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WELL-POSEDNESS OF THE LENARD-BALESCU EQUATION
WITH SMOOTH INTERACTIONS

MITIA DUERINCKX AND RAPHAEL WINTER

ABsTRACT. The Lenard-Balescu equation was formally derived in the 1960s as the fun-
damental description of the collisional process in a spatially homogeneous system of
interacting particles. It can be viewed as correcting the standard Landau equation by
taking into account collective screening effects. Due to the reputed complexity of the
Lenard-Balescu equation in case of Coulomb interactions, its mathematical theory has
remained void apart from the linearized setting [16, 21]. In this contribution, we focus on
the case of smooth interactions and we show that dynamical screening effects can then be
handled perturbatively. Taking inspiration from the Landau theory, we establish global
well-posedness close to equilibrium, local well-posedness away from equilibrium, and we
discuss the convergence to equilibrium and the validity of the Landau approximation.
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1. INTRODUCTION

In a spatially homogeneous particle system with mean-field interactions, the self-consistent
Vlasov force vanishes, and the particle velocity density F' is predicted to satisfy to leading
order the so-called Lenard—Balescu equation,

8,F = LB(F), (1.1)

where the Lenard-Balescu operator is given by
LB(F) := V- [ B(v,v— vy VF) (F.VF — FV.F) dv,,
R4
with the notation F' = F(v), Fx = F(vs), V =V,, and V, = V,_, in terms of the collision

kernel

> (k- (v—vx
B(v,v — 0, VF) = /Rd(k: ® k) 7 (k) (2 g, (1.2)
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2 M. DUERINCKX AND R. WINTER

where V stands for the particle interaction potential and where the dispersion function &
is defined by

elk,k-v; VF) := 1+‘7(1<;)/ ey du.. (1.3)
R *

In this last expression, we recall the Plemelj formula,

—5 = lim L
X—1 &_\LO xr—1€e

= pv. 1 +ind(z),

where p.v. stands for the principal value. Note that the collision kernel (1.2) only makes
sense provided that this dispersion function (1.3) does not vanish, which is related to the
linear Vlasov stability of F' in view of the Penrose criterion, cf. [20]. In the physically
important case of 3D Coulomb interactions, V (k) = |k| =2, the integral over k in (1.2) is
logarithmically divergent at infinity, which corresponds to the contribution of collisions with
small impact parameter, hence an appropriate cut-off |k| < % needs to be included at so-
called Landau length §. In 1D, particle systems undergo a kinetic blocking and the Lenard—
Balescu operator is trivial (B = 0): we henceforth restrict to space dimension d > 2.

Equation (1.1) was first derived in the early 60s independently by Guernsey [12, 13],
Balescu [2, 3], and Lenard [15] as the accurate kinetic description of homogeneous plasmas
(see also [17, Appendix A]). The collision kernel (1.2) is obtained formally by resolving
the long-time effects of particle correlations. We refer to [9, 10, 25, 27, 19, 18] for first
steps towards its rigorous justification; see also [4] for a discussion of the validity of the
spatial homogeneity assumption in plasma physics. At a formal level, equation (1.1) has
the following expected physical properties:

e it preserves mass, momentum, and kinetic energy,

8,5/ (1,?),%‘7}’2)17: 0; (1.4)
Rd
e its steady states are Maxwellian distributions,

LB(ug) =0,  ppv) = (D)2e P 0< <o

e it satisfies an H-theorem, that is, the Boltzmann entropy is decreasing along the flow,

o [ FlosF = - ;%dXRdFF*(? ~ Y. Blo,w— v V) (- G
<0, (1.5)

In particular, this equation formally describes the relaxation of the velocity density F'
towards Maxwellian equilibrium.

The main difficulty to study this equation stems from the nonlinearity and nonlocality
of its collision kernel (1.2), which from the physical perspective express collective effects
and dynamical screening. Neglecting these would amount to replacing the dispersion func-
tion e(k, k- v; VF') by a constant in the collision kernel B(v,v — vy; VF): the latter would
then reduce to the usual Landau kernel B (v — vy),

B(v,v —v,;VFE) ~ (k@ k)mV(k)26(k- (v—v,))dk
Rd

ol (10 -=pBto)) — By ), (16)

[v—v4 |2



WELL-POSEDNESS OF THE LENARD-BALESCU EQUATION 3

as follows indeed from a direct computation, see (2.12) below, with explicit prefactor

. Wd-1 102
L= 2 /R eV () 2dlk, (1.7)
where wy, stands for the volume of the n-dimensional unit ball. In case of 3D Coulomb
interactions, V (k) = |k|72, collective effects captured by the Lenard-Balescu dispersion
function e(k, k - v; VF') are particularly relevant as they include Debye shielding: indeed,
while Landau integrals (1.6) and (1.7) diverge logarithmically and require a cut-off both
at small and large k in that case, the Lenard-Balescu integral (1.2) is formally convergent
at small k. As shown in |21], the inclusion of small wavenumbers actually yields a huge
difference between Lenard—Balescu and Landau operators: when evaluated at Maxwellian,
the dispersion function e(k, k - v; Vug) is not bounded away from 0 and the collision case
B(v,v —vy; Vug) displays exponential growth in velocity in some directions, in stark con-
trast with the Landau kernel (1.6), cf. [21, Theorem 6]. From the mathematical perspec-
tive, this makes the rigorous study of the Lenard-Balescu equation reputedly difficult in
the Coulomb setting, see e.g. [1, p.64]: even local well-posedness close to Maxwellian re-
mains an open question as it would require fine control of this unbounded collision kernel
along the flow.

In the present contribution, we focus on the simpler case of a smooth interaction po-
tential V: we show that at Maxwellian equilibrium the dispersion function e(k, &k - v; Vug)
is bounded away from 0 in that case, see Lemma 2.1 below, which then allows to handle
dynamical screening perturbatively and to compare to the well-studied Landau case (1.6).
In this spirit, the following main result states the global well-posedness for strong solutions
close to Maxwellian. The proof is inspired by Guo’s work on the Landau equation [14].
Note that we expect the statement to hold for all s > %, but we restrict to integer differ-
entiability to avoid additional technicalities.

Theorem 1 (Global well-posedness close to equilibrium). Let V € L' NH2(R?) be isotropic
and positive definite, and assume xV € LQ(Rd). For all s > 2 and 0 < B < oo, there is a
constant Cy g s large enough such that the following holds: for all initial data F° € LY(RY)
of the form

F° = g+ iaf° >0, f° e H*(RY),
satisfying smallness and centering conditions,

£y < ot [ (Lo o) vias = o (1)
B, R4

there exists a unique global strong solution F of the Lenard-Balescu equation (1.1) with
initial data F°, in the form

F=us+Esf 20,  feLR"H(RY),
and it satisfies for all t > 0,

1 s ray Svigos 1M ars may-

As the Lenard-Balescu equation satisfies an H-theorem, cf. (1.5), solutions are expected
to relax to Maxwellian equilibrium and we indeed establish the following convergence
result. The proof is inspired by corresponding previous work on the Landau equation, see
in particular [23, 24, 22].
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Theorem 2 (Convergence to equilibrium). Under the assumptions of Theorem 1, given
s>2and 0 < B <oo,let F'=pupg+ /pgf be the constructed unique global solution of the
Lenard-Balescu equation (1.1). It converges to equilibrium in the sense that the relative
entropy decays to zero at stretched exponential rate,

H(F'|ug) ;:/ Fllog(L F'ydv <y exp( L tS) (1.9)
Rd He ’

~ COvgp

In addition, we have
ff—0 in L2(R?) as t 1 oo,
for which quantitative estimates hold in case of compact initial data:

(i) If [ga WY f°12 < 0o for some £ > 0, and if the smallness condition (1.8) holds for
some large enough Cy g s (further depending on ), then we have for all 6 < 1,

/ PP Svpes (07 / w1
R4 R4

(i) If [pa 6K<U>9]f°|2 < oo for some 0 < 0 <2 and K > 0, or for 8 =2 and some small
enough K > 0 (only depending on V'), and if the smallness condition (1.8) holds for
some large enough Cyg s (further depending on 6, K ), then we have

12 < ox (_ K teg)/ KW pop2,
/Rdf| Svisek exp( = oo y |°]

Next, we establish local well-posedness away from equilibrium. The proof is surprisingly
involved: while the linearization of the dispersion function disappears when linearizing the
Lenard—Balescu equation at equilibrium (see also [21]), this algebraic miracle does not occur
away from equilibrium and the linearized operator then involves a new nonlocal term with
the highest number of derivatives. In view of the nonlocality, however, this contribution is
shown to be in fact of lower order, cf. e.g. (2.26) in Lemma 2.4. For simplicity, we restrict
here to dimension d > 2, but we believe that this restriction is not essential. Note that
we expect the statement to hold for all s > g, but we restrict to integer differentiability
to avoid additional technicalities. Strikingly enough, one derivative is lost in the control
of the solution with respect to its initial data.

Theorem 3 (Local well-posedness away from equilibrium). Let d > 2, let V e L' NH?(R?)
be isotropic and positive definite, and assume zV € LQ(Rd). Foralls>3 andm >d+7,
for all nonnegative initial data F° € LY(R?), provided the following properties hold for
some M > 0 and vy € R?,

1(0) 2 (V) FO|| 2 may < M, (1.10)
iknf\e(k,k.v;VFo)] > L 7inf LFo(v) > i,
) |v UO\SM

there exist T > 0 (depending on V,M,,s,m) and a unique strong solution F of the
Lenard-Balescu equation (1.1) on the interval [0,T] with weighted Sobolev norm

1(v) 2 (V) F'll2(gay Svassm 1.

We emphasize that the existence of global smooth solutions is an open question even
in the Landau case, cf. |26, Chapter 5, §1.3(2)]; we refer to [11, 8| for recent advances
on the topic. For the Lenard-Balescu equation, getting beyond the above local-in-time
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result would even bring further difficulties due to the possible degeneracy of the dispersion
function away from equilibrium.

In the plasma physics literature, e.g. [26, 1], the Lenard-Balescu equation (1.1) is often
approximated by the simpler Landau equation,

0vFr = Qr(FL), (1.11)

where we recall that the Landau operator takes the form

QL(F) = V- [ Br(v—u)(EVF—FV.E,)dv,,
Rd
Br(v—vy) = ﬁ(ld—%).

In case of 3D Coulomb interactions, this approximation is formally justified by the loga-
rithmic divergence of the integral (1.2) at large wavenumbers; see e.g. [15, 3] and |6, Part 1].
Indeed, a cut-off [k| < % is included in that case in (1.2) to remove the large-k logarithmic
divergence, but for small Landau length § the large-k regime dominates in the integral,
and therefore, as e(k,k - v; VF) — 1 for |k| T oo, one formally recovers the Landau kernel
to leading order O(log }) in view of (1.6). The following result provides a rigorous version
of this heuristics in the limit of short-range interactions, cf. (1.12). While formulated for
global solutions constructed in Theorem 1, the same obviously holds in the local-in-time
setting of Theorem 3, where the existence time is necessarily uniform in ¢ after the relevant
time-rescaling. Note that the Landau equation can also be obtained from the Boltzmann
equation in the grazing collision limit, cf. [1].

Theorem 4 (Landau approximation). Let V € L' NH?(RY) be isotropic and positive def-
wmite, and assume xV € LQ(Rd). Given an exponent a < d, we consider the rescaled
potentials

Vs(z) == 07"V (%), 0> 0. (1.12)
Given s > 2 and 0 < 8 < 00, there is a constant Cy g s large enough such that the following
holds: for all § > 0, for all initial data F° € LY(RY) of the form

F° = pg+/psf® >0, fo € H (RY),
satisfying smallness and centering conditions (1.8), there exists a unique global strong so-

lution Fs of the corresponding Lenard-Balescu equation (1.1) with potential Vs and initial
data F°, in the form

Fy=pg+ iafs 20, fs € L°(RT; HY(RY)).
In addition, up to time rescaling f5(t) == f5(6211=9%), we have
fs = fo LR HSRY)  asd )0, (1.13)
where Ff, = jg+,/fig f1, solves the Landau equation (1.11) with initial data F° and ezplicit
prefactor (1.7).

