 104.0 90.6 (n=15) Steam explosion at 20 bar for 10 min [73] 669.7 
Hydrothermal 42.7 109.8 36.3 (n=17) Hydrothermal at 170–210 ◦C for 30 min [74] 258.4 
Ultrasound 118.8 117.6 12.0 (n=3) Ultrasonic at 40 KHz and 40 ◦C for 30 min [30] 35.7 
Biological þ Chemical      
Fungal + Iron-based 190.7 279.3 54.8 (n=16) Pleurotus ostreatus at room temperature for six weeks + Fe(III) and H₂O₂ [70] 136.8 
Enzyme + Iron-based 190.7 326.1 88.2 (n=12) 0.5 mM Fe(II) and H₂O₂ + Enzyme at 50 ◦C for 96 h [70] 155.1 
Fungal + Alkali 95.4 139.6 46.4 (n=8) Abortiporus biennis at 27 ◦C for 30 d + NaOH at 80 ◦C for 24 h [75] 115.0 
MC + Alkali 13.6 46.0 237.3 (n=2) NaOH at room temperature for 10 min + MC [30] 245.2 
Biological þ Physical      
Enzyme + Autoclave 10.9 56.5 418.5 (n=6) Steam explosion at 16 bar for 10 min + 30 FPU/g enzyme [73] 491.4 
Enzyme + Hydrothermal 8.2 167.9 2069.5 

(n=8) 
Hydrothermal at 210–215 ◦C for 5 min + 30 FPU/g cellulolytic enzyme at 50 ◦C for 12 
h [18] 

3074.2 

Fungal + Autoclave 106.8 159.8 68.0 (n=12) Steam explosion at 210 ◦C for 10 min + 2% Caldicellulosiruptor bescii culture (v/v) [76] 143.2 
Fungal + Hydrothermal 28.9 51.8 79.3 (n=2) Hydrolysis + Petronet alfa [29] 88.6 
MC + Hydrothermal 9.6 40.3 319.9 (n=2) Liquid hot water + MC [30] 320.9 
Physical þ Chemical      
CA + Hydrothermal 10.6 108.5 972.5 (n=4) Hydrothermal at 210–215 ◦C for 5 min + Sodium dithionite as a chemical antidote  

[18] 
1677.1 

Iron-based + Ultrasound 341.3 310.3 3.0 (n=5) 0.001 M Fe(III) + 0.001 M H₂O₂ + 2 h ultrasonication duration [77] 4.9 
Organosolv +

Hydrothermal 
57.2 159.6 194.1 (n=4) Ethanol organosolv + Hydrothermal at 170–210 ◦C for 30 min [74] 376.3 

MC: Microbial consortium; AAS: Aqueous ammonia soaking; NMMO: N-methylmorpholine-N-oxide; CA: Chemical antidote. 

Fig. 5. Pearson correlation between pairwise variables. WT: Wood types; IT: Inoculum types; V: Volume (mL); Tem: Temperature (℃); PS: Particle size (mm); I/S: 
Ratio of inoculum to substrate (based on VS); C: Cellulose content (%); H: Hemicellulose content (%); L: Lignin content (%); T: Digestion time (d); CH4: Methane 
production (L/kg of VS). (*) p < 0.05; (**) p < 0.01; (***) p < 0.001. 
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= 0.9451, RMSE = 20.92) (Table 2 and Fig. 6a–c). This could be 
explained by the selection of major parameters affecting the methane 
yield from AD and by a greater number of data compared to the publi-
cations [37,82,83]. To visualize better the results, regression error 
characteristic (REC) curves were used to estimate the error in an abso-
lute deviation form of all ML models (Fig. 6d). The REC curve represents 
the cumulative distribution function of the error, with a smaller area 
over the curve denoting greater accuracy. As shown in Fig. 6d, RF had 
the highest prediction accuracy among the three ML algorithms. RF is an 
ensemble learning method that constructs a multitude of decision trees 
and combines their outputs to improve the accuracy and stability of 
predictions [84,85]. Meanwhile, RF shows superior performance on 
high-dimensional, large, and noisy data, while avoiding overfitting 
problems [86]. Long et al. used six ML algorithms to predict methane 
yield by combining genomic data and their corresponding operational 
parameters and found that RF achieved the most accurate predictions 
when only operating parameters were used as input variables and when 
combining operating parameters with genomic data [38]. RF exhibited 
advantages of high generalizability and swift convergence when applied 
to AD data, which aligns with the results of this study. In general, the 
optimal RF model can reliably and precisely forecast and guide practical 
AD experiments. 

To weigh the impact of various factors on methane production, RF 
was employed to assess feature importance and the results are illustrated 
in Fig. 7. The two most important factors were digestion time (40.5 %) 
and particle size (25.8 %). Firstly, the digestion time exhibits a close 
association with the methane production. Specifically, as time elapses, 
the availability of organic matter to microorganisms in an AD system 
increases, thereby leading to an escalation in cumulative methane pro-
duction. Secondly, particle size plays an important role in AD by 
affecting the surface area of substrate. Dai et al. confirmed this view and 
illustrated that the reduction in particle size had a facilitative effect on 
methane production [87]. For lignocellulose composition, the lignin 
content of the substrate had a more significant effect on AD compared to 
cellulose and hemicellulose (Fig. 7). This was consistent with the 
established situation where lignin was the main obstacle to breakdown 
of lignocellulosic wastes [55]. It is worth noting that the temperature did 
not have an important effect, which could be explained by the data 
collected in this study mostly adopting similar temperatures (30–40 ℃). 
Therefore, thermophilic conditions could be future studies for the AD of 
wood waste. Overall, the outputs of the RF model could identify 
important factors influencing the AD system. Moreover, as the dataset is 
expanded and additional variables are incorporated, the outcomes have 
the potential to become even more representative. 