As our main result in Theorem 1 is inspired by Guo’s work on the Landau equation
in [14], let us briefly discuss the specific challenges faced in the present contribution on
the Lenard—Balescu equation. An obvious difficulty is to ensure the non-degeneracy of the
dispersion function e(k, k - v; VF'), which is achieved in Lemma 2.1 close to Maxwellian
equilibrium. There are however two more severe difficulties arising from the presence of
the nonlinearity |e(k, k-v; VF)|? in the collision kernel (1.2). The first is a structural issue:
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the collision kernel is no longer of convolution type, which prevents for instance higher
derivatives of the kernel from having improved decay (compare (2.8) with |14, Lemma 3|).
We compensate for this by making use of the specific tensor structure of the kernel (see e.g.
the proof of (2.9)). A second difficulty is related to the high order of the nonlinearity. This
requires a fine analysis of critical nonlinear terms, which we express carefully in terms of
Radon transforms (see e.g. (2.40) and the proof of Lemma 2.4): our analysis allows both to
extract additional decay and to prevent the loss of regularity. As already mentioned, this
analysis becomes particularly intricate in the case away from equilibrium, cf. Theorem 3.

Besides the presence of the dispersion function e(k, k - v; VF'), there are two additional
differences from the Landau setting in [14]. On one hand, we focus here on the spatially
homogeneous setting, which removes many difficulties faced in [14]. On the other hand,
we include the 2D case (except in Theorem 3), which was excluded in [14], the difficulty
being that the kernel singularity O(|v — v.|™!) does not belong to L12OC in that case. This
is overcome by carefully separating the critical terms and estimating them using standard
tools for singular integrals such as Calderén—Zygmund theory and the Hardy-Littlewood—
Sobolev inequality (see e.g. proof of Lemma 2.3).

Notation.

We denote by C' > 1 any constant that only depends on the space dimension d. We use
the notation < (resp. ) for < C'x (resp. > £ x) up to such a multiplicative constant C.
We write ~ when both < and 2 hold. We add subscripts to C, <, 2, ~ to indicate
dependence on other parameters.

e We denote by dk := (27)~%dk the rescaled Lebesgue measure on momentum space.

e For a,b € R we write a A b := min{a, b}, a Vb := max{a, b}, and (a) := (1 + a?)'/2.

e We use standard multi-index notation: for a = (ai,...,qq4) € N we set V* :=
Vit...V9? and |af == oy + ...+ ag. For o,y € N%, we write a + v for componen-
twise sum and « <~ for componentwise inequality. We also define binomial coefficients
(:) = ﬁlw with a! == aq!... oy

2. GLOBAL WELL-POSEDNESS CLOSE TO EQUILIBRIUM

This section is devoted to the proof of Theorem 1. First, we argue that we can restrict
attention to the case 3 = 1 by a scaling argument. Indeed, setting F = %/2F5(8'/2.), the
Lenard-Balescu equation (1.1) for F' is transformed into

B30,F5 =V - /R Bylv,0 = 05 VEy) (Fs, VFy — FyV.Fy.) do,

in terms of

. > (k- (v—vx
Bﬂ(U,U—U*;VF/B) = /Rd(k’®k) W(ﬁV(k))QW dk’,
ep(k, k- v;VFg) = 1+B‘?(k)/dmdv*.
R

This means that the dilation ]:73 satisfies the same equation (1.1) up to rescaling time and
replacing the interaction potential V' by SV. It is therefore sufficient to prove Theorem 1
in the case 8 = 1, and we henceforth drop the subscript for notational simplicity.
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In terms of F' = p+./iuf, noting that B(v,v—v,; VF) (v —wvy) = 0, the Lenard-Balescu
equation (1.1) can be reformulated as the following equation on f,

Of = LIfI+ N(f),  fli=o=f°, (2.1)

in terms of the linear and nonlinear operators

Ligl = (V=) | Blo.o v Vi) (VALY +0)g = VA +0)g)e) VR, do

N(g) := (V—v)- y B(v,v — v4; VFy) (9:Vg — 9(V9)s) Vi, dv.

+(V—-v)- /Rd (B(v,v — vy; VFy) — B(v,v —m;Vu))

% (VEY +0)g = VE(Y +0)g). ) VR, dv,
where we use the short-hand notation
Fy = p++/ng.

In the spirit of [14], our approach to global well-posedness exploits the peculiar properties
of the linearized operator L, which we can further split as

Llg] = (V =v) - A(V +v)g = (V = v) - (Vi B:[(V +v)g]), (2:2)
in terms of the elliptic coefficient field
Av) = / B(v,v — vy; V) py doy, (2.3)
R4

and the linear operator

Bolg](v) = /Rd B(0,v — vs; V1) /11, gs dvs. (2.4)
Similarly, the nonlinear operator N can be split as
N(g) = (V=) -B(VFylg] Vg — (V —v) - (9 B(VE,)[Vy])
+ (V=) (BVF)[ViE] — BV V) (V + v)g

— (V=) (VA(BVR)IT + vl ~ BV +0)l) ).

where for all scalar fields F' we define the linear operator B(VF') as

B(VF)lg](v) := / B(v,v —v4; VF) /11,9« dvs. (2.5)
Rd
Note that with our notation,

A=Bol\ul,  Bolgl = B(Vu)lgl

We emphasize that in the Landau case (1.6) the operators B, and B(VF') coincide for all F’
and are of convolution type, which is not the case here and makes the Lenard-Balescu
setting substantially more involved.

Before investigating properties of L, our starting point is the following key lemma,
stating that the dispersion function e(k, k - v; VF') is uniformly non-degenerate provided
that the density F is close enough to Maxwellian in a suitable Sobolev sense. This result
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is crucial to the perturbative handling of dynamical screening and for the comparison to
the Landau case (1.6). Note that this is in sharp contrast with the degenerate behavior of
the dispersion function in case of Coulomb interactions, cf. [21].

Lemma 2.1 (Lenard-Balescu dispersion function). Let V' € LY(R?) be positive definite.
(i) Non-degeneracy at Maxwellian: For all k,v € R?,
le(k, k- v; V)| >~y 1.

(44) Non-degeneracy close to Maxwellian: Provided g € L*(R?) satisfies the following
smallness condition, for some rog > 0, §o > 0, and some large enough constant Cj,

r 3
1) 7" (V) 2 gl 2ray < 5

we have for all k,v € R?,
le(k, k- v; VFy)| ~vsom 1
(#i) Boundedness: For all multi-indices o > 0, for all 6 > 0, and r > 0, we have
Vaek k- v VE)| Svase 14+ 1007 (9) g | g,
Proof. We split the proof into three steps.
Step 1. Proof of (1).

Setting k := %, we have by definition, cf. (1.3)

bk vs V) = 1= 20 () [ k(o) do.
Rd {(v—v4)—10

and the Plemelj formula yields

e(k,k-v; V) = 1—2V(k)p.v. /Rd % w(vy) doy

_ szf(k)/ (o 00) 800 - (0 — v2)) p(ws) dos.
R4
Splitting integrals over v, € R? as integrals over v, € kR @ l%l, setting v = k- v, and
1
noting that [;, = (2)2, this can be rewritten as

N

e(k,k-v;Vp) = 1+ 2‘7(k:) (1 — (3)zwy, p.V./ ﬁ enydy) — 2i7r‘7(k)(%)%vkeka.
R

Using the integral formula

X
p.v./ x—iye_yQ dy = 27r;e_m2/ v’ dy,
R 0

and further setting for abbreviation

1
wy, = V2 vy, and H(z) .= & 0 ,

the above becomes

ek, k-v; V) = 142V (k)H(wg) — i(27)

N[
<
—~
Ny
~
S
o
@
N
g
e
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Taking the modulus, we then find
le(k, k- 0; V)2 = (142V (k) H (wy))? + 27V (k) >wie k.
Noting that
H(xz) >0, for |z| <1,
H(z) > —% - \x!eQ_%x2, for |x| > 1,
we easily deduce for all k, v € R?,

o—CV (k)2 < ek, k- v; V)2 < 1+‘7(k)2-

Step 2. Proof of (ii).
By definition, with Fy = p + \/ig, we find

(v—vx)—10

kN (VHg)«
/ k-(-—vi)—i0 dv.

Thus, splitting again integrals over v, € R?% as integrals over v, € kR ® lAcL, appealing to
the L2 boundedness of the Hilbert transform, and using the fast decay of u, we get for
all » >0,

le(k, k- v; V)| > |e(k, k- v; V)| — V ‘/ ng)*dv*
]Rd
By the Sobolev inequality, we deduce for all §y > 0,

le(k, k- 0; V)| = |e(k, k- v; V)| = Cal[V L ay

1.
H210(kR)

le(k, k- v; VA > le(k,k-v; V)| = Cygy

/k (VO] I

> e(k, k- v; V)| — Cuigo rll(0) (V)27 °9llr2(Ra-
Combined with (i), this proves (ii).

Step 3. Proof of (iii).
By definition, cf. (1.3), we find for |a| > 1,

Voe(k, k- v;VF,) = V(k)/ ’“:Viﬂf(”*)d (2.6)
Rd (v—v4)—10

Arguing as in Step 2, the conclusion (iii) follows from the Sobolev inequality and from the
boundedness of the Hilbert transform. O

We now turn to properties of the linearized operator L, cf. (2.1), and we start with the
following estimates on the elliptic coefficient field A, cf. (2.3). In particular, note that it
is not uniformly elliptic. From a similar argument as for Lemma 2.3(ii) below, we could
in fact show that in (2.8) higher-order derivatives have stronger decay (yet under stronger
assumptions on V'), but it is not needed in this work.

Lemma 2.2 (Properties of A). Let V € L} OH%(RC[) be isotropic and positive definite.

(i) Coercivity and boundedness: For all v,e € R?,

e-Aw)e ~y () HPLe|? + (v) 73| Pyel?,
in terms of orthogonal projections P, and P;- on vR and v*,

Ppi=gey,  PP=1d-P,. (2.7)



10 M. DUERINCKX AND R. WINTER

i) Smoothness: A belongs to C2°(RY) and satisfies for all v € R? and a > 0,
(ii) g b

IVEAW)| Svia (071 IVH(A@))] Sva (0)72 (2.8)
In particular, for all vector fields hy, ho, and a > 0,
1 1
‘/ hy - (VA)he| <va (/ hl-Ah1)2</ h2~Ah2>2. (2.9)
Rd Rd Rd

Before turning to the proof of this lemma, we note that it motivates the definition of the
following weighted norm, which is adapted to the dissipation structure of the operator L:
for any vector field h,

1
Iz ey = ( h- Ah) 2, (2.10)
A R4
Lemma 2.2(i) above states that this norm is equivalent to the following,
_1 _3
Ihll2 @y =v [1(0) "2 Py hllp2may + 1{0) "2 Pohllp2 pay, (2.11)

and (2.9) can now be rewritten as
‘/ hi - (VE¥A)ha| Svia [hlliz mellh2lliz @e)-
Rd

Proof of Lemma 2.2. We split the proof into four steps.
Step 1. Proof of (1.6), that is,

/ (k@ k) 7V (k) 6(k - v)dk = L P}, (2.12)
Rd

where we use the notation (2.7) and where the constant L is defined in (1.7).

The integral is computed as

/(k@k)ﬂ?(k)Q(S(k-v)d:k = / (k@ k) 7V (k)* (k- ) dk
Rd

= &) /i(k:®k:)7ﬂ7(k)2dk.

(2

By symmetry, as Vis isotropic, this integral is a multiple of the orthogonal projection P;-.
This proves (2.12) with multiplicative constant

L o= diltr<(27r)d/L(k:@Jk)ﬂA/(kz)Qdk)
- d11(27r)_d/ 2 7 (k)2 dk,

vl

which can be rewritten as follows, using radial coordinates and the isotropy of the integrand,

L= galsen ™ [ ar
0

Sd72 _ ~
= Zirlge=r(2n) d/ k|7 V (k)? dk.

Using [S972| = (d — lwg—1 and |S4=1| = dwy, we recover the definition (1.7) of L, which is
finite provided V € HY2(R9).
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Step 2. Proof of (i).
By definition of A and of the collision kernel B, cf. (2.3) and (1.2), we note that A(v) is a
positive definite symmetric matrix for all v € R%, with

(k- (v—vx
Je = //d e k) WV(k)Q\s((kkk(vVH)))P dk ps dvs > 0. (2.13)
Ra xR

Further recalling the definition of the dispersion function e, cf. (1.3), and using that V
and p are both isotropic, we note that A satisfies A(Rv) = RA(v)R' for all orthogonal
transformations R € Og(R). From this, we can deduce that for all v € R? the spectrum
of A(v) consists of a simple eigenvalue \(v) associated with the eigenvector v, and a
multiple eigenvalue \s(v) associated with the eigenspace v*. In other words, in terms of
projections P,, P;-, cf. (2.7), we have

A(v) = M (v)Py + Xa(v) P, (2.14)
where in view of (2.13) the eigenvalues are computed as
- v\2 1, 2 d(k-(v—ux))
A = k- %5)" wVI(Ek) ez dk s duy,
1(v) //IRdXRd (k- )" 7V (R) emawy e @ e do
o) = 2 (trA(v) — Mi(v)).

It remains to establish asymptotic estimates for these eigenvalues. Using Lemma 2.1(i)
and the explicit computation (2.12), the identity (2.13) becomes for all v,e € R?,

e-Av)e ~y //Rded|e k:]27rV() O(k - (v — ) dk ps duy

~y oe- (/ oo v*‘ (Id %) [ dv*>e, (2.15)
Rd

that is, we are essentially reduced to the Landau case, and the above formulas for eigen-
values then yield, as e.g. in |7, Section 2],

A(v) >~y /]Rd ﬁ(l - (%)3@(1} — vy) duy,
Ao(v) =y dil/R |v*|<d 2+(|§\|2*|)2)N(U—v*)dv*-

Using the fast decay of u, we get
M) =y ()7 Xa(v) v ()7

and the conclusion (i) follows.

)
Step 3. Proof of (2.8).
Estimates [A(v)] < (v)™1 and |A(v)v] < (v)72 follow from (i). Let now |a] > 1. By
definition of A and of the collision kernel B, cf. (2.3) and (1.2), Leibniz’ rule yields

Ve A(v) ( )//RdXRd (k@ k) 7V (k)? 6(k-(v—v*))v7(m)dk

v<a
X (VY1) dvoy,
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hence, by Lemma 2.1,

IVEAW)| Svia //RdXRd\klz‘A/(k)Qé(k-(v—v*))d/-c (), dv,

Sv /d v — U*|71<’U*>‘a|ﬂ* dvy
R
< <U>*1. (2.16)

~O

Next, we turn to derivatives of A(v)v: in view of (2.14), we find
v k-(v VUx
Ao = M(v)v = /RdXRd(k-v) TV (k) e dk . dv,
or alternatively, using the Dirac mass (k- (v —w4)) to replace the factor (k-v)2 by (k-vy)2,

2 (5(]6 (v—v4)) ) 9
|U|2 ﬂ@dxkd TrV k ‘E(kkUV/J,)Pde (k /U*) M* dv*.

Leibniz’ rule then yields

VH(Awp) = Y (77 )W e //]Rded k-(v—v*))w’(m)dzz

Y+v' <a
x VeI ((k- v)z,u)* dvy,

hence, bounding the last factor by [V ™77 (k- v)20)s| Sa [k[2(0:)1*1*? and appealing to
Lemma 2.1,

IV (A@))] Svia o711 // KV (k)26(k - (v — v.)) dk (v.)!*72 . dw,
R4 xR4

'y+7’<a
which yields as in (2.16), for |v| > 1,
IV (A@))] Sva [0]7
Since incidentally (2.16) entails [V¥(A(v)v)| S 1 for [v| < 1, the conclusion (2.8) follows.

Substep 4. Proof of (2.9).
In view of (i), it suffices to prove for all o > 0,

_1 _3
’/ hy - (VA h2’ Svia <H<U> 2 Py ha [l gay + [10) 2thlﬂL?(Rd))
Rd
_1 _3
x (02 P hallzgea) + 160) 72 Pohallyzgay) . (2:17)
We start by decomposing the vector fields hy, he with respect to Py, P;-,
/ hy- (V¥A)hy = / (Pihy) - (VHA)(Plhy) + / (Pyhy) - (V*A)(P,hs)
R4 R4 R4

+/ (Pihy) - (V¥A)(Pyhs) +/ (Pyh1) - (V¥A)(Pihy).
]Rd ]Rd
By definition of P,, we can write

(VoA)(Pohn) = ($8) (VAo = () (V™ (Av) = D (V27 A)e; ).

JjEa
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and similarly

(Pu) - (V2 A)(Pho) = (%) (52) (v - V(4v)
=S e VeI + Y e (Vo‘_j_lA)el).
JEa Jlea
By (2.8), we deduce

[ (V0] S [ ) PP Rl + [ ()P Py
Rd Rd Rd

4 / (0) 2P| | Pyha| + / (0)~2 Pyha || P o),
R4 R4

and the claim (2.17) follows. O
Next, we study boundedness and regularity properties of the linear operator By, cf. (2.4).
Item (ii) below expresses a crucial gain of differentiability. As is clear from the proof, this
gain could actually be improved in higher dimensions d > 2 by iterating our argument below
(yet under stronger assumptions on V'), but it is not needed in this work. We emphasize
that the operator B, is not of convolution type, which is an important difference from the
Landau case (1.6).
Lemma 2.3 (Properties of B,). Let V € L! OH%(Rd) be isotropic and positive definite.
(i) Boundedness: For all r >0,

1) v/iBolgllla ey Svir [1(0) ™" gllL2(ra),

(ii) Improved regularity: Further assume V € H?*(R?) and zV € L2(R%). Then, for
all a >0 and r > 0,
||<U>T\//7Va80[g]||L2(Rd) Sviar Z ||<U>_TV79HL2(R11)-
y<o

Proof. We split the proof into two steps.
Step 1. Proof of (i).
By definition of B, and of the collision kernel B, cf. (2.4) and (1.2), Lemma 2.1(i) yields
B vVl S [ PV (0= )b S o= vl (2.18)
Rd

hence, by the Hardy-Littlewood—Sobolev inequality, for all d < ¢ < oo and r > 0,

<
||Bo[9]”Lq(Rd) Y H\/ﬁQHL%(Rd)'

Combined with the fast decay of |/z, this proves (i).

Step 2. Proof of (ii).
By Leibniz’ rule, we can decompose

VoBalgl = Y <a>T$[g], (2.19)

7<a
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in terms of
= L e R AV 6 0= 0V () V() do
The conclusion (ii) follows provided we show for all v < « and r > 0,

1) VETS G2y Sviar Y 1{0) 7V gllL2(ga)- (2.20)

<o

We split the proof into three further substeps. Note that the case of dimension d = 2 is
critical and requires a particular care below.

Substep 2.1. Proof of (2.20) for v < a.
By Lemma 2.1, we get

I72(g] // K20 (B)2 6k - (v — 0))@k [V (y/77,g2)| dos
dXRd
[ o= o

and (2.20) follows as in Step 1 provided v < a.

Substep 2.2. Proof of (2.20) for v = « in case d > 2.
Given e; < «, successive integrations by parts yield

« (k®k) vV (k)2 a—e;
rei) = [ SIS (0 0)) dE VO (VR ) do
V—Vx) ki (k@k)mV (k)2 a—e;
_ _Z//Rd N (v=vd vy, (7‘;((,33%5)')2 )5(k.(u—v*))dkzv* I (JFi.gs) dvs.

Expanding the k-gradient in the last term, and noting that the k-gradient of the dispersion
function can be written as

Vi(e(k, k-v; V) = R(k,k-v) +r(k, k- v)v, (2.21)
in terms of
Rk, k-v) = VI (k) /d Tt dv, + V (k) (1d - £2£) /d e dvs
R R
V (k) (k®k): V211
e / k-(v—v2) L vx duy,
iV 72
rlhkov) = 10 / DR
R4

we are led to
1309l = g K (v, v — v.) Ve (1, g4) du.

+ [ Ko - o)V (Vg do, (222
]Rd

l
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where the kernels K0, K are defined by

Rd

j fw]? \s(kkvvw
l

i (k@k)TV SV T = Y
+2 Z o /Rd LELc Ul e kigv;)‘g R(e(k, k - v; Vi) Ri(k, k - v)) 6(k - w) dk,

w (k@k)mV (k)2 2R A s 7R Y
) = 25 [ MR GO ) 0

As in the proof of Lemma 2.1, we find
[R(k, k- 0)| S [VV(R)] + K[~V (R),

and thus, combining this with Lemma 2.1(i), we can estimate

K (0,w)] Sy fw| ™ / BPV () ([ (k)| + K[V (K))8 g - i) dk.

w

Arguing similarly to estimate K]l,l’ and noting that the integrability assumptions on V
ensure [pq [k[2[VV (k)|V (k) dk < oo, we deduce

\K]Q(v,w)\ + ]K}J(U,w) <y ]w\_Q. (2.23)
In case d > 2, the Hardy—Littlewood—Sobolev inequality then yields for all g < q < 00,

1{0) TR (9] ls ey Svig IV (VA9)]

dq )
1,d+q(d—2) (Rd)
hence (2.20) follows for v = a.

Substep 2.3. Proof of (2.20) for v = o in case d = 2.

Starting point is again the representation (2.22), but we note that in view of (2.23) the
kernels K°, K are singular in 2D and require a finer treatment. By Lemma 2.1, we note
that for all v, w € R2,

K]Q(U, sw) = s_zK]Q(v, w), K}}l(v, sw) = S_QK}J(U, w), for all s > 0,

/ KJQ(’U, w') dw' = / K}yl(v,w’) dw' =0,
Jw’|=1 |w’|=1

sup sup (]K]Q(v’,w’)\ + \K]{l(v/,w')o <y 1.

v’ \w’\:l

Standard Calderén-Zygmund singular integral theory in form of [5, Theorem 2| can then
be applied and yields for all 1 < ¢ < oo,

o) " T gl lLaey Svig IV (ViEg) lLaee),

hence (2.20) follows for v = a. O

Next, we prove boundedness and regularity properties of the linear operator B(VF') for
any scalar field F', cf. (2.5). Since this result is crucial to the proof of Theorem 1, let us
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give some motivation. Formally, for a solution f of (2.1), we have for all a > 0,
LoV F I ey = — / (V) F -V (BIVE+ 1V +0)f = (Vi+ HBIV +0)])
-2 ( ) [ e -0 B+ 1V + o) = (Vi DBV + o)1),

e;<a

The following lemma allows us to control precisely this right-hand side by the H!® norm
of f and by the dissipation. The right-hand side terms become critical when all the
derivatives in V¢, V% fall either on (V + v)f or on B[(V + v)f]. To this end, the
following lemma provides (2.24) and (2.25)-(2.26) for the respective cases. An important
part of the proof consists of noting that the Sobolev embedding always only needs to
be applied on 1D sets in the direction of the wavenumber k, thus reducing the loss of
derivatives. Note that the last bound (2.26) is particularly involved, but is in fact not
needed in the present section: it will only be used in the proof of local well-posedness away
from equilibrium in Section 4. The 2D case in (2.26) could actually be included but would
substantially lengthen the proof and is omitted for simplicity.