3.5. Limitations and future perspectives 

The production of cleaner energy based on AD as an alternative to 
fossil fuel has drawn increasing attention. Among the feedstocks for AD, 
lignocellulosic wastes and especially wood waste are less effective in 
methane production than other organic wastes [28]. Therefore, the data 
related to wood waste and AD are scarce and scattered in the literature. 
In this study, methane production data from wood waste under different 
AD systems was collected for meta-analysis, and the involved mutual 
variables were selected for ML, with the aim of providing a systematic 

insight into the potential for methane production from AD of wood 
waste. The meta-analysis showed that wood waste had a lower BMP than 
other organic wastes but had good pretreatment potential, while all 
three types of ML models accurately predicted methane production 
using the digestion parameters after a certain period of training. The 
existing limitations and future perspectives are summarized as follows. 

The results of this study have several limitations due to the quality 
and quantity of data collected from publications. Firstly, very few 
studies have evaluated methane production from the AD of wood waste. 
In addition, most of these data were obtained from laboratory experi-
ments, where feedstocks consisting of a single wood material were 
added to the AD in the experimental design. For example, the volume of 
AD system in several studies was as low as 60 mL [73], which is far less 
than the practical situation. The temperature collected in the dataset 
was only mesophilic, with thermophilic conditions often present in AD 
plants not fully represented. Therefore, some uncertainty exists when 
extrapolating the results of this study to practical AD of wood waste. 
Secondly, since the vast majority of studies were on a laboratory scale, 
the pretreatment techniques did not take into account the energy and 
material consumption and economics of practical applications. In 
contrast to chemical and physical pretreatment approaches, biological 
approaches can be more eco-friendly technique with low capital and 
operating costs [63]. Unfortunately, there is a lack of biological ap-
proaches, especially natural biodelignification systems, that are as rapid 
and effective as physical and chemical approach. Thirdly, for machine 
learning, the data distribution of some features was inconsistent owing 
to a variety of variations in experimental goals, methodologies, and 
conditions. Many publications cannot provide the data on the ten vari-
ables (wood types, inoculum types, volume (mL), temperature (℃), 
particle size (mm), ratio of inoculum to substrate (based on VS), cellu-
lose content (%), hemicellulose content (%), lignin content (%), diges-
tion time (d)) selected to form the ML dataset. In addition, the elemental 
composition of feedstock, generally missing in the publications, is also 
an important parameter for predicting methane production [37,83]. 
These situations limited the scale of the dataset available in this study. 

The optimisation of AD is a complex issue that depends on multiple 
factors and cannot be directly and accurately measured [88]. To reduce 
the complexity of the experiments, a single wood type was commonly 
used. Therefore, due to the limited number of publications and data that 
can be extracted, it is difficult to systematically evaluate the effect of 
mixed wood types on AD and the performance of anaerobic co-digestion 
between wood waste and other organic wastes. In addition, current 
studies are focused on exploring the improvement of methane produc-
tion from wood waste by different pretreatment technologies, while few 
studies have reported the impact of pretreatment on the microbiome. 
Among other lignocellulosic wastes, pretreatment techniques have been 
demonstrated to alter the microbial composition, especially functional 
microbes, that plays an important role in AD processes [61,89,90]. 
Therefore, future research should focus on the construction of a 
comprehensive database that includes studies with microbiome data 
under uniform experimental conditions and similar experimental 
methodologies. 

4. Conclusions 

To explore the BMP of wood waste, a meta-analysis based on 769 
groups of datasets on methane production and wood waste was con-
ducted. The results showed a 122 % lower BMP for wood waste 
compared to other organic wastes. However, this gap could be mitigated 
to 99 % when pretreatment techniques were considered, indicating that 
pretreatment techniques could be more effective for wood waste. 
Further analysis on different pretreatment techniques showed that the 
employment of pretreatment methods significantly improved the BMP 
of wood waste by 113 % and the combination of multiple pretreatment 
techniques was more effective than a single approach. Moreover, three 
ML algorithms were applied to predict methane production based on ten 

Table 2 
Performance of machine learning models on predicting methane production.  

ML models R2 RMSE MAE STDEV 

SVR 0.9451 20.9235 12.7287 86.6033 
RF 0.9643 15.5247 6.9357 80.4058 
ANN 0.9640 16.3031 9.9939 85.4359 

SVR: support vector regression; RF: random forest; ANN: artificial neural 
network; RMSE: root mean square error; MAE: mean absolute error; STDEV: 
standard deviation. 
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Fig. 6. Performance of the testing datasets of (a) support vector regression (SVR), (b) random forest (RF), and (c) artificial neural networks (ANN). (d) The regression 
error characteristic curves of three machine learning models. 

Fig. 7. Feature importance of each variable based on random forest. WT: Wood types; IT: Inoculum types; V: Volume (mL); Tem: Temperature (℃); PS: Particle size 
(mm); I/S: Ratio of inoculum to substrate (based on VS); C: Cellulose content (%); H: Hemicellulose content (%); L: Lignin content (%); T: Digestion time (d). 

Z. Gao et al.                                                                                                                                                                                                                                     



Chemical Engineering Journal 487 (2024) 150496

10

selected variables involved in the literature. Feature importance analysis 
revealed that digestion time and particle size presented the highest 
importance. The optimal algorithm was RF with the R2 = 0.9643 and the 
RMSE value of 15.52 L/kg of VS in the testing dataset. Considering the 
size of the available data, more types of wood waste and AD parameters 
should be characterized to further explore the BMP of wood waste. 
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