Lemma 2.4 (Properties of B). Let V € L! QH%(Rd) be isotropic and positive definite.
Given g,h € LlOC(Rd), provided g satisfies the following smallness condition, for some
rog > 0, dg > 0, and some large enough constant Cy,

—r 346
1(0) 7" (V)2 gl 2 pay < 2
we have for all vector fields hy, ha, for all a >0 and r > 0,

’/}Rd hi - (VEB(VEY)[N) ha| Sviasr [Palliz @elh2lliz @e 2]l e ge)

X (14 19l e gy + Lol () (V)20 2y ), (2.29)

where alternatively we can exchange one derivative of g, h for one derivative of ho,

| [ (FBOTEDA) | Sviar Il sl 9l o
x <!hHH<a|1>v1(Rd (14 Nt gy + (1 Tiaisllglior gz 1) 7 C0) gl e )

+11(0) (V) B2y (1 + gl Rd))). (2.25)

In case of dimension d > 2, provided V € L' NH?(R?) and zV € L*(R%), we can further
wmprove on the norm of g: for all o >0 and r > 0,

| [ (FOBOVE ) | Svinr bl ey 09l e (226)
Rd

V2
X 1l e ey (1 + lgllgiaroae )

Proof. We split the proof into three main steps. Note that we establish slightly improved
versions of (2.24)-(2.26), while in the statement we reduce for instance to integer differen-
tiability.
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Step 1. Proof of (2.24).
By definition of B and of the collision operator B, cf. (2.5) and (1.2), and by Leibniz’ rule,
we can decompose

VeB(VE) = Y <‘;> G2 (g, h), (2.27)
in terms of -

Ga (k®k) wV(k)25(k - (v — )V (ot s
@) = [ e R TR - 0 )V (o)

X V1 (Vi hs) dvadk.  (2.28)
By Faa di Bruno’s formula, the derivatives of |e(k, k - v; VF,)| ™2 are evaluated as follows,

for v < a,

Ve (rrmmme)|

|ae—l

Sa Z W Z H\V”j&?(k,k-u;VFg)L (2.29)
n=1

71t tym=a—y j=1
F1seees Yn >0

By Lemma 2.1(ii)—(iii), we deduce for all § > 0 and r > 0,

_ _ _ 346
Ve (e | Svadr 1+ 1(0) 7 (Ve 0g ol

More precisely, first separating the term with n = 1 in (2.29), we get the following refined
estimate, for all § > 0 and r > 0,

a— 1
}vv V(|a(k,k~v;VFg)\2)‘
-r a—y|+i+6 pla - a— 346
Sviaar L4 [[(0) (V)20 80 1 call o) (VNI g | gy, (2.30)

and thus, inserting this into (2.28),

G3 0.0 Svimar [ 0= VIR o

-r a— 1 « —r a— 3
< (14 1) T (DG 2 1 call () (T g ). (2:31)
Writing
o =0 < ()7 () + o =T, (2:32)

and appealing to the Sobolev inequality to compensate for the fact that v, — [v — vy| ™1

does not belong to L2 (R?) in dimension d = 2, we deduce for all § > 0 and r > 0,
e 0
G| Svasr ()7 )7 (90 2 gy
—r a— = « —r a— 3
X (14 1))l 2L 1 call() T gl ), (2:33)
hence, for all vector fields h1, ho,
1 _1 —r
| [ 630 he] Sviasr 1) hullagua ) hallua I00) ()71l

- a— L a— a— 3
x (14 1) TG 2L call () VT gl ).
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Now note that the very same bound (2.33) holds for G(g, h) replaced by GS(g,h)v or
by v - G5(g,h)v since the products with v can be replaced by products with v, in the
integral (2.28) thanks to the Dirac mass d(k - (v — v4)). The above estimate can therefore
be improved exactly as in the proof of (2.9): decomposing hy, hy with respect to P, P,
and suitably estimating the different terms, we deduce

| [ -Gt ha] v Wl eIl oy 14607 (7)1l
-r a— 5 a— a— 2
(1 10 @I ) (T g ). (239
Inserting this into (2.27), we get
| /R - (VOB(VE)R)ha| Svasr Iallia e 1hellie g 1) (V)R 2 g

T (6% 5 o4 (e 3
x (14 1) ()18 L+ Tl () (D) g 2 g ),
and the conclusion (2.24) follows.

Step 2. Proof of (2.25).
In view of (2.27), it suffices to prove suitable improvements of (2.34) in case v = a and in
case |y| < 1, which we do in the following three further substeps.

Substep 2.1. Case v = «: prove that for all § > 0 and r > 0,
| [ b1 Galg. ) e Sviasr Il gl (90 Rl gl ) (V) Bl (2:35)
Rd A
From (2.31) and (2.32), we find
G200 Sviasr @7 ( [ WITECERN ot [ o= VSRR o ).

Appealing again to the Sobolev inequality to compensate for the fact that v, + |v — v,| 7}
does not belong to L2 .(RY) in dimension d = 2, we deduce for all § > 0 and r > 0,

1 —l et o
| /R h1-Ga(g, 1) ha| Svase 1(0)7 2 hallyaga | (0) 7 (V) Rallyza | 0) (V) Al 2 ea)-

[un

Again improving on the weights (v)~ 2 as in (2.34), the claim (2.35) follows.
Substep 2.2. Case |y| = 1: prove that for all § > 0 and r > 0,

) i hy - Gg (97 hQ‘ ~SV,a,ér Hh1||L2 2 (R%) 8% > h2‘|L?4(Rd)||<U>_T<V>h”L2(Rd)
_r _1 _r 1
x (14 1160) () g1 o+ 100) TN g ). (236)
We start from (2.30) in the following form, for all § > 0 and r > 0,

a—e —r al—1+6 o —r al+Li4+6
Ve (mmasme) | Svasr L+ 1) (D2 g1 o+ 1) (V) 2 g o gy,

Inserting this into (2.28) and arguing as in (2.35), the claim (2.36) follows.
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Substep 2.3. Case v = 0: prove that for all § > 0 and r > 0,

_r 1
)/ hi - Gg(g, h h2‘ ~V,a,8,r thHL2 (R9) (V)2 +6h2||L§,(]Rd)H<U> <v>2+5hHL2(Rd)
(L1079 g
(1 Lapzall{o) ()G llLz gy ) I0) TV >“'“g||Lz(Rd))- (237)

Starting from (2.29), and applying again Lemma 2.1(ii)—(iii), but now separating both the
terms with n = 1 and with n = 2, we get for all § > 0 and r > 0,

—r al=1 a o
WS(WH Svasr 14 [[(0) (W) 2+59H|L2|(Rd) +|V%e(k, k- v; VF)|

Lz Y (VO 9e(k, k- v; VEY)||Ve(k, k- v; VE)|.

ej<a

Recalling (2.6) and applying again Lemma 2.1(ii)—(iii), this yields

—-r al-1 « -r al+2
Ve (errasmye) | Svadr 1+ 1) (07200015 L+ 11(0) ()2 Mg o

‘ / : (vva(ﬁg )** dU**

'U 'U**

o ((VV; o
B (11009 i) 30| [ SR v |

Inserting this into (2.28) and arguing as in (2.33), we get for all vector fields hq, ha, for
all § >0and r >0,

1 _1
| [ -Gt he] Svia 1600 B0 el
al—5 «@ al+1 -
x (14 [1() ()2 g +H<v> T g gy ) 100 (V) Bl ey
To(g, h; hi, he)

+ 1joy>2 (1 + H<U>_T<V>|a‘+§+59HL2(Rd)) ZTj(ga hihi, ha), (2.38)
J
where we have set for abbreviation

(g, hi b, ha) = / K2V (k)2

<//Rd><]Rd - (v =) || P

It remains to estimate the latter. Recall the notation k = k/|k|. Splitting integrals
over v,v, € R? as integrals over v,v, € kR @ k', and smuggling in a power of the

Ve (/) g,
R ( ) —1 *k

d’udv*> dk. (2.39)
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weight (k- v), we get from Hélder’s inequality, for all 7o > 0,

It =i

S ﬁ”(if'@ " h1HL2(1%L;L2(1%R))”< )" TOhQHL2 ks ifcR)W%'U>2r°thL1(1%L;L°°(1%R))
H/ vva fg))**dv
R4 —Vsex ) —10 o

Using the SoboleY inequality on I%R, the fast decay of u, and the boundedness of the Hilbert
transform in LQ(k]R), we deduce for all rg,7 > 0 and § > 0,

//Rdxw‘;(’“ (v =)l

1
Srogr Ik v>—mh1\|L2<Rd>||<k: L) <v>2”h2||Lz<Rd>
X 1) (V) g 2 gy | (0) (V) 20| (2.41)
v g L2(Rd) v LQ(Rd). .

LA/

ke (v—vx) =1

dvdu,

(2.40)

L2(kR)

(’U 'U**)

dvduv,

Choosing rg > %, we note that

/ i o) Zodo (k) = |Sd‘2|/7r (1 + [0 (cos6)2) " (sin6) db <y, (v)~",
sd-1 0

and therefore, as V' is isotropic,
[ IR0~ hl ey 16 - 01 (95 Rl gy
< (/Rdﬁ%.v>_2”0]k\17(k)2]h1(v)\2dvdk)é
(J, SN )y (o) vt

Sve [(0)” 2hl||L2 ®eyl[{v) ™ <V> h2||L2(Rd (2.42)

Inserting (2.41) into (2.39), and using the latter estimate, we obtain for all » > 0 and § > 0,

_1 _1 1
Tal(g,hi b1, ha) Sviasr 10770 [l2ga | (0) 72 (V)2 ha| 2 ga)
—-r e} =T i
X [ (w) (VN g 2y | (0) (V)2 R 2 gy (243)

Inserting this into (2.47) and improving on the weights <v>_% as in (2.34), the claim (2.37)
follows.

Step 3. Proof of (2.26).

In view of (2.27), (2.34), and (2.35), it suffices to prove suitable improvements of (2.36)
and (2.37) for G§(g, h) with |y| < 1. We split the proof into three further substeps. Note
that we focus here on the case of dimension d > 2 for simplicity.
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Substep 3.1. Case |y| = 1: prove that for all § > 0 and r > 0,

e 1 —r 34
| / ha - G2, (g, h) ha| S il gy (V) 30 hall e gy 10) (V) E40R 2 g
]Rd
x (14 160) () g ) (244)

Starting from (2.29), and arguing as for (2.30), but now separating the term with n =1
and writing it in form of (2.6), we get for all r > 0,

— VV“ eJF )
957 (o) | Sviase L+ 169l + | [ BT 20,

Inserting this into (2.28) and arguing as in (2.35), we obtain

[ Ga g, h k| S Tlg, b, ha)
A |
o e, ey 19 Pzl ey ) ™ (VDB eny (1 + 110 ™ 0) g1 g ).

where we have set for abbreviation
Té(g, b by, ha) = / K2V (k)2
k- Vv“ €j o
(L otk =l 9 aR| [ S
R4 x R4

Repeating the proof of (2.43) to estimate T (g, h; h1, ho), and improving on the weights as
n (2.34), the claim (2.44) follows.

dvduk) dk.

Substep 3.2. Case v = 0 with d > 2: prove that for all § > 0 and r > 0,

[ 1 Gla.h) e Suiesr [Sulohshn, o)
R

+ (14 Iy (WM GGl )

e L

><Hh1||L§4(Rd)H<V>2 h2||L§4(Rd)H<U> <v>2+6hHL2(Rd)7 (2.45)

where we have set for abbreviation
Sa(g, hihn, hy) = /// (k- ha)(k - ho) 7V (k)* oo id
R x Rded

(VY ()
* R( ke /Rd o v, ) /i, B dvdo,dk,  (2.46)

The estimation of the latter is postponed to the next substep.
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Starting from (2.29), and applying again Lemma 2.1(ii)—(iii), but now setting aside the
term with n = 1 and separately estimating the terms with n = 2, we find for all » > 0,

a 2 Ve(k,kv;VFy)
’v le( kk}UVFq)|2) + ‘é(kk’l}qu”Q% e(k,k-v;VFy)

Siasr L1077 (V)] oy

+ oz 3 (VO ek, kv VE)||V ek, b - 0 VE)|.

ej<a

Recalling (2.6), and applying again Lemma 2.1(ii)—(iii), we get

o 1 2V (k) 1 k(Y (/7ig))cr
Vi (|5(k,k-v;VFg)|2) + \E(k,k-v;VFg)F%(s(k,k-v;VFg) Rd k- (V=04 )—130 dv, )
Svadr 1+ u<v>—’“<v>‘ gu'gé' )

+ Do (1 [140) )3+l 2 Z [ Ty v, |
Inserting this into (2.28) and arguing as in (2.33), we deduce for all vector fields hy, ha,
‘/Rd hy - Go(g, 1) hz‘ Svaar 19a(g, s by ha)l (2.47)
 Lags2 (14 10) (V)3 2y ) 3 Ty (9, i s o)
J

_1 _1 _r _ al ila
o 140) ™2 Az 10) 2 Bzl gae 100 (V) Rl gy (14 110) (Vg1 ).
where Sy (g, h; hi, ha) is defined in (2.46) and where we recall (2.39),

Tuoe (g hi P ho) = / K2 ()’

Recalling the estimation (2.43) on the latter, 1nsert1ng it into (2.47), and improving on the
weights as in (2.34), the claim (2.45) follows.

Substep 3.3. Estimation of S, (g, h; h1, he) with d > 2: prove that for all § > 0 and r > 0,

T (/fig) e
k (U—sx)—10 AV

dvdv*) dk.

—r o 3
1Sa(g, hi b, ha)| Svirro.s Hh1||L2 (R4) IV >2h2||L§,(Rd)||<U> <v>2+6hHL2(Rd)
« -r 3
X ) (gl gy (14 10) (V)3 2ga) ). (2:48)
Starting point is the following integration by parts,
k-(VV (/1g))sx — 12w, . v=v.y  (VE(/BG)) s
~/I‘§d kh(v_v**)_io dv** B ’k‘ Vk (\/I‘{d |’U_7J**‘2 k'(U—U**)—iOdv**>.

Inserting this into definition (2.46) for S, (g, h; h1, he), integrating by parts with respect
to k, and reorganizing the integrals, we are led to

Sa(g, hiha, hy) = —R ( // O R e dvdv**> dk, (2.49)
R4 RixRd 7 - -
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where we have set for abbreviation

— E|2(k-h1) (k-ho) 7V (k)
H palhyv) = v( AT ([ 06 (0= v )R dv*))

Evaluating the k-derivative and integrating by parts, the latter expression takes on the
following guise,

(Vi =2y ) (1K12 (ko) (ko) 7V (K)?)
] (o) = T I 207 ¢ [ 8k (0= )b dv. )

2(1.. . (k)3
2[k|2(-hy) (k-ha) 7V (k) : <ije(k,k-v;VFg))< 5(k-(v—v*))\/ﬁ*h*dv*>

T ek, kv;VEy)2[e(k,kv;VEy)
E|2(k-h1)(k-ho) 7V (k)3 Y R e
- e (ije(k,k'v;VFg))</Rd6(k:-(v—v*))\/ﬁ*h* v, )

Rd

ko (k-ha ) (kb)) 70
+Z kkl:vvng)k?kv(V}?‘q)P( Rd5(k-(v—v*))(v—v*) vet (VHR) d’u*>.

Note that another integration by parts yields as in (2.21),

Vielk, k- v VE) = (V;V(k) - k2v(k))/Rdlwd

(v—vx)—10

10 YV, Fy(v) 17 _ (k)2 Fy(vs)
+ \k\V(k) /]Rd ;;‘(Z_Z*)_Z-o dv, + Iklv(k) /]Rd (v = v); ic-(v—v*g)—z‘o dv.,

and thus, using the Sobolev inequality and the L? boundedness of the Hilbert transform,
for all 6 > 0 and r > 0,

(Vaelk k- v, VE)| Srs ) (VR + IVVE) (14 11(0) (V)3 2oy )

Inserting this into (2.49), together with the above identity for Him hy» and appealing to
Lemma 2.1(ii)—(iii), we are led to

L%@mmmmswﬁ@+wwrwﬁ”mmwo/(kaP+wWwﬂva)
{/\th/"a (=) @ () (/Eh). | o,

% ’<'I}>/ V—Vx (Vv (fg))* d?)*
]Rd

[v—vx]? k- (v—v.)—i0

dv} dk.

Smuggling in a power of the weight (k - v), and noting that the Sobolev inequality yields
for all 0 > 0 and r,r9 > 0,

R , _r 3
Rdé(k'(”—v*)ﬂ OV (VER))s| dve Srres [1(0)77 (V) 20| 2 gay,
the above becomes
—-T 5 —r 3
Salgo b, o) Svros (1410007 (V)3 gl ) 10} ™ (V)R 2y

></ (|k;u7(k:)3+yka/(k)?\v?(w) UK (g; (e - v) "0y, (k- v) "0hy) dk, (2.50)
Rd
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where we have set for abbreviation,

A e A e L 2.51)
R

[v—vs|? k- (v—v4)—i0

We turn to the estimation of this quantity. Let k& € R%\ {0} be fixed. Decomposmg velocity
variables v € R? into v = (vg, v) with vo = v - k and v; = v — vk € kt , We can write

Uk (g;hi, ha) = // |h1 (vo, v1)||he(vo, v1)]
R

< | (o, 1) //d ) vt ovra) (R dv1.dvps | dvidug.
R

[vo—v0. |2 +|v1—v1x]2 (vo—v0x)—10

Estimating ((vo,v1)) < 1+ |vo| + |v1], and using % =1, we are led to

Uk(gih1,he) S // |h1 (v, v1)||h2(vo, v1)]
R Rd*l
x{\ / / 0 (v — V0w 01 — 012 ) (V) dvradvo
R JRd-1
- ‘ / /d 1U(vo — Vs, V1 — V1x) (V0s, V14 ) (VY (V/109) )5 dv14dvps
R JRd-

‘ / /d 1(7}1 Ul*) ® O(UO — Vox, V1 — Ul*)( V (\/ﬁg))* dvl*dvo* }
R JRe—

Vi AvAe] .
/dh1|’h2|(/d<>(vz():/; “g))‘dv*) dv

+/ |h1]|h2|</ de*)dv, (2.52)
R4 R4

in terms of the symbol
o(vg,v1) 1=
0,%1) - vo—10 |7J0|2-i-|”U1|2 :

We denote by f(wg,v1) the Fourier transform of a function f(vp,v1) in its first variable.
As the Fourier transforms of and are given by im(1 — sgn(wp)) and we~wol,

zO 2—|—1
respectively, the Fourier transform of ¢ in its first variable takes on the following explicit
guise,

o —|wol|v1] .
7 (wo,v1) = 22'772'51/ e“wé“l’l'dw() = 2ir? |;’1|2 X { © _ o o1 P owo >0,
U S 1 2—e wp < 0,

hence,

’5(71)0,1)1)‘ S 47‘(2ﬁ.

Taking Fourier transform in the vp-variables, using Parseval’s identity, inserting this bound
on the symbol &, using the triangle inequality and again Parseval’s identity, we find for
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any f € C®(R%) and 1 < p < oo,

H / / o (vo — Vox, V1 — V1x) f(Vox, V1x) dv1:dV0s
R Rdfl

L3, (R4-1L2 (R))

~ / & (wo,v1 — v1x) f(wo, vix) dvrs
Rd-1

f WO,V1%
S / ‘lfngvll*l)ldvl* LP (RA-1.12 (R
Rd-1 'u1( ’ wo( ))
1f(Co1)llp2
S / Toron vl
Rd—1 1 1%

and therefore, by the Hardy-Littlewood—Sobolev inequality, in dimension d > 2, for
alld—1<p<ooand g=—=p_

L3, (R4-1L2, ()

)
Lgl (Rdfl)

H / / o (vo — Vox, V1 — V1s) f(Vox, V1s) dv1.duvgs
R JRd-1

LY, (RE-LLE (R))
Sp ||f(vo7Ul)”Lgl(Rd—l;Lgo(R))'

Similarly, we find

H / /d 1(1}1 — U14) ® 0 (Vg — V0w, V1 — V1s) f (Vos, V1x) dU1dv0s
R JRi-

S ||f(v07Ul)HL})l(Rd—l;L%O(R))'

L (RI-1L2 (R))

Applying these two bounds to estimate the first terms in (2.52), using the Hardy-Littlewood—
Sobolev inequality for the last two terms, and using the Sobolev inequality and the decay
of 11 to reduce to L? norms, we easily deduce in dimension d > 2, for all > 0,

1 -r e
UK(gih1,ha) Sr a2 ey (V)2 hol 2 gay || (0) (V) gl 2 ga)-
Inserting this into (2.50), we are led to
_r 5
1Salg, s b, )| S (1 10} 7 (V) E40g g
-r « -r 3
X (1) T (V)2 gy | (0) (V)2 TR 2 gy

~ N N P > \—roond
x /R (IIV ) + PV RFT R ) (1 )72 gy 1 - 0) (V)3 2 gty e

Now evaluating the k-integral as in (2.42), with ro > 3, and noting that the integrability
assumptions on V ensure [pq K|V (k)3 + Jga |2V (k)2|VV (k)| < oo, this becomes

- 3 - e
1Salg hihs h2)| Svires (1 10) 7 (V)3 gl 2 )1 0) (V) gl 2 gy
—r 3 _1 1 1
X [[{0) ™" (V) 2 Rz gy 1 {0) "2 Rl 2y 1 {0) ™2 (V) 2 ha |2 gey-
Further improving on the weights <v>7% as in (2.34), the claim (2.48) follows. O

With the above estimates at hand, we may now establish the local well-posedness of the
Lenard—Balescu equation (2.1) close to Maxwellian equilibrium.
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Proposition 2.5 (Local well-posedness close to equilibrium). Let V € L1 OH%(Rd) be
isotropic and positive definite. For all s > 2, there is a constant Cy s large enough such
that the following holds: for all initial data f° € H*(R?) satisfying the positivity and
smallness conditions,

Fpo=p+vuf*>0,  f @) < &0
there exists T > ﬁ and a unique strong solution f € L°([0,T]; H*(R?)) of the Lenard-
Balescu equation (2.1) on [0,T], and it still satisfies Fy = p+ /uf > 0.

Proof. We proceed by constructing a sequence { f,, },, of approximate solutions: we choose
the Oth-order approximation as the initial data,

for=f°,
and next, for all n > 0, given the nth-order approximation f,, we iteratively define f,,41
as the solution of the following linear Cauchy problem,

{ O fni1 = (V —v) - <Bn[\/ﬁ+ Tl (V40) fos1 — (VI fogr1) Ba[(V + U)fn])v (2.53)
Jnyile=0 = f°,

where we have set for abbreviation
Buls] 1= BOVF3)lo) = | Blo.o=0.VFy) Ve do.

Noting that definitions of B, and of the collision kernel B ensure B, [vg] = By[g]v for all
scalar fields g, cf. (1.2), we can rewrite equation (2.53) as the following linear parabolic
equation,

8tfn+1 =V Anvfn—l-l — by vfn+1 -V (b%fn—l-l) + Cnfn+1

—(V =v) - (VR(by + b)), (2.54)
Jnyile=0 = f°,
in terms of the coefficients
A, = Bulyp+ fals (2.55)
by = Apv = Bulo(Vir+ fu)l,
b, = Bu[V(/i+ fa)l,

cn = vl
Let s > 2 be fixed, let Cy be a constant to be chosen large enough, and assume
Fro=p+vufe 20,  [flgs@e) < 155 (2.56)

We shall control the sequence (f,), by induction. Given n > 0, assume that f, is well-
defined on some time interval with u + /pf, > 0, and define the maximal time

T = 1Amax {T 2 0 | fullEm o asceany + 51940 Fullt o rycs oy < G} (257)

By definition of B,, and of the collision kernel B, cf. (1.2), choosing Cj large enough,
Lemma 2.1(ii) ensures that coefficients A, by, b, ¢, are all well-defined on the time inter-
val [0,7},]. In addition, the assumption p + \/iif, > 0 ensures A, > 0. Up to regularizing
coefficients and initial data, linear parabolic theory ensures that (2.54) admits a unique
smooth solution on [0,7,,]. We shall estimate its H® norm uniformly with respect to
regularization, and we split the proof into three steps.
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Step 1. Prove that for all & > 0, on the time interval [0, T},],

[TV AT < =19l

+ CvallVV@9lILe ey |91l iaive (may

(4 1l by + 17 a1+ 1l ) ) 259

In view of (2.57), provided Cj is large enough, we note that Lemma 2.1(ii) entails on the
time interval [0, T5,],

BalvAl =v A,

and therefore

[ (990 BVA(T0) 2 9570l
Decomposing A, = By[/it] + By [fn], we deduce

L9990 4999 = IVl ooy~ | [ (79°0) Bulsl(0V)]
and thus, appealing to (2.24) in Lemma 2.4 to estimate the last term,
(7950 4u(579) =[99I, e (2 = Ol )

In view of (2.57), choosing Cy > 2C%, this yields on [0, T},],

(790 4(7979) = g IVl ey

By Leibniz’ rule and an integration by parts, we then find

(7209 (V - 4,90) <~ 1990l

0<y<a v

Now using Lemma 2.4 to estimate the last sum, appealing to (2.24) or (2.25) depending
on the value of 7, the claim (2.58) follows.

Step 2. Prove that for all & > 0, on the time interval [0, T},],

L7207 (= b0 ¥ = V- () + o = (V=) (il + )|
Sva (IV(V)glia ga) + N9l etz ) 191 preivagray

(14 1l g+ 19 Fulig o (1 Uhnlnau) ) (259)

By Leibniz’ rule, we decompose

/R Vi) VE(bn - Vg) = > <a> /R (V) (V) - (VY Tg),

<« v
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/Rd(Vo‘g)Vo‘v.(b;g) =2 (3‘) /Rd(vvag).(vvbw(vayg),
f (T av ) = )Y (%) [ enweam=—a).

L7209V =0 i+ 8) = = 3 [ (V4 0)9%) - Vb, )

Recalling the definition of by, b),, ¢,, cf. (2.55), and using Lemma 2.4 to estimate the differ-
ent terms, appealing again to (2.24) or (2.25) depending on the value of ~, the claim (2.59)
follows easily.

Step 3. Conclusion.
Combining (2.58) and (2.59), and taking advantage of the dissipation term in (2.58) to

absorb factors || (V}‘a|+lg||L?4(Rd), we deduce for the solution f,4+1 of (2.54) (up to regular-
ization),

at”fn-i-luils(]gd +CVSHV< >sfn+1Hi2A(Rd)
< vl furtequay (14 IVC9) FullZs ) (1 Il 3ot ) (2:60)

hence, after time integration,
2 2
”frtz—i-lHHs(Rd) + CV ||V< >sfn+1||L2([0,t];LI24(Rd))

o s (s+1)
< 2 £l ety 0 (2@5(” IV09)" fallEaqo gz ey ) (1 + Ml Hs(Rd))))
For t <T,, in view of (2.56) and (2.57), this entails

Hf:z—‘,—l”Hs(Rd) + Cl ||v< >an+1||iz([0,t];L?4(R‘l)) S %062 exXp <4CV,3 (t + C&l)) (2.61)

As this bound holds uniformly with respect to regularization of coefficients and of initial
data, well-posedness for (2.54) in L>([0, T,,]; H*(R?)) without regularization follows by an
approximation argument.

Next, we check that the solution satisfies Fy, ., = p 4 \/fifny1 > 0. As equation (2.53)
or (2.54) for f,41 is equivalent to the following,

OFfs = V- (Bal LIV, = Fropy Bal VD).
this positivity statement follows from the maximum principle.

Finally, choosing Cy > 1 4 2Cy g, the above H® estimate (2.61) for f,, 1 given f, entails
for all t < T, A %,

a2y + 2 IV O9Y Ft 2o s ey < Co™
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which means Ty,11 > Ty, A (2Cy5) 1. Therefore, setting Tp := 1 A (2Cy5) ™1, we obtain by
iteration a sequence (fy,), satisfying the sequence of approximate equations (2.53) on the
time interval [0, Tp] with

-1

[ fullLee (o,zo); e Ry < Co -
The conclusion now follows easily by a compactness argument, passing to the limit n T oo
in approximate equations (2.53). O

We now turn to the proof of Theorem 1, that is, we extend the above into a global-
in-time result. Taking inspiration from Guo’s argument in [14] for the Landau equation,
the proof relies heavily on detailed properties of the linearized operator L and on refined
estimates on the nonlinear operator N.

Proof of Theorem 1. We split the proof into five main steps.

Step 1. Energy dissipation norm.
We define the following weighted norm, which is adapted to the dissipation structure of
the linear operator L,

91 i= V8l o) + losliig = [ Vo AVg+og- g, (262)
R4

where we recall that A is the elliptic coefficient field defined in (2.3), and we show that it
satisfies

1{0) 2 g2 ey + 1(0) "2 Vgllp2gay
S 1) "2 gl gy + 10) "2 P Vgl + 10) 2 PVl =v lgll. (2.63)
where we recall the definition (2.7) of orthogonal projections P,, P;-.
By definition of || - ||, Lemma 2.2(i) yields

_1 _3 _ _
1) A PEVal sy + 10 PV oy = [ @RISR + )PP
Rd
so it remains to prove
_1 _3
[ v dvg S 1) Halay Sy [ oo Avg 4 10) Vel (264)
R R4
The first inequality follows from Lemma 2.2(i) in form of v - Av <y (v) ', and we now

turn to the second inequality. For that purpose, we choose a cut-off function y € C°(2B)
with x|p =1 and |Vx| < 2, and we decompose

_1 _
10 2l < [ Ixol+ [ )l
2B R\ B

By Poincaré’s inequality on 2B, using the properties of x, we deduce

_1 _
10 2ol £ [ V0P + [ @)l
2B R4\ B

< / Vol + / (v) g2
2B Rd\ B
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Now using Lemma 2.2(i) in form of v - A(v)v 2y |[v|?(v)™3 ~ (v)~! on R?\ B, the second
inequality in (2.64) follows.

Step 2. Control on dissipation rate: prove that

- [ ola) zv 10d=m0)lg] 1", (265)

where 7 stands for the orthogonal projection of L2 (]Rd) onto its finite-dimensional subspace
Sp = {\/ﬁ(a—l—bm—i—c\v\Q) :a,c €R, beRd}, (2.66)

or equivalently, my[g] := Zi(f]Rd w;g)w; in terms of an orthonormal basis {w;}1<i<qt+2 of

the subspace Sp.

Since the definition of B yields B(v,v —v4; VF) = B(vy, v —v; VF), cf. (1.2), we have by
definition of L, cf. (2.1),

- [otlal = 4[| (VY09 = V(T + ). (267)

- B(v,v — vy; Vi) (\/ﬁ*w +u)g — VE((V + v)g)*)dvdv*
> 0.

D=

As B(v,v — vs; V) (v — vy) = 0, this expression clearly vanishes for g € Sy (and in fact
only for g € Sp), and it remains to prove a quantitative version of this fact in form of the
claimed lower bound (2.65). For that purpose, we argue by contradiction: if (2.65) was
failing, there would exist a sequence (g, ), such that

0<- [ alll<h lad=1  mis]=0. (2.65)

We split the argument into two further substeps.
Substep 2.1. Prove that up to an extraction the sequence (g,), in (2.68) converges weakly
to some g in HL _(R?) with

loc
- [ Lot =0, lgl=1.  mls=o. (2.69)

In view of (2.63), the property || gn | = 1 in (2.68) ensures that for all M > 0 the se-
quence of restrictions (gn|p,,)n is bounded in H!'(Bys). By weak compactness, there
exists g € H (R?) such that up to an extraction (gy), converges weakly to g in H: (R%).

loc loc

Passing to the limit in (2.68), we infer
lgll <1,  mlg] =0. (2.70)

It remains to pass to the limit in the relation 0 < — [ gnL[gn] < %, which requires some
more care. By definition of L, cf. (2.2), we can decompose

- / gnLlgn] = D gnll? +2 / oG - AV g — / V(Y +0)gn - Bo(V + v)gal.
Rd Rd Rd

Using that || g, || = 1, and noting that 2 [y, vgn - AVgn = — [za 92V - (Av) follows from
integration by parts, we deduce

- / gnLlgn] = 1— / G2V (Av) - / VAV 4 0)gn Bol(V +0)ga]. (271)
Rd R4 R4
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Along the extraction, as g,, converges weakly to g in Hl (R?), hence strongly in L _(R?)

loc
by Rellich’s theorem, we deduce for all M > 1,

/ @2V (Av) = / @V - (Av), (2.72)
[v|<M [v|<M
IRCAEDIE BY((V +v)ga] % oy VAV )9 BY[(V +v)g],

in terms of the truncated operator
BMp) = / B(v,v = vs; V) /11, by dvs.
[ve| <M

Next, we estimate truncation errors: we show for all M > 1,

sw| [ g2V £ (2.73)
|v|>M
wl | VAV 4 0)gn - Bol(V +0)gul| S L, (2.74)
n vl>
sup H<Mwmvw)gn-<Bo—Bé”)[(wvm] < & (2.75)

The estimate (2.73) follows from Lemma 2.2 in form of

‘ / Y Av)‘ v / (v)"%gn
[v|>M [v|>M

<y / (0)" (0gn - Avgn)
|v|>M

S arlonll

Next, appealing to Lemma 2.3(i) and to (2.63),

VIV +0)gn - Bo[(V + v) gn]

) |v|>M

3 5
< 2l{0) "2V + 0)gnllLz @) 1{0) 2V/EBo[(V + v)gn]ll2 ey
3
Sy I T+ gnlage S lanl? = 11,
that is, (2.74). Finally, rewriting
(Bo = BV + 0)gn] = Bo[Ljyj>0(V + v)gul; (2.76)

we similarly find
\/> v + U)gn : (Bo - Bé\/l)[(v + v)gn]

< )2

) lv|<M
3
(V + 0)nll 20y |02 VBo Loy (F + 0)gn] 12
_3
v a0} 2 (V + 0)gullPaay Sv a7 llgell” = 5
that is, (2.75).
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Combined with (2.71) and (2.72), the above estimates (2.73)—(2.75) allow to pass to the
limit in (2.71), and thus, recalling that (2.68) yields — [p4 gnL[gn] — 0, we find

0 = 1—/RdQQV~(Av)—/Rd\/ﬁ(V—i-v)g-Bo[(V—i-v)g]

= 1-l9l*~ [ oLldl

Combining this with the positivity (2.67) and with (2.70), we conclude

—/ gLlgl=0, lgl=1,
Rd
hence (2.69).

Substep 2.2. Conclusion.
It remains to show that for a function h € HL_(R?) with || A ]| < oo, the following equiva-
lence holds:
heSy < — | hLh]=0. (2.77)
Rd
Indeed, using this equivalence, we would deduce from (2.69) that g € Sp, so that the two
other conditions in (2.69) would become contradictory, thus yielding the conclusion.

It remains to prove the claimed equivalence (2.77). The implication ‘=’ is clear and we
now focus on the reverse. For that purpose, we note that, for all v, vy, e € R? with v # v,
the kernel B(v,v — v,; V) satisfies by definition,

e-B(v,v—wv,; Ve > 0,

and, using Lemma 2.1 and the explicit computation (2.12),

wve)) k= 0

e-B(U v*,Vu)e =0 <= / ’6 k|27TV( )2 6((k u;Vu)|?

F-
= e-(Id (v—ve)®(v ”*)

[v—vs]?
— e|v— v,
In view of (2.67), we deduce that the condition — [pq hL[h] = 0 implies almost everywhere
VEL(Y +0)h = JE((T + v)h).,
which implies h € Sy by integration.

Step 3. Control on dissipation rate for differentiated equation: prove that for all a > 0,

—/Rd(Vo‘g)VO‘L[g] > & 1Ve91* =Crall 91, (2.78)
where we have set for abbreviation,
lgli == > IVgl*. (2.79)
IvI<s

We split the proof into three further substeps.
Substep 3.1. Prove that
ImolValll < gl (2.80)
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Recall that Sy is a finite-dimensional space, cf. (2.66), and that the orthogonal projection g
can be written as molg] := >, ([ga wig)w; for some orthonormal basis {w;}1<i<dt2 of So.
It is therefore sufficient to show that for all w € Sy we have

| [ wvs| 5 Tollega sl (281)

which happens to be a direct consequence of (2.63) as all norms are equivalent on Sp.

Substep 3.2. Prove that for all o > 0,

[0 9" 2| Sva 1Vl gl (2.82)

By definition of L, cf. (2.2), we decompose

(79 (9. 1lg = Ti(0) + T3 o)
in terms of
7o) = [ (V%) [V =) (ACV -+ 0))]a
T() = = [ (V%) [V*.(V =) (VB(Y + )]s

We start with estimating the first term 77" (g). By Leibniz’ rule, we compute

120 = - X () ( L7 +0v%0) - (740 + 07)

Y<a
¥#0

+Z/ (e;V%)- (V1= A)((V+0)V g +Z/ (V+0)V) - (V™% A)(e; VO g)

e;j <y e; <y
+ > / (e;Vg) - (VY™ A)e, V™ “f)
ejte <y

hence, by (2.9) and (2.63),

T ()] Sva DIVl Vgl

y<a

We turn to the second term T%5'(g). By Leibniz’ rule, we can write

T5(0) = [ (V+0)9%) - 7 (VABL[(V + v)g)
+ 3 [ e9%) - 9 (VABY + )

e;j<a

_ /Rd((v +0)V%g) - /iBol(V + v) V7],
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or alternatively, further integrating by parts in the last right-hand side term, for any jg € «,

T5(0) = [ (V+0)9%) - 9 (VABLI(V + v)g)

+ X [ 6970 TS (B + o)

e;j<a
! /Rx(vw)va—mg) Vo (VEBo[(V +v)Vg]) + /Rgd(ejova—”g) VB |(V +v) V7).
Now appealing to Lemma 2.3 and to (2.63), we deduce

75 (9)] Sva D IVgllVigl,
<o

and the claim (2.82) follows.

Substep 3.3. Proof of (2.78).
Let a > 0. Decomposing

- oot = - [ (vaneta+ [ 9oV Lis

Rd

and applying (2.65) and (2.82), we find

—/Rd(v"‘g)VQL[g] > o 11d—m) Vgl I ~Cra l Vg Il g o)1

2 2 2
sov 1 Vg I =Cv I mo[ Vgl I —Cvia ll g -1 -

v

Combined with (2.80), this proves (2.78).

Step 4. Control on the nonlinearity: provided that g satisfies the following smallness
condition, for some r¢g > 0, dg > 0, and some large enough constant Cy,

r 3
[[{v) 0<v>2+609”L2(Rd) < cio (2.83)

we prove for all a > 0,

| /R (VN (9| Svia Bg gl (1+ Nl ) (2.84)

where we recall the notation (2.79). The subtle point in this estimate is to control the
nonlinearity in terms of the energy dissipation norm. Note that |«| V 2 could be replaced
by |a| V (% + dg) for any dp > 0, but the two are equivalent for our purposes as we focus
on integer differentiability.

By definition of N, cf. (2.1), we decompose

N(g) = Ni(g) + Na(g) + N3(g) + Nu(g)
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in terms of

Nilg) = < A B( mw
Na(g) = ) - (9 B(VE,)[Vy]),

Ni(g) = <v ) (B(VFgM] — BVW)Vi)(V +v)g,

Nitg) = ~(7 o) (VA(BIVE)T + vlg] = BEWIT + o)) ).

We focus on Np, while the estimation of Ny, N3, and Ny is similar and is skipped for
shortness. By Leibniz’ rule and an integration by parts, we find

L7 Ng) = -3

<«

<3) /Rd((v +v)V) - (VIB(VE,)[g)) VvV g

-2 (2 Levie (B v

e
v+e;<a 75 €5

By Lemma 2.4, appealing to (2.24) or (2.25) depending on the value of 7, and recall-
ing (2.63), we obtain (2.84) for Nj.

Step 5. Conclusion.

Given s > 2, let f € L>°([0,T]; H*(R%)) be a local strong solution of the Lenard-Balescu
equation (2.1) on [0,7] as given by Proposition 2.5. Up to smoothing the initial data
and shortening a bit the time interval [0,7], the solution can be assume to have more
smoothness, and we may then write on [0,7] for all 0 < r < s,

30 3 IV e = X [ (90VeLA) = 3 [ (v HeN).
o] <r || <r || <r

hence, inserting (2.78) and (2.84), and using that for a = 0 we have — [pq fL[f] > 0, we
deduce

30 Y IV Sliagay +ay Do IVAFIP < Cvs Do IVEFIP

|| <r 0<|er|<r |o| <r—1
+ Ova (14 1 oy ) I ey 3 N9OF 02 (2:85)
o] <r

By Proposition 2.5, assuming || f°|| z7s(ray < $A(8CvCy,s)7!, and choosing T small enough,
we get
£ lrsray < 1A (ACyCy)~"  on [0,7], (2.86)
which allows to absorb the last right-hand side term of (2.85) into the dissipation term.
This yields on [0,7] for all 0 <r < s,
500 Y IV ey +ate D IVEFIP < Cus D IVOF IR+t I I
la|<r 0<]a|<r la|<r—1

and thus, writing a telescoping sum over 1 < r < s and using the dissipation,

1032 +20vCr) " 3 IV e < 2 ISP (2.87)

r=1 ‘a|§r
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Now for r = 0, rather appealing to (2.65), the inequality (2.85) becomes

8007122 gy + 2 10a =) A1 < Cua (14 Wl ) 1 oy D £
hence, by (2.86),
30U fIF2 ey + o 1A =mo) (117 < o8 I F I (2.88)

In view of (1.4), as by assumption my[f°] = 0, the Lenard-Balescu equation (2.1) ensures
that the solution f satisfies
mo[f]=0  on [0,T],
so that (2.88) becomes
2
30l F 12 @y + 50 1 FI7 < 0. (2.89)

Combining this with (2.87), we conclude

300 (A+4CvCr ) Y IV fIF2gge, < 0,

r=0 jal<r

which can now be used to propagate the small local solution globally. O

3. CONVERGENCE TO EQUILIBRIUM

This section is devoted to the proof of Theorem 2. We start with the entropic convergence
and the proof of (1.9), which quickly follows from techniques developed by Toscani and
Villani for the Landau equation in [23, 24|. In view of Lemma 2.1(ii), the constructed
solution F satisfies |e(k,k - v; VF)| 2y 1 globally in time. Combining this with (2.12) in
form of

B(v,v— v VF) 2v ﬁ(ld—%),
the H-theorem (1.5) takes the form
—0,H(Flu) 2y D(F), (3.1)

in terms of the entropy dissipation functional

D(F) =1 L
( ) 2//]1‘§de(1 |[v—vx|

Next, given £ > 1, we appeal to the following logarithmic Sobolev-type inequality, which
is obtained in [24, Proposition 4],

D(F) 2 C(F)K(F)" 7 H(F|u)'*?,

where C'(F') only depends on F' via an upper bound on H(F|u), and where Ky(F) is given
by

2

(1 E=R8d) (5 - 55

Ki(F) = / ()2 (VVE + F).
Rd
Inserting this into (3.1), and noting that the H-theorem and the choice (1.8) entail
H(F) < BE < [ 15F,

we deduce , ,
—0H(F|p) Zvpe Ko(F) TH(F|p)™r. (3.2)
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It remains to estimate K;(F). For that purpose, we appeal to the following functional
inequalities from [24, p.1297],
.

LwVEE < ([ wmiw2er),

which we combine in form of
1
K(F) < £2</ <v>2£+d+5‘<v>2F‘2) 24 62/ (v)eHF.
]Rd ]Rd

For the constructed solution F' =y + /iuf, noting that [a(v)"u S (Cn)%, we get

K(F)

IN

2
v/wezr| +or / ()2 F,
Rd

£
2

Ki(F) 5 (CO2 (14 | fllizea) < (CO2.
Inserting this into (3.2), we deduce
~OH(Flu) Zv ("2H(F|p)*e,
and the conclusion (1.9) easily follows after time integration and optimization in £.

We turn to the L?-convergence and the proof of (i)-(ii), for which we take inspiration
from the work of Strain and Guo [22|. By an approximation argument, note that the
convergence f! — 0 in L%(R?) follows from the quantitative estimates in (i)-(ii), hence we
may focus on the latter. So as to prove both estimates at once, we consider the mixed
weight function

weg.x(v) = (v) exp(K (v)?).

Let parameters ¢,60, K > 0 be fixed either with § < 2, or with § = 2 and K <y 1. We
split the proof into two main steps.

Step 1. Compactness estimates: if initial data f° satisfies

/ wl%,H,K|fo|2 < 00,
R4

and if in addition || f°[| 2(ray Kv,ee.x 1, then the solution f of (2.1) satisfies for all ¢ > 0,

/ okl FP Sveox / Wl gl FIR (3.3)
Rd Rd

We focus on the case § < 2, and we emphasize that the argument below ensures that the
multiplicative factor is bounded uniformly in the limit 6 1 2 provided K <y 1. From this,
the critical case § = 2 with K <y 1 is deduced a posteriori by letting # 1 2 in (3.3). Next,
up to an approximation argument, adding a small constant diffusion in equation (2.1), we
note that we may assume the solution f to have some Gaussian decay, which allows to
justify all computations below for § < 2. From equation (2.1), we can decompose

19, /R kg \fP+ D) = B(f) + B(f) + La(f),
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in terms of

R = [ (V0,0 AT+ 0,
hip) = [ V(Y +0) (ke BVR)T + o)l
hio) = — [ (V+0)ude,- (BVR)IVg 9 BVE,)Val),

(o) = [ (V00 - (BVR)IVE = BTV + o)
We split the proof into four further substeps.

Substep 1.1. Weighted energy dissipation norm || - ||, 4 .-
We define the following weighted version of the energy dissipation norm (2.62),

980 = [ uto (Vo AVg+ug- Avg),

which satisfies as in (2.63),

ol

_3
ww,KgHL?(Rd) + [[(v) 2w€,9,KV9HL2(Rd)

()~
S 1) " 2wge e glliemay + 1) "2 wie.x PV gllia@ay + 11(0) "2 wes x P Vall2 e
~v lglepr- (34)
Substep 1.2. Proof that

2 2
Ii(g) = 509 lleo.c —Crieox gl (3.5)
By integration by parts, we can decompose

1) = Naligs = [ 08V (whogdo)+ [ o(Vute,)- AV + v

In view of Lemma 2.2, as obviously Vw%ﬂ,K = PUVwZaK, we get

1) = 1Bk =Cv [ 072 (ko Tudo ) =Cv [ () lglIVallTuts, . (35)

Noting that |Vw?, | < 2(¢ + 9K(v)9)<v>71w29K, and splitting the cases [v] < M
and |v| > M, we can bound for all M > 0,

(vy™ (wz%,e,K + |sz?,9,KD < (14204 20K) <M>2£€2K<M>9
+ (M7 4+ 20M % + 20 KM 2)wi g g,

hence, for all N > 0, choosing M >y k.n 1 large enough (and also K <y n 1 small
enough in case 6 = 2),

(v) ™ (wiox + IVwigkl) < Cveor.n + NWig s
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Inserting this into (3.6), we get for all N > 0,

~Cuansen( [ 07+ [0 lalIVol)

= dv( [ o+ [ ) et lalvl).
Rd Rd

Ii(g) >

hence, in view of (2.63) and (3.4),

ILi(g) =
Choosing N > 2CYy, this yields the claim (3.5).

2 2
~Cveoxn gl =xCvllglliox -

Substep 1.3. Proof that

112(9)] + I5(9)] + 11a(9)| Svieore 19 1P + gl 2y 9 170, - (3.7)

We start with the bound on I. By definition of B and of the collision kernel B, cf. (2.5)
and (1.2), and by Lemma 2.1(ii), we get

[12(g Sv// v — vl TV (Y + ) (W g k) II((V + v)g).] dudo..

Appealing to the Hardy-Littlewood—Sobolev inequality and using the Gaussian decay of
\/ﬂwfe x (provided K < 1 small enough in case § = 2), we deduce for all r > 0,

L@l Sv VAV +0)wig gl za (VY + )

L2d—T (Rd)
Seorr I10) 7 (V + )9l 2 gy,

and thus, by (2.63),

d
2d—1 (R4)

112(9)| Svieorcqr gl
We turn to the bound on I3. By (2.24) in Lemma 2.4, we get

113(9)| Sv [lwig g (V +0)(WF g, 109) 13, ) 91| 22 o)
X (”wZ,G,KVgHLE‘(R'i) + ||<v>7%wé,0,K9”L2(]Rd))7
and thus, by Lemma 2.2(i), noting again that
Vwigx = PsVwig g, IV g el Seor (0)whg (3.8)
and recalling (3.4), we deduce

113(9)| Svieor 9/l m2m@ey |||g|||z9K

We turn to the bound on Iy. By definition of B and of the collision kernel B, cf. (2.5)
and (1.2), Lemma 2.1(i)—(ii) yields

49 U_U* Ve x AU
I14(9) / <// k[2V ()25 (k ‘/ P S | e o )
Rd xR Rd .

X |(V 4+ 0) (w7 g ,9)||(V +v)g| dv,
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hence, by the Sobolev inequality and the boundedness of the Hilbert transform,

@ S lolms [ 0717 +0) ko @7+ vlgldo
1
S Mgllaz@all(v) 2wy o (V +v) (W k9|12 ey [wee, i (V + )9l (gay -
Improving on the weights <v>_% as in (2.34), we deduce

[14(9)] < ||g||H2(Rd)||wZQI,K(V + U)(w?,e,Kg)HLg(Rd) [we,0, (V + v)QHL%(Rd)'

hence, by (3.4) and (3.8),

2
114(9)| Svieorc 9l m2may 191170 5 -
This proves the claim (3.7).

Substep 1.4. Proof of (3.3).
Combining (3.5) and (3.7), we get for the solution f of (2.1),

2 2 2
00 [ udolFE+ 30 WEoxe Sveao 1S I+ e 17

Provided || f°| y2(ra) <vipo.00,5 1, the stability estimate in Theorem 1 yields || f*|| 2(ray <vie0,5
1 for all ¢ > 0, hence the above becomes

2 2
$0u [ kol i+ 11 B Svaas 111

or alternatively, after integration,

t t
2 ° 9
[ wtordfPa [0 Ronds < [ wbosls P+ Cusoue [ 1512 ds.
R< 0 Rd 0
Recalling that (2.89) yields
t
2 o
ey + [ 1512 ds < 171y

the claim (3.3) follows.

Step 2. Proof of (i)—(ii).
Given € > 0, we can estimate in view of (2.63),

so that (2.89) becomes

5t/ !f’2+clv<t>_8/ Liy<melfI? <0,
Rd Rd

or equivalently,

2 - 2 - 2
o [ 1P+t [ 1P < At [ Ll
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By integration, this entails

11 e
/VW<€””M /UW
R4 R4

Appealing to (3.3) in form of

—2el 2K (s)%? o
/ Ly o)l £ Svieo (s)2 e 2K / wi o x|,
R4 R4

we deduce
e t —e —e e
/ ’ft‘Q < (e—iﬁﬁy + CV,K,G,K/ e 118%(@)1 —(s)" )<S>725575672K(s) edS)
R4 0
X /]Rd w?,e,K\fofz-
This yields the conclusion (i)—(ii) after straightforward computations. O

4. LOCAL WELL-POSEDNESS AWAY FROM EQUILIBRIUM

This section is devoted to the proof of Theorem 3. The proof follows the same lines as
the proof of Proposition 2.5: most steps are adaptations of their counterparts in Section 2,
hence for the sake of conciseness we shall focus on the points that differ. Given initial
data F°, we decompose the solution F as

F = F°+G. (4.1)

In order to be able to control the nonlinear term, we shall construct the small pertur-
bation G locally in time in some Sobolev space with polynomial weight. We introduce
short-hand notation for these standard weighted Sobolev spaces: for m € R, s > 0, and
1 <p < oo, let L2 (R?) and HE (R?) be the weighted Lebesgue and Sobolev spaces with
norms

1Pl oy = [ ("D,

1Pl = [0V R
Rd

and we define the analogue of the energy dissipation norm (2.10) in this functional setting,

”F”ia?m(ﬂ&d) = /Rd@mp - AF.

We make abundant use of the following elementary estimate: given r > 0 and 1 < p < 2,
we have for all m > 2r + d%,
1{v)" FllLogay Sm 1 F L2 ra)-

We start by stating that the estimates for the dispersion function € in Lemma 2.1 carry
over to these weighted spaces; the proof is omitted.
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Lemma 4.1. Let V € LY(R9).

(i) Non-degeneracy: Provided F° € LY(RY) satisfies the following non-degeneracy and
boundedness conditions for some &g, Mg > 0,

inf |e(k,k-v; VF)| > oL (V)2 +0F°| 2
kweRd

= My’ d—1+6

(R) < M07

and provided G € LY(R?) satisfies the following smallness condition for some large
enough constant Cy,

V)2 Gl |, ey < &
we have for all k,v € R?,
le(k, k- v V(E® + Q)| ~v,mp60 1.
(i3) Boundedness: For all a > 0 and 6 > 0, we have for all k,v € R%,
Voe(k, k- v; VE)| Svas V)55 F |2 gy,

As we no longer use Maxwellian weights in this section, cf. (4.1), we consider the following
linear operator B(VF), instead of B(VF) in (2.5),

B(VF)[H|(v) := / B(v,v — vy; VF) Hy du,. (4.2)
Rd
The following analogue of the coercivity estimate of Lemma 2.2 is easily obtained.

Lemma 4.2. Let V € L}(R?) be isotropic, let F° € LY(R?) be nonnegative and satisfy for
some My > 0 and vg € Rd, . . X
|~—£éﬁF = Ty
and let I € LY(RY) satisfy
le(k, k- v; VF)| < Mo.
Then the following coercivity estimate holds,
e-B(VE)F°)(v) e Zvatoum () [Prel® + (0) 7% Poef?.
Proof. The definition of B, the lower bound on F°, the condition on F, and the iden-
tity (2.12) yield

¢ . BVF)FI(w)e > /|u*—vo|<} (/R e+ kP (K)26(k - (v — m))dk) dv.

1
~
-V / [v—vs]
v+ —vo| < 51

Arguing as in the proof of Lemma 2.2, we may then deduce
e-B(VE)[F)(v)e Zva (v —w0) [Py el + (v —v0) 7 [Poypel*.
Using that (v — vg) <y (v) and that |P,_ye — Pye| Sy (v)7He|, the conclusion easily

~ V0

follows. O

Pt e|?dv,.

V—Ux

Finally, we will also need the following analogue of (2.24) and (2.26) in Lemma 2.4 for
boundedness properties of the operator B; the proof is similar and omitted.
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Lemma 4.3. Let d > 2, let V € LYNH?(RY) be isotropic, and assume zV € L2(R%).
Provided F° € LY(R?) satisfies the following non-degeneracy and boundedness conditions
for some My > 0,

. . o i o
k’géfRdle?(k,k-v,VF )= 1z 17 23 ety < Mo,

and provided G € L1 (RY) satisfies the following smallness condition for some large enough
constant Cy,
1
1G 2Ry < 75>
we have for all vector fields hy,hs, all « >0, and m > d + 7,

’/ hi - (VOB(V(EF° + G))[H]) ha| Svimoa 1hllz ey lh2lliz zay
]Rd

lex|
XN ot gy (14 16 i gy + a0l Gl o) (43)
and alternatively, if needed to loose less derivatives on G, H,
[ i (VB + ONIH) ha| Svmano Wtz (Vhallgey  (4)
alV2
XN s gy (1 161 )

With the above estimates at hand, we are now in position to prove local well-posedness
away from equilibrium, that is, Theorem 3.

Proof of Theorem 3. We proceed by constructing a sequence {F),}, of approximate solu-
tions: we choose the Oth-order approximation as the initial data,

Fo = FO,

and next, for all n > 0, given the nth-order approximation F,,, we iteratively define Fj, 4
as the solution of the following linear Cauchy problem,

{ 6tFn+1 =V (Bn[Fn]an—s—l - Fn—i—lgn[anD )

Fn—l—l’t:(] = F07 (45)

where we have set for abbreviation B,,[G] := B(VF},,)[G]. As F*° is nonnegative by assump-
tion, the maximum principle ensures that Fj, remains nonnegative for all n. Decompose

F, = FO+Gna Gn‘t:OZOa
let s > 2 and m > d + 7 be fixed, and, given a constant Cy > 0 to be later chosen large
enough, define the maximal time

Tn = 1 Amax {T 2 0 : ||Gn||ioo([0,T],an(Rd))

Equation (4.5) yields for all o] < s,

(6% « (6% (6% (0%
$0,||V Gn+1||i%(Rd) = Z <7> (17 (Gryr; Fn) + JS (Gn+1;Fn)) + K*(Gpni1; Fy), (4.7)

7<a
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in terms of

B(GuiiF) = = [ 0)"(T9°Gops) - (V*BAF]) VY (F° + G,
TG F) = [ 0" (V9 Gi) - (VBTRD V7 (F 4 G,
K(Gnir; Fp) = — /IR (V)™ (VaGn+1)Va<En[Fn]VFn+1—Fn+1Bn[VFn]>.

We start by extracting the dissipation contained in the term I$. For that purpose, we
decompose

1E(GueriF) = = [ 0" (V9" Gn) - BolFY (TG

a /]Rd <U>m(vvaGn+1) ~En[Gn]VVO‘(F° + Gn+1)

- /R )TV Gasa) - Bal (VYY) (48)

In view of assumptions (1.10) on F*° and in view of the definition (4.6) of T},, provided Cy
is chosen large enough, Lemma 4.1(i) yields for ¢t < T,
‘€(k7 k : U; VF’N/)‘ ZV,MO 17

and Lemma 4.2 can then be applied to the effect of

_/Rd (V)™(VV®Gri1) - Bu|[F°l(VV®Gry) < CVM ||vvaGn+1HL2 Ra)"

Further using the bound (4.3) to estimate the last two right-hand side terms in (4.8), we
deduce for ¢ < T,,, in view of (4.6),

Ig(Gn—&-l; Fn) <

= CV M,

199Gl aay

+ CvatomlVV Gl oy (14 & 199Gl gy)-

Note that this makes use of the control on F° in H: ' (R?) rather than only in H? (R%).
Choosing Cj large enough, this easily yields

18(Guiti Fa) + 55 19V Gl oy < Cratom:

Now using (4.3) and (4.4) to estimate I3, J$, K® in (4.7), we easily arrive at the following,
for t < T,

at”Gn+1”§{7sn(]Rd) + #MOHV<V>SGT”L+1H%§ m (R

2 2+41)
vt (141Gl @) (14 1GalGERS ). (49)

Note that the difference with (2.60) is essential: the norm [|[V(V)°G,, HLz _(mey does not

appear in the present right-hand side. This is permitted by the use of the improved
estimate (4.4), to be compared with (2.26) in Lemma 2.4, which was not needed in (2.60)
for the proof of local well-posedness close to equilibrium.
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Now from (4.9), after time integration, we deduce for ¢ < T,,, in view of (4.6) and
Gni1lt=0 = 0,
HG%JAH%@L(W) + #MOHV<V>SG7H—1”32([07,5};]41247”1(]1@«1)) < tCv,My,m,s et OVt ms.,
Choosing Cy > Cy,a,, this entails
Toi1 > Ty A (€Cyntg.m.sC3) L

Therefore, setting Ty := (eCV7MO7m7SC’§)_1, we obtain by iteration a sequence (F,), satis-
fying the sequence of approximate equations (4.5) on the time interval [0, Tp] with

1
Fp=F"+Gn, |Ghlleqompmg, @) < -
The conclusion now follows easily by a compactness argument, passing to the limit n 1 oo
in approximate equations (4.5). 0
5. LANDAU APPROXIMATION

This section is devoted to the proof of Theorem 4. As the Fourier transform of the
rescaled potential (1.12) takes the form

Vo(k) = oV (ok),
the Lenard-Balescu equation (1.1) reads as follows for the time-rescaled velocity den-

sity 5 = g + /lig /s,

8tF5 =V- B(;(U,U — Uk VF(;) (Fg,*vpg — F(;V*F&*),

Rd
in terms of
B — v VF) = ko k)l (k)2 Sk 0=—v)) 4
5(1},1} Uses ) : Rd( ® )71' () les(kk-v;VE)]2 =
es(k,k-v; VF) = 1+5d“17(/<;)/ %dv*.
R? *

For a < d, global well-posedness can now obviously be deduced as in Theorem 1 uniformly
with respect to 0 < d < 1. As the proof of Lemma 2.1(ii) yields

les(-, 5 VES) = Ul rwoegay) S 67 IVIILi ey (L4 15l m2e)),

the conclusion follows from the explicit computation (2.12). O
